JP5914492B2 - Method for producing γ-2CaO · SiO 2 - Google Patents
Method for producing γ-2CaO · SiO 2 Download PDFInfo
- Publication number
- JP5914492B2 JP5914492B2 JP2013530013A JP2013530013A JP5914492B2 JP 5914492 B2 JP5914492 B2 JP 5914492B2 JP 2013530013 A JP2013530013 A JP 2013530013A JP 2013530013 A JP2013530013 A JP 2013530013A JP 5914492 B2 JP5914492 B2 JP 5914492B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- sio
- mass
- 2cao
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910004298 SiO 2 Inorganic materials 0.000 title claims description 100
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 239000002994 raw material Substances 0.000 claims description 100
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 28
- 239000000920 calcium hydroxide Substances 0.000 claims description 28
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 26
- 239000011449 brick Substances 0.000 claims description 23
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 22
- 239000005997 Calcium carbide Substances 0.000 claims description 18
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 18
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 18
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 claims description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 13
- 239000000395 magnesium oxide Substances 0.000 claims description 11
- 239000011029 spinel Substances 0.000 claims description 11
- 229910052596 spinel Inorganic materials 0.000 claims description 11
- 238000010304 firing Methods 0.000 claims description 10
- 238000005469 granulation Methods 0.000 claims description 9
- 230000003179 granulation Effects 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000008187 granular material Substances 0.000 claims description 3
- 239000011044 quartzite Substances 0.000 claims description 3
- 229910021487 silica fume Inorganic materials 0.000 claims description 3
- 239000005909 Kieselgur Substances 0.000 claims description 2
- 239000005350 fused silica glass Substances 0.000 claims description 2
- 238000005496 tempering Methods 0.000 claims 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 239000006227 byproduct Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 4
- 235000012241 calcium silicate Nutrition 0.000 description 4
- 229910052918 calcium silicate Inorganic materials 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000001238 wet grinding Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/24—Alkaline-earth metal silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/02—Portland cement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/345—Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
- C04B7/3453—Belite cements, e.g. self-disintegrating cements based on dicalciumsilicate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
本発明は、主に、土木・建築業界において使用されるγ-2CaO・SiO2の製造方法に関する。The present invention mainly relates to a method for producing γ-2CaO · SiO 2 used in the civil engineering and construction industries.
2CaO・SiO2(珪酸二カルシウム)には、α型、α’型、β型、γ型などが知られる。このうち、常温で安定なのはβ型とγ型である。β型はポルトランドセメントの成分の1つとして知られ、弱いながらも水硬性を有する。一方、γ型は水硬性を持たないものの、炭酸化活性が高く、セメント混和材としての有用性が近年見出されている。このように、2CaO・SiO2は、β型もγ型もそれぞれの特徴を活かした使途が見出されている。したがって、2CaO・SiO2の結晶形態を制御する方法の確立が出来れば工業的に有益である。As 2CaO · SiO 2 (dicalcium silicate), α type, α ′ type, β type, γ type and the like are known. Of these, β-type and γ-type are stable at room temperature. The β type is known as one of the components of Portland cement, and is weak but hydraulic. On the other hand, although the γ type does not have hydraulic properties, it has a high carbonation activity and has recently been found to be useful as a cement admixture. Thus, 2CaO.SiO 2 has been found to be used by utilizing the characteristics of both β-type and γ-type. Therefore, it is industrially beneficial if a method for controlling the crystal form of 2CaO.SiO 2 can be established.
純粋な2CaO−SiO2の系では、β型の2CaO・SiO2は生成せず、γ型になる。2CaO・SiO2の結晶形態に影響を及ぼす要因としては、不純物となる第三成分の影響や、冷却条件の影響などが知られている。工業的に2CaO・SiO2を得る場合、原料に由来する不純物の影響により、β型の2CaO・SiO2が生成する場合が多く、γ型を得ることは難しいのが実情である。In the pure 2CaO—SiO 2 system, β-type 2CaO · SiO 2 is not generated, but becomes γ-type. As factors affecting the crystal form of 2CaO · SiO 2 , the influence of a third component that is an impurity, the influence of cooling conditions, and the like are known. When 2CaO · SiO 2 is industrially obtained, β-type 2CaO · SiO 2 is often produced due to the influence of impurities derived from raw materials, and it is difficult to obtain γ-type.
第三成分の影響としては、ホウ素、リン、バリウム、ストロンチウム、鉄、アルミニウム、モリブデンなどがある一定量以上混在すると、β−2CaO・SiO2が生成することが知られている(非特許文献1、非特許文献2、非特許文献3)。As an influence of the third component, it is known that β-2CaO · SiO 2 is generated when a certain amount or more of boron, phosphorus, barium, strontium, iron, aluminum, molybdenum, or the like is mixed (Non-patent Document 1). Non-patent document 2, Non-patent document 3).
γ−2CaO・SiO2は、セメントコンクリートの中性化を抑制する混和材として(特許文献1)、また、強制炭酸化養生と組み合わせて使うことによって、高耐久コンクリートを得ることもできる(特許文献2)。γ-2CaO · SiO 2 can be used as an admixture that suppresses the neutralization of cement concrete (Patent Document 1), and can also be used in combination with forced carbonation curing to obtain highly durable concrete (Patent Document 1). 2).
本発明者らは、種々検討を重ねた結果、カルシウムカーバイドからアセチレンを発生させた後に副生する水酸化カルシウムには、上記の第三成分がほとんど含まれないのに、少なくとも、β−2CaO・SiO2を生成するに必要な含有量を含まないにもかかわらず、これをシリカ質原料と配合して熱処理することで、容易にβ−2CaO・SiO2が生成することを見出した。As a result of various studies, the present inventors have found that calcium hydroxide produced as a by-product after generating acetylene from calcium carbide contains almost no third component, but at least β-2CaO · despite not including a content necessary to produce a SiO 2, which is a heat treatment is formulated with the siliceous raw material we were found to produce easily β-2CaO · SiO 2.
一方、カルシウムカーバイドからアセチレンを発生させた後に副生する水酸化カルシウムを利用して、γ−2CaO・SiO2を製造する方法も強く求められている。なぜなら、γ−2CaO・SiO2は炭酸化養生という手法を使って使用され、CO2の固定化、トータルCO2排出量削減と密接に関連する技術開発が進められているためである。On the other hand, a method for producing γ-2CaO · SiO 2 using calcium hydroxide by-produced after generating acetylene from calcium carbide is also strongly demanded. This is because, γ-2CaO · SiO 2 is used with a technique called carbonation curing, the immobilized CO 2, because the reduced total CO 2 emissions and closely related technique has been developed.
γ−2CaO・SiO2を製造する際、原料として炭酸カルシウムを使った場合には、製造時に多くのCO2を排出することになる。このため、使用時に炭酸化養生を行ってCO2を固定化したとしても、大幅なCO2削減には結びつかない。したがって、カルシウムカーバイドからアセチレンを発生させた後に副生する水酸化カルシウムを利用してγ−2CaO・SiO2を製造することができれば、原料に起因するCO2排出量を削減でき、大幅なCO2削減が可能となる。つまり、水酸化カルシウムは熱分解してもCO2を発生しないためである。When γ-2CaO · SiO 2 is produced, if calcium carbonate is used as a raw material, a large amount of CO 2 is discharged during production. Therefore, the CO 2 even when immobilized, does not lead to significant CO 2 reduction performed carbonation curing at the time of use. Therefore, if γ-2CaO · SiO 2 can be produced using calcium hydroxide by-produced after acetylene is generated from calcium carbide, CO 2 emissions resulting from the raw material can be reduced, and significant CO 2 Reduction is possible. That is, calcium hydroxide does not generate CO 2 even when pyrolyzed.
以上のように、本発明者らは鋭意努力を重ねた結果、本来ならβ−2CaO・SiO2が得られてしまうカルシウムカーバイドからアセチレンを発生させた後に副生する水酸化カルシウムを使用しても、γ−2CaO・SiO2が得られ、しかも、焼成時のエネルギーコストも削減でき、収率も高いγ−2CaO・SiO2の製造方法となることを知見し、本発明を完成するに至った。As described above, as a result of intensive efforts, the inventors of the present invention use calcium hydroxide by-produced after generating acetylene from calcium carbide that would normally yield β-2CaO · SiO 2. Γ-2CaO · SiO 2 was obtained, and it was found that the production cost of γ-2CaO · SiO 2 could be reduced and the production cost of γ-2CaO · SiO 2 was high, and the present invention was completed. .
本発明は、本来ならβ−2CaO・SiO2が得られてしまうカルシウムカーバイドからアセチレンを発生させた後に副生する水酸化カルシウムを使用しても、γ−2CaO・SiO2が得られ、しかも、焼成時のエネルギーコストも削減でき、収率も高いγ−2CaO・SiO2の製造方法を提供する。In the present invention, γ-2CaO · SiO 2 can be obtained even when calcium hydroxide produced as a by-product after generating acetylene from calcium carbide that would normally yield β-2CaO · SiO 2 , Provided is a method for producing γ-2CaO · SiO 2 which can reduce the energy cost during firing and has a high yield.
本発明は、以下の要旨を有する。
1.カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する水酸化カルシウム原料と、シリカ質原料と、を配合した原料混合物を湿式で粉砕し、余剰な水分を搾り出した後、熱処理することを特徴とする、γ-2CaO・SiO2の製造方法。
2.水酸化カルシウム原料が、CaOを71〜74質量%、強熱減量(LOI)を23〜25質量%、SiO2を0.5〜1.5質量%、Fe2O3を0.2〜0.35質量%、Al2O3を0.3〜0.7質量%、MgOを0.2質量%未満、Na2O、K2Oをいずれも0.1質量%未満、およびSO3を1.0〜1.5質量%含有する上記1に記載の製造方法。
3.シリカ質原料が、ケイ石微粉、シリカフューム、珪藻土、または溶融シリカである上記1又は2に記載の製造方法。
4.水酸化カルシウム原料及び/又はシリカ質原料が、100μmの篩いを90質量%以上通過する粒度を有する上記1〜3のいずれかに記載の製造方法。
5.CaO/SiO2のモル比を1.8〜2.2になるように配合した原料混合物を、ロータリーキルンにて、焼点温度1400〜1600℃で熱処理する上記1〜4のいずれかに記載の製造方法。
6.配合した原料混合物を、100μmの篩いを90質量%以上通過する粒度に造粒し、得られる造粒物をロータリーキルンにフィードする上記5に記載の製造方法。
7.水/原料混合物の質量比で10〜30%の水を使用して造粒する上記6に記載の製造方法。
8.原料混合物を湿式で粉砕し、水/原料混合物の質量比で30%を超える余剰な水分を搾り出す上記1〜7のいずれかに記載の製造方法。
9.原料混合物の強熱減量ベースの質量に対して収率が75%以上である上記1〜8のいずれかに記載の製造方法。
10.ロータリーキルンの焼成帯のレンガが、マグネシア−スピネル系もしくは高純度アルミナ系である上記5〜8のいずれかに記載の製造方法。
The present invention has the following gist.
1. A raw material mixture containing calcium hydroxide raw material and siliceous raw material, which are by-produced after the reaction of calcium carbide with water to generate acetylene, is wet crushed, and excess water is squeezed, followed by heat treatment. and wherein, γ-2CaO · SiO 2 of the manufacturing method.
2. The calcium hydroxide raw material is CaO 71-74% by mass, ignition loss (LOI) 23-25% by mass, SiO 2 0.5-1.5% by mass, Fe 2 O 3 0.2-0. 0.35 % by mass of Al 2 O 3 , less than 0.2% by mass of MgO, less than 0.1% by mass of Na 2 O and K 2 O, and SO 3 The manufacturing method of said 1 containing 1.0-1.5 mass%.
3. 3. The production method according to 1 or 2 above, wherein the siliceous raw material is quartzite fine powder, silica fume, diatomaceous earth, or fused silica.
4). 4. The production method according to any one of 1 to 3 above, wherein the calcium hydroxide raw material and / or the siliceous raw material has a particle size that passes 90% by mass or more through a 100 μm sieve.
