JPS6217013A - Production of gamma-type dicalcium silicate powder - Google Patents

Production of gamma-type dicalcium silicate powder

Info

Publication number
JPS6217013A
JPS6217013A JP15315485A JP15315485A JPS6217013A JP S6217013 A JPS6217013 A JP S6217013A JP 15315485 A JP15315485 A JP 15315485A JP 15315485 A JP15315485 A JP 15315485A JP S6217013 A JPS6217013 A JP S6217013A
Authority
JP
Japan
Prior art keywords
raw material
firing
weight
clinker
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15315485A
Other languages
Japanese (ja)
Other versions
JPH0568406B2 (en
Inventor
Masaru Shirasaka
優 白坂
Kunio Kobayashi
国男 小林
Satoru Fujii
悟 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP15315485A priority Critical patent/JPS6217013A/en
Publication of JPS6217013A publication Critical patent/JPS6217013A/en
Publication of JPH0568406B2 publication Critical patent/JPH0568406B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To produce efficiently the excellent gamma-type dicalcium silicate powder which is extremely dusted by calcining a blend of a calcareous raw material having specific composition and a siliceous raw material, cooling it slowly and thereafter quenching it. CONSTITUTION:After blending a calcareous raw material (e.g. limestone) and a siliceous raw material (e.g. silica rock) so that 1.5-12.5wt% total of Al2O3 and Fe2O3, <=1.25wt% total of Na2O and K2O and 1.90-2.10 molar ratio of CaO/SiO2 are obtained in a mixture after the calcination at 1,000 deg.C, a mixed raw material is obtained by regulating it so that the residual of 88mu sieve is made to <=20wt%. Next after molding this mixed raw material in a pellet-shape, it is calcined at 1,300-1,500 deg.C with a rotary kiln and slowly cooled up to 600-1,250 deg.C and thereafter quenched up to 350 deg.C and crushed in accordance with the necessity so that the specific surface area of the grain is made to 4,000-9,000cm<2>/g.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、珪酸二石灰の1種であるγ型珪酸二石灰粉
末を主成分とする粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a powder whose main component is γ-type dicalcium silicate powder, which is a type of dicalcium silicate.

(従来の技術) 珪酸二石灰は、20aO・S k 02 (以下、C2
Sという)の化学式で示され、ポルトランドセメントを
構成する主要鉱物の一つである。C2Sには4種類の変
態、即ちα、α′、βおよびr型がある。このうちr型
C25(γ−C2Sという)は、水硬性がなく、かつγ
−C2Sの生成時、即ち転移時にこれが粉末となる現象
(以下、これをダスチングという)を呈するため、これ
はセメントクリンカ−の製造において非常に好ましくな
い鉱物とされている。こうしたことから、セメントクリ
ンカ−の製造にあたって、これまでr−02Sの生成防
止について多くの研究が行われてきた。
(Prior art) Dicalcium silicate is 20aO・S k 02 (hereinafter referred to as C2
It has the chemical formula S) and is one of the main minerals that make up Portland cement. There are four types of metamorphosis of C2S: α, α', β and r. Among these, r-type C25 (referred to as γ-C2S) has no hydraulic property and γ
-C2S is considered to be a very undesirable mineral in the production of cement clinker because it exhibits a phenomenon in which it becomes powder (hereinafter referred to as dusting) when it is generated, that is, during its transition. For this reason, many studies have been conducted to prevent the formation of r-02S in the production of cement clinker.

一方、γ−C2S粉末それ自体は、従来から安定な珪酸
カルシウムの微粒子であるところから合成樹脂その他の
充填材料として注目され、また最近ではこれを炭酸ガス
で硬化して気硬性セメントとして利用する研究が一部で
行なわれるよう例なって来ている。しかしながら、r−
C2Sはこれまでのところ大量生産技術が確立されてい
ないこともあって高価であり、また製品の品質について
いえば、良好なγ−C2S粉末の製造技術がいまだ確立
されていない、といった問題が存在している。
On the other hand, γ-C2S powder itself has traditionally attracted attention as a filler material for synthetic resins and other materials because it is a stable fine particle of calcium silicate, and recently there has been research into using it as an air-hardening cement by curing it with carbon dioxide gas. This is becoming the case in some areas. However, r-
C2S is expensive, partly because mass production technology has not been established so far, and when it comes to product quality, there are problems such as the production technology for good γ-C2S powder has not yet been established. are doing.

従来、r−C2Sは不純物(例えばAl2O. 、 F
e2O3゜Na2O、K2O)の少ない高純度の石灰及
び珪酸質原料のみから合成されていた。γ−C2Sのダ
スチングは、C2Sがβ型からγ型への転移時に、高比
重から低比重の物質に変化するため体積が膨張しその結
果起こる現象である。ところが、使用する原料の中に不
純物が存在すると、β−C2Sがγ−C2Sへ転移する
のが抑制され、β−C2Sがそのまま室温まで冷却され
て安定し、この場合はクリンカーがダスチングしなかっ
たり或は局部的にしかダスチングしないで、良好なr−
C2Sを得ることが出来ない。
Traditionally, r-C2S is contaminated with impurities (e.g. Al2O., F
It was synthesized only from high-purity lime and silicic raw materials with low e2O3°Na2O, K2O). Dusting of γ-C2S is a phenomenon that occurs when C2S changes from a substance with high specific gravity to a substance with low specific gravity and expands in volume when it transitions from β type to γ type. However, if there are impurities in the raw materials used, the transition of β-C2S to γ-C2S is suppressed, and β-C2S is cooled to room temperature and becomes stable, and in this case, the clinker does not dust. Or dusting only locally, resulting in good r-
Unable to obtain C2S.

こうしたことから現在までのところ、γ−C2Sを工業
的に製造してこれを工業材料として使用しているという
報告はない。また高品位のγ−C2Sを工業的に製造す
る技術の研究発表も殆んどなされていないのが現状であ
る。
For these reasons, to date, there have been no reports of industrially producing γ-C2S and using it as an industrial material. Furthermore, at present, there are almost no research publications on technology for industrially producing high-quality γ-C2S.

(発明が解決しようとする問題点) この発明は、r−C2B粉末の利用範囲の拡大が予測さ
れることに鑑み、良くダスチングした良好なγ−C2S
を安価に、効率よく工業生産の出来る方法を得ようとす
るものである。即ち、発明者はγ−C2S粉末が炭酸ガ
スと容易に反応して固化し、コンクリートを製造すると
きのバインダーとして有効に利用でき、しかもγ−C2
Sをバインダーとしてコンクリートを製造すると、常温
養生でも1時間以内という非常に短時間で高強度を発現
することを確認したものである。こうしたところから、
この発明は良くダスチングされた良好なγ−C2Sを工
業的に生産しようとするものである。
(Problems to be Solved by the Invention) In view of the expected expansion of the range of use of r-C2B powder, the present invention aims to improve
The aim is to find a method for industrial production that is inexpensive and efficient. That is, the inventor found that γ-C2S powder easily reacts with carbon dioxide gas and solidifies, and can be effectively used as a binder when manufacturing concrete.
It has been confirmed that when concrete is manufactured using S as a binder, it develops high strength in a very short time, within one hour, even when cured at room temperature. From this point on,
This invention aims to industrially produce γ-C2S that is well dusted and has good quality.

(問題点を解決するだめの手段) この発明は、1000℃焼成後の混合物の中のAl2O
3とFe2O3の合量を1.5〜12.5%としまたN
a 20とK2Oの合量を1.25重量−以下とし、し
かもCao/SiO2のモル比が1.90〜2.10と
なるように石灰質原料と珪酸質原料を配合し、これを8
8μふるい残分が20重量%以下になるように調製し、
その後この調合原料をロータリーキルンで1300〜1
500℃で焼成し、次にこれを600〜1250℃に冷
却されるまで徐冷し、その後クリンカー温度が350℃
になるまで急冷することを特徴とするγ型珪酸二石灰粉
末の製造方法であフ、またこうして得られたγ型珪酸二
石灰粉末をプレーン比表面積で4000〜9000 c
m” 747に粉砕する事を特徴とするγ型珪酸二石灰
粉末の製造方法である。以下にこの発明をさらに説明す
る。
(Another means to solve the problem) This invention solves the problem of Al2O in the mixture after firing at 1000°C.
The total amount of 3 and Fe2O3 is 1.5 to 12.5%, and N
Calcareous raw materials and silicic raw materials are blended so that the total amount of a20 and K2O is 1.25 weight or less, and the molar ratio of Cao/SiO2 is 1.90 to 2.10, and this is
Prepared so that the 8μ sieve residue is 20% by weight or less,
After that, this blended raw material is heated in a rotary kiln to 1,300 to 1
Calcined at 500℃, then slowly cooled to 600-1250℃, then clinker temperature is 350℃
This is a method for producing a γ-type dicalcium silicate powder, characterized by rapidly cooling the powder until the γ-type dicalcium silicate powder has a plain specific surface area of 4000 to 9000 c.
This is a method for producing γ-type dicalcium silicate powder, which is characterized in that it is pulverized to a particle size of 747 mm.The present invention will be further explained below.

この発明で使用する原料は、石灰質原料、珪酸質原料で
ある。前者の石灰質原料としては、石灰石、消石灰、生
石灰或はこれらの混合物が    □使用出来る。この
中でセメント製造に使用され    :□ ている石灰石が安価で経済的である。また珪酸質原料と
しては、珪石、珪砂、粘土、非晶質シリカ    、□
或はこれらの混合物である。これらの中で、珪石、粘土
を使用すると経済的である。石灰質原料2珪酸質■0配
社1゛0°■”0パ″社    11.90〜2.10
とする。この範囲外であるとγ−C2Sの生成量が減少
し良好なγ−C2Sが得られな    ;い。更に、焼
成後の石灰質原料と珪酸質原料の混合物中に、Al2O
3とFe2O,の合量が1.5〜12.5重1%及びN
a 20とK2Oの合量が1.25重ff11以下とな
るようにする。従って、この条件を満足するように石灰
質原料と珪酸質原料を選択して調合する必要がある。調
合原料のAt2o3とFe2O,の合量が1,5重量%
未満ではロータリーキルンで焼成してC2Sを生成させ
るとき、液相成分が不足し反応が不充分となりγ−C2
Sの生成量が減少する。また調合原料のAl2O3とF
e2O。
The raw materials used in this invention are calcareous raw materials and silicic raw materials. As the former calcareous raw material, limestone, slaked lime, quicklime, or a mixture thereof can be used. Of these, limestone, which is used for cement production, is cheap and economical. In addition, silica raw materials include silica stone, silica sand, clay, amorphous silica, □
or a mixture thereof. Among these, it is economical to use silica stone and clay. Calcareous raw material 2 Silicic material■0 distribution company1゛0°■"0pa" company 11.90~2.10
shall be. If it is outside this range, the amount of γ-C2S produced will decrease and good γ-C2S will not be obtained. Furthermore, Al2O is added to the mixture of calcareous raw material and silicic raw material after firing.
The total amount of 3 and Fe2O is 1.5 to 12.5% by weight and N
a The total amount of 20 and K2O should be 1.25 parts ff11 or less. Therefore, it is necessary to select and mix calcareous raw materials and silicic raw materials so as to satisfy this condition. The total amount of At2o3 and Fe2O in the blended raw materials is 1.5% by weight
If it is less than γ-C2, when firing in a rotary kiln to generate C2S, the liquid phase component will be insufficient and the reaction will be insufficient.
The amount of S produced decreases. In addition, the blended raw materials Al2O3 and F
e2O.

の合量が12.5チを超えるとクリンカー中にβ−C2
Sが安定化してγ−C2Sの生成量が減少し、クリンカ
ーがダスチングしなかったり或はダスチングが局部的と
なって好ましくない。さらに、調合原料中のNa 20
とK2Oは、1.25重量%以下とする。こうしたアル
カリが1.25重量%を超えるときはクリンカー中にβ
−C2Sが安定化し、良好なγ−C2S粉末が得られな
い。調合原料は粉砕し88μふるい残分が20重fA 
%以下となるように調製する。88μふるい残分が20
チを超えるとr−C2Sの生成反応が不充分となり、良
好なγ−C2Sが得られない。なお、調合原料の粉末度
は細かいほどよい。
If the total amount exceeds 12.5 cm, β-C2 in the clinker
S is stabilized, the amount of γ-C2S produced decreases, and the clinker may not be dusted or the dusting may be localized, which is undesirable. Furthermore, Na 20 in the raw materials for preparation
and K2O shall be 1.25% by weight or less. When such alkalis exceed 1.25% by weight, β
-C2S is stabilized and good γ-C2S powder cannot be obtained. The blended raw materials are pulverized and the residue through an 88 μ sieve is 20 weight fA.
% or less. 88μ sieve residue is 20
If it exceeds 1, the reaction for producing r-C2S becomes insufficient, and good γ-C2S cannot be obtained. Note that the finer the powderiness of the raw materials, the better.

石灰質原料と珪酸質原料は両者を混合して粉砕してもよ
く、また別々に粉砕して後に混合してもよい。この混合
原料は粉末状のまま或はペレット状に成形したのちロー
タリーキルンに挿入してもよいが、焼成後のクリンカー
の冷却速度を均一にするという点からすればペレット状
にするのがよい。焼成はロータリーキルンのうち特にレ
ポルキルンが好都合である。焼成温度は1300〜15
00℃の範囲とする。焼成温度が1300℃未満では焼
成反応が不充分で好ましくない。また、焼成温度が15
001:を超えるとγ−C2Sの生成量が低下しダスチ
ング不足となる。
The calcareous raw material and the silicic raw material may be mixed and pulverized, or they may be pulverized separately and then mixed. This mixed raw material may be inserted into the rotary kiln as it is in powder form or after being formed into pellet form, but from the point of view of making the cooling rate of the clinker uniform after firing, it is preferable to form it into pellet form. Among rotary kilns, it is particularly convenient to use a repo kiln for firing. Firing temperature is 1300~15
00℃ range. If the firing temperature is less than 1,300°C, the firing reaction will be insufficient, which is not preferable. Also, the firing temperature is 15
If it exceeds 001:, the amount of γ-C2S produced decreases, resulting in insufficient dusting.

これは原料中の不純物がC2S結晶に多量に固溶するた
めと考えられる。さらに1500℃を超えた温度で焼成
してもγ−C2S粉末の性状は特に向上せず、かえって
焼成時の熱損失を招くだけである。上記の温度で焼成さ
れたクリンカーは、キル/内でクリンカーの温度が60
0−1250℃の温度になるまで徐冷される。こうした
焼成によって良好なγ−C2Sが得られる。これは原料
中のAl2O3及びFe2O3が主としてメリライト(
2CaO+ Al2O3(F’5203) −Sin□
)として固定されるためβ−02Sの生成が抑制される
ためと考えられる。この温度が1250℃を超えるとク
リンカーのβ−C2Sからγ−C2Sへの転移が不充分
となシ、r−C2Sの生成量が低下し、ダスチング不足
となる。また600℃未満の温度まで冷却すると、クリ
ンカーが次にクーラーで急冷されるときダスチンダを即
時に開始し、クーラー内で粉状化し好ましくない。クリ
ンカーは、その後クーラーでその温度が350℃になる
まで急冷される。クリンカーのダスチングは300〜3
50℃で開始するため、クリンカーの温度を350C以
下まで冷却すると、これがクーラーで急冷中に粉状化す
るので、クーラーでの急冷は350℃tでに止め、その
後これをベルトコンベア上などの外部に排出し、ここで
常温まで冷却する。
This is considered to be because a large amount of impurities in the raw materials are dissolved in the C2S crystal. Furthermore, even if it is fired at a temperature exceeding 1500°C, the properties of the γ-C2S powder are not particularly improved, and instead only cause heat loss during firing. The clinker fired at the above temperature has a clinker temperature of 60
It is slowly cooled to a temperature of 0-1250°C. Good γ-C2S can be obtained by such firing. This is because Al2O3 and Fe2O3 in the raw materials are mainly melilite (
2CaO+ Al2O3(F'5203) -Sin□
), which suppresses the production of β-02S. If this temperature exceeds 1250° C., the clinker transition from β-C2S to γ-C2S will be insufficient, and the amount of r-C2S produced will decrease, resulting in insufficient dusting. Also, cooling to a temperature below 600°C is undesirable because the clinker immediately starts dusting when it is next quenched in the cooler and becomes powdered in the cooler. The clinker is then rapidly cooled in a cooler until its temperature reaches 350°C. Clinker dusting is 300-3
Since the clinker starts at 50℃, if the clinker temperature is cooled to 350C or less, it will turn into powder during quenching in the cooler, so the quenching in the cooler should be stopped at 350℃, and then the clinker should be transferred to an external device such as on a belt conveyor. and then cooled to room temperature.

以上の如くして得られた粉末状のγ−C2Sは40μ以
下の粒子を60%以上含有しプレーン比表面積は250
0〜3000 cm279程度である。このままでも炭
酸化硬化用バインダーとして使用出来るが、更にプレー
ン比表面積で4000〜9000crn”7gに粉砕し
て使用するのが好ましい。4000.279未満の時は
炭酸ガス養生後の強さが小さいため、また9 00 a
rm2/9 を超える時はよフ細かく粉砕しても炭酸ガ
ス養生後の強さの増加が小さく粉砕エネルギーのロスに
なるためそれぞれ好ましくない。以下に実験例をあげて
この発明をさらに説明する。
The powdered γ-C2S obtained as described above contains 60% or more of particles of 40μ or less, and has a plain specific surface area of 250%.
It is about 0 to 3000 cm279. Although it can be used as a binder for carbonation curing as it is, it is preferable to use it after pulverizing it to a plain specific surface area of 4,000 to 9,000 crn"7g. If it is less than 4,000.279, the strength after carbon dioxide curing is small, so Also 900 a
When rm2/9 is exceeded, even if the material is ground very finely, the increase in strength after carbon dioxide curing is small, resulting in a loss of grinding energy, which is not preferable. This invention will be further explained below by giving experimental examples.

実験例1 110℃で乾燥後11ふるい全通に粉砕した石灰石と珪
石をゾールミルで混合粉砕し、次に示す性状を有する調
合原料を調製した。なお、調合原料の化学成分は100
0℃で焼成後の分析値を示した。また、調合原料の粉末
度は88μふるい残分10.5%とした。
Experimental Example 1 Limestone and silica stone, which had been dried at 110° C. and crushed through 11 sieves, were mixed and crushed in a sol mill to prepare a blended raw material having the following properties. In addition, the chemical composition of the blended raw materials is 100%
The analytical values after firing at 0°C are shown. Further, the fineness of the blended raw material was set to 10.5% as a residue after passing through an 88μ sieve.

第1表 R2O3; Al2O3+Fe203 R20;Na2O+に2゜ 調合原料はその後・ぐンペレタイデーで造粒し、乾燥し
てからふるい分けして9.52〜12.7+m径のベレ
ットとした。この梗レットはその後白金皿に入れこれを
800℃の電気炉に入れて昇温し1400℃で所定時間
焼成した。その後これを炉内で各種温度まで徐冷した。
Table 1 R2O3; Al2O3 + Fe203 R20; 2° to Na2O+ The raw materials were then granulated using a gun pellet, dried and sieved to form pellets with a diameter of 9.52 to 12.7+ m. This infarct was then placed in a platinum dish, placed in an electric furnace at 800°C, heated, and fired at 1400°C for a predetermined period of time. This was then slowly cooled in a furnace to various temperatures.

その後直ちに白金皿を炉内から取出しクリンカーを鉄製
容器に放シ出して急冷した。これを放置して室温まで放
冷してダスチング後、クリンカー粉末の40μふるい通
過分及び遊離石灰のft’に測定した。
Immediately thereafter, the platinum plate was taken out from the furnace, and the clinker was discharged into an iron container and rapidly cooled. This was left to cool to room temperature, and after dusting, the amount of clinker powder passing through a 40μ sieve and the amount of free lime in ft' were measured.

結果を第2表に示す。The results are shown in Table 2.

第2表から焼成後のクリンカーは1250℃以下になる
まで徐冷する必要のあることがわかる。
It can be seen from Table 2 that the clinker after firing needs to be slowly cooled to 1250° C. or lower.

なお、A 14は焼成時間が2.5分で焼成不充分で、
得られたものは一部ダスチングしていなかった。
In addition, A14 was insufficiently baked with a baking time of 2.5 minutes.
Some of the products obtained were not dusted.

実験例2 110℃で乾燥後1■ふるい全通に粉砕した石灰石、珪
石をボールミルで混合粉砕し、次に示す性状を有する調
合原料を得た。なお、第3表に示す調合原料の化学成分
は1000℃焼成後の分析値を示す。また、調合原料の
粉末度は88μふるい残分6,5チとした。
Experimental Example 2 Limestone and silica stone, which had been dried at 110° C. and crushed through a 1-inch sieve, were mixed and crushed in a ball mill to obtain a mixed raw material having the following properties. The chemical components of the raw materials shown in Table 3 are the analytical values after firing at 1000°C. In addition, the fineness of the blended raw material was set to 6.5 cm as a residue after passing through an 88μ sieve.

第3表 R20,; Al2O.+Fe2O。Table 3 R20; Al2O. +Fe2O.

R20;Na2O+K2O この調合原料は、その後パンペレタイザーで造粒し、乾
燥後ふ′るい分げして9.52〜12.7簡径のベレッ
トとした。このベレットはその後白金皿に入れ実験例1
で使用した電気炉で焼成し、遊離石灰量および40μふ
るい通過分を測定し第4表の結果を得た。なお、焼成お
よび冷却条件は次の通りとした。
R20; Na2O+K2O This blended raw material was then granulated using a pan pelletizer, dried and sieved to form pellets with a diameter of 9.52 to 12.7. This beret was then placed in a platinum plate and experiment example 1
The amount of free lime and the amount passing through a 40μ sieve were measured, and the results shown in Table 4 were obtained. The firing and cooling conditions were as follows.

焼成温度;1250〜1550℃。Firing temperature: 1250-1550°C.

昇温速度;800℃から各々の焼成温度までの昇温速度
+ 301?:/min。
Temperature increase rate: Temperature increase rate from 800°C to each firing temperature + 301? :/min.

徐冷速度;焼成温度から徐冷温度までの降温速度、25
℃/min。
Annealing rate; rate of temperature drop from firing temperature to annealing temperature, 25
°C/min.

炉から取出し後の放冷;実験例1と同様に急冷。Cooling after taking out from the furnace: Rapid cooling in the same manner as in Experimental Example 1.

第4表 第4表から1300〜1500℃の温度で焼成するとい
づれもr−C2Sが主成分となることがわかるが、l5
00を超え1550℃となッテも40μふるい通過分(
イ)が増加しないので1500’Ct−超えることは熱
エネルギーのロスとなシ好ましくないことがわかる。
Table 4 From Table 4, it can be seen that when fired at a temperature of 1300 to 1500°C, r-C2S becomes the main component, but l5
The temperature exceeds 00 and reaches 1550℃.
(b) does not increase, so it can be seen that exceeding 1500'Ct- is undesirable as it will result in a loss of thermal energy.

実験例3 実験例2で使用した石灰石および珪石を混合粉砕し、調
合原料のCaO/S i O□モル比を変えて原料を調
製し、その後実験例1と同様にして9.52〜12,7
m径のベレットを調製した。その後これを電気炉で焼成
し第5表の結果を得た。なお。
Experimental Example 3 The limestone and silica stone used in Experimental Example 2 were mixed and pulverized, and raw materials were prepared by changing the CaO/SiO□ molar ratio of the blended raw materials. 7
A pellet of m diameter was prepared. Thereafter, this was fired in an electric furnace, and the results shown in Table 5 were obtained. In addition.

焼成条件は次の通シとした。The firing conditions were as follows.

焼成温度: 1450℃、焼成時間: 10 min 
Firing temperature: 1450°C, firing time: 10 min
.

昇温速度;30℃/min 、徐冷温度:1200℃。Heating rate: 30°C/min, slow cooling temperature: 1200°C.

徐冷速度;25℃/min。Slow cooling rate: 25°C/min.

ま友、調合原料の88μふるい残分け13〜   ′1
5%の範囲とした。
Mayu, 88μ sieve residue of blended raw materials 13~'1
The range was set at 5%.

第5表 第5表の結果から良好なr−C2B粉末を製造するため
にはCaOとSiOの配合比は、CaO/SiO2モル
比で1.90〜2.10の範囲であることがわかる。こ
の範囲を外れるとβ−C2S、C3S2等が多量に発生
し、r−C2Sの生成量が減少する。
From the results shown in Table 5, it can be seen that in order to produce a good r-C2B powder, the blending ratio of CaO and SiO is in the range of 1.90 to 2.10 in terms of CaO/SiO2 molar ratio. Outside this range, large amounts of β-C2S, C3S2, etc. are generated, and the amount of r-C2S generated decreases.

実験例4 石灰石、珪砂、珪石及び紬薬のAl2O3.Fe2O3
゜MgO、Na2Co3. K2CO2を使用して第6
表に示す化学成分を有する調合原料をボールミルで混合
粉砕して調製した。各々の調合原料の粉末度は88μふ
るい残分が11〜13チであった。調合原料は、その後
実験例1と同様にして9.52〜12.711I11径
の被レットとした。
Experimental Example 4 Al2O3 of limestone, silica sand, silica stone, and pongee. Fe2O3
゜MgO, Na2Co3. 6th using K2CO2
The raw materials having the chemical components shown in the table were mixed and ground in a ball mill. The fineness of each blended raw material was 11 to 13 inches when passed through an 88μ sieve. Thereafter, the blended raw materials were made into pellets having a diameter of 9.52 to 12.711I11 in the same manner as in Experimental Example 1.

この被レットは、その後電気炉で焼成して第7表の結果
を得た。なお、焼成条件は次の通シとした。
This pellet was then fired in an electric furnace to obtain the results shown in Table 7. The firing conditions were as follows.

焼成温度: 1400℃、焼成時間;15分昇温速度;
30℃/min (800℃から1400℃までの昇温
速度 徐冷温度; 1200℃、徐冷速度;25℃/m i 
n結果は第7表の通りであった。
Firing temperature: 1400°C, firing time: 15 minutes heating rate;
30℃/min (heating rate from 800℃ to 1400℃ slow cooling temperature; 1200℃, slow cooling rate; 25℃/min
The results are shown in Table 7.

第7表 R2O3: Al2O s + F e 203R20
;Na2O+K2O 第7表の結果から、良好なγ−C2Sを製造するために
は、調合原料中のAl2O3とFe2O3の合量が1.
5〜12.5重M%とする必要のあることがわかる。A
l2O3とFe2O3の合量がこの下限未満のときは焼
成時に生成する液相成分が少なく焼成反応が不充分とな
り、クリンカー中に未反応物質が残存する。このためγ
−C2Sの生成量が減少し好ましくない。また、AL2
0.とFe 205の合量が前記の上限を超えるときは
、2C&0・Al2O3(Fe203)・5iO2(メ
リライト)が生成せず、β−C2Sが多量に安定化して
しまい好ましくない。
Table 7 R2O3: Al2O s + Fe 203R20
;Na2O+K2O From the results in Table 7, in order to produce good γ-C2S, the total amount of Al2O3 and Fe2O3 in the blended raw materials must be 1.
It can be seen that the content needs to be 5 to 12.5% by weight. A
When the total amount of 12O3 and Fe2O3 is less than this lower limit, the amount of liquid phase components produced during firing is small, resulting in insufficient firing reaction, and unreacted substances remain in the clinker. For this reason, γ
-The amount of C2S produced decreases, which is not preferable. Also, AL2
0. When the total amount of Fe205 and Fe205 exceeds the above upper limit, 2C&0.Al2O3 (Fe203).5iO2 (melilite) is not produced and a large amount of β-C2S is stabilized, which is not preferable.

ま次、調合原料中のNa 20とK2Oの合量は1.2
5重量−以下とする。この合量がこれを超えるとメリラ
イトが生成せず、β−C2Sが安定化する。
Makoto, the total amount of Na20 and K2O in the blended raw materials is 1.2
5 weight - or less. If this total amount exceeds this, melilite will not be generated and β-C2S will be stabilized.

実験例5 石灰石、珪石及び粘土をゾールミルで混合粉砕し、これ
を実験例1と同様にして9.52〜12.7m径のベレ
ットを調製した。この調合原料の化学成分(但し、10
00℃焼成後の分析値)は次の通りである。
Experimental Example 5 Limestone, silica stone, and clay were mixed and pulverized in a sol mill, and pellets with a diameter of 9.52 to 12.7 m were prepared in the same manner as in Experimental Example 1. Chemical components of this mixed raw material (however, 10
The analytical values after firing at 00°C are as follows.

第8表 この被レットをその後電気炉で焼成して第9表の結果を
得た。なお、焼成条件は次の通シとした。
Table 8 This pellet was then fired in an electric furnace to obtain the results shown in Table 9. The firing conditions were as follows.

焼成温度:1450℃、焼成時間;1o分。Firing temperature: 1450°C, firing time: 1 o minute.

昇温速度;30℃/min、(800℃から1450℃
までの昇温速度) 徐冷温度: 1200℃、徐冷速度;25℃/ml n
 。
Temperature increase rate: 30℃/min, (from 800℃ to 1450℃
(Temperature increase rate up to) Annealing temperature: 1200℃, annealing rate: 25℃/ml n
.

第9表 第9表から調合原料は88μふるい残分が20チ以下と
なるように粉砕するのがよいことがわかる。
Table 9 It can be seen from Table 9 that the blended raw material is preferably ground so that the residue on the 88μ sieve is 20 inches or less.

実験例6 実験例1で使用した石灰石、珪石f、ボールミルで混合
粉砕して次の性状を有する調合原料を1000kg調與
した。ζ0調合原料の化学成分(,1000℃で焼成後
の分析値)は次の通シであった。また、調合原料の粉末
度は88μふるい残分10.5%であった。
Experimental Example 6 The limestone and silica stone f used in Experimental Example 1 were mixed and ground in a ball mill to prepare 1000 kg of blended raw materials having the following properties. The chemical composition of the ζ0 blended raw material (analyzed value after firing at 1000°C) was as follows. Further, the fineness of the blended raw material was 10.5%, which remained after passing through an 88μ sieve.

第10表 調合原料は、その後パンペレタイザーで造粒し、乾燥後
ふるい分けし、7.9〜15.9瓢径のベレットとした
。次にこのペレットを内径270醪、長さ4500wn
5の小型ロータリーキルンに15に9/hrで送入して
焼成した。
The raw materials prepared in Table 10 were then granulated using a pan pelletizer, dried and sieved to form pellets with a diameter of 7.9 to 15.9. Next, this pellet has an inner diameter of 270mm and a length of 4500wn.
The mixture was fed into a small rotary kiln (No. 5) at a rate of 9/hr (No. 15) for firing.

焼成において、クリンカーの最高温度である焼点温度を
1430〜1450℃の一定に保持し、キルン内にバー
ナの出し入れ操作を行なってキルン落ち口でのクリンカ
ー温度を変化させた。
During firing, the clinker's highest temperature, the baking point temperature, was held constant at 1430 to 1450°C, and the clinker temperature at the kiln outlet was changed by moving the burner in and out of the kiln.

キルンから落ちたクリンカーは、穴あきスチール製コン
ベア上で下部より扇風機で強制空冷した。コンベア上の
クリンカーは、その後鉄製容   ・器に受はダスチン
グさせた。ダスチングしたクリンカーは、室温まで冷却
後40μふるい通過   □分を測定してその結果を第
11表に示した。
The clinker that fell from the kiln was forced to air cooled by a fan from the bottom on a perforated steel conveyor. The clinker on the conveyor was then dusted into a steel container. After the dusted clinker was cooled to room temperature, the number of minutes it passed through a 40μ sieve was measured, and the results are shown in Table 11.

、′1 第11表 中 バーナー操作でクリンカーの落ち口温度を500℃
まで低下させることが不可能であったため、落ち口温度
600〜650℃のクリンカーを500℃の電気炉に1
時間保持し、その波速やかに電気炉から取出しスチール
コンベア上に落とした。
,'1 In Table 11, set the clinker drop temperature to 500℃ by operating the burner.
Because it was impossible to lower the temperature to
The sample was held for a period of time, and the sample was immediately taken out of the electric furnace and dropped onto a steel conveyor.

なお、キルン内でのぜレットの滞留時間は約60分でち
ゃ、焼点でのクリンカーの滞留時間は7〜10分とした
The residence time of the nozzle in the kiln was approximately 60 minutes, and the residence time of the clinker at the baking point was 7 to 10 minutes.

第11表から明らかなように、ロータリーキルンでγ−
C2Sを製造する場合、クリンカーをキルン内で125
0℃以下まで徐冷し、その後急冷しなければならないこ
とがわかる。なお、キルン内でクリンカーを500℃ま
で徐冷すると、キル/からクーラーに落ちると直ちに小
径のクリンカーがダスチングして粉状化するため、生成
したr−C2S粒子がキルン内に逆流して好ましくない
。クリンカーのダスチング開始温度を測定し九結果、3
00〜350℃でダスチングすることが判明したので、
クリンカーのクーラーによる冷却は350℃を下限とす
る〇 実験例7 石灰石、珪石を配合比を変えてが−ルミルで粉砕し、こ
れを第12表に示す化学組成(但し、1000℃焼成後
の分析値)の調合原料とした。
As is clear from Table 11, in the rotary kiln, γ-
When producing C2S, the clinker is placed in the kiln at 125
It can be seen that it is necessary to gradually cool down to below 0°C and then rapidly cool it. Furthermore, if clinker is slowly cooled to 500℃ in a kiln, the small-diameter clinker will dust and become powder as soon as it falls into the cooler from the kiln, so the generated r-C2S particles will flow back into the kiln, which is undesirable. . Measure the dusting start temperature of clinker, 9 results, 3
It was found that dusting occurs at temperatures between 00 and 350 degrees Celsius, so
The lower limit of clinker cooling with a cooler is 350°C. Experimental Example 7 Limestone and silica stone were pulverized in a Ga-Lumill with different blending ratios, and the chemical composition shown in Table 12 (however, analysis after firing at 1000°C) value) was used as the raw material for the preparation.

なお、この粉末度は88μふるい残分14〜16チとし
た。その後これを実験例6と同様にして7.9〜15.
9m径のベレットとし、これを各々100ゆ調製した。
The fineness of the powder was set to 14 to 16 inches after passing through an 88μ sieve. Thereafter, this was carried out in the same manner as in Experimental Example 6, and 7.9 to 15.
A pellet with a diameter of 9 m was prepared, and 100 yu of each pellet was prepared.

第12表 このベレットは、その後実験例7で使用したロータリー
キルンに投入して焼成し第13表に示す結果を得た。な
お、焼成条件はつぎの通シとした。
Table 12 This pellet was then put into the rotary kiln used in Experimental Example 7 and fired, and the results shown in Table 13 were obtained. The firing conditions were as follows.

焼点温度: 1430〜1460℃、クリンカーのキル
ン落ち口温度:1180〜1230℃。
Baking point temperature: 1430-1460°C, clinker kiln outlet temperature: 1180-1230°C.

第13表 第13表から明らかなように調合原料のCa07810
2モル比が1.90〜2.10のときに良好なr−C2
S粉末をロ −タリーキルンで製造することが出来る。
Table 13 As is clear from Table 13, Ca07810 of the blended raw material
Good r-C2 when the molar ratio of 2 is between 1.90 and 2.10.
S powder can be produced in a rotary kiln.

実験例8 石灰石、珪石及び粘土をが−ルミルで粉砕して次に示す
粒度及び成分を有する調合原料を500kl?調製した
。この調合原料の粉末度は88μふるい残分17.9 
%で、またその化学成分(但し、1000℃焼成後の分
析値)は第14表に示す通りとした。
Experimental Example 8 Limestone, silica stone, and clay were crushed in a galvanic mill and 500kl of mixed raw materials having the particle size and components shown below were prepared. Prepared. The fineness of this blended raw material is 88 μ sieve residue 17.9
%, and its chemical components (however, the analytical values after firing at 1000°C) were as shown in Table 14.

第14表 CaO/5102モル比:1.97 この調合原料ヲノクンペレタイザーで9.52〜15.
9■径のぜレットに造粒しその後これを110℃で乾燥
した。このペレットをその後実験例6で使用した小型ロ
ータリーキルンに送入して焼成し、実験例6と同様に冷
却した。なお、焼成条件は次の通りとした@ 焼点温度; 1250〜1550℃ キルン落ちロクリン力−の温度;1200〜1230℃
このようにして室温まで冷却したクリンカー粉末につい
て、40μふるい通過分及び遊離石灰量を測定したとこ
ろ、第15表の結果を得た。
Table 14 CaO/5102 molar ratio: 1.97 9.52 to 15.
The pellets were granulated into 9-diameter pellets, which were then dried at 110°C. The pellets were then fed into the small rotary kiln used in Experimental Example 6, fired, and cooled in the same manner as in Experimental Example 6. The firing conditions were as follows: Baking point temperature: 1250-1550℃ Kiln drop temperature: 1200-1230℃
Regarding the clinker powder cooled to room temperature in this manner, the amount passing through a 40μ sieve and the amount of free lime were measured, and the results shown in Table 15 were obtained.

第15表 傘クリンカーは焼点部で大塊となシやすく。Table 15 Umbrella clinker easily forms large lumps at the burning point.

連続して安全運転することは困難であった。It was difficult to drive safely continuously.

第15表から明らかなように、 r−C2S粉末をロー
タリーキルンで焼成するとき、焼成温度は1300〜1
500℃とする必要がある。
As is clear from Table 15, when r-C2S powder is fired in a rotary kiln, the firing temperature is between 1300 and 1
It is necessary to set the temperature to 500°C.

実験例9 実験例8で調製した調合原料を、ペレットにしないで粉
末のまま実験例8と同様にしてキルンに送入して焼成し
た。焼点温度は1400〜1430℃とした。ここで得
たr−C2B粉末の粒度は、40μふるい通過分81チ
であった。
Experimental Example 9 The blended raw materials prepared in Experimental Example 8 were fed into a kiln in the same manner as in Experimental Example 8 and fired in the form of powder without being made into pellets. The burning point temperature was 1400 to 1430°C. The particle size of the r-C2B powder obtained here was 81 inches that passed through a 40μ sieve.

実験例10 実験例6で得た屋5のγ−C2S粉末(プレーン比表面
積2810 cm2/9)を種々の粉末度に粉砕し、そ
の後γ−C2Sと豊浦標準砂を1:2の重量比で混合し
、その後混合物100!ii部に対して水8重合部を添
加混合し成型圧100に9/an”でφ= 25 tx
s r高さ30■の円柱体を成型した。
Experimental Example 10 The γ-C2S powder (plain specific surface area 2810 cm2/9) obtained in Experimental Example 6 was ground to various degrees of fineness, and then γ-C2S and Toyoura standard sand were mixed at a weight ratio of 1:2. Mix and then mix 100! Add and mix 8 polymerized parts of water to part ii, molding pressure 100 and 9/an'' to φ=25 tx
A cylindrical body with a height of 30 cm was molded.

各々の成形体をその後20℃で炭酸ガス雰囲気中で1時
間養生し圧縮強度を測定した。この結果全添附した図に
示す。
Each molded body was then cured for 1 hour in a carbon dioxide atmosphere at 20°C, and the compressive strength was measured. The results are all shown in the attached figure.

添附図から明らかなように、γ−C2S粉末を水の存在
下で炭酸jス養生すると1時間で高強度を達成する事が
わかる。そして炭酸化硬化用のバインダーとして使用す
るγ−C2Sの粉末度はプレーン比表面核で4000〜
9000伽2/S’の範囲が好ましい事がわかる。40
00 cm2/9より粗い時は強さが小さいため、 9
000 cm” 79以上の時はよル細かく粉砕しても
強さの増加が小さいためそれぞれ好ましくない。
As is clear from the attached diagram, high strength can be achieved in one hour when γ-C2S powder is cured with carbon dioxide in the presence of water. The fineness of γ-C2S used as a binder for carbonation hardening is 4000~4000 in terms of plain specific surface core.
It can be seen that the range of 9000 Ka2/S' is preferable. 40
When it is coarser than 00 cm2/9, the strength is small, so 9
000 cm'' 79 or more is not preferable because the increase in strength is small even if it is finely ground.

実験例11 実験例10で調製したr−C2S粉末(プレーン比表面
積8100cIn”/、!i’ )と豊浦標準砂を1:
2の重量比で混合し、その後混合物100重量部に対し
て水8重量部を添加混合し、成型圧200kp/cm”
で、φ=25瓢、高さ30■の円柱体を成型した。この
成型体をその後20℃で炭酸ガス雰囲気中で養生し圧縮
強度を測定した。比較のため、普通ポルトランドセメン
トと豊浦標準砂を同様にして成型し、その後20℃で相
対湿度80チ以上で養生し圧縮強度を測定した。この結
果を第16表に示す。
Experimental Example 11 The r-C2S powder prepared in Experimental Example 10 (plain specific surface area 8100 cIn''/,!i') and Toyoura standard sand were mixed in 1:1 ratio.
After that, 8 parts by weight of water was added to 100 parts by weight of the mixture, and the molding pressure was 200 kp/cm.
Then, a cylindrical body with a diameter of 25 gourd and a height of 30 cm was molded. This molded body was then cured at 20° C. in a carbon dioxide atmosphere and its compressive strength was measured. For comparison, ordinary Portland cement and Toyoura standard sand were molded in the same manner, and then cured at 20° C. and a relative humidity of 80° C. or higher, and the compressive strength was measured. The results are shown in Table 16.

第16表 第16表から明らかなよりに、γ−C2S粉末′ft′
水の存在下で炭酸ガス養生すると従来のセメントよりも
著るしく短時間に高強度を達成することがわかる。
Table 16 As is clear from Table 16, γ-C2S powder 'ft'
It can be seen that when carbon dioxide gas cures in the presence of water, high strength can be achieved in a significantly shorter time than conventional cement.

(発明の効果) 以上説明したように、この発明によると40μ以下の粒
子の多いγ−C2S粉末を大量にしかも連続して生産す
ることが出来る。そしてその原料も低廉な石灰質原料及
び珪酸質原料からγ−C2Sが得られるのであるから、
その製品は安価とすることが出来る。また、こうして得
られたr−C2S粉末を更に粉砕し、これを炭酸ガス養
生するとその強度発現は、水硬性セメントの強度発現よ
シも著しく早”くかつ高強度となるため、コンクリート
製品の製造コストの低減が図られることになる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to continuously produce a large amount of γ-C2S powder containing many particles of 40 μm or less. And since γ-C2S can be obtained from inexpensive calcareous raw materials and silicic raw materials,
The product can be inexpensive. In addition, when the r-C2S powder obtained in this way is further crushed and cured with carbon dioxide gas, its strength develops much faster than that of hydraulic cement, and the strength becomes high. Cost reduction will be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (2)

【特許請求の範囲】[Claims] (1)1000℃焼成後の混合物の中のAl_2O_3
とFe_2O_3の合量を1.5〜12.5重量%とし
またNa_2OとK_2Oの合量を1.25重量%以下
とし、しかもCaO/SiO_2のモル比が1.90〜
2.10となるように石灰質原料と珪酸質原料を配合し
、これを88μふるい残分が20重量%以下になるよう
に調製し、その後この調合原料をロータリーキルンで1
300〜1500℃で焼成し、次にこれを600〜12
50℃に冷却されるまで徐冷し、その後クリンカー温度
が350℃になるまで急冷することを特徴とするγ型珪
酸二石灰粉末の製造方法。
(1) Al_2O_3 in the mixture after firing at 1000°C
The total amount of Fe_2O_3 and Fe_2O_3 is 1.5 to 12.5% by weight, the total amount of Na_2O and K_2O is 1.25% by weight or less, and the molar ratio of CaO/SiO_2 is 1.90 to 12.5% by weight.
2.10, calcareous raw material and silicic raw material are blended, and this is adjusted so that the residue on the 88 μ sieve is 20% by weight or less, and then this mixed raw material is heated in a rotary kiln for 1 hour.
Calcinate at 300-1500℃, then heat at 600-12℃
A method for producing γ-type dicalcium silicate powder, which comprises slowly cooling the powder to 50°C and then rapidly cooling it until the clinker temperature reaches 350°C.
(2)1000℃焼成後の混合物の中のAl_2O_3
とFe_2O_3の合量を1.5〜12.5重量%とし
またNa_2OとK_2Oの合量を1.25重量%以下
とし、しかもCaO/SiO_2のモル比が1.90〜
2.10となるように石灰質原料と珪酸質原料を配合し
、これを88μふるい残分が20重量%以下になるより
に調製し、その後この調合原料をロータリーキルンで1
300〜1500℃で焼成し、次にこれを600〜12
50℃に冷却されるまで徐冷し、その後クリンカー温度
が350℃になるまで急冷で得たγ型珪酸二石灰粉末を
更にプレーン比表面積で4000〜9000cm^2/
gに粉砕することを特徴とするγ型珪酸二石灰粉末の製
造方法。
(2) Al_2O_3 in the mixture after firing at 1000°C
The total amount of Fe_2O_3 and Fe_2O_3 is 1.5 to 12.5% by weight, the total amount of Na_2O and K_2O is 1.25% by weight or less, and the molar ratio of CaO/SiO_2 is 1.90 to 12.5% by weight.
Calcareous raw materials and silicic raw materials were blended so that the ratio of
Calcinate at 300-1500℃, then heat at 600-12℃
The γ-type dicalcium silicate powder obtained by slow cooling to 50°C and then rapid cooling until the clinker temperature reaches 350°C has a plain specific surface area of 4000 to 9000 cm^2/
1. A method for producing γ-type dicalcium silicate powder, which comprises pulverizing it into g.
JP15315485A 1985-07-11 1985-07-11 Production of gamma-type dicalcium silicate powder Granted JPS6217013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15315485A JPS6217013A (en) 1985-07-11 1985-07-11 Production of gamma-type dicalcium silicate powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15315485A JPS6217013A (en) 1985-07-11 1985-07-11 Production of gamma-type dicalcium silicate powder

Publications (2)

Publication Number Publication Date
JPS6217013A true JPS6217013A (en) 1987-01-26
JPH0568406B2 JPH0568406B2 (en) 1993-09-28

Family

ID=15556203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15315485A Granted JPS6217013A (en) 1985-07-11 1985-07-11 Production of gamma-type dicalcium silicate powder

Country Status (1)

Country Link
JP (1) JPS6217013A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049420A (en) * 1999-06-23 2001-02-20 Sulzer Metco Us Inc Thermal spraying powder of dicalcium silicate, its coating and its production
WO2012099254A1 (en) * 2011-01-21 2012-07-26 電気化学工業株式会社 METHOD FOR PRODUCING γ-2CaO·SiO2
WO2012105102A1 (en) * 2011-02-03 2012-08-09 電気化学工業株式会社 PROCESS FOR PRODUCING β-2CAO·SIO2
WO2013027704A1 (en) * 2011-08-25 2013-02-28 電気化学工業株式会社 METHOD FOR PRODUCING γ-2CaO·SiO2
WO2014002727A1 (en) * 2012-06-27 2014-01-03 電気化学工業株式会社 METHOD FOR PRODUCING γ-2CaO• SiO2
KR20140040796A (en) * 2011-06-09 2014-04-03 러트거즈,더스테이트유니버시티오브뉴저지 Synthetic formulations and methods of manufacturing and using thereof
JP2022036364A (en) * 2020-08-18 2022-03-08 デンカ株式会社 Cement admixture, and cement composition
WO2023063236A1 (en) * 2021-10-13 2023-04-20 株式会社トクヤマ METHOD FOR PRODUCING CALCINED PRODUCT CONTAINING γ-2CAO∙SIO2

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049420A (en) * 1999-06-23 2001-02-20 Sulzer Metco Us Inc Thermal spraying powder of dicalcium silicate, its coating and its production
EP1063316A3 (en) * 1999-06-23 2003-02-26 Sulzer Metco (US) Inc. Thermal spray powder of dicalcium silicate and coating thereof and manufacture thereof
JPWO2012099254A1 (en) * 2011-01-21 2014-06-30 電気化学工業株式会社 Method for producing γ-2CaO · SiO 2
WO2012099254A1 (en) * 2011-01-21 2012-07-26 電気化学工業株式会社 METHOD FOR PRODUCING γ-2CaO·SiO2
CN103328384A (en) * 2011-01-21 2013-09-25 电气化学工业株式会社 Method for producing gamma-2CaO.SiO2
JP5867929B2 (en) * 2011-01-21 2016-02-24 デンカ株式会社 Method for producing γ-2CaO · SiO 2
WO2012105102A1 (en) * 2011-02-03 2012-08-09 電気化学工業株式会社 PROCESS FOR PRODUCING β-2CAO·SIO2
CN103328383A (en) * 2011-02-03 2013-09-25 电气化学工业株式会社 Process for producing ss-2caosio2
JPWO2012105102A1 (en) * 2011-02-03 2014-07-03 電気化学工業株式会社 Method for producing β-2CaO · SiO 2
JP5867734B2 (en) * 2011-02-03 2016-02-24 デンカ株式会社 Method for producing β-2CaO · SiO 2
KR20180113621A (en) * 2011-06-09 2018-10-16 러트거즈,더스테이트유니버시티오브뉴저지 Synthetic formulations and methods of manufacturing and using thereof
KR20140040796A (en) * 2011-06-09 2014-04-03 러트거즈,더스테이트유니버시티오브뉴저지 Synthetic formulations and methods of manufacturing and using thereof
JP2014516023A (en) * 2011-06-09 2014-07-07 ラトガーズ, ザ ステイト ユニバーシティ オブ ニュー ジャージー Synthetic formulations and methods of making and using them
WO2013027704A1 (en) * 2011-08-25 2013-02-28 電気化学工業株式会社 METHOD FOR PRODUCING γ-2CaO·SiO2
JPWO2013027704A1 (en) * 2011-08-25 2015-03-19 電気化学工業株式会社 Method for producing γ-2CaO · SiO 2
JPWO2014002727A1 (en) * 2012-06-27 2016-05-30 デンカ株式会社 Method for producing γ-2CaO · SiO 2
WO2014002727A1 (en) * 2012-06-27 2014-01-03 電気化学工業株式会社 METHOD FOR PRODUCING γ-2CaO• SiO2
JP2022036364A (en) * 2020-08-18 2022-03-08 デンカ株式会社 Cement admixture, and cement composition
WO2023063236A1 (en) * 2021-10-13 2023-04-20 株式会社トクヤマ METHOD FOR PRODUCING CALCINED PRODUCT CONTAINING γ-2CAO∙SIO2

Also Published As

Publication number Publication date
JPH0568406B2 (en) 1993-09-28

Similar Documents

Publication Publication Date Title
EP3177578B1 (en) Carbonatable calcium silicate compositions
US6818055B2 (en) Porous silicate granular material and method for producing it
NL2012959B1 (en) Cement composition, and method for manufacturing thereof.
JPS6242871B2 (en)
US3381064A (en) Method of making pseudowollastonite clinker with the rotary kiln
JPS6217013A (en) Production of gamma-type dicalcium silicate powder
WO2012105102A1 (en) PROCESS FOR PRODUCING β-2CAO·SIO2
US4204878A (en) Raw mixture for the production of refractory high-alumina cement
JP4554217B2 (en) Method for producing hydraulic iron ore cement clinker
EP1373140B1 (en) Fliudized reaction for producing synthetic silicates
JPH0977543A (en) Artificial lightweight aggregate and its production
US4668300A (en) Preparation of cement using stabilized fibers of metastable calcium silicate
Amin et al. The effect of combustion temperature on the characteristic of clinker
US3718489A (en) Insulating castable
CN107117838B (en) Sulphate aluminium cement clinker containing tricalcium silicate and preparation method thereof
JPH06115998A (en) Production of hydraulic composition
US2744021A (en) Process of making refractory brick and brick
JPH11292578A (en) Belite slag
JPS6112871B2 (en)
JPH0463008B2 (en)
JPS5913457B2 (en) Production method of calcia clinker
JP4713047B2 (en) Mars slag manufacturing method
JPS5927731B2 (en) Method for producing calcia clinker
JPH05229857A (en) Production of spheroidized cement
JP2001302296A (en) Admixture for cement and cement composition containing the same