JP5933510B2 - Mems加速度計 - Google Patents

Mems加速度計 Download PDF

Info

Publication number
JP5933510B2
JP5933510B2 JP2013239546A JP2013239546A JP5933510B2 JP 5933510 B2 JP5933510 B2 JP 5933510B2 JP 2013239546 A JP2013239546 A JP 2013239546A JP 2013239546 A JP2013239546 A JP 2013239546A JP 5933510 B2 JP5933510 B2 JP 5933510B2
Authority
JP
Japan
Prior art keywords
coil
proof mass
accelerometer
magnet
mems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013239546A
Other languages
English (en)
Other versions
JP2014055976A (ja
Inventor
ポール・ダブリュー・ドワイヤー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2014055976A publication Critical patent/JP2014055976A/ja
Application granted granted Critical
Publication of JP5933510B2 publication Critical patent/JP5933510B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/132Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electromagnetic counterbalancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明はMEMS加速度計に関する。
コイルを備えるパドルタイプのプルーフマスを有する微小電気機械システム(Micro Electro-Mechanical System, MEMS)加速度計の典型的な構成は、大きな磁気抵抗値を備える磁気回路構成を有する。一般に、前述のコイルおよび磁気回路の構成は、磁場がらせんコイルの平面に平行に通るように構成される。磁場は、穴を用いて、プルーフマスを貫通する戻り経路を励起する。
この構成における磁気戻り経路のギャップは、コイルの直径により画定され、従って、対応する磁気回路の大きな磁気抵抗に対して比較的大きく、高いスケールファクターとなる。このタイプのコイル構成は、加速度計をサーボするための電流レベルを必要とし、これが加熱効果を発生させて性能を低下させる非線形性を形成する。
本発明は、感度が改良され、大きな信号対雑音比、および低電力要求の、微小電気機械システム(MEMS)加速度計および加速度検出方法に関する。MEMS加速度計の一例は、少なくとも1つのヒンジタイプの屈曲部に吊るされたプルーフマス、プルーフマス上に位置する少なくとも1つの平面コイル、および、磁束場がコイル面に対して約30°から約60°の間で少なくとも1つの平面コイルを通過するように位置決めされる少なくとも1つの磁石、を有する。例示的な実施形態において、この角度は約45°である。
本発明の一側面によれば、少なくとも1つの磁石は少なくとも1つの環状磁石を含む。
本発明のさらなる側面によれば、少なくとも1つの磁石は、プルーフマスの第1の側部上に位置決めされる第1環状磁石、および、プルーフマスの第2の側面上に位置決めされる第2環状磁石を含む。この第2環状磁石は、第1環状磁石の内側直径よりも小さな内側直径を備え、また、第1環状磁石の外側直径よりも小さい外側直径を備える。
本発明の他の側面によれば、少なくとも1つの平面コイルは、プルーフマスの第1側部上に位置する第1平面コイルと、プルーフマスの第2側部上に位置する第2平面コイルと、を有する。
本発明のさらなる側面によれば、本発明の方法は,MEMS加速度計のピックオフのキャパシタンスを検出し、検出したキャパシタンスに基づいて平面コイルに電流を通じることでMEMS加速度計を再度平衡させるステップを有する。
本発明の好ましい実施形態および代替実施形態が以下に図面とともに詳細に説明される。図面は以下のとおりである。
本発明の一実施形態により形成される微小電気機械システム(MEMS)加速度計のブロック図である。 本発明の一実施形態により形成されるMEMS加速度計の断面側面図である。 本発明の一実施形態により形成されたプルーフマスの断面上面図である。
図1は、本発明の一実施形態により形成される微小電気機械システム(MEMS)加速度計システム20のブロック図である。MEMS加速度計システム20は、加速度計22および制御ユニット24を含む。制御ユニット24は、検出電子機器26および駆動電子機器28を含み、両者はMEMS加速度計22と信号通信できる。また、制御ユニット24は、制御装置30を含み、制御装置30は、検出電子機器部品26および駆動電子機器部品28と信号通信する。一般に、加速度計22は、少なくとも1つのヒンジタイプの屈曲部によりハウジング内に吊るされるプルーフマスを含み、また、少なくとも1つのヒンジタイプの屈曲部についてプルーフマスを再平衡させるための磁気再平衡要素を含む。磁気再平衡要素は、プルーフマス上に位置する少なくとも1つの平面コイルに電流を流すことにより加速度計22をサーボ駆動するためにローレンツ力を用い、プルーフマスは磁束場内に位置し、磁束場はコイル平面に対して約30°から約60°の間の角度で少なくとも1つの平面コイルを通過する。マルチセンサ環境における使用のためのいくつかの実施形態においては、加速度計22および/または加速度計システム20の周りに磁場シールドが存在してもよい。例示的な加速度計22のさらなる詳細は図2とともに議論される。