5. 5. The production according to any one of 1 to 4 above, wherein the raw material mixture blended so that the molar ratio of CaO / SiO 2 is 1.8 to 2.2 is heat-treated at a baking temperature of 1400 to 1600 ° C. in a rotary kiln. Method.
6). 6. The production method according to 5 above, wherein the blended raw material mixture is granulated to a particle size that passes 90% by mass or more through a 100 μm sieve, and the resulting granulated material is fed to a rotary kiln.
7). 7. The production method according to 6 above, wherein granulation is performed using 10 to 30% of water by mass ratio of the water / raw material mixture.
8). 8. The production method according to any one of 1 to 7 above, wherein the raw material mixture is pulverized wet and excess water exceeding 30% is squeezed out by mass ratio of the water / raw material mixture.
9. 9. The production method according to any one of 1 to 8 above, wherein the yield is 75% or more based on the mass on the basis of loss on ignition of the raw material mixture.
10. Brick firing zone of the rotary kiln is, magnesia - The process according to any one of the upper Symbol 5-8 Ru spinel or high-purity alumina der.
本発明のγ−2CaO・SiO2の製造方法により、カルシウムカーバイドからアセチレンを発生させた後に副生する水酸化カルシウムを使用しても、γ−2CaO・SiO2が得られ、しかも、焼成時のエネルギーコストも削減でき、収率も高いγ−2CaO・SiO2の製造方法となる。According to the method for producing γ-2CaO · SiO 2 of the present invention, γ-2CaO · SiO 2 can be obtained even when calcium hydroxide produced as a by-product after generating acetylene from calcium carbide is obtained. energy costs can be reduced, the manufacturing method of the yield is high γ-2CaO · SiO 2.
以下、本発明を詳細に説明する。なお、本発明における「部」や「%」は、特に規定しない限り質量基準で示す。 Hereinafter, the present invention will be described in detail. In the present invention, “parts” and “%” are shown on a mass basis unless otherwise specified.
本発明で言う、γ−2CaO・SiO2とは、CaOとSiO2を主成分とする化合物のうち、ダイカルシウムシリケート2CaO・SiO2の一種である。ダイカルシウムシリケート2CaO・SiO2には、α型、α’型、β型、又はγ型が存在する。本発明は、γ型のダイカルシウムシリケートに関する。In the present invention, γ-2CaO · SiO 2 is a kind of dicalcium silicate 2CaO · SiO 2 among the compounds mainly composed of CaO and SiO 2 . The dicalcium silicate 2CaO · SiO 2 has α type, α ′ type, β type, or γ type. The present invention relates to γ-type dicalcium silicate.
本発明では、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する水酸化カルシウム原料を用いる。この水酸化カルシウム原料を用いると、通常はβ−2CaO・SiO2が得られ、γ−2CaO・SiO2は得られない。一方、試薬の水酸化カルシウムや、その他の工業原料として入手可能な水酸化カルシウムを用いた場合にはβ−2CaO・SiO2は得られず、γ−2CaO・SiO2が得られる。In this invention, the calcium hydroxide raw material byproduced after making calcium carbide and water react and generating acetylene is used. When this calcium hydroxide raw material is used, β-2CaO · SiO 2 is usually obtained and γ-2CaO · SiO 2 is not obtained. On the other hand, when calcium hydroxide as a reagent or calcium hydroxide available as another industrial raw material is used, β-2CaO · SiO 2 is not obtained, and γ-2CaO · SiO 2 is obtained.
カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する水酸化カルシウム原料は、CaOが71〜74%程度、強熱減量(LOI)が23〜25%程度、SiO2が0.5〜1.5%程度、Fe2O3は0.2〜0.35%程度、Al2O3は0.3〜0.7%程度、MgOが0.2%未満、Na2OやK2Oはいずれも0.1%未満、SO3を1.0〜1.5%程度含む。ここで、強熱減量とは、1000℃で30分間強熱したときに揮散する物質の質量減少率である。The calcium hydroxide raw material by-produced after the reaction of calcium carbide with water to generate acetylene is about 71 to 74% of CaO, about 23 to 25% of loss on ignition (LOI), and about 0.5% of SiO 2. About 1.5%, Fe 2 O 3 is about 0.2 to 0.35%, Al 2 O 3 is about 0.3 to 0.7%, MgO is less than 0.2%, Na 2 O and K 2 O is less than 0.1% and contains about 1.0 to 1.5% SO 3 . Here, the loss on ignition is the mass reduction rate of a substance that volatilizes when ignited at 1000 ° C. for 30 minutes.
カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する水酸化カルシウム原料を用いた場合に生成する2CaO・SiO2がβ型として安定化する理由は定かではない。第三成分のFe2O3やAl2O3の含有量は多く見積もっても総量で1.05%以下の範囲であり、これらの影響でβ−2CaO・SiO2が得られるとは考えにくい。Fe2O3やAl2O3でβ−2CaO・SiO2を安定化させるためには、これらの総量が5%以上存在しないといけないためである。
本発明者らの研究によると、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する水酸化カルシウムに含まれるイオウ成分がβ−2CaO・SiO2の生成に大きく影響していると考えられる。つまり、微量のイオウ成分がγ−2CaO・SiO2の生成を阻害し、β−2CaO・SiO2を安定化するものと考えられる。The reason why 2CaO.SiO 2 produced when calcium hydroxide raw material by-produced after reacting calcium carbide with water to generate acetylene is stabilized as β-type is not clear. The content of the third component Fe 2 O 3 or Al 2 O 3 is in the range of 1.05% or less in total even if estimated to be large, and it is unlikely that β-2CaO · SiO 2 can be obtained due to these effects. . This is because in order to stabilize β-2CaO.SiO 2 with Fe 2 O 3 or Al 2 O 3 , the total amount of these must be 5% or more.
According to the study by the present inventors, the sulfur component contained in calcium hydroxide by-produced after reacting calcium carbide with water to generate acetylene greatly affects the production of β-2CaO · SiO 2 . Conceivable. That is, the sulfur component of the trace amount inhibits the production of γ-2CaO · SiO 2, is believed to stabilize the β-2CaO · SiO 2.
本発明では、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する水酸化カルシウム原料(CaO原料)の他に、SiO2原料が用いられる。
SiO2原料としては、ケイ石微粉末、粘土、シリカフューム、フライアッシュ、非晶質シリカ、その他、各産業から副生するシリカ質の物質を選定できる。本発明では、不純物の存在に留意するのが好ましい。具体的には、CaO原料とSiO2原料から混入するAl2O3とFe2O3の合計が、1000℃加熱後の原料に対して、5%以下であるのが好ましい。Al2O3とFe2O3の合計が、4%以下であることがより好ましく、3%以下であることが最も好ましい。殊に、Fe2O3の含有量は、1000℃加熱後の原料に対して、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが最も好ましい。
Al2O3とFe2O3の合計が、1000℃加熱後の原料に対して、5%以下でないと、β−2CaO・SiO2が生成しやすく、γ−2CaO・SiO2の純度が悪くなる。特に、Fe2O3の影響が大きいため、Al2O3とFe2O3の合計が、1000℃加熱後の原料に対して5%以下であることに加えて、Fe2O3の含有量は、1000℃加熱後の原料に対して、2%以下であることが好ましい。Fe2O3の含有量は、1000℃加熱後の原料に対して、1.5%以下になると、格段に品質安定性が高まる。In the present invention, an SiO 2 raw material is used in addition to a calcium hydroxide raw material (CaO raw material) that is by-produced after the reaction of calcium carbide with water to generate acetylene.
As the SiO 2 raw material, siliceous fine powder, clay, silica fume, fly ash, amorphous silica, and other siliceous substances by-produced from each industry can be selected. In the present invention, it is preferable to pay attention to the presence of impurities. Specifically, the total of Al 2 O 3 and Fe 2 O 3 mixed from the CaO raw material and the SiO 2 raw material is preferably 5% or less with respect to the raw material after heating at 1000 ° C. The total of Al 2 O 3 and Fe 2 O 3 is more preferably 4% or less, and most preferably 3% or less. In particular, the content of Fe 2 O 3 is preferably 2% or less, more preferably 1.5% or less, and more preferably 1% or less with respect to the raw material heated at 1000 ° C. Most preferred.
If the total of Al 2 O 3 and Fe 2 O 3 is not less than 5% with respect to the raw material after heating at 1000 ° C., β-2CaO · SiO 2 is likely to be formed, and the purity of γ-2CaO · SiO 2 is poor. Become. In particular, since the influence of Fe 2 O 3 is large, the total content of Al 2 O 3 and Fe 2 O 3 is 5% or less with respect to the raw material after heating at 1000 ° C., and the content of Fe 2 O 3 The amount is preferably 2% or less with respect to the raw material after heating at 1000 ° C. When the content of Fe 2 O 3 is 1.5% or less with respect to the raw material heated at 1000 ° C., the quality stability is remarkably improved.
水酸化カルシウム原料(CaO原料)とSiO2原料の配合割合は、原料混合物中のCaO/SiO2モル比が1.8〜2.2になるようにするのが好ましい。CaO/SiO2モル比がこの範囲外では、γ−2CaO・SiO2の純度が悪くなる。CaO/SiO2モル比が1.8未満では、α型のワラストナイトが副生し、γ−2CaO・SiO2の含有率が低くなる。CaO/SiO2モル比が2.2を超えると、3CaO・SiO2や遊離石灰が副生し、やはりγ−2CaO・SiO2の含有率が低くなる。
本発明では、原料のCaO/SiO2モル比を好ましくは、1.8〜2.2、より好ましくは1.9〜2.0に調整することにより、γ−2CaO・SiO2の含有率を85%以上とすることが可能となる。The mixing ratio of the calcium hydroxide raw material (CaO raw material) and the SiO 2 raw material is preferably such that the CaO / SiO 2 molar ratio in the raw material mixture is 1.8 to 2.2. If the CaO / SiO 2 molar ratio is outside this range, the purity of γ-2CaO · SiO 2 will be poor. When the CaO / SiO 2 molar ratio is less than 1.8, α-type wollastonite is produced as a by-product, and the content of γ-2CaO · SiO 2 becomes low. When CaO / SiO 2 molar ratio exceeds 2.2, no 3CaO · SiO 2 and free lime by-again γ-2CaO · SiO 2 content ratio is low.
In the present invention, the content ratio of γ-2CaO · SiO 2 is preferably adjusted by adjusting the CaO / SiO 2 molar ratio of the raw material to 1.8 to 2.2, more preferably 1.9 to 2.0. It becomes possible to make it 85% or more.
水酸化カルシウム原料とSiO2原料の粒度は、150μmの篩いの通過率が90%以上になるようにするのが好ましく、100μmの篩いの通過率が90%以上になるようにするのがより好ましい。原料の粒度が前記範囲まで細かくないと、γ−2CaO・SiO2の純度が悪くなる。具体的には、遊離石灰や不溶解残分が多くなる傾向にある。The particle size of the calcium hydroxide raw material and the SiO 2 raw material is preferably such that the passage rate of the 150 μm sieve is 90% or more, more preferably the passage rate of the 100 μm sieve is 90% or more. . If the particle size of the raw material is not fine within the above range, the purity of γ-2CaO · SiO 2 will be deteriorated. Specifically, free lime and insoluble residue tend to increase.
熱処理方法は、特に限定されるものではなく、ロータリーキルン、電気炉、トンネル炉、シャフトキルン、流動床式焼却炉などを用いることができる。中でも、ロータリーキルンを選定することが連続操業、コストパフォーマンスの観点から好ましい。
熱処理温度は、1400〜1600℃の範囲が好ましく、1450〜1550℃未満がより好ましい。この範囲を外れるとγ−2CaO・SiO2の純度が悪くなる。The heat treatment method is not particularly limited, and a rotary kiln, an electric furnace, a tunnel furnace, a shaft kiln, a fluidized bed incinerator, or the like can be used. Among them, it is preferable to select a rotary kiln from the viewpoint of continuous operation and cost performance.
The heat treatment temperature is preferably in the range of 1400 to 1600 ° C, more preferably less than 1450 to 1550 ° C. Outside this range, the purity of γ-2CaO · SiO 2 is deteriorated.
本発明では、γ−2CaO・SiO2は、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する水酸化カルシウム原料(CaO原料)とシリカ質原料(SiO2原料)とを配合した原料混合物を湿式で混合粉砕し、余剰な水分を搾り出した後、熱処理することで得られる。In the present invention, γ-2CaO · SiO 2 is a mixture of calcium hydroxide raw material (CaO raw material) and siliceous raw material (SiO 2 raw material) produced as a by-product after the reaction of calcium carbide and water to generate acetylene. The raw material mixture is wet-mixed and pulverized, and excess water is squeezed out, followed by heat treatment.
原料混合物を湿式で原料を混合粉砕する場合、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する水酸化カルシウム原料とシリカ質原料(SiO2原料)とを配合した原料混合物100部に対して、水を、好ましくは、50〜100部、より好ましくは70〜80部加えて粉砕混合する。前記の範囲外では、粉砕効率が十分でない場合や、γ−2CaO・SiO2に、β−2CaO・SiO2が混在しやすくなる場合がある。When the raw material mixture is wet-mixed with the raw material, 100 parts of a raw material mixture containing a calcium hydroxide raw material and a siliceous raw material (SiO 2 raw material) which are by-produced after the reaction of calcium carbide and water to generate acetylene The water is preferably added in an amount of 50 to 100 parts, more preferably 70 to 80 parts, and pulverized and mixed. Outside the above range, there may be cases where the grinding efficiency is not sufficient, or β-2CaO · SiO 2 tends to be mixed in γ-2CaO · SiO 2 .
本発明では、原料混合物を湿式で混合粉砕した後、余剰の水分を搾り出す。その方法は特に限定されないが、フィルタープレス、遠心分離、ろ過機などが挙げられる。この場合、原料混合物を湿式で混合粉砕した後に、水/原料混合物の質量比で、好ましくは30%以下になるように、より好ましくは20%〜5%になるように余剰の水分が除去される。水/原料混合物の質量比で30%までの水分は、造粒工程で重要な役割を担うが、それ以上の水分はむしろ造粒の効率を悪くするためである。水/原料混合物の質量比が5%未満になると除去時間が長くなり、また、除去するための圧力を大きくしなければならないので好ましくない。 In the present invention, after the raw material mixture is wet-mixed and pulverized, excess water is squeezed out. Although the method is not specifically limited, A filter press, centrifugation, a filter, etc. are mentioned. In this case, after the raw material mixture is wet-mixed and pulverized, excess water is removed so that the mass ratio of the water / raw material mixture is preferably 30% or less, more preferably 20% to 5%. The Moisture up to 30% by weight of the water / raw material mixture plays an important role in the granulation process, but more moisture rather makes the granulation efficiency worse. If the mass ratio of the water / raw material mixture is less than 5%, the removal time becomes long, and the pressure for removal must be increased, which is not preferable.
本発明では、余剰な水分を搾り出した後、造粒することが望ましい。原料を造粒しないと、γ−2CaO・SiO2の純度が悪くなる。具体的には、遊離石灰や不溶解残分が多くなる傾向にある。造粒とは、調合した原料を団子状に成形する操作である。
造粒工程は特に限定されるものではないが、例えば、ロータリードライヤー、円盤型ドラム造粒機、打錠機、押し出し成型機、プレス成型機などが挙げられる。中でも、ロータリードライヤーを選定することが、造粒効率の面からが好ましい。
造粒後の形状は特に限定されないが、ロータリーキルンでの熱処理を行う際には、球形が望ましい。また、造粒物の大きさも特に限定されないが、直径で、好ましくは1cm〜10cm、より好ましくは3cm〜7cmにある。In the present invention, it is desirable to granulate after squeezing excess water. If the raw material is not granulated, the purity of γ-2CaO · SiO 2 will deteriorate. Specifically, free lime and insoluble residue tend to increase. Granulation is an operation of forming the prepared raw material into a dumpling shape.
The granulation step is not particularly limited, and examples thereof include a rotary dryer, a disk drum granulator, a tableting machine, an extrusion molding machine, and a press molding machine. Especially, it is preferable from the surface of granulation efficiency to select a rotary dryer.
The shape after granulation is not particularly limited, but a spherical shape is desirable when performing heat treatment in a rotary kiln. Further, the size of the granulated product is not particularly limited, but the diameter is preferably 1 cm to 10 cm, more preferably 3 cm to 7 cm.
本発明では、熱処理を行う場合、焼成帯のレンガとして、マグネシア−スピネル系もしくは高純度アルミナ系を使用するのが好ましい。マグネシア−スピネル系もしくは高純度アルミナ系ではなく、例えば、シリカ−アルミナレンガやマグネシアのレンガを用いると、安定してγ−2CaO・SiO2を製造することが困難になり、β−2CaO・SiO2の混在が顕著となる場合がある。
ここで、マグネシア−スピネル系レンガや、高純度アルミナ系レンガとしては、それぞれ、JIS R 2302のマグネシアのレンガ、JIS R 2305の高アルミナ質の耐火レンガが例示される。In the present invention, when heat treatment is performed, it is preferable to use a magnesia-spinel system or a high-purity alumina system as a brick in the fired zone. For example, when silica-alumina brick or magnesia brick is used instead of magnesia-spinel or high-purity alumina, it becomes difficult to stably produce γ-2CaO · SiO 2 , and β-2CaO · SiO 2 In some cases, the mixing of these becomes significant.
Here, examples of the magnesia-spinel brick and the high-purity alumina brick include JIS R 2302 magnesia brick and JIS R 2305 high-alumina refractory brick.
本発明で云う焼成帯とは、キルン内温度が1200℃以上となる範囲を意味する。少なくとも、この焼成帯にはマグネシア−スピネル系レンガもしくは高純度アルミナ系レンガを使用するのが好ましい。キルン内温度が1000℃以上の範囲でマグネシア−スピネルレンガもしくは高純度アルミナ系レンガを使用することがより好ましく、キルン内温度が800℃以上の範囲でマグネシア−スピネル系レンガもしくは高純度アルミナ系レンガを使用することが最も好ましい。 The firing zone referred to in the present invention means a range in which the kiln internal temperature is 1200 ° C. or higher. At least, it is preferable to use magnesia-spinel bricks or high-purity alumina bricks for the fired zone. It is more preferable to use magnesia-spinel bricks or high-purity alumina bricks in the kiln temperature range of 1000 ° C. or higher, and magnesia-spinel bricks or high-purity alumina bricks in the kiln temperature range of 800 ° C. or higher. Most preferably it is used.
本発明のγ−2CaO・SiO2の製造方法は、収率が75%以上であることを特徴とする。ここで収率とは、フィードした原料混合物(CaO原料とSiO2原料)に対する得られたγ−2CaO・SiO2の100分率を意味する。
上記収率は高いほど、製造コストの削減につながるため好ましいが、理論値で約83%であるため、これが上限値となる。本発明のγ−2CaO・SiO2の製造方法では、ほぼ安定して75%以上の収率を得ることができる。METHOD gamma-2CaO of · SiO 2 preparation of the present invention is characterized in a yield of 75% or more. Here, the yield means 100 percent of the obtained γ-2CaO · SiO 2 with respect to the fed raw material mixture (CaO raw material and SiO 2 raw material).
The higher the yield, the more preferable it is because it leads to a reduction in manufacturing cost. However, the theoretical value is about 83%, and this is the upper limit. In the method for producing γ-2CaO · SiO 2 of the present invention, a yield of 75% or more can be obtained almost stably.
以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定して解釈されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and the content is demonstrated in detail, this invention is limited to these and is not interpreted.
「実験例1」
下記の<使用材料>に記載する、CaO原料とSiO2原料とをCaO/SiO2モル比が2.0となるように調合して原料混合物(原料)とした。この原料を混合粉砕し、球状(直径5cm)に造粒し、熱処理した。この際、原料の混合粉砕を乾式で行った場合と、湿式で行った場合を比較検討した。
乾式で混合粉砕を行った場合は、ボールミルに原料をフィードし、粉砕処理を行い、その後、パン型の回転造粒機を用いて造粒した。この際、原料の100部に対して水を20部加えた。
一方、湿式で粉砕混合を行った場合は以下の条件で行った。原料100部に対して、水60部を加え、ボールミルにフィードして混合粉砕し、その後、フィルタープレス機で表1に示す水/原料(質量比)となるように余剰な水分を搾りとり、回転ドライヤーにフィードして造粒した。"Experiment 1"
The CaO raw material and the SiO 2 raw material described in <Used material> below were prepared so as to have a CaO / SiO 2 molar ratio of 2.0 to obtain a raw material mixture (raw material). This raw material was mixed and pulverized, granulated into a spherical shape (diameter 5 cm), and heat-treated. At this time, a comparative study was conducted between the case where the raw materials were mixed and pulverized dry and the case where they were wet.
In the case of dry mixing and pulverization, the raw materials were fed to a ball mill, pulverized, and then granulated using a pan-type rotary granulator. At this time, 20 parts of water was added to 100 parts of the raw material.
On the other hand, when wet pulverization and mixing were performed, the following conditions were used. 60 parts of water is added to 100 parts of the raw material, fed to a ball mill, mixed and pulverized, and then the excess water is squeezed out to the water / raw material (mass ratio) shown in Table 1 with a filter press machine. It was fed to a rotary dryer and granulated.
造粒後は、いずれもロータリーキルンへフィードして熱処理を行った。熱処理温度は、バーナーの焼点温度で1450〜1500℃未満の範囲で行った。なお、焼成帯のレンガはマグネシア−スピネルレンガを用いた。得られた焼成物を分析した結果、表1のようになった。 After granulation, all were fed to a rotary kiln and heat treated. The heat treatment temperature was in the range of 1450 to less than 1500 ° C. as the burning point temperature of the burner. In addition, the magnesia-spinel brick was used for the brick of a baking zone. As a result of analyzing the obtained fired product, it was as shown in Table 1.
<使用材料>
CaO原料(1):
カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰。CaO:73.1%、MgO:0.07%、Al2O3:0.55%、Fe2O3:0.28%、SiO2:0.95%、SO3:1.31%、Na2O:0.03%、K2O:0.02%、強熱減量:23.80%。150μm篩いの通過率99.5%、100μm篩いの通過率96.9%。<Materials used>
CaO raw material (1):
Slaked lime produced as a by-product after generating acetylene by reacting calcium carbide with water. CaO: 73.1%, MgO: 0.07 %, Al 2 O 3: 0.55%, Fe 2 O 3: 0.28%, SiO 2: 0.95%, SO 3: 1.31%, Na 2 O: 0.03%, K 2 O: 0.02%, loss on ignition: 23.80%. The passing rate of the 150 μm sieve is 99.5%, and the passing rate of the 100 μm sieve is 96.9%.
CaO原料(2):
石灰石微粉末。CaO:55.4%、MgO:0.37%、Al2O3:0.05%、Fe2O3:0.02%、SiO2:0.10%、強熱減量:43.57%。150μm篩いの通過率97.%、100μm篩いの通過率91.9%。CaO raw material (2):
Limestone fine powder. CaO: 55.4%, MgO: 0.37 %, Al 2 O 3: 0.05%, Fe 2 O 3: 0.02%, SiO 2: 0.10%, ignition loss: 43.57% . Passage rate of 150 μm sieve 97. %, The passage rate of a 100 μm sieve is 91.9%.
SiO2原料:
ケイ石微粉末。CaO:0.02%、MgO:0.04%、Al2O3:2.71%、Fe2O3:0.27%、SiO2:95.83%、TiO2:0.23%。強熱減量:0.51%、150μm篩いの通過率95.1%、100μm篩いの通過率90.3%。SiO 2 raw material:
Quartzite fine powder. CaO: 0.02%, MgO: 0.04 %, Al 2 O 3: 2.71%, Fe 2 O 3: 0.27%, SiO 2: 95.83%, TiO 2: 0.23%. Loss on ignition: 0.51%, passage rate of 150 μm sieve 95.1%, passage rate of 100 μm sieve 90.3%.
焼成帯のレンガ:マグネシア−スピネル系レンガ、MgO含有量80%でAl2O3含有量が20%。
水:水道水Brick in fired zone: magnesia-spinel brick, 80% MgO content and 20% Al 2 O 3 content.
Water: tap water
<測定方法>
化合物の同定:
粉末X線回折法(XRD)リガク社製、Multi−Flexによりにより化合物を同定した。
焼成エネルギー:
従来技術にあたる石灰石をCaO原料として用いた際の重油使用量と電力使用量の総和エネルギーを100とし、相対値で示した。
収率:
ロータリーキルンにフィードした原料の強熱減量ベースの質量を100とした時の得られた焼成物の質量の比率を100分率で示した。<Measurement method>
Compound identification:
The compound was identified by powder X-ray diffraction method (XRD) manufactured by Rigaku Corporation, Multi-Flex.
Firing energy:
The total energy of the amount of heavy oil used and the amount of power used when limestone corresponding to the prior art is used as a CaO raw material is taken as 100 and is shown as a relative value.
yield:
The ratio of the mass of the fired product obtained when the mass on the basis of ignition loss of the raw material fed to the rotary kiln was defined as 100 was shown as 100 fractions.
表1に示されるように、CaO原料として、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰を用いると、乾式で原料の混合粉砕を行った場合には、β−2CaO・SiO2が得られた。
一方、湿式で原料の混合粉砕を行った場合には、γ−2CaO・SiO2が得られた。また、CaO原料として、石灰石微粉末を用いると、乾式で原料の混合粉砕を行ってもγ−2CaO・SiO2が得られたが、収率が悪く焼成エネルギーも多く必要であった。As shown in Table 1, when slaked lime produced as a by-product after generating acetylene by reacting calcium carbide and water as the CaO raw material, when the raw material is mixed and pulverized, β-2CaO · SiO 2 was obtained.
On the other hand, when the raw materials were mixed and pulverized in a wet manner, γ-2CaO · SiO 2 was obtained. Further, when limestone fine powder was used as the CaO raw material, γ-2CaO · SiO 2 was obtained even when the raw material was mixed and pulverized in a dry manner, but the yield was poor and a large amount of firing energy was required.
「実験例2」
CaO原料(1)を使用し、湿式法で製造した。すなわち、湿式で粉砕混合を行った後、フィルタープレス機で余剰な水分を搾りとり、回転ドライヤーにフィードして造粒してロータリーキルンにフィードして焼成した。CaO/SiO2モル比が表2に示したように変更した以外は実験例1の実験No.1−3と同様に行った。結果を表2に示した。"Experimental example 2"
The CaO raw material (1) was used and produced by a wet method. That is, after wet-grinding and mixing, excess water was squeezed with a filter press, fed to a rotary dryer, granulated, fed to a rotary kiln and fired. Experiment No. 1 of Experimental Example 1 except that the molar ratio of CaO / SiO 2 was changed as shown in Table 2. It carried out like 1-3. The results are shown in Table 2.
表2に示されるように、原料のCaO/SiO2モル比が1.8〜2.2にある場合には、γ−2CaO・SiO2を主成分として得ることができ、収率が高く、焼成エネルギーも低いことがわかる。As shown in Table 2, when the raw material CaO / SiO 2 molar ratio is 1.8 to 2.2, γ-2CaO · SiO 2 can be obtained as a main component, and the yield is high. It can be seen that the firing energy is also low.
「実験例3」
CaO原料(1)を使用し、湿式法で製造した。すなわち、湿式で粉砕混合を行った後、フィルタープレス機で余剰な水分を搾りとり、回転ドライヤーにフィードして造粒してロータリーキルンにフィードして焼成した。CaO/SiO2モル比を2.0とし、焼成温度を表3に示すように変更した以外は実験例1の実験No.1−3と同様に行った。結果を表3に示した。"Experiment 3"
The CaO raw material (1) was used and produced by a wet method. That is, after wet-grinding and mixing, excess water was squeezed with a filter press, fed to a rotary dryer, granulated, fed to a rotary kiln and fired. Experiment No. 1 of Experimental Example 1 except that the CaO / SiO 2 molar ratio was 2.0 and the firing temperature was changed as shown in Table 3. It carried out like 1-3. The results are shown in Table 3.
表3より、焼成温度が1400〜1600℃で熱処理することにより、γ−2CaO・SiO2が得られることがわかる。特に、1450〜1550℃未満の範囲で好適に製造でき、収率も高く焼成エネルギーも低いことがわかる。From Table 3, by the firing temperature is heat-treated at 1400~1600 ℃, γ-2CaO · SiO 2 it can be seen that to obtain. In particular, it can be suitably produced in the range of 1450 to 1550 ° C., and it can be seen that the yield is high and the firing energy is low.
「実験例4」
CaO原料(1)を使用し、湿式法で製造した。すなわち、湿式で粉砕混合を行った後、フィルタープレス機で余剰な水分を搾りとり、回転ドライヤーにフィードして造粒してロータリーキルンにフィードして焼成した。CaO/SiO2モル比を2.0とし、焼成帯のレンガを表4に示すように変更した以外は実験例1の実験No.1−3と同様に行った。結果を表4に示した。"Experimental example 4"
The CaO raw material (1) was used and produced by a wet method. That is, after wet-grinding and mixing, excess water was squeezed with a filter press, fed to a rotary dryer, granulated, fed to a rotary kiln and fired. Experiment No. 1 of Experimental Example 1 except that the CaO / SiO 2 molar ratio was 2.0 and the bricks in the fired zone were changed as shown in Table 4. It carried out like 1-3. The results are shown in Table 4.
<使用材料>
高純度アルミナ質レンガ:Al2O3含有量(99%以上)。
シリカ−アルミナレンガ:SiO2含有量(30%)、Al2O3含有量(70%)<Materials used>
High purity alumina brick: Al 2 O 3 content (99% or more).
Silica-alumina brick: SiO 2 content (30%), Al 2 O 3 content (70%)
表4より、焼成帯のレンガにマグネシア-スピネル系や高純度アルミナ質系を用いた場合に、効率よくγ−2CaO・SiO2が得られることがわかる。Table 4 shows that γ-2CaO · SiO 2 can be efficiently obtained when a magnesia-spinel system or a high-purity alumina system is used for the bricks in the fired zone.
本発明のγ−2CaO・SiO2の製造方法により、カルシウムカーバイドからアセチレンを発生させた後に副生する水酸化カルシウムを使用しても、γ−2CaO・SiO2が得られ、しかも、焼成時のエネルギーコストも削減でき、収率も高く、土木・建築業界などにおいて使用されるγ−2CaO・SiO2の製造方法として好適である。
なお、2011年8月25日に出願された日本特許出願2011−183625号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。According to the method for producing γ-2CaO · SiO 2 of the present invention, γ-2CaO · SiO 2 can be obtained even when calcium hydroxide produced as a by-product after generating acetylene from calcium carbide is obtained. The energy cost can be reduced, the yield is high, and it is suitable as a method for producing γ-2CaO · SiO 2 used in the civil engineering and construction industries.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-183625 filed on August 25, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011183625 | 2011-08-25 | ||
JP2011183625 | 2011-08-25 | ||
PCT/JP2012/071008 WO2013027704A1 (en) | 2011-08-25 | 2012-08-20 | METHOD FOR PRODUCING γ-2CaO·SiO2 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013027704A1 JPWO2013027704A1 (en) | 2015-03-19 |
JP5914492B2 true JP5914492B2 (en) | 2016-05-11 |
Family
ID=47746443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013530013A Active JP5914492B2 (en) | 2011-08-25 | 2012-08-20 | Method for producing γ-2CaO · SiO 2 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5914492B2 (en) |
CN (1) | CN103764562B (en) |
WO (1) | WO2013027704A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024029544A1 (en) * | 2022-08-02 | 2024-02-08 | デンカ株式会社 | Method for producing carbon dioxide immobilization material |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014002727A1 (en) * | 2012-06-27 | 2014-01-03 | 電気化学工業株式会社 | METHOD FOR PRODUCING γ-2CaO• SiO2 |
CN111393049B (en) * | 2020-03-19 | 2021-08-06 | 山东汉博昱洲新材料有限公司 | Gamma-C2Activation modification method of S |
JP7026741B1 (en) | 2020-08-18 | 2022-02-28 | デンカ株式会社 | Cement admixture and cement composition |
CA3232026A1 (en) * | 2021-10-13 | 2023-04-20 | Masami Ota | Method for producing calcined product comprising .gamma.-2cao sio2 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6217013A (en) * | 1985-07-11 | 1987-01-26 | Onoda Cement Co Ltd | Production of gamma-type dicalcium silicate powder |
JP3750001B2 (en) * | 1996-07-26 | 2006-03-01 | 株式会社Inax | Method for producing dicalcium silicate |
CN1442382A (en) * | 2002-12-30 | 2003-09-17 | 夏刚军 | Formula and technology of cement produced by using electric power plant furnace chamber |
CN101229962A (en) * | 2008-02-02 | 2008-07-30 | 四川省九龙水泥有限公司 | Cement clinker calcined on mechanical shaft kiln and preparation method thereof |
-
2012
- 2012-08-20 CN CN201280041515.5A patent/CN103764562B/en active Active
- 2012-08-20 JP JP2013530013A patent/JP5914492B2/en active Active
- 2012-08-20 WO PCT/JP2012/071008 patent/WO2013027704A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024029544A1 (en) * | 2022-08-02 | 2024-02-08 | デンカ株式会社 | Method for producing carbon dioxide immobilization material |
Also Published As
Publication number | Publication date |
---|---|
CN103764562B (en) | 2015-08-26 |
WO2013027704A1 (en) | 2013-02-28 |
CN103764562A (en) | 2014-04-30 |
JPWO2013027704A1 (en) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5914492B2 (en) | Method for producing γ-2CaO · SiO 2 | |
JP6057389B2 (en) | Method for producing γ-2CaO · SiO 2 | |
CN102976644B (en) | Moderate-heat silicate cement clinker and production method thereof | |
CN102584045A (en) | Active belite-sulphate aluminum cement clinker and preparation method for active belite-sulphate aluminum cement clinker | |
JP2019507098A (en) | Calcium silicate cement capable of white carbonation, and production method and use thereof | |
JP5867734B2 (en) | Method for producing β-2CaO · SiO 2 | |
JP5683066B2 (en) | Cement-based solidified material using dry sludge powder and method for producing the same | |
JP5852964B2 (en) | Method for producing β-2CaO · SiO 2 | |
JP3969445B2 (en) | Cement clinker manufacturing method | |
JP2018002547A (en) | Manufacturing method of calcium aluminate | |
CN100591636C (en) | Silicate cement for manufacturing advanced silica refractory and manufacturing technique thereof | |
RU2433106C2 (en) | Method of producing heat-insulating calcium hexaaluminate material | |
CN107117836A (en) | A kind of method that carbide slag cement is prepared by carbide slag | |
CN103328384A (en) | Method for producing gamma-2CaO.SiO2 | |
CN107117838B (en) | Sulphate aluminium cement clinker containing tricalcium silicate and preparation method thereof | |
CN107162445A (en) | A kind of method that portland cement is prepared by carbide slag and copper ashes melting slag | |
JP4164242B2 (en) | Cement composition | |
WO2012169005A1 (en) | Process for producing expanding-material clinker | |
WO2023153259A1 (en) | Cement, cement composition, cured cement product, and method for producing cured cement product | |
WO2023063236A1 (en) | METHOD FOR PRODUCING CALCINED PRODUCT CONTAINING γ-2CAO∙SIO2 | |
JPS5913457B2 (en) | Production method of calcia clinker | |
JP6306919B2 (en) | Cement additive and cement composition | |
JPS6344708B2 (en) | ||
RU2168475C1 (en) | Method of production of clinker used as raw material for manufacture of phosphate binder or fertilizer | |
JPH09194242A (en) | Alumina cement and monolithic refractory using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5914492 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |