JP5920671B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP5920671B2
JP5920671B2 JP2013228550A JP2013228550A JP5920671B2 JP 5920671 B2 JP5920671 B2 JP 5920671B2 JP 2013228550 A JP2013228550 A JP 2013228550A JP 2013228550 A JP2013228550 A JP 2013228550A JP 5920671 B2 JP5920671 B2 JP 5920671B2
Authority
JP
Japan
Prior art keywords
motor
voltage
limit value
command
voltage limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013228550A
Other languages
English (en)
Other versions
JP2015089318A (ja
Inventor
荘平 大賀
荘平 大賀
野中 剛
剛 野中
隆明 石井
隆明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2013228550A priority Critical patent/JP5920671B2/ja
Priority to EP20140190799 priority patent/EP2869461A1/en
Priority to US14/526,526 priority patent/US20150123592A1/en
Priority to KR1020140149075A priority patent/KR20150051165A/ko
Priority to CN201410601575.9A priority patent/CN104617842A/zh
Publication of JP2015089318A publication Critical patent/JP2015089318A/ja
Application granted granted Critical
Publication of JP5920671B2 publication Critical patent/JP5920671B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening

Description

開示の実施形態は、モータ制御装置に関する。
特許文献1には、モータの高速回転時に入力電圧の増減変化に応じてd軸電流を流して弱め界磁を行うことで駆動を安定させる定出力制御の技術が記載されている。
特許第3686987号公報
しかし、このような定出力制御では、高速回転時における入力電圧が常に最大に維持されるだけであり、モータへの入力電圧と入力電流の積で表される入力電力が大きくなりやすい。このため、上記の定出力制御は、入力電力に対するモータ出力の電力変換効率の観点で改善する余地があった。
本発明はこのような問題点に鑑みてなされたものであり、高速回転時でもモータを高効率で安定して駆動できるモータ制御装置を提供することを目的とする。
上記課題を解決するため、本発明の一の観点によれば、交流モータの駆動を制御するモータ制御装置であって、電圧指令値を算出するように構成された電圧算出部と、前記モータの駆動特性に対応して電力変換効率が略最大となる第1電圧制限値を生成するように構成された電圧制限値生成部と、前記第1電圧制限値と前記電圧指令値の偏差に基づいてd軸電流を調整するように構成されたd軸電流調整部と、前記モータが、回転子から出る磁束の強さを可変にできるモータであった場合、前記モータの出力に関係する少なくとも1つの第2パラメータ群と、前記第2パラメータ群に対応して前記電力変換効率が略最大となる前記モータの界磁率との相関を記憶する界磁率マップに基づいて界磁率指令を生成し、前記モータへ出力するように構成された界磁率指令生成部と、前記モータにおける界磁率を検出するように構成された界磁率検出部と、を有し、前記電圧制限値生成部は、前記界磁率指令生成部が生成した前記界磁率指令と、前記界磁率検出部が検出した前記界磁率との間に所定以上の差異がある場合、当該差異に応じて前記第1電圧制限値を前記電圧指令値より大きくなるよう修正するように構成される、モータ制御装置が適用される。
本発明によれば、高速回転時でもモータを高効率で安定して駆動できる。
第1実施形態に係るモータ制御装置の機能ブロック図である。 従来型の定出力制御を行う第1比較例のモータ制御装置の機能ブロック図である。 第1比較例において、入力電力、入力電圧、d軸電流の関係を示すチャートである。 第2比較例において、入力電力、入力電圧、d軸電流の関係を示すチャートである。 第1実施形態において、入力電力、入力電圧、d軸電流の関係を示すチャートである。 可変界磁モータの一例における軸直交断面である。 可変界磁モータの一例における回転子の外観斜視図である。 第2実施形態に係るモータ制御装置の機能ブロック図である。 第3実施形態において、入力電力、入力電圧、d軸電流の関係を示すチャートである。 第3実施形態に係るモータ制御装置の機能ブロック図である。
<第1実施形態の基本構成>
以下、一実施の形態について図面を参照しつつ説明する。図1は、第1の実施形態に係るモータ制御装置の機能ブロック図を示している。この図1において、Iq演算部2と、Id演算部3と、ACR4と、dq/3相変換部5と、PWM変換部6と、インバータ7と、電流検出部8と、モータMと、エンコーダPGと、3相/dq変換部9と、速度演算部10と、電圧指令値演算部11と、電圧制限値生成部12と、電圧制限部13と、加算器14と、減算器15が示されている。このうちインバータ7、モータM、及びエンコーダPGを除いた構成部が、本実施形態のモータ制御装置1を構成する。
Iq演算部2及びId演算部3は、それぞれ入力された同一のトルク指令Trefから、モータMのトルクの発生に大きく影響を与えるq軸成分のq軸電流指令Iqrefと、励磁に大きく影響を与えるd軸成分のd軸電流指令Idrefを算出する。これらの演算は、それぞれ算出式に基づいて行われる。q軸電流指令IqrefはそのままACR4に入力され、d軸電流指令Idrefは後述の電圧制限部13の出力と加算器14で加算された後にACR4に入力される。なお、モータMの種類(例えばIPMモータなど)によっては、d軸電流指令Idrefもトルクに多少の影響を与える場合がある。
ACR4は、上記のq軸電流指令Iqrefとd軸電流指令Idrefが入力されるとともに、後述の3相/dq変換部9から検出q軸電流値Iqと検出d軸電流値Idが入力され、各軸に対応してそれらの間の偏差に基づきq軸電圧指令Vqrefとd軸電圧指令Vdrefを出力する電流制御部としての機能を有する。
dq/3相変換部5は、後述のエンコーダPGから検出されたモータMの回転位置θに基づいて、上記のq軸電圧指令Vqrefとd軸電圧指令Vdrefを、U相電圧指令Vu、V相電圧指令Vv、及びW相電圧指令Vwの3相電圧指令に座標変換する。
PWM変換部6は、上記の3相電圧指令Vu,Vv,Vwと内部で生成した搬送波(三角波)との比較に基づくPWM変換により、各相に対応するPWMドライブ信号を出力する。
インバータ7は、上記の各相対応のPWMドライブ信号に基づくスイッチング動作により、特に図示しない外部電源からの供給電力をPWM制御で各相の駆動電力に変換してモータMに給電する。
電流検出部8は、インバータ7から給電された各相の駆動電力の駆動電流値Iu,Iv,Iwをそれぞれ検出する。
モータMは、本実施形態の例では回転型の3相交流モータであり、インバータ7から給電された各相の駆動電力により駆動する。なお、このモータMは、回動型以外にも直動型のものも適用可能である。
エンコーダPGは、例えば光学式のロータリエンコーダなどで構成され、モータMの回転位置θを検出する。なお、モータMが直動型の場合は、例えばリニアスケールなどを用いてモータMの可動子の駆動位置を検出する。
3相/dq変換部9は、エンコーダPGから検出されたモータMの回転位置θに基づいて、上記電流検出部8から検出された各相の駆動電流値Iu,Iv,Iwを、検出q軸電流値Iqと検出d軸電流値Idに座標変換する。また上述したように、上記のACR4は、トルク指令Trefに基づくq軸電流指令Iqref及びd軸電流指令Idrefと、実際にモータMに入力される検出q軸電流値及び検出d軸電流値Idとの間の偏差に基づいてq軸電圧指令Vqref及びd軸電圧指令Vdrefを出力する。これにより、ACR4、dq/3相変換部5、PWM変換部6、インバータ7、電流検出部8、及び3相/dq変換部9で電流制御(トルク制御)のためのフィードバックループが構成され、モータMに実際に入力される電流をトルク指令Trefの値に対応して追従するよう制御する。なお、特に図示しないが、トルク指令Trefは上位制御装置から直接入力されてもよいし、またはさらに速度制御用のフィードバックループや、位置制御用のフィードバックループを設けてそれらから入力されてもよい。
電圧指令値演算部11は、上記ACR4が出力したq軸電圧指令Vqrefとd軸電圧指令Vdrefに基づいて、それらのq軸成分とd軸成分を合成したモータMへの入力電圧の指令値に相当する電圧指令値V1を演算する。なお、この電圧指令値演算部11が、各請求項記載の電圧算出部に相当する。
速度演算部10は、エンコーダPGで検出したモータMの回転位置θに基づいて、モータMの回転速度ωを演算する。具体的な演算内容としては、モータ回転位置θを微分演算することでモータ回転速度ωを算出する。
電圧制限値生成部12は、上記速度演算部10が算出したモータ回転速度ωとトルク指令Trefに基づいて効率電圧制限値Vlimitを生成する。なお、この効率電圧制限値Vlimitiの内容と生成手法については、後に詳述する。また、この効率電圧制限値Vlimitが、各請求項記載の第1電圧制限値に相当する。
減算器15は、上記電圧制限値生成部12で生成された効率電圧制限値Vlimitと、上記電圧指令値演算部11で算出された電圧指令値V1との間の偏差を算出する。
電圧制限部13は、上記減算器15が算出した偏差に基づいてd軸電流調整信号ΔIdrefを出力し、これを加算器14でd軸電流指令Idrefだけに加算する。これにより、モータMの高速回転時における入力電圧の増減変化に応じてd軸電流指令Idrefを調整し、モータMの駆動を安定させる定出力制御が可能となる。なお、定出力制御については後に詳述する。また、減算器15、電圧制限部13、及び加算器14が、各請求項記載のd軸電流調整部に相当する。
以上のように本実施形態のモータ制御装置1では、トルク指令Trefに対応する電流指令をd軸電流指令Idrefとq軸電流指令Iqrefに分けたdq軸ベクトル制御を行うことにより、制御構成が比較的単純な直流モータと同等に交流モータMを機能的に制御できる。
<従来型との対比:第1の比較例>
ここで、比較例となる従来型のモータ制御装置を2つ示し、それらとの対比により上記本実施形態のモータ制御装置1の機能を説明する。図2は、従来型の定出力制御を行う第1の比較例のモータ制御装置101の機能ブロック図を示している。
この図2に示す従来型のモータ制御装置101は、上記図1に示した本実施形態のモータ制御装置1と比較して、速度演算部10と電圧制限値生成部12を設けずに、上記効率電圧制限値Vlimitiの代わりにあらかじめ固定的に設定された飽和電圧制限値Vpnを用いている点で相違している。その他の構成については本実施形態のモータ制御装置1と同等であるため、説明を省略する。
一般的に、モータMは回転することで逆起電圧として作用する誘起電圧が内部的に生じ、所定速度以上の高速回転時には入力電圧の多くが誘起電圧によって相殺され、巻線に電流を流せなくなるため、それ以上トルクを上げることができなくなる。しかしこのような電圧飽和時にd軸電流Idを流すことで、コアに逆向きの磁束を発生させて相殺させることで(いわゆる弱め界磁)、巻線に電流が流せるようになるため、より高速に回転させることができる。つまり、通常ではd軸成分はモータMの駆動に直接大きく寄与しないが、高速回転時においては入力電圧の増減変化に応じてd軸電流指令Idrefを制御することでモータMの駆動を安定させる定出力制御を実現できる。
この定出力制御の具体的な手法を、図3を用いて説明する。図3は、位相角の変化に対する入力電力Pin、入力電圧V1、d軸電流Idの変化を示すチャートである。位相角とはdq軸座標における入力電力ベクトルの位相角であり、これが大きいほどq軸電流に対するd軸電流Idの比率が増加し、すなわちd軸電流Idが緩やかに単調増加する。これにより、比較的小さい範囲での位相角の増減はd軸電流Idの増減にほぼ同等にみなせる。
入力電力Pinは、当該モータ制御装置101の内部における各指令に基づいて仮想的に算出されるモータMへの入力電力であり、Pin=VIcosδの算出式で表せる(δは入力電力Pinの電流と電圧の位相差)。この入力電力Pinは、図示するように、ある位相角において極小値を持ち、そこから位相角を増加または減少させる変化に対して入力電力Pinが上下逆向きの略放物曲線状に増加する特性を持つ。またこの入力電力Pinに対して、モータMから実際に出力された機械的な仕事量を電力値に換算したものが出力電力Pout(特に図示せず)に相当し、Pout=T・Nの算出式で表せる(Tは出力トルク、Nはモータ回転数(=モータ回転速度ω))。そして、入力電力Pinに対する出力電力Poutの比Pout/PinがモータMにおける電力変換効率ηに相当し、つまりこの電力変換効率ηが高いほど少ない入力電力Pinで所望のモータ出力を引き出せる。
入力電圧V1は、モータMに入力される電圧であり、上記電圧指令値演算部11が算出する電圧指令値V1と同等である。この入力電圧V1は、図示するように、位相角の増加に対して単調減少から単調増加へと略V字状に変化する特性がある。この特性は、上述したようにd軸電流Idの増加により弱め界磁の効果を大きくすることで入力電圧V1を単調減少できるものの、ある限界点(略V字状曲線の変化点)を超えてd軸電流Idを増加した場合には逆に入力電圧V1を単調増加させてしまうために生じる。また、この入力電圧V1は、モータ回転速度ω(モータ回転数N)が増加すると略V字状曲線全体がそのまま上方に移動し、位相角の全範囲に渡って入力電圧V1が等しく増加する特性も有している。
そして上記の従来型のモータ制御装置101で設定される飽和電圧制限値Vpnは、上述したモータM内部の誘起電圧で入力電圧V1が相殺されることにより電圧飽和状態を生じさせる閾値に相当し、入力電圧V1がそれを超えると定速回転中でもトルクの変動に対してモータMの駆動が不安定となる。つまり、入力電圧V1が飽和電圧制限値Vpn以下となる位相角範囲内だけが、モータMを安定駆動可能な駆動可能範囲となる。この飽和電圧制限値Vpnは、通常はインバータ7に供給される電源電圧で決まるパラメータである。なお、この飽和電圧制限値Vpnが、各請求項記載の第2電圧制限値に相当する。
ここで、上述したdq軸ベクトル制御では、d軸電流Idを調整することで、モータ回転速度ωを維持したまま入力電圧V1のバランスを取ることができる。つまり、図3のチャートにおいて、モータ回転数Nが一定であることを前提とした場合(入力電圧V1に対応する略V字状曲線の上下位置が一定である場合)に、位相角を増減変化(d軸電流Idを増減変化)させることによって上述した弱め界磁の効果を調整し、モータMを上記の駆動可能範囲内の状態に維持させることができる。具体的には、図3中に示すように、駆動可能範囲内で特に入力電圧V1の略V字状曲線の単調減少範囲内(弱め界磁有効範囲内)に位置する点P1に対応した値となるようd軸電流Idを調整すればよい。
このようなd軸電流Idの調整を行うために、上記図2に示した従来型のモータ制御装置101では、固定値である飽和電圧制限値Vpnと電圧指令値V1との間の偏差に基づいて電圧制限部13がd軸電流調整信号ΔIdrefを出力し、これを加算器14でd軸電流指令Idrefに加算する。なお、電圧制限部13内部の処理については、例えば適宜のゲインやフィードフォワードなどを用いて偏差が小さくなるようにするいわゆるPID制御等を行えばよい。この構成により、モータ回転速度が変化して図3中の入力電圧V1の曲線の上下位置が変化した場合でも、常に点P1が駆動可能範囲内(入力電圧V1が飽和電圧制限値Vpn以下)に収まるようd軸電流Idが調整される。すなわち、高速回転時においても入力電圧V1の増減変化に応じてモータMの駆動を安定させる定出力制御を実現できる。
しかしながら上記従来型の定出力制御では、高速回転時における入力電圧V1が常に駆動可能範囲内における最大値(つまり飽和電圧制限値Vpnとほぼ同等)に維持されるだけであり、モータMへの入力電圧V1と入力電流の積で表される入力電力Pinが大きくなりやすい。このため、上記の定出力制御は、入力電力Pinに対する出力電力Poutの電力変換効率η(=Pout/Pin)の観点で改善する余地があった。
<従来型との対比:第2の比較例>
次に、電力変換効率ηの最適化を図るための手法として従来型のマップ制御を行う第2の比較例のモータ制御装置について説明する。
第2比較例のモータ制御装置201は、上記図1に示した本実施形態のモータ制御装置1と比較して、Id演算部3、電圧指令値演算部11、電圧制限値生成部12、及び電圧制限部13を設けずに、Id演算部3の代わりにトルク指令Tref及びモータ回転速度ωに基づくマップ制御によりd軸電流指令Idrefを生成するd軸電流指令生成部を設ける点で相違している(図示省略)。その他の構成については本実施形態のモータ制御装置1と同等であるため、説明を省略する。
このマップ制御の具体的な手法を、上記図3に対応する図4を用いて説明する。上述したように、電力変換効率ηは入力電力Pinに対する出力電力Poutの比Pout/Pinで表される。このため、所望する出力電力Pout(=T・N;分子)を引き出すために必要とされる入力電力Pin(=VIcosδ;分母)をできるだけ小さく抑えることで電力変換効率ηを向上できる。また上述したように、入力電力Pinは、位相角の変化(d軸電流Idの変化)に対し、ある位相角で極小値を持つ逆放物線曲線状の特性を持っている。
そこで当該第2比較例では、この入力電力Pinが極小値となる位相角に対応したd軸電流Id(図中の点P2参照)をピンポイントで設定し、これに対応するd軸電流指令Idrefを用いてdq軸ベクトル制御を行う。つまり、トルクにあまり影響を与えない場合が多いd軸電流Idを適切に設定することで、入力電力Pinを極小値としながら所望の出力電力Poutを得ることができ、電力変換効率ηを向上させるようバランスを取ることができる。
このようなd軸電流Idの設定を行うために、上記図4に示した従来型のモータ制御装置201では、上記のd軸電流指令生成部がトルク指令Trefとモータ回転速度ωに基づいて適切なd軸電流指令Idrefを生成し、ACR4に出力する。ここで、図中に示したような位相角の変化に対する入力電力Pinの増減特性(逆放物線状曲線の全体形状や配置で示される特性)は、モータMの出力の変化に応じて変化する。そのため、入力電力Pinの極小値もまたモータ出力に応じて変化するが、これらの間の関係性は制御対象のモータMの機械的特性及び電気的特性に依存しており、単純な算出式に当てはまらない複雑な関係である場合が多い。
このため当該第2比較例では、上記のd軸電流指令生成部がその内部にd軸電流マップを備え、これを参照して適切なd軸電流指令Idrefを生成する。このd軸電流マップは、モータ出力に関係するパラメータをキー変数とし、これらに対応して入力電力Pinを極小値にできるd軸電流指令Idrefとの相関を記憶している。当該第2比較例における具体例としては、トルクTとモータ回転数Nの2つのパラメータで直交座標を取り、それらの組み合わせに対応して入力電力Pinを極小値にできるd軸電流指令Idrefを記憶した2元テーブルでd軸電流マップを構成する(特に図示せず)。なお当該第2比較例では、実際にモータMが出力したトルクTを検出する代わりに、トルク指令Trefを用いてd軸電流マップを参照する。
しかしながら上記従来型のマップ制御では、d軸電流指令Idrefを半固定的に設定するために駆動可能範囲から外れる可能性がある。例えば、上述したようにモータ回転数Nが高くなると入力電圧V1の特性曲線(略V字状曲線)の全体が上方に移動して飽和電圧制限値Vpn以下となる位相角範囲、つまり駆動可能範囲が狭くなることから、d軸電流Idの設定精度がより厳格に要求される。しかし、制御対象のモータMの設計上の理論値で設定されているd軸電流マップの内容に対して、モータMのロットによる製作誤差や、作動中の温度変化などといった実作動の要因による特性誤差が生じた場合には、そのような誤差に対応できずにd軸電流Idが駆動可能範囲から外れてモータMの駆動を不安定にさせる可能性がある。これに対して、誤差の発生が想定できるパラメータも含めてd軸電流マップを作成する対策も考えられるが、そのようにマップの座標となるパラメータを増やして多元的なテーブルで作成した場合には膨大なマップデータが必要となる。
<第1実施形態の特徴>
以上説明した2つの従来型の比較例に対して、本実施形態では以下の手法によりモータMの駆動制御を行う。すなわち、上記図3、図4に対応する図5に示すように、入力電力Pinが極小値となる位相角に対応した入力電圧V1を効率電圧制限値Vlimitとして設定する。そして、飽和電圧制限値Vpnに代えてこの効率電圧制限値Vlimitに基づいて定出力制御を行う(図中の点P3参照)。
具体的には、上記図1に示す本実施形態のモータ制御装置1において、電圧制限値生成部12が、トルク指令Trefとモータ回転速度ωに基づいて電力変換効率ηが略最大となる効率電圧制限値Vlimitを生成する。そして、電圧制限部13が、効率電圧制限値Vlimitと電圧指令値V1の偏差に基づいてd軸電流指令Idrefを調整する。
ここで、上述したように、位相角の変化に対する入力電力Pinの増減特性や極小値の配置は、モータMの出力の変化に応じて変化する。そこで本実施形態の例では、電圧制限値生成部12がその内部に電圧制限値マップを備え、これを参照して適切な効率電圧制限値Vlimitを生成する。この例における電圧制限値マップは、モータ出力に関係するトルクT(トルク指令Trefで代用)とモータ回転数N(=モータ回転速度ω)の2つのパラメータで直交座標を取り、それらの組み合わせに対応して入力電力Pinを極小値(電力変換効率ηを略最大)にできる効率電圧制限値Vlimitを記憶した2元テーブルで電圧制限値マップを構成する(特に図示せず)。そしてこのようなトルクTとモータ回転数Nをキー変数とした電圧制限値マップから得られる効率電圧制限値Vlimitは、飽和電圧制限値Vpnよりも低い値で生成される。なお、本実施形態の例におけるトルク指令Trefとモータ回転速度ωが、各請求項記載の第1パラメータ群に相当する。
これにより、モータMへの入力電圧を制御する電圧指令値V1が、定出力制御により効率電圧制限値Vlimitに安定維持される。つまり、高速回転時におけるモータMへの入力電圧V1が、駆動対象のモータMの駆動特性に対応して電力変換効率ηが略最大となる効率電圧制限値Vlimitに常に維持される。このとき、上述したようなモータMの製作誤差や実作動の要因による特性誤差が生じた場合でも、本実施形態では定出力制御によって入力電圧V1が飽和電圧制限値Vpnより低い効率電圧制限値Vlimitに常に維持されるため、駆動可能範囲から外れることはない。
<第1実施形態により得られる効果>
以上説明した第1実施形態によれば、次のような効果を得る。すなわち、本実施形態のモータ制御装置1では、モータMへの入力電圧V1を制御する電圧指令値V1が、減算器15、電圧制限部13、及び加算器14により効率電圧制限値Vlimitに安定維持される。つまり、高速回転時におけるモータMへの入力電圧V1が常に効率電圧制限値Vlimitに維持される。この効率電圧制限値Vlimitは、駆動対象のモータMの駆動特性に対応して電力変換効率ηが略最大となる電圧値であるため、高速回転時でもモータMを高効率で安定して駆動できる。また、モータMの製作誤差や実作動の要因による特性誤差が生じた場合でも、入力電圧V1が飽和電圧制限値Vpnより低い効率電圧制限値Vlimitに常に維持されるため、駆動可能範囲から外れることはない。
また、電力変換効率η(入力電力Pinの極小値)は、例えばモータ検出速度、速度指令、トルク指令Tref等といったモータMの出力に関係するパラメータの影響を大きく受けて変動し、またそれらの関係性は使用するモータMの駆動特性(機械的特性、電気的特性)で大きく相違する。さらに、電力変換効率ηとパラメータとの関係性は、単純な算出式に当てはまらない複雑な関係である場合が多い。このため、本実施形態では特に、電圧制限値生成部12が、モータMの出力に関係する少なくとも1つのパラメータ群(検出速度、速度指令、トルク指令Tref等)と、このパラメータ群に対応して電力変換効率ηが略最大となる効率電圧制限値Vlimitとの相関を記憶する電圧制限値マップに基づいて効率電圧制限値Vlimitを生成する。これにより、パラメータ群のそれぞれの値に対応して電力変換効率ηが略最大となる効率電圧制限値Vlimitを、迅速かつ正確に生成できる。
また、本実施形態では特に、電圧制限値マップで使用するパラメータ群は、トルク指令Trefの値とモータ回転数Nである。これにより、電力変換効率ηが特に影響を受けるモータMのトルクと回転数をパラメータ群とすることで、効率電圧制限値Vlimitを適切に生成できる。
なお、上記第1実施形態では電圧制限値生成部12が電圧制限値マップを用いたマップ制御により効率電圧制限値Vlimitを生成したが、これに限られない。上述したように、電力変換効率ηは入力電圧V1を含む算出式(Pout/Pin)で算出できる。このため、電力変換効率ηとモータ出力に関係するパラメータ群との関係性が所定の算出式で近似できる場合には、電力変換効率ηが略最大となる効率電圧制限値Vlimitもパラメータ群を用いた算出式で算出してもよい。この場合、電圧制限値マップを備える必要がないため、記憶装置等における記憶容量の省容量化が可能となる。
なお、開示の実施形態は、上記に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を説明する。
<第2実施形態>
上述した効率電圧制限値Vlimitに基づく定出力制御は、界磁率を可変制御可能な可変界磁モータの駆動制御に特に好適である。本実施形態では、可変界磁モータを制御対象とした場合の適用例について説明する。なお、以下において界磁率とは、鎖交磁束が最大となるときの誘起電圧定数に対する、相対的に回動させたときの誘起電圧定数の割合(値の範囲としては、0%〜100%)を言う。
<可変界磁モータの概要>
まず可変界磁モータの概要について説明する。図6は、可変界磁モータMmの一例における軸直交断面を示し、図7(a)(b)は回転子のみを斜視で示している。この例の可変界磁モータMmは3相交流モータで構成されており、内部には油圧駆動機構を備えている。可変界磁モータMmは、固定子110と、固定子110に対し回転自在に支持された回転子120とを有し、回転子120が固定子110に対し回転することで、回転子120に結合されたシャフト130を回転させ、回転力を出力する。
固定子110は、空芯コイルで構成された巻線111と、鉄心112とを備え、電機子として構成されている。
回転子120は、磁界を発生する磁極部121と、鉄心122とを備え、界磁として構成されている。
磁極部121は、軸方向に3分割されており、シャフト130の外周に固定された中央の磁極部121aに対し負荷側磁極部121b及び反負荷側磁極部121cが相対的に回動可能となっている。各磁極部121a,121b,121cは、鉄心122に設けられた略V字形状の装着孔に磁界を発生する磁石123が着磁方向を対面又は背面としつつ装着されることで構成されている。
可変界磁モータMmには後述する界磁調整機構17が接続されており、この内部には特に図示しない油圧制御部が設けられている。この油圧制御部は、シャフト130に設けられた増磁側油導入路132及び減磁側油導入路133を通して、シャフト130に設けられた油圧室134に油圧を供給する。これにより、油圧制御部は、油圧室134に装着された移動自在の受圧プレート150を円周方向に移動させ、受圧プレート150に一体に締結された負荷側界極部121b及び反負荷側磁極部121cを中央の磁極部121aに対し相対的に回動させることで、固定子110と回転子120との間を鎖交する鎖交磁束を変化させる。なお、可変界磁モータMm内部に備えられた油圧駆動機構は、上記の増磁側油導入路132、減磁側油導入路133、油圧室134、受圧プレート150等により構成されている。つまり、油圧駆動機構は、界磁調整機構17の油圧制御部の制御により油圧室134に油圧を供給することで、負荷側界極部121b及び反負荷側磁極部121cを中央の磁極部121aに対し相対的に回動させるというような、回転子120に対する機械的な調整により、鎖交磁束を変化させる。
すなわち、鎖交磁束を弱めるときには、油圧制御部の制御により減磁側油導入路133から油圧室134へ高圧のオイルが導入され、受圧プレート150が円周方向一方側へ移動することで、中央の磁極部121aに対する負荷側磁極部121b及び反負荷側磁極部121cの相対角度が増加される。図7(a)に示す状態では、負荷側磁極部121b及び反負荷側磁極部121cは、中央の磁極部121aに対し相対的に大きく回動し、磁極同士が相殺して鎖交磁束は弱くなっている。
一方、鎖交磁束を強めるときには、油圧制御部の制御により増磁側油導入路132から油圧室134へ高圧のオイルが導入され、受圧プレート150が円周方向他方側へ移動することで、中央の磁極部121aに対する負荷側磁極部121b及び反負荷側磁極部121cの相対角度が減少される。図7(b)に示す状態では、負荷側磁極部121b及び反負荷側磁極部121cは、中央の磁極部121aと磁極を並べ、鎖交磁束は最も強くなっている。
<第2実施形態の構成と特徴>
以上のような可変界磁モータMmを駆動対象とする本実施形態のモータ制御装置の機能ブロック図を図8に示す。この図8に示すモータ制御装置1Aは、上記図1に示した第1実施形態のモータ制御装置1と比較して、可変界磁モータMmが界磁調整機構17を備えるとともに、トルク指令Trefとモータ回転速度ωに基づいて界磁率指令Mrefを界磁調整機構17に出力する界磁率指令生成部18をさらに備えている点で相違している。
界磁調整機構17は、界磁率指令Mrefに基づいて油圧制御部を制御し、可変界磁モータMmにおける界磁率を調整する。界磁率は、中央の磁極部121aに対し負荷側磁極部121b及び反負荷側磁極部121cが相対的に回動した状態での誘起電圧定数の割合である。モータMmは、界磁率が高い状態ではトルクを出しやすく、界磁率が低い状態ではモータ回転速度ωを出しやすくなる。但し、上記のように油圧駆動機構が機械的動作により鎖交磁束を変化させるとき、磁束変化の完了までに比較的長い時間が必要であるため、界磁率指令Mrefの出力に対して大きな応答遅れが生じる。このように鎖交磁束を変化させている間は、モータ定数が連続的に変化し続ける状態となり、つまり電気的特性に誤差が生じ続ける状態と同等となる。
そして、このような可変界磁モータMmにおいては、界磁率指令Mrefを変化させることによって電力変換効率ηを能動的に変動させることができるが、それ以前に電力変換効率η(入力電力Pinの極小値)自体はモータ出力に応じて受動的に変化する。そしてこれらの間の関係性は、単純な算出式に当てはまらない複雑な関係である場合が多い。このため本実施形態のモータ制御装置1Aでは、界磁率指令生成部18がその内部に界磁率マップを備え、これを参照して適切な界磁率指令Mrefを生成する。この界磁率マップは、モータ出力に関係するパラメータをキー変数とし、これらに対応して入力電力Pinを極小値にできる界磁率との相関を記憶している。本実施形態における具体例としては、トルクT(トルク指令Trefで代用)とモータ回転数N(=モータ回転速度ω)の2つのパラメータで直交座標を取り、それらの組み合わせに対応して入力電力Pinを極小値にできる界磁率指令Mrefを記憶した2元テーブルで界磁率マップを構成する(特に図示せず)。なお、本実施形態の例におけるトルク指令Trefとモータ回転速度ωが、各請求項記載の第2パラメータ群に相当する。
<第2実施形態により得られる効果>
以上説明した第2実施形態によれば、次のような効果を得る。すなわち、本実施形態のモータ制御装置1Aでは、例えばモータ検出速度、速度指令、トルク指令Tref等といったモータMmの出力に関係する少なくとも1つのパラメータと、このパラメータに対応して電力変換効率ηが略最大となるモータMmの界磁率との相関を記憶する界磁率マップに基づいて界磁率指令Mrefを生成し、モータMmの界磁率調整機構17へ出力する界磁率指令生成部18を有する。これにより、駆動対象のモータが可変界磁モータMmである場合、モータMmの出力に関係するパラメータに応じて高効率駆動となる界磁率指令MrefをモータMmに指令できる。
また上述したように、可変磁束モータMmが界磁率調整機構17の機械的作動により比較的長い時間をかけて鎖交磁束を変化させている間は、その電気的特性に誤差が生じ続ける状態と同等となる。これに対して本実施形態においても、入力電圧V1が飽和電圧制限値Vpnより低い効率電圧制限値Vlimitに常に維持されるため、駆動可能範囲から外れることはない。これにより、定出力制御を行う本実施形態のモータ制御装置1Aは、可変磁界モータMmへの適用に好適であるといえる。
また、本実施形態では特に、界磁率が特に影響を受けるモータMmのトルクTとモータ回転数Nを界磁率マップのパラメータ群とすることで、界磁率指令Mrefを適切に生成できる。
なお、その時点におけるモータMmの実際の界磁率を検出する機能を界磁率調整機構17(界磁率検出部)に備えることも可能である。この場合に、電圧制限値生成部12は、界磁率指令生成部18が生成した界磁率指令Mrefと、界磁率調整機構17が検出した実際の界磁率との間に所定以上の差異がある場合、当該差異に応じて効率電圧制限値Vlimitを電圧指令値V1より大きくなるよう修正させてもよい(図示省略)。これにより、界磁率制御に大きな遅れが生じている場合でも効率電圧制限値Vlimitを適切に修正し、定出力制御を無理なくより好適に行うことができる。
<第3実施形態>
可変界磁モータMmの界磁率を変化させた際には、当該可変界磁モータMmのトルク定数KtやインダクタンスLq、Ldも変化する。モータ制御装置1におけるIq演算部2、Id演算部3、及びACR4は、これらのパラメータKt、Lq、Ldに基づく算出式を用いて演算等を行っているため、その時点の実際の界磁率をフィードバックさせることが望ましい。
また、上述したように、位相角のある限界点(略V字状曲線の変化点)を超えてd軸電流Idを増加した場合には、入力電圧V1を単調増加させる。上記電圧制限値マップなどにおける理論上のモータMmの駆動特性と、実際のモータMmの駆動特性との間に温度条件などに起因する誤差が生じている場合には、定出力制御でd軸電流Idを増加させた際に上述した入力電圧V1の増減変化点を超えて入力電圧V1を増加させてしまうことがある。このため、上記図9に示すように、入力電圧V1が飽和電圧制限値Vpnを超える手前、つまり駆動可能範囲内でd軸電流Idの上限を制限することが望ましい。
以上の2点を実現するために、第3実施形態では図10に示すような構成とする。この図10に示すモータ制御装置1Bは、上記図8に示した第2実施形態のモータ制御装置1Aと比較して、加算器14とACR4の間のd軸電流指令Idrefの伝達経路にリミッタ19を追加するとともに、界磁調整機構17が検出した可変界磁モータMmの実際の界磁率をIq演算部2、Id演算部3、リミッタ19、及びACR4に入力し、またリミッタ19にはモータ回転速度ωも入力している点で相違している。なお、リミッタ19が、各請求項記載のd軸電流制限部に相当する。
以上説明した第3実施形態によれば、次のような効果を得る。すなわち、本実施形態のモータ制御装置1Bでは、Iq演算部2、Id演算部3、及びACR4が可変界磁モータMmの実際の界磁率を参照することで、より精度の高い演算を行い適正に作動できる。なお、界磁率調整機構17が界磁率指令Mrefの入力を受けて十分な早さで可変磁束モータMmの鎖交磁束を変化できる場合には、Iq演算部2、Id演算部3、リミッタ19、及びACR4が界磁率指令Mrefを直接参照してもよい。
また、本実施形態では特に、リミッタ19が可変界磁モータの実際の界磁率とモータ回転速度ωを参照することで、モータMmに電圧飽和が生じる飽和電圧制限値Vpnよりも電圧指令値V1(入力電圧V1)が低くなるd軸電流Idの範囲内に対応してd軸電流指令Idrefの上限を適正に制限できる。これにより、d軸電流指令Idrefを増加しすぎた場合でも、リミッタ19が駆動可能範囲内でd軸電流指令Idrefの上限を制限しているため、モータMmの安定駆動を確保できる。
<第4実施形態>
また特に図示しないが、モータ制御装置がインバータ7の母線間電圧を検出する電圧検出部を備え、電圧制限値生成部12が上記母線間電圧も参照して効率電圧制限値Vlimitを生成してもよい。具体的には、母線間電圧に基づいて算出されるインバータ7の出力電圧の最大値より効率電圧制限値Vlimitの方が高い場合に、電圧制限値生成部12が効率電圧制限値Vlimitを当該インバータ7出力電圧の最大値に変更する。このようにすることで、インバータ7の母線間電圧が変動した場合でも、モータMの安定駆動を確保できる。
また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。
その他、一々例示はしないが、上記実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
1 第1実施形態のモータ制御装置
1A 第2実施形態のモータ制御装置
1B 第3実施形態のモータ制御装置
2 Iq演算部
3 Id演算部
4 ACR
5 dq/3相変換部
6 PWM変換部
7 インバータ
8 電流検出部
9 3相/dq変換部
10 速度演算部
11 電圧指令値演算部(電圧算出部)
12 電圧制限値生成部
13 電圧制限部(d軸電流調整部)
14 加算器(d軸電流調整部)
15 減算器(d軸電流調整部)
17 界磁調整機構
18 界磁指令生成部
19 リミッタ(d軸電流制限部)
101 第1比較例のモータ制御装置
201 第2比較例のモータ制御装置
M 交流モータ
Mm 可変界磁モータ
PG エンコーダ

Claims (7)

  1. 交流モータの駆動を制御するモータ制御装置であって、
    電圧指令値を算出するように構成された電圧算出部と、
    前記モータの駆動特性に対応して電力変換効率が略最大となる第1電圧制限値を生成するように構成された電圧制限値生成部と、
    前記第1電圧制限値と前記電圧指令値の偏差に基づいてd軸電流を調整するように構成されたd軸電流調整部と
    前記モータが、回転子から出る磁束の強さを可変にできるモータであった場合、
    前記モータの出力に関係する少なくとも1つの第2パラメータ群と、前記第2パラメータ群に対応して前記電力変換効率が略最大となる前記モータの界磁率との相関を記憶する界磁率マップに基づいて界磁率指令を生成し、前記モータへ出力するように構成された界磁率指令生成部と、
    前記モータにおける界磁率を検出するように構成された界磁率検出部と、
    を有し、
    前記電圧制限値生成部は、
    前記界磁率指令生成部が生成した前記界磁率指令と、前記界磁率検出部が検出した前記界磁率との間に所定以上の差異がある場合、当該差異に応じて前記第1電圧制限値を前記電圧指令値より大きくなるよう修正するように構成される、
    ことを特徴とするモータ制御装置。
  2. 前記電圧制限値生成部は、
    前記モータの出力に関係する少なくとも1つの第1パラメータ群と、前記第1パラメータ群に対応して前記電力変換効率が略最大となる前記第1電圧制限値との相関を記憶する電圧制限値マップに基づいて前記第1電圧制限値を生成するように構成される、ことを特徴とする請求項1記載のモータ制御装置。
  3. 前記電圧制限値生成部は、
    前記モータの出力に関係する少なくとも1つの第1パラメータ群を用いた算出式に基づいて前記電力変換効率が略最大となる前記第1電圧制限値を算出するように構成される、ことを特徴とする請求項1記載のモータ制御装置。
  4. 前記第1パラメータ群は、トルク指令値とモータ回転数であることを特徴とする請求項2又は3記載のモータ制御装置。
  5. 前記第2パラメータ群は、トルク指令値とモータ回転数を含むことを特徴とする請求項1乃至4のいずれか1項に記載のモータ制御装置。
  6. 前記モータに電圧飽和が生じる第2電圧制限値よりも前記電圧指令値が低くなるd軸電流の範囲内に対応してd軸電流指令の上限を制限するように構成されたd軸電流指令制限部を有することを特徴とする請求項1乃至のいずれか1項に記載のモータ制御装置。
  7. 前記モータに駆動電力を給電するインバータの母線間電圧を検出するように構成された電圧検出部を有し、
    前記電圧制限値生成部は、
    前記第1電圧制限値が、前記母線間電圧に基づいて算出される前記インバータの出力電圧の最大値より高い場合は、前記第1電圧制限値を当該インバータ出力電圧の最大値に変更するように構成される、ことを特徴とする請求項1乃至のいずれか1項に記載のモータ制御装置。
JP2013228550A 2013-11-01 2013-11-01 モータ制御装置 Active JP5920671B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013228550A JP5920671B2 (ja) 2013-11-01 2013-11-01 モータ制御装置
EP20140190799 EP2869461A1 (en) 2013-11-01 2014-10-29 Motor controller
US14/526,526 US20150123592A1 (en) 2013-11-01 2014-10-29 Motor controller
KR1020140149075A KR20150051165A (ko) 2013-11-01 2014-10-30 모터 제어 장치
CN201410601575.9A CN104617842A (zh) 2013-11-01 2014-10-30 电机控制方法及电机控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013228550A JP5920671B2 (ja) 2013-11-01 2013-11-01 モータ制御装置

Publications (2)

Publication Number Publication Date
JP2015089318A JP2015089318A (ja) 2015-05-07
JP5920671B2 true JP5920671B2 (ja) 2016-05-18

Family

ID=51893825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228550A Active JP5920671B2 (ja) 2013-11-01 2013-11-01 モータ制御装置

Country Status (5)

Country Link
US (1) US20150123592A1 (ja)
EP (1) EP2869461A1 (ja)
JP (1) JP5920671B2 (ja)
KR (1) KR20150051165A (ja)
CN (1) CN104617842A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901593B (zh) * 2015-06-24 2017-10-24 广东威灵电机制造有限公司 电机驱动装置、方法及电机
CN104901598B (zh) * 2015-06-24 2017-07-28 广东威灵电机制造有限公司 电机驱动装置、方法及电机
JP6899920B2 (ja) * 2017-12-07 2021-07-07 三菱電機株式会社 電力変換装置
CN110932633B (zh) * 2018-09-20 2022-03-01 杭州先途电子有限公司 一种电机控制方法、装置及变频控制器
CN112311286B (zh) * 2019-07-31 2023-06-30 北京金风科创风电设备有限公司 风力发电机组的功率控制装置及方法
KR102252277B1 (ko) * 2020-05-20 2021-05-13 현대모비스 주식회사 라이다 센서 안정화 장치
EP4346085A1 (en) * 2021-10-01 2024-04-03 IHI Corporation Electric-powered machine system
KR20230089191A (ko) * 2021-12-13 2023-06-20 현대모비스 주식회사 모터의 약자속 제어를 위한 데이터 맵 작성 방법 및 시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169291A (ja) * 1989-11-25 1991-07-22 Hitachi Ltd 誘導電動機の制御装置
JP3686987B2 (ja) 1995-09-19 2005-08-24 株式会社安川電機 Ipmモータの制御方法及び制御装置
JP3396440B2 (ja) * 1999-02-08 2003-04-14 株式会社日立製作所 同期電動機の制御装置
JP2002218799A (ja) * 2001-01-16 2002-08-02 Mitsubishi Electric Corp 電動機駆動制御装置
JP4800154B2 (ja) * 2006-09-01 2011-10-26 本田技研工業株式会社 電動機の制御装置
CN101803176B (zh) * 2007-09-18 2013-03-13 株式会社东芝 可变磁通驱动系统
JP5120669B2 (ja) * 2010-03-31 2013-01-16 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
EP2562928B1 (en) * 2010-04-21 2016-11-16 Toyota Jidosha Kabushiki Kaisha Control device for motor drive system and vehicle having same
JP5595835B2 (ja) * 2010-08-30 2014-09-24 株式会社荏原製作所 電動機の駆動装置
DE112012005678T5 (de) * 2012-01-16 2014-10-23 Mitsubishi Electric Corporation Motorsteuervorrichtung

Also Published As

Publication number Publication date
KR20150051165A (ko) 2015-05-11
CN104617842A (zh) 2015-05-13
US20150123592A1 (en) 2015-05-07
JP2015089318A (ja) 2015-05-07
EP2869461A1 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5920671B2 (ja) モータ制御装置
US8519648B2 (en) Temperature compensation for improved field weakening accuracy
JP5957704B2 (ja) 電動機制御装置
Aghili Optimal feedback linearization control of interior PM synchronous motors subject to time-varying operation conditions minimizing power loss
JP5550672B2 (ja) モータ制御装置
Stojan et al. Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control
JP4042278B2 (ja) 同期電動機の制御方式
JPS627396A (ja) 一定馬力で運転する方法と装置
WO2008038338A1 (fr) Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent
JP5717808B2 (ja) 同期電動機の電流制御装置
WO2012029715A1 (ja) 電動機の駆動装置
CN112671301A (zh) 基于直流功率的车用永磁同步电机mtpa曲线搜索方法
JP6199776B2 (ja) 電動機の駆動装置
Zordan et al. Field-weakening in high-performance PMSM drives: a comparative analysis
JP5284895B2 (ja) 巻線界磁式同期機の制御装置
JP4639832B2 (ja) 交流電動機駆動装置
Huang et al. An approach to improve the torque performance of IPMSM by considering cross saturation applied for hybrid electric vehicle
Ekanayake et al. Direct torque and flux control of a fractional-slot concentrated-winding IPMSM in deep flux-weakening region
JP6265043B2 (ja) 同期電動機のセンサレス駆動装置
Nguyen et al. Control mode switching of induction machine drives between vector control and V/f control in overmodulation range
JP5862690B2 (ja) 電動機駆動装置の制御装置および電動機駆動システム
JP3933348B2 (ja) 埋込磁石形同期電動機の制御装置
Fujii et al. Influence of parameter variations on operating characteristics of MTPF control for DTC-based PMSM drive system
WO2016079791A1 (ja) モータ制御装置及びモータ制御方法
Usta et al. Speed sensorless direct torque control for three-level diode-clamped inverter fed induction motor using adaptive flux observer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160331

R150 Certificate of patent or registration of utility model

Ref document number: 5920671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150