図2は、本発明の一実施形態により形成されるMEMS加速度計40の断面側面図である。加速度計40は、磁気戻り経路ハウジング構造41を含む。プルーフマス42は、ヒンジタイプの屈曲部44により吊るされ、屈曲部44は磁気戻り経路ハウジング構造41内の支持手段により支持される。第1コイル46は、プルーフマス42の第1側部上に位置する。第2コイル48は、プルーフマス42の第2側部上に位置する。第1コイル46および第2コイル48は平面であり、共通の軸を中心とする円形コイルである。第1コイル46は、第1コイル内側直径、第1コイル外側直径を備え、これらはそれぞれ第2コイル内側直径および第2コイル外側直径よりも大きい。例示的な実施形態において、第1コイル46および第2コイル48の各々は約10回巻であり、それぞれ約45ミクロン幅であり、各巻の間の空間は約15ミクロンであり、厚さが約0.5ミクロンである。しかし、いくつかの実施形態において、長円形または矩形のらせん構成のような他のコイル構成を用いてもよく、また、異なる巻数を用いてもよく、異なる寸法を用いてもよい。第1環状磁石50が、磁気戻り経路ハウジング構造41の頂部部品51の内側表面で、第1コイル46の上に位置する。第2環状磁石52が、磁気戻り経路ハウジング構造41のベース部品53の内側表面上で、第2コイル48の下に位置する。第1磁石50および第2磁石52は、たとえばサマリウムコバルト(SmCo)磁石とすることができる。磁気戻り経路ハウジング構造41は、第1磁石50の上の頂部部品51から、側壁リング55を通じて、第2磁石52の下の位置のベース部品53のところまで延びる。側壁リング55は、頂部部品51およびベース部品53の両者に取り付けられる。磁気戻り経路ハウジング構造41は、たとえば合金39のような合金で形成することができる。磁性を持ち、温度変化によるワーピング(warping)を最小化するシリコンに匹敵するよい熱膨張係数を備えるので合金39を挙げたが、他の実施形態において他の材料を用いることもできる。第1容量性ピックオフ58および第2容量性ピックオフ60がそれぞれプルーフマスの上および下に位置する。
第1磁石50および第2磁石52は、第1および第2のコイル46、48の平面に対して約45度の磁束角度62で破線矢印により示される方向に、第1コイル46および第2コイル48を通る磁束場が形成されるように配置される。磁束場はいくつかの湾曲部を備えてもよいが、好ましくは、磁束場は第1および第2のコイル46、48の平面を通じてほぼ直線的である。磁場は、第1コイル46および第2コイル48の平面内の第1成分に対して説明することができ、また、第1コイル46および第2コイル48の平面に直交する第2成分に対して説明することができる。コイル46、48の平面内の第1成分は、プルーフマスの平面に垂直なサーボ方向における有効な力を提供するために、コイル46、48を通る電流に関連させて用いられる。コイル46、48を通る電流に関連する第2成分は、コイル46、48に半径方向の力を付与し、これはコイル46、48およびプルーフマス42により支持される。いくつかの実施形態において、磁石50、52および磁気戻り経路ハウジング構造41が取り付けられる前に、加速度計40のいくつかの部品をシールするために、第1および/または第2の磁石50、52をプルーフマス42およびコイル46、48から隔離するためにパイレックス(Pyrex)(登録商標)の層(図示せず)を用いることができる。
第1磁石50および第2磁石52は、第1および第2のコイル46、48に面する磁石50、52の表面に対して約45°の角度のほぼ線形の磁束角度を生じさせるように磁荷が与えられる。例示的な一実施形態において、磁石50、52は、第1コイル46および第2コイル48のそれぞれ面する各磁石50、52の表面に対して約90°の角度で、環状磁石50、52の中心軸について半径方向内側に磁荷が与えられる。約45°の磁束角度を形成するように磁石50に磁荷が与えられる方向は、例示的な一実施形態において、磁石および磁石の互いに対する位置、および加速度計40の他の部品に対する位置、の有限要素解析モデルを用いて決定することができる。第1磁石50および第2磁石52は、各磁石50、52の磁束線の方向ベクトルが符号するように、頂部部品51およびベース部品53に接続される。第1コイル46および第2コイル48の中心軸に垂直な方向における磁束場の成分は、加速度計40のプルーフマス42をサーボするために用いられる。例示的な一実施形態において、これは、典型的な構成と比較して、加熱効果を低減するのを助ける。これは、第1および第2のコイル46、48を通る電流と、コイル46、48の中心軸に垂直な磁束場の成分のベクトル積が、典型的な構成におけるものよりも多くの磁束および少ない電流から構成されるからである。磁石50、52は異なる半径で示されているが、他の実施形態において、ほぼ等しい内側径および外側径を備える磁石を用いることもできる。このような実施形態において、望ましい45°の磁束角度62がコイル46、48を通るように、磁石の磁荷の角度は、約90°ではなく約45°とすることができる。
例示的な一実施形態において、第1コイル46および第2コイル48は、図1に示される駆動電子機器28のような駆動要素に電気的に接続されている。第1および第2の容量性ピックオフ58、60は、図1に示される検出電子機器26のような検出要素と信号通信する。加速度計40を取り囲むセンサパッケージのような他の要素(明確さのために図示しない)を含むこともできる。
加速度計40は、プルーフマス42の平面に垂直な成分を備える加速度に対して感度がある。この加速度は、第1および第2の容量性ピックオフ58、60に接続された検出電子機器26により検出される。いくつかの実施形態において、微分キャパシタンスが検出される。検出したキャパシタンスに基づいて加速度計40を再平衡させる力を発生させるために、駆動電子機器28により、適切な電流が第1および第2のコイル46、48に流される。制御装置30は、所定のキャリブレーションおよび検出したキャパシタンスに基づいて、駆動信号を駆動電子機器28に送る。プルーフマス42の平面に垂直な加速度の成分は、プルーフマス42を再平衡させるのに必要な電流レベルに基づいて決定される。
図3は、本発明の例示的な一実施形態により形成される図2に示されるプルーフマス42の断面上面図である。第1コイル46、ヒンジタイプの屈曲部44、および容量性ピックオフ58の第1パッド58−1が図示されている。
一般に、加速度計22、40は、シリコンウェハから始まり、パターン形成およびエッチングにより、支持構造に取り付けられたヒンジタイプの屈曲部を備えるいくつかのぶらさがったプルーフマス素子により形成される。このウェハは、金属配線を支持するために誘電体層を生成するために酸化される。さらにパターン化および金属配線のステップは、微分容量性ピックオフを形成し、また平面らせんコイルのための基本素子を形成する。コイルの内側の輪郭は、らせんコイルに渡って誘電体層を配置することを介して形成され、これに第2の金属配線ステップが続く。シリコンウェハと同じ直径を備えるガラスウェハがパターン化され、エッチングされ、金属配線されて、微分容量性ピックオフの第2プレートとして機能しさらに制御装置の減衰を制御するように機能する表面に凹部を生成する。第1ガラスウェハは、シリコンウェハに整列され、陽極接続されて下容量プレートを形成する。このアセンブリは、第2ガラスウェハに陽極接続され、微分容量ピックオフのための上のキャパシタを形成する。シリコンおよびガラスのウェハアセンブリは、ダイシングされ、個別のセンサにアクセスできるようになる。下の磁石は、磁気戻り経路ハウジング構造のベース部品に取り付けられ、戻り経路ハウジング構造の側壁リング部品がベース部品に取り付けられ、ウェハアセンブリからのセンサが側壁リング内に配置され、ベース部品に取り付けられ、上磁石が戻り経路ハウジング構造の頂部部品に取り付けられ、頂部部品が側壁リングに取り付けられる。これらの磁石は、らせんコイルの平面を約45°で通る磁束場を生成する所定の方向に磁荷が与えられる。代替的に、磁石の一方または両方は、磁気戻り経路ハウジング構造に取り付ける前に磁荷が与えられる。これらの磁石は、これらの磁石がらせんコイルに相互作用する磁場を生成するために、コイルの上および下に配置されるように、戻り経路構造に取り付けられる。ここで、ウェハアセンブリ、磁石および磁気戻り経路ハウジング構造を含む加速度計は、パッケージ、試験、および加速度計システムへの統合のための準備ができている。1つのコイルだけが言及されたが、図2で説明した第2コイルのような追加のコイルを上述のコイルと同様の手法で追加できることを理解されたい。
例示的な一実施形態において、図1、2の加速度計22および40は、パターンを酸化し、プルーフマスおよび少なくとも1つのヒンジタイプの屈曲部をシリコンウェハ上に深堀り反応性イオンエッチングにより形成することにより形成される。次に、らせんコイルおよびピックオフを、プルーフマス上に金属で形成する。らせんコイルおよびピックオフはたとえば金により形成できる。その後、絶縁層をコイルの部分にわたってスパッタリングにより形成する。追加的なトレースを絶縁層にわたって金属配線し、コイルの内側部分への接続部を形成する。その後、たとえばホウケイ酸塩パイレックスのようなガラスで形成できる第1ハウジング部分をエッチングして、キャパシタおよびプルーフマス上のトレースへのアクセスのための貫通穴のための凹部を生成する。その後、第1ハウジング部分は金属で形成されて、容量性ピックオフの一部を形成する。同様の方法で、第2ハウジング部分がエッチングされて金属で形成される。第1および第2のハウジング部分は、たとえばハウジング部分をウェハ層に陽極接続することにより、プルーフマスを含むウェハ層に取り付けられる。いくつかの実施形態において、極部品および/または戻り経路構造のための穴を形成するために、貫通穴をウェハアセンブリ内で超音波加工できる。
本発明の好ましい実施形態が上述のように図示および説明されたが、本発明の趣旨および範囲から逸脱することなく多くの変更が可能である。たとえば、2つの環状磁石を用いるのではなく、いくつかの実施形態において、複数の個別的な磁石をプルーフマスの両側において使用してもよい。さらに、所定角度で極性が与えられる磁石を用いるのではなく、コイルを通る所望の角度に磁束場を向けるために、1つまたはそれ以上の極部品を用いてもよい。また、単一の磁気戻り経路構造を用いるのではなく、特に、環状磁石ではなく複数の磁石が用いられる実施形態においては、複数の戻り経路構造を用いてもよい。単一層のコイルだけが説明されたが、いくつかの実施形態においては1つ以上の層を備えるコイルを用いてもよい。本発明は添付の特許請求の範囲により完全に決定される。

Claims (3)

  1. 微小電気機械システム(MEMS)加速度計(40)であって、
    ヒンジタイプの屈曲部により吊るされるプルーフマス(42)と、
    前記プルーフマス上に位置する、少なくとも1つの平面コイル(46、48)と、
    前記コイルの平面に対して約30°から約60°の間の範囲の磁束角度で、磁束場が前記少なくとも1つのコイルを通るように位置決めされる少なくとも1つの磁石(50、52)と、を有する、MEMS加速度計。
  2. 請求項1に記載のMEMS加速度計であって、前記少なくとも1つの磁石は、
    前記プルーフマスの第1側部側に位置決めされる第1環状磁石(50)と、
    前記プルーフマスの第2側部側に位置決めされる第2環状磁石(52)と、を有し、
    前記第2環状磁石は、前記第1環状磁石の内側直径よりも小さな内側直径、および、前記第1環状磁石の外側直径よりも小さな外側直径を有する、MEMS加速度計。
  3. 請求項1に記載のMEMS加速度計であって、さらに、前記少なくとも1つの磁石に連結される磁気戻り経路構造(41)を有し、磁気戻り経路構造は、前記プルーフマスの第1側部から前記プルーフマスの第2側部まで延びる、MEMS加速度計。
JP2013239546A 2008-10-08 2013-11-20 Mems加速度計 Expired - Fee Related JP5933510B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/247,921 US8065915B2 (en) 2008-10-08 2008-10-08 MEMS accelerometer
US12/247,921 2008-10-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009232409A Division JP5425583B2 (ja) 2008-10-08 2009-10-06 Mems加速度計

Publications (2)

Publication Number Publication Date
JP2014055976A JP2014055976A (ja) 2014-03-27
JP5933510B2 true JP5933510B2 (ja) 2016-06-08

Family

ID=41601907

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009232409A Expired - Fee Related JP5425583B2 (ja) 2008-10-08 2009-10-06 Mems加速度計
JP2013239546A Expired - Fee Related JP5933510B2 (ja) 2008-10-08 2013-11-20 Mems加速度計

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009232409A Expired - Fee Related JP5425583B2 (ja) 2008-10-08 2009-10-06 Mems加速度計

Country Status (5)

Country Link
US (1) US8065915B2 (ja)
EP (1) EP2175283B1 (ja)
JP (2) JP5425583B2 (ja)
AT (1) ATE487949T1 (ja)
DE (1) DE602009000349D1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8122767B2 (en) * 2008-10-08 2012-02-28 Honeywell International Inc. D'arsonval movement mems accelerometer
US7997136B2 (en) * 2008-10-08 2011-08-16 Honeywell International Inc. MEMS force balance accelerometer
US8065915B2 (en) * 2008-10-08 2011-11-29 Honeywell International Inc. MEMS accelerometer
US8307710B2 (en) * 2009-07-09 2012-11-13 Honeywell International Inc. Translational mass in-plane MEMS accelerometer
CN101830427B (zh) * 2010-04-17 2012-02-22 上海交通大学 基于mems技术的抗磁粒子三维操纵装置
US8552829B2 (en) * 2010-11-19 2013-10-08 Infineon Technologies Austria Ag Transformer device and method for manufacturing a transformer device
US10145906B2 (en) * 2015-12-17 2018-12-04 Analog Devices Global Devices, systems and methods including magnetic structures
US10161956B2 (en) * 2016-04-25 2018-12-25 Honeywell International Inc. Reducing bias in an accelerometer via a pole piece
CN107857231B (zh) * 2017-10-24 2019-06-11 华中科技大学 一种微机电加速度计及其制备方法
JP7146499B2 (ja) * 2018-07-17 2022-10-04 東京計器株式会社 3次元構造部材の製造方法、加速度ピックアップ部材の製造方法、加速度ピックアップ部材、及び加速度センサ
US11187717B2 (en) 2018-10-16 2021-11-30 Ruben Flores Radio frequency accelerometer
US11275098B2 (en) * 2020-07-14 2022-03-15 Honeywell International Inc. Accelerometer including rectangular coil and rectangular pole piece

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965753A (en) * 1970-06-01 1976-06-29 Browning Jr Alva Laroy Electrostatic accelerometer and/or gyroscope radioisotope field support device
US4088027A (en) 1976-09-29 1978-05-09 Hernandez E Norman Force balance servo accelerometer
US4144765A (en) * 1977-09-21 1979-03-20 Honeywell Inc. Linear accelerometer with torsion hinge suspension
US4510802A (en) 1983-09-02 1985-04-16 Sundstrand Data Control, Inc. Angular rate sensor utilizing two vibrating accelerometers secured to a parallelogram linkage
US4868479A (en) * 1985-10-15 1989-09-19 The Charles Stark Draper Laboratory, Inc. Low loss permanent magnet motor
US4726228A (en) 1986-04-16 1988-02-23 Sundstrand Data Control, Inc. Accelerometer proof mass interface
US4854169A (en) 1987-06-15 1989-08-08 Japan Aviation Electronics Industry Ltd. Accelerometer
US5133214A (en) * 1990-05-18 1992-07-28 New Sd, Inc. Adjustment of scale factor linearity in a servo accelerometer
DE4036224A1 (de) * 1990-11-14 1992-05-21 Bosch Gmbh Robert Sensor
JPH0743377A (ja) * 1993-07-29 1995-02-14 Tokimec Inc 加速度計
US5524488A (en) * 1994-01-24 1996-06-11 Alliedsignal Inc. Flux control groove
WO1996019733A1 (fr) 1994-12-20 1996-06-27 The Nippon Signal Co., Ltd. Capteur d'acceleration
IL123057A (en) 1995-08-15 2001-06-14 Allied Signal Inc accelerometer
US5731703A (en) 1995-10-31 1998-03-24 The Charles Stark Draper Laboratory, Inc. Micromechanical d'arsonval magnetometer
JP3818399B2 (ja) * 1996-03-12 2006-09-06 株式会社ミツトヨ 超小型加速度センサ
US5739431A (en) 1996-06-13 1998-04-14 Alliedsignal, Inc. Miniature magnetometer-accelerometer
WO1998031572A1 (en) 1997-01-17 1998-07-23 Automotive Systems Laboratory, Inc. Vehicle door edge movement sensor system
JPH10335675A (ja) * 1997-05-30 1998-12-18 Aisin Seiki Co Ltd 半導体マイクロマシン
GB0000619D0 (en) * 2000-01-13 2000-03-01 British Aerospace Accelerometer
JP2002350459A (ja) * 2001-05-23 2002-12-04 Akashi Corp 振動センサ、及び振動センサの製造方法
US6664786B2 (en) 2001-07-30 2003-12-16 Rockwell Automation Technologies, Inc. Magnetic field sensor using microelectromechanical system
US7036374B2 (en) 2002-01-25 2006-05-02 William Thomas Pike Micro-machined suspension plate with integral proof mass for use in a seismometer or other device
US6776042B2 (en) 2002-01-25 2004-08-17 Kinemetrics, Inc. Micro-machined accelerometer
US7346981B2 (en) 2002-08-07 2008-03-25 Teledyne Licensing, Llc Method for fabricating microelectromechanical system (MEMS) devices
US7191654B2 (en) * 2005-08-17 2007-03-20 Honeywell International Inc. Methods and systems for adjusting magnetic return path with minimized reluctance
US7303935B2 (en) 2005-09-08 2007-12-04 Teledyne Licensing, Llc High temperature microelectromechanical (MEM) devices and fabrication method
US7997136B2 (en) * 2008-10-08 2011-08-16 Honeywell International Inc. MEMS force balance accelerometer
US8065915B2 (en) * 2008-10-08 2011-11-29 Honeywell International Inc. MEMS accelerometer

Also Published As

Publication number Publication date
JP2010091564A (ja) 2010-04-22
JP2014055976A (ja) 2014-03-27
US8065915B2 (en) 2011-11-29
DE602009000349D1 (de) 2010-12-23
EP2175283B1 (en) 2010-11-10
ATE487949T1 (de) 2010-11-15
JP5425583B2 (ja) 2014-02-26
EP2175283A1 (en) 2010-04-14
US20100083760A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5933510B2 (ja) Mems加速度計
JP5635758B2 (ja) ダルソンバル運動mems加速度計
JP5913522B2 (ja) 平行な磁石間に磁束集束器を有するmems加速度計
CN102608354B (zh) 具有双检验块的mems传感器
US20100180681A1 (en) System and method for increased flux density d'arsonval mems accelerometer
EP2972417B1 (en) Magnetometer using magnetic materials on accelerometer
EP1596203B1 (en) Magnetic micro-electromechanical sytem (MEMS) sensor and method for its manufacture
JP5634697B2 (ja) 微小電気機械システム(mems)力平行加速度計
JP5740093B2 (ja) 永久磁石を備えた磁場成分の勾配センサ
KR101927647B1 (ko) 3축 mems 자이로스코프
WO1991019987A1 (en) Accelerometer with mounting/coupling structure for an electronics assembly
EP3346281B1 (en) Mems triaxial magnetic sensor with improved configuration
JP5694684B2 (ja) Memsデバイスによる磁束を誘導するためにポールピースを使用すること、および作製方法
CN104181330B (zh) 加速度传感器
JP2913525B2 (ja) 傾斜計
RU2543708C1 (ru) Компенсационный маятниковый акселерометр
CN111442771B (zh) 平板谐振陀螺
Mian et al. Experimental analysis of out-of-plane Lorentz force actuated magnetic field sensor
Ren et al. A MEMS torsional resonant magnetometer for the attitude determination in space
JPH11101817A (ja) 加速度センサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5933510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees