WO2014002727A1 - METHOD FOR PRODUCING γ-2CaO• SiO2 - Google Patents

METHOD FOR PRODUCING γ-2CaO• SiO2 Download PDF

Info

Publication number
WO2014002727A1
WO2014002727A1 PCT/JP2013/065731 JP2013065731W WO2014002727A1 WO 2014002727 A1 WO2014002727 A1 WO 2014002727A1 JP 2013065731 W JP2013065731 W JP 2013065731W WO 2014002727 A1 WO2014002727 A1 WO 2014002727A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
2cao
mass
raw material
producing
Prior art date
Application number
PCT/JP2013/065731
Other languages
French (fr)
Japanese (ja)
Inventor
慎 庄司
盛岡 実
樋口 隆行
山本 賢司
亮悦 吉野
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201380034489.8A priority Critical patent/CN104411637B/en
Priority to JP2014522514A priority patent/JP6057389B2/en
Publication of WO2014002727A1 publication Critical patent/WO2014002727A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • C04B7/3453Belite cements, e.g. self-disintegrating cements based on dicalciumsilicate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention mainly relates to a method for producing ⁇ -2CaO ⁇ SiO 2 that can be used as a cement material.
  • 2CaO ⁇ SiO 2 As the 2CaO ⁇ SiO 2 , ⁇ type, ⁇ type, ⁇ type, and the like are known. Of these, ⁇ -type and ⁇ -type are stable at room temperature. The ⁇ type is known as one of the ingredients of Portland cement, and it is weak but hydraulic. On the other hand, although the ⁇ type does not have hydraulic properties, it has a high carbonation activity and has recently been found to be useful as a cement admixture. As described above, 2CaO ⁇ SiO 2 has been found to be used by utilizing the characteristics of both ⁇ -type and ⁇ -type, so if a method for controlling the crystal form of 2CaO ⁇ SiO 2 can be established, it will be industrially applied. It is beneficial.
  • Non-patent Document 1 Non-patent document 2
  • Non-patent document 3 Non-patent document 3
  • Patent Document 1 ⁇ -2CaO ⁇ SiO 2
  • Patent Document 2 ⁇ -2CaO ⁇ SiO 2
  • the present invention provides a method for producing ⁇ -2CaO ⁇ SiO 2 that has high whiteness, does not contain harmful substances, does not inhibit the setting and hardening of cement, can reduce energy costs during firing, and has a high yield. To do.
  • the present inventors have found that the slaked lime raw material and the siliceous raw material that are by-produced after generating acetylene from calcium carbide contain a trace amount of alkali components, but CaO / SiO 2. It has been found that ⁇ -2CaO ⁇ SiO 2 is produced by adjusting the total alkali amount in the raw material mixture by adding an alkali component to the raw material mixture depending on the molar ratio range. Moreover, it was found that ⁇ -2CaO ⁇ SiO 2 obtained by this method has high carbonation activity, high whiteness, no harmful substances, and is useful without inhibiting the setting and hardening of cement.
  • the inventors of the present invention have made intensive efforts and have a high carbonation activity, high whiteness, no harmful substances, and inhibit cement setting and hardening with respect to the production method of ⁇ -2CaO ⁇ SiO 2.
  • the inventors have found that the energy cost during firing can be reduced and that the production method of ⁇ -2CaO ⁇ SiO 2 is high, and the present invention has been completed.
  • the present invention has the following gist. 1. And slaked lime material by-produced after reacting the calcium carbide and water to generate acetylene and siliceous material, a raw material mixture was blended, and CaO / SiO 2 molar ratio of 1.6 to 2.0 The total alkali amount is 0.05 mass% to 1.00 mass%, or the CaO / SiO 2 molar ratio is more than 2.0 and 2.4 or less, and the total alkali amount is 0.50 mass% or less. adjusted the raw material mixture, ⁇ -2CaO ⁇ SiO 2 of production method and firing at a firing temperature 1300 ⁇ 1600 ° C. at a rotary kiln as. 2. 2.
  • the slaked lime raw material is CaO 71-74% by mass, ignition loss (LOI) 23-25% by mass, SiO 2 0.5-1.5% by mass, Fe 2 O 3 0.2-0.35. % By mass, Al 2 O 3 by 0.3 to 0.7% by mass, MgO by less than 0.2% by mass, Na 2 O and K 2 O by less than 0.1% by mass, and SO 3 by 1.
  • the obtained ⁇ -2CaO ⁇ SiO 2 has a high carbonation activity, a high whiteness, and does not inhibit the setting and hardening of the cement.
  • the energy cost can be reduced and the yield is high.
  • ⁇ -2CaO ⁇ SiO 2 referred to in the present invention is a kind of dicalcium silicate 2CaO ⁇ SiO 2 among the compounds mainly composed of CaO and SiO 2 .
  • the dicalcium silicate 2CaO ⁇ SiO 2 includes ⁇ type, ⁇ prime type, ⁇ type, and ⁇ type.
  • the present invention relates to ⁇ -type dicalcium silicate.
  • the slaked lime raw material (calcium hydroxide raw material) byproduced after making calcium carbide and water react and generating acetylene is used.
  • ⁇ -type 2CaO ⁇ SiO 2 is obtained.
  • ⁇ -2CaO ⁇ SiO 2 of the present invention cannot be obtained.
  • the component of slaked lime produced as a by-product after the reaction of calcium carbide with water to generate acetylene is about 71 to 74% of CaO on the basis of oxides after heat treatment of the slaked lime produced as a by-product.
  • MgO is less than 0.2%, Na 2 O and K 2 O are both less than 0.1%, and SO 3 is contained in an amount of about 1.0 to 1.5%.
  • a siliceous raw material (SiO 2 raw material) is used in addition to a slaked lime raw material (CaO raw material) produced as a by-product after generating acetylene by reacting calcium carbide and water.
  • the siliceous raw material (SiO 2 raw material) is not particularly limited, but silica fine powder, silica fume, diatomaceous earth, fused silica dust, and the like can be used.
  • silica fine powder silica fume, diatomaceous earth, fused silica dust, and the like can be used.
  • the presence of impurities is also preferable.
  • SiO 2 raw material a high-purity siliceous raw material
  • SiO 2 raw material a slaked lime raw material by-produced after reacting calcium carbide and water to generate acetylene, ⁇ -2CaO - it is possible to obtain a SiO 2.
  • the total alkali amount means the content (mass%) of Na 2 O, K 2 O, and Li 2 O contained in the raw material mixture.
  • the alkaline substance is not particularly limited, but potassium carbonate, sodium carbonate, or the like can be used.
  • the heat treatment method is not particularly limited.
  • a rotary kiln, an electric furnace, a tunnel furnace, a shaft kiln, a fluidized bed incinerator, etc. can be used. Above all, it is necessary to select a rotary kiln from the viewpoint of continuous operation and cost performance.
  • the calcination temperature is 1300 ° C. to 1600 ° C., preferably 1400 ° C. to 1550 ° C., more preferably 1450 to 1550 ° C. If it is less than 1300 ° C., the efficiency may be deteriorated or it may be burnt. If it exceeds 1600 ° C., it will not only melt and become difficult to operate, but it may be easily coated and the yield may be reduced. .
  • the firing temperature here is the maximum temperature, and in the case of a rotary kiln, it is the temperature in the firing zone.
  • the CaO / SiO 2 molar ratio of the raw material mixture it is necessary to adjust the CaO / SiO 2 molar ratio of the raw material mixture to 1.6 to 2.4.
  • the total alkali amount needs to be 0.05% or more and 1.00% or less, and preferably 0.10% or more and 0.95% or less.
  • the CaO / SiO 2 molar ratio of the raw material mixture is adjusted to 2.0 to 2.4 or less, the total alkali amount needs to be 0.50% or less, and should be 0.40% or less. Is preferable, and may be 0%.
  • the particle sizes of the slaked lime raw material and the siliceous raw material are preferably prepared so that the 150 ⁇ m pass rate is 90% or more, and more preferably prepared so that the 100 ⁇ m pass rate is 90% or more. If the particle size of the raw material is not fine within the above range, the purity of ⁇ -2CaO ⁇ SiO 2 tends to deteriorate. Specifically, free lime and insoluble residue increase.
  • the present invention it is preferable to granulate the prepared raw material mixture.
  • the formation reaction of ⁇ -2CaO ⁇ SiO 2 is facilitated, energy costs can be reduced, and purity is increased.
  • the shape after granulation is not particularly limited, but a spherical shape is preferred when firing in a rotary kiln.
  • the size of the granulated product is not particularly limited, but the diameter is preferably 1 cm to 10 cm, more preferably 3 cm to 7 cm.
  • Granulation is an operation of forming the prepared raw material mixture into a dumpling shape.
  • Examples of this method include a method in which a raw material mixture and water are put into a disc-shaped rotary drum and granulated, and a method using a so-called pelletizer in which the raw material mixture is put in a mold and pressure-molded.
  • the amount of water used for granulation is preferably 10 to 30%, more preferably 15 to 25% in terms of the mass ratio of the water / raw material mixture. If the amount of water used is less than 10%, the granulated raw material mixture tends to collapse, and the raw material mixture may be collected to reduce the yield, or the firing reaction may not proceed sufficiently during firing in a rotary kiln.
  • the granulated raw material mixture when the usage-amount of water exceeds 30%, the granulated raw material mixture will become watery, it will be easy to collapse
  • the raw material mixture since the raw material mixture contains a large amount of water, it requires a large amount of firing energy to evaporate the mixture, which is uneconomical and increases the environmental burden, which is not preferable.
  • magnesia-spinel system or a high-purity alumina system when firing is performed, it is preferable to use a magnesia-spinel system or a high-purity alumina system as a brick in the firing zone.
  • silica-alumina brick or magnesia brick is used instead of magnesia-spinel or high-purity alumina, it becomes difficult to stably produce ⁇ -2CaO ⁇ SiO 2 , and ⁇ -2CaO ⁇ SiO 2 In some cases, the mixing of these becomes significant.
  • examples of the magnesia-spinel brick and the high-purity alumina brick include JIS R 2302 magnesia brick and JIS R 2305 high-alumina refractory brick.
  • the cooling operation is performed after the heat treatment, but the cooling conditions are not particularly limited, but a special rapid cooling operation may not be performed.
  • a method according to the general cooling conditions of Portland cement clinker may be used. For example, after firing in a rotary kiln, cooling may be performed through a cooler or the like in an atmospheric environment.
  • Example 1 Various slaked lime raw materials and siliceous raw materials were prepared so that the CaO / SiO 2 molar ratio was 1.6 to 2.4.
  • This blended raw material mixture was granulated into a spherical shape (diameter 4 cm) with a granulator. At this time, 20% of water was added to the powder.
  • the granulated product was heat-treated with a rotary kiln. The firing temperature was 1450 ° C. as the firing temperature of the burner. Note that magnesia-spinel brick was used as the brick in the fired zone. As a result of analyzing the obtained fired product, it was as shown in Table 1.
  • Raw material of slaked lime slaked lime produced as a by-product after generating acetylene by reacting calcium carbide and water, based on oxides after heat treatment of the slaked lime produced as a by-product, 73.1% CaO, 0.07% MgO , Al 2 O 3 is 0.55%, Fe 2 O 3 is 0.28%, SiO 2 is 0.95%, SO 3 is 1.31%, Na 2 O is 0.03%, K 2 O is 0.02%, loss on ignition is 23.80%. 150 ⁇ m passage rate 99.5%, 100 ⁇ m passage rate 96.9%.
  • Siliceous material Silica fine powder, commercially available, SiO 2 is 97.05%, Al 2 O 3 is 1.89% Na 2 O is 0.06% K 2 O is 0.14%, ignition Weight loss is 0.49%, average particle size is 7.8 ⁇ m, 150 ⁇ m passage rate is 100%, 100 ⁇ m passage rate is 100%.
  • Water tap water Baking zone brick: magnesia-spinel brick, MgO content 80% and Al 2 O 3 content 20%.
  • Rotary kiln Outer outer diameter 1m, Outlet outer diameter 1.2m, Length 25m
  • ⁇ Measurement method> Compound identification: The compound was identified by powder X-ray diffraction. Color observation: The degree of whiteness is determined visually. Observe in a room with an illuminance of 200 lux, and observe the whiteness of the powder prepared to a brain specific surface area of 3000 ⁇ 100 cm 2 / g. In the case of white, ⁇ , in the case of yellow, ⁇ , and in the case of brown, X.
  • Example 2 It carried out similarly to Experimental example 1 except having added potassium carbonate and having changed the total amount of alkalis as shown in Table 2 with respect to the raw material mixture. The results are shown in Table 2.
  • Example 3 The experiment was performed in the same manner as in Experimental Example 1 except that the firing temperature was changed as shown in Table 3. The results are shown in Table 3.
  • Example 4 The experiment was performed in the same manner as in Experimental Example 1 except that the bricks in the fired zone were changed as shown in Table 4. The results are shown in Table 4. ⁇ Materials used> High purity alumina brick: Al 2 O 3 content is 95% or more. Silica-alumina brick: SiO 2 content 30% and Al 2 O 3 content 70%.
  • the carbonation activity is high, the whiteness is high, the setting hardening of the cement is not inhibited, the energy cost at the time of firing can be reduced, and the yield is also increased. Since it is a high production method of ⁇ -2CaO ⁇ SiO 2 , it can be widely used in the cement field and the like.

Abstract

Provided is a method for producing γ-2Cao• SiO2, which has a high carbonation rate, has a high degree of whiteness, does not comprise any toxic substances, does not inhibit the setting or hardening of cement, has a reduced energy cost during calcination, and has a high yield. The raw mixture is a combination of the raw materials of slaked lime, which is produced as a by-product after producing acetylene by reacting calcium carbide and water, and of silica. In addition, the raw mixture is adjusted so that CaO/SiO2 has a molar ratio of 1.6-2.0 inclusive and a total alkali content of 0.05-1.00 mass%, or so that CaO/SiO2 has a molar ratio greater than 2.0 but not exceeding 2.4, and a total alkali content not exceeding 0.50 mass%. Said raw mixture is calcinated in a rotary kiln at a calcination temperature of 1300-1600ºC to produce γ-2Cao• SiO2.

Description

γ-2CaO・SiO2の製造方法Method for producing γ-2CaO · SiO 2
 本発明は、主に、セメント材料として利用可能なγ-2CaO・SiOの製造方法に関する。 The present invention mainly relates to a method for producing γ-2CaO · SiO 2 that can be used as a cement material.
 2CaO・SiOには、α型、β型、γ型などが知られる。このうち、常温で安定なのはβ型とγ型である。β型はポルトランドセメントの成分のひとつとして知られ、弱いながらも水硬性を持つ。一方、γ型は水硬性を持たないものの、炭酸化活性が高く、セメント混和材としての有用性が近年見出されている。このように、2CaO・SiOは、β型もγ型もそれぞれの特徴を活かした使途が見出されているので、2CaO・SiOの結晶形態を制御する方法の確立が出来れば工業的に有益である。 As the 2CaO · SiO 2 , α type, β type, γ type, and the like are known. Of these, β-type and γ-type are stable at room temperature. The β type is known as one of the ingredients of Portland cement, and it is weak but hydraulic. On the other hand, although the γ type does not have hydraulic properties, it has a high carbonation activity and has recently been found to be useful as a cement admixture. As described above, 2CaO · SiO 2 has been found to be used by utilizing the characteristics of both β-type and γ-type, so if a method for controlling the crystal form of 2CaO · SiO 2 can be established, it will be industrially applied. It is beneficial.
 純粋な2CaO-SiOの系では、β型の2CaO・SiOは生成せず、γ型になる。2CaO・SiOの結晶形態に影響を及ぼす要因としては、(1)第三成分の影響、(2)冷却条件の影響、(3)酸化-還元雰囲気などが知られる。 In the pure 2CaO—SiO 2 system, β-type 2CaO · SiO 2 is not generated, but becomes γ-type. As factors affecting the crystal form of 2CaO.SiO 2 , (1) the effect of the third component, (2) the effect of cooling conditions, (3) the oxidation-reduction atmosphere, and the like are known.
 第三成分の影響としては、ホウ素、リン、バリウム、ストロンチウム、鉄、アルミニウム、モリブデンなどがある一定量以上混在すると、β-2CaO・SiOが生成することが知られている(非特許文献1、非特許文献2、非特許文献3)。 As an influence of the third component, it is known that β-2CaO · SiO 2 is generated when a certain amount or more of boron, phosphorus, barium, strontium, iron, aluminum, molybdenum, etc. is mixed (Non-patent Document 1). Non-patent document 2, Non-patent document 3).
 γ-2CaO・SiOは、セメントコンクリートの中性化を抑制する混和材として(特許文献1)、また、強制炭酸化養生と組み合わせて使うことによって、高耐久コンクリートを得ることもできる(特許文献2)。 γ-2CaO · SiO 2 can be used as an admixture to suppress the neutralization of cement concrete (Patent Document 1), and by using in combination with forced carbonation curing, highly durable concrete can also be obtained (Patent Document) 2).
日本再公表特許WO2003/016234号Japanese republished patent WO2003 / 016234 日本特開2006-348465号公報Japanese Unexamined Patent Publication No. 2006-348465
 本発明は、白色度が高く、有害物質も含まず、セメントの凝結硬化も阻害することもなく、焼成時のエネルギーコストも削減でき、収率も高いγ-2CaO・SiOの製造方法を提供する。 The present invention provides a method for producing γ-2CaO · SiO 2 that has high whiteness, does not contain harmful substances, does not inhibit the setting and hardening of cement, can reduce energy costs during firing, and has a high yield. To do.
 本発明者らは、種々検討を重ねた結果、カルシウムカーバイドからアセチレンを発生させた後に副生する消石灰原料とシリカ質原料には、微量ながらもアルカリ成分が含まれているが、CaO/SiOモル比の範囲によってはさらに原料混合物にアルカリ成分を添加することにより原料混合物中の全アルカリ量を調整することによって、γ-2CaO・SiOが生成することを見出した。しかも、この方法で得られるγ-2CaO・SiOは炭酸化活性が高く、白色度が高く、有害物質も含まず、セメントの凝結硬化も阻害することなく、有用であることを知見した。
 以上のように、本発明者らは鋭意努力を重ね、γ-2CaO・SiOの製造方法に関して、炭酸化活性が高く、白色度が高く、有害物質も含まず、セメントの凝結硬化も阻害することもなく、焼成時のエネルギーコストも削減でき、収率も高いγ-2CaO・SiOの製造方法となることを知見し、本発明を完成するに至った。
As a result of various studies, the present inventors have found that the slaked lime raw material and the siliceous raw material that are by-produced after generating acetylene from calcium carbide contain a trace amount of alkali components, but CaO / SiO 2. It has been found that γ-2CaO · SiO 2 is produced by adjusting the total alkali amount in the raw material mixture by adding an alkali component to the raw material mixture depending on the molar ratio range. Moreover, it was found that γ-2CaO · SiO 2 obtained by this method has high carbonation activity, high whiteness, no harmful substances, and is useful without inhibiting the setting and hardening of cement.
As described above, the inventors of the present invention have made intensive efforts and have a high carbonation activity, high whiteness, no harmful substances, and inhibit cement setting and hardening with respect to the production method of γ-2CaO · SiO 2. In fact, the inventors have found that the energy cost during firing can be reduced and that the production method of γ-2CaO · SiO 2 is high, and the present invention has been completed.
 本発明は、以下の要旨を有する。
1.カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰原料と、シリカ質原料 と、を配合した原料混合物であり、かつCaO/SiOモル比が1.6以上2.0以下で全アルカリ量が0.05質量%~1.00質量%であるか、又はCaO/SiOモル比が2.0超え2.4以下で全アルカリ量が0.50質量%以下、となるように調整した原料混合物を、ロータリーキルンにて焼成温度1300~1600℃で焼成することを特徴とするγ-2CaO・SiOの製造方法。
2.ロータリーキルンの焼成帯のレンガが、マグネシア-スピネル系又は高純度アルミナ系である上記1に記載のγ-2CaO・SiOの製造方法。
3.消石灰原料が、CaOを71~74質量%、強熱減量(LOI)を23~25質量%、SiOを0.5~1.5質量%、Feを0.2~0.35質量%、Alを0.3~0.7質量%、MgOを0.2質量%未満、NaO、KOをいずれも0.1質量%未満、及びSOを1.0~1.5質量%含有する、上記1又は2に記載のγ-2CaO・SiOの製造方法。
4.シリカ質原料が、ケイ石微粉、シリカフューム、珪藻土、又は溶融シリカのダストである、上記1~3のいずれかに記載のγ-2CaO・SiOの製造方法。
5.消石灰原料及び/又はシリカ質原料が、150μmの篩を90質量%以上通過する粒度を有する、上記1~4のいずれかに記載のγ-2CaO・SiOの製造方法。
6.原料混合物を造粒し、得られる造粒物をロータリーキルンにフィードしてなる、上記1~5のいずれかに記載のγ-2CaO・SiOの製造方法。
7.水/原料混合物の質量比で10~30%の水を使用して造粒する上記6に記載のγ-2CaO・SiOの製造方法。
8.原料混合物中のアルカリ物質が、炭酸カリウム及び/又は炭酸ナトリウムである、上記1~7のいずれかに記載のγ-2CaO・SiOの製造方法。
9.焼成温度が1450℃~1550℃である、上記1~8のいずれかに記載のγ-2CaO・SiOの製造方法。
The present invention has the following gist.
1. And slaked lime material by-produced after reacting the calcium carbide and water to generate acetylene and siliceous material, a raw material mixture was blended, and CaO / SiO 2 molar ratio of 1.6 to 2.0 The total alkali amount is 0.05 mass% to 1.00 mass%, or the CaO / SiO 2 molar ratio is more than 2.0 and 2.4 or less, and the total alkali amount is 0.50 mass% or less. adjusted the raw material mixture, γ-2CaO · SiO 2 of production method and firing at a firing temperature 1300 ~ 1600 ° C. at a rotary kiln as.
2. 2. The method for producing γ-2CaO · SiO 2 according to 1 above, wherein the brick of the rotary kiln firing zone is magnesia-spinel or high-purity alumina.
3. The slaked lime raw material is CaO 71-74% by mass, ignition loss (LOI) 23-25% by mass, SiO 2 0.5-1.5% by mass, Fe 2 O 3 0.2-0.35. % By mass, Al 2 O 3 by 0.3 to 0.7% by mass, MgO by less than 0.2% by mass, Na 2 O and K 2 O by less than 0.1% by mass, and SO 3 by 1. 3. The method for producing γ-2CaO · SiO 2 according to 1 or 2 above, containing 0 to 1.5% by mass.
4). 4. The method for producing γ-2CaO · SiO 2 according to any one of the above 1 to 3, wherein the siliceous raw material is silica powder, silica fume, diatomaceous earth, or fused silica dust.
5. 5. The method for producing γ-2CaO · SiO 2 according to any one of 1 to 4 above, wherein the slaked lime raw material and / or the siliceous raw material has a particle size that passes 90% by mass or more through a 150 μm sieve.
6). 6. The method for producing γ-2CaO · SiO 2 according to any one of 1 to 5 above, wherein the raw material mixture is granulated and the resulting granulated material is fed to a rotary kiln.
7). 7. The method for producing γ-2CaO · SiO 2 as described in 6 above, wherein granulation is carried out using 10 to 30% of water by mass ratio of the water / raw material mixture.
8). 8. The method for producing γ-2CaO · SiO 2 according to any one of 1 to 7 above, wherein the alkaline substance in the raw material mixture is potassium carbonate and / or sodium carbonate.
9. 9. The method for producing γ-2CaO · SiO 2 according to any one of 1 to 8 above, wherein the firing temperature is from 1450 ° C. to 1550 ° C.
 本発明のγ-2CaO・SiOの製造方法によれば、得られたγ-2CaO・SiOは、炭酸化活性が高く、白色度が高く、セメントの凝結硬化も阻害することもなく、焼成時のエネルギーコストも削減でき、収率も高いなどの効果を奏する。 According to the method for producing γ-2CaO · SiO 2 of the present invention, the obtained γ-2CaO · SiO 2 has a high carbonation activity, a high whiteness, and does not inhibit the setting and hardening of the cement. The energy cost can be reduced and the yield is high.
 以下、本発明を詳細に説明する。
 なお、本発明における部や%は特に規定しない限り質量基準で示す。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
 本発明で言うγ-2CaO・SiOとは、CaOとSiOを主成分とする化合物のうち、ダイカルシウムシリケート2CaO・SiOの一種である。ダイカルシウムシリケート2CaO・SiOにはα型、αプライム型、β型、γ型が存在する。本発明は、γ型のダイカルシウムシリケートに関する。 Γ-2CaO · SiO 2 referred to in the present invention is a kind of dicalcium silicate 2CaO · SiO 2 among the compounds mainly composed of CaO and SiO 2 . The dicalcium silicate 2CaO · SiO 2 includes α type, α prime type, β type, and γ type. The present invention relates to γ-type dicalcium silicate.
 本発明では、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰原料(水酸化カルシウム原料)を用いる。これを用いると、γ型の2CaO・SiOが得られる。試薬の水酸化カルシウムや、その他の工業原料として入手可能な消石灰を用いても、本発明のγ-2CaO・SiOは得られない。 In this invention, the slaked lime raw material (calcium hydroxide raw material) byproduced after making calcium carbide and water react and generating acetylene is used. When this is used, γ-type 2CaO · SiO 2 is obtained. Even if calcium hydroxide as a reagent or slaked lime available as another industrial raw material is used, γ-2CaO · SiO 2 of the present invention cannot be obtained.
 カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰の成分は、副生する消石灰を加熱処理した後の酸化物基準で、CaOが71~74%程度、強熱減量(LOI)が23~25%程度、SiOが0.5~1.5%程度、Feは0.2~0.35%程度、Alは0.3~0.7%程度、MgOが0.2%未満、NaOやKOはいずれも0.1%未満、SOを1.0~1.5%程度含むものである。 The component of slaked lime produced as a by-product after the reaction of calcium carbide with water to generate acetylene is about 71 to 74% of CaO on the basis of oxides after heat treatment of the slaked lime produced as a by-product. ) Is about 23 to 25%, SiO 2 is about 0.5 to 1.5%, Fe 2 O 3 is about 0.2 to 0.35%, and Al 2 O 3 is about 0.3 to 0.7%. MgO is less than 0.2%, Na 2 O and K 2 O are both less than 0.1%, and SO 3 is contained in an amount of about 1.0 to 1.5%.
 本発明では、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰原料(CaO原料)の他に、シリカ質原料(SiO原料)を用いる。 In the present invention, a siliceous raw material (SiO 2 raw material) is used in addition to a slaked lime raw material (CaO raw material) produced as a by-product after generating acetylene by reacting calcium carbide and water.
 シリカ質原料(SiO原料)は特に限定されるものではないが、ケイ石微粉や、シリカフューム、珪藻土、溶融シリカのダストなどを用いることができる。γ-2CaO・SiOを得る目的では、不純物の存在は好ましい面もある。 The siliceous raw material (SiO 2 raw material) is not particularly limited, but silica fine powder, silica fume, diatomaceous earth, fused silica dust, and the like can be used. For the purpose of obtaining γ-2CaO · SiO 2 , the presence of impurities is also preferable.
 ただし、本発明では、高純度なシリカ質原料(SiO原料)を用いたとしても、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰原料を用いることによって、γ-2CaO・SiOを得ることが可能である。 However, in the present invention, even if a high-purity siliceous raw material (SiO 2 raw material) is used, by using a slaked lime raw material by-produced after reacting calcium carbide and water to generate acetylene, γ-2CaO - it is possible to obtain a SiO 2.
 本発明において、全アルカリ量とは、原料混合物中に含有されるNaO、KO、LiOの含有量(質量%)を意味する。
 アルカリ物質は特に限定されるものではないが、炭酸カリウムや炭酸ナトリウムなどを用いることができる。
In the present invention, the total alkali amount means the content (mass%) of Na 2 O, K 2 O, and Li 2 O contained in the raw material mixture.
The alkaline substance is not particularly limited, but potassium carbonate, sodium carbonate, or the like can be used.
 熱処理方法は、特に限定されるものではない。ロータリーキルン、電気炉、トンネル炉、シャフトキルン、流動床式焼却炉などを用いることができる。中でも、ロータリーキルンを選定することが連続操業、コストパフォーマンスの観点から必要である。 The heat treatment method is not particularly limited. A rotary kiln, an electric furnace, a tunnel furnace, a shaft kiln, a fluidized bed incinerator, etc. can be used. Above all, it is necessary to select a rotary kiln from the viewpoint of continuous operation and cost performance.
 焼成温度は、1300℃~1600℃であり、1400℃~1550℃が好ましく、1450~1550℃がより好ましい。1300℃未満では、効率が悪くなる場合や、生焼けとなる場合があり、1600℃を超えると、溶融して操業が困難になるばかりか、コーチングがつきやすくなり、収率が低下する場合がある。ここでいう、焼成温度とは最高温度のことであり、ロータリーキルンの場合、焼成帯での温度である。 The calcination temperature is 1300 ° C. to 1600 ° C., preferably 1400 ° C. to 1550 ° C., more preferably 1450 to 1550 ° C. If it is less than 1300 ° C., the efficiency may be deteriorated or it may be burnt. If it exceeds 1600 ° C., it will not only melt and become difficult to operate, but it may be easily coated and the yield may be reduced. . The firing temperature here is the maximum temperature, and in the case of a rotary kiln, it is the temperature in the firing zone.
 本発明では、原料混合物のCaO/SiOモル比を1.6~2.4に調製することが必要である。1.6以上2.0以下に調整した場合、全アルカリ量を0.05%以上1.00%以下とすることが必要であり、0.10%以上0.95%以下とすることが好ましい。また、原料混合物のCaO/SiOモル比を2.0超え2.4以下に調整した場合、全アルカリ量を0.50%以下とすることが必要であり、0.40%以下とすることが好ましく、0%であってもよい。
 原料混合物のCaO/SiOモル比が1.6未満では、α型のワラストナイトやランキナイトが副生し、γ-2CaO・SiOの含有率が低くなる。原料混合物のCaO/SiOモル比が2.4を超えると、3CaO・SiOや遊離石灰が副生し、やはりγ-2CaO・SiOの含有率が低くなる。
In the present invention, it is necessary to adjust the CaO / SiO 2 molar ratio of the raw material mixture to 1.6 to 2.4. When adjusted to 1.6 or more and 2.0 or less, the total alkali amount needs to be 0.05% or more and 1.00% or less, and preferably 0.10% or more and 0.95% or less. . Further, when the CaO / SiO 2 molar ratio of the raw material mixture is adjusted to 2.0 to 2.4 or less, the total alkali amount needs to be 0.50% or less, and should be 0.40% or less. Is preferable, and may be 0%.
When the CaO / SiO 2 molar ratio of the raw material mixture is less than 1.6, α-type wollastonite and lankinite are by-produced, and the content of γ-2CaO · SiO 2 becomes low. When CaO / SiO 2 molar ratio of the raw material mixture is greater than 2.4, no 3CaO · SiO 2 and free lime by-again γ-2CaO · SiO 2 content ratio is low.
 消石灰原料とシリカ質原料の粒度は、150μm通過率が90%以上になるように調製することが好ましく、100μm通過率が90%以上になるように調製することがより好ましい。原料の粒度が前記範囲まで細かくないと、γ-2CaO・SiOの純度が悪くなる傾向にある。具体的には、遊離石灰や不溶解残分が多くなる。 The particle sizes of the slaked lime raw material and the siliceous raw material are preferably prepared so that the 150 μm pass rate is 90% or more, and more preferably prepared so that the 100 μm pass rate is 90% or more. If the particle size of the raw material is not fine within the above range, the purity of γ-2CaO · SiO 2 tends to deteriorate. Specifically, free lime and insoluble residue increase.
 本発明では、調合した原料混合物を造粒することが好ましい。原料混合物を造粒すると、γ-2CaO・SiOの生成反応が進行しやすくなり、エネルギーコストが削減できるほか、純度が高くなる。
 造粒後の形状は特には限定されないが、ロータリーキルンでの焼成を行う際には、球形が好ましい。また、造粒物の大きさも特に限定されないが、直径で、好ましくは1cm~10cm、より好ましくは3cm~7cmである。
 造粒とは、調合した原料混合物を団子状に成形する操作である。この方法としては、円盤型の回転ドラムに原料混合物と水とを投入して造粒する方法や、型に原料混合物を入れて加圧成形する、いわゆるペレタイザーを用いる方法等が挙げられる。造粒の際に使用する水の使用量は、水/原料混合物の質量比で10~30%が好ましく、15~25%がより好ましい。水の使用量が10%未満では、造粒した原料混合物が崩れやすく、原料混合物が集塵され収率が悪くなる場合や、ロータリーキルンでの焼成時に焼成反応が十分に進行しない場合がある。また、水の使用量が30%を超えると、造粒した原料混合物が水っぽくなり、やはり、崩れやすくなって、ロータリーキルンでの焼成時に焼成反応が十分に進行しない場合がある。また、原料混合物に多くの水を含むため、これを蒸発させるために、焼成エネルギーを多く必要とするため不経済でもあり、また、環境負荷も大きくなるため好ましくない。
In the present invention, it is preferable to granulate the prepared raw material mixture. When the raw material mixture is granulated, the formation reaction of γ-2CaO · SiO 2 is facilitated, energy costs can be reduced, and purity is increased.
The shape after granulation is not particularly limited, but a spherical shape is preferred when firing in a rotary kiln. The size of the granulated product is not particularly limited, but the diameter is preferably 1 cm to 10 cm, more preferably 3 cm to 7 cm.
Granulation is an operation of forming the prepared raw material mixture into a dumpling shape. Examples of this method include a method in which a raw material mixture and water are put into a disc-shaped rotary drum and granulated, and a method using a so-called pelletizer in which the raw material mixture is put in a mold and pressure-molded. The amount of water used for granulation is preferably 10 to 30%, more preferably 15 to 25% in terms of the mass ratio of the water / raw material mixture. If the amount of water used is less than 10%, the granulated raw material mixture tends to collapse, and the raw material mixture may be collected to reduce the yield, or the firing reaction may not proceed sufficiently during firing in a rotary kiln. Moreover, when the usage-amount of water exceeds 30%, the granulated raw material mixture will become watery, it will be easy to collapse | crumble, and a baking reaction may not fully advance at the time of baking with a rotary kiln. In addition, since the raw material mixture contains a large amount of water, it requires a large amount of firing energy to evaporate the mixture, which is uneconomical and increases the environmental burden, which is not preferable.
 本発明では、焼成を行う場合、焼成帯のレンガとして、マグネシア-スピネル系もしくは高純度アルミナ系を使用するのが好ましい。マグネシア-スピネル系もしくは高純度アルミナ系ではなく、例えば、シリカ-アルミナレンガやマグネシアのレンガを用いると、安定してγ-2CaO・SiOを製造するのが困難になり、β-2CaO・SiOの混在が顕著となる場合がある。
 ここで、マグネシア-スピネル系レンガや、高純度アルミナ系レンガとしては、それぞれJIS R 2302のマグネシアのレンガ、JIS R 2305の高アルミナ質の耐火レンガが例示される。
In the present invention, when firing is performed, it is preferable to use a magnesia-spinel system or a high-purity alumina system as a brick in the firing zone. For example, if silica-alumina brick or magnesia brick is used instead of magnesia-spinel or high-purity alumina, it becomes difficult to stably produce γ-2CaO · SiO 2 , and β-2CaO · SiO 2 In some cases, the mixing of these becomes significant.
Here, examples of the magnesia-spinel brick and the high-purity alumina brick include JIS R 2302 magnesia brick and JIS R 2305 high-alumina refractory brick.
 本発明では、熱処理後、冷却操作を行うが、冷却条件は特に限定されるものではないが、特殊な急冷操作を行わなければよい。具体的には、一般的なポルトランドセメントクリンカーの冷却条件に準じた方法で良く、例えば、ロータリーキルンで焼成後、大気環境下でクーラー等を通して冷却すればよい。 In the present invention, the cooling operation is performed after the heat treatment, but the cooling conditions are not particularly limited, but a special rapid cooling operation may not be performed. Specifically, a method according to the general cooling conditions of Portland cement clinker may be used. For example, after firing in a rotary kiln, cooling may be performed through a cooler or the like in an atmospheric environment.
 以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the contents will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these.
「実験例1」
 各種消石灰原料とシリカ質原料とをCaO/SiOモル比が1.6~2.4となるように調合した。この調合原料混合物を造粒機で、球状(直径4cm)に造粒した。この時、粉体に対して20%の水を加えた。造粒物をロータリーキルンで熱処理した。焼成温度は、バーナーの焼成温度で1450℃で行った。なお、焼成帯のレンガはマグネシア-スピネルレンガを用いた。得られた焼成物を分析した結果、表1のようになった。
"Experiment 1"
Various slaked lime raw materials and siliceous raw materials were prepared so that the CaO / SiO 2 molar ratio was 1.6 to 2.4. This blended raw material mixture was granulated into a spherical shape (diameter 4 cm) with a granulator. At this time, 20% of water was added to the powder. The granulated product was heat-treated with a rotary kiln. The firing temperature was 1450 ° C. as the firing temperature of the burner. Note that magnesia-spinel brick was used as the brick in the fired zone. As a result of analyzing the obtained fired product, it was as shown in Table 1.
 <使用材料>
 消石灰原料:カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰、副生する消石灰を加熱処理した後の酸化物基準で、CaOが73.1%、MgOが0.07%、Alが0.55%、Feが0.28%、SiOが0.95%、SOが1.31%、NaOが0.03%、KOが0.02%、強熱減量が23.80%。150μm通過率99.5%、100μm通過率96.9%。
 シリカ質原料:ケイ石微粉末、市販品、SiOが97.05%、Alが1.89%、NaOが0.06%、KOが0.14%、強熱減量が0.49%、平均粒子径7.8μm、150μm通過率100%、100μm通過率100%。
 水:水道水
 焼成帯のレンガ:マグネシア-スピネルレンガ、MgO含有量80%でAl含有量が20%。
 ロータリーキルン:入口外径1m、出口外径1.2m、長さ25m
<Materials used>
Raw material of slaked lime: slaked lime produced as a by-product after generating acetylene by reacting calcium carbide and water, based on oxides after heat treatment of the slaked lime produced as a by-product, 73.1% CaO, 0.07% MgO , Al 2 O 3 is 0.55%, Fe 2 O 3 is 0.28%, SiO 2 is 0.95%, SO 3 is 1.31%, Na 2 O is 0.03%, K 2 O is 0.02%, loss on ignition is 23.80%. 150 μm passage rate 99.5%, 100 μm passage rate 96.9%.
Siliceous material: Silica fine powder, commercially available, SiO 2 is 97.05%, Al 2 O 3 is 1.89% Na 2 O is 0.06% K 2 O is 0.14%, ignition Weight loss is 0.49%, average particle size is 7.8 μm, 150 μm passage rate is 100%, 100 μm passage rate is 100%.
Water: tap water Baking zone brick: magnesia-spinel brick, MgO content 80% and Al 2 O 3 content 20%.
Rotary kiln: Outer outer diameter 1m, Outlet outer diameter 1.2m, Length 25m
<測定方法>
 化合物の同定:粉末X線回折法により化合物を同定した。
 色の観察:目視により白色の程度を判定。200ルクスの照度の部屋で観察し、ブレーン比表面積で3000±100cm/gに調製した粉末の白色程度を観察。白い場合は○、黄色い場合は△、褐色の場合は×とした。
<Measurement method>
Compound identification: The compound was identified by powder X-ray diffraction.
Color observation: The degree of whiteness is determined visually. Observe in a room with an illuminance of 200 lux, and observe the whiteness of the powder prepared to a brain specific surface area of 3000 ± 100 cm 2 / g. In the case of white, ◯, in the case of yellow, Δ, and in the case of brown, X.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
「実験例2」
 炭酸カリウムを加え、全アルカリ量を原料混合物に対して表2に示すように変化したこと以外は実験例1と同様に行った。結果を表2に示す。
"Experiment 2"
It carried out similarly to Experimental example 1 except having added potassium carbonate and having changed the total amount of alkalis as shown in Table 2 with respect to the raw material mixture. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
「実験例3」
 焼成温度を表3に示すように変化したこと以外は実験例1と同様に行った。結果を表3に示す。
"Experimental example 3"
The experiment was performed in the same manner as in Experimental Example 1 except that the firing temperature was changed as shown in Table 3. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
「実験例4」
 焼成帯のレンガを表4に示すように変化したこと以外は実験例1と同様に行った。結果を表4に示す。
<使用材料>
高純度アルミナ質レンガ:Al含有量が95%以上。
シリカ-アルミナレンガ:SiO含有量が30%でAl含有量が70%。
"Experimental example 4"
The experiment was performed in the same manner as in Experimental Example 1 except that the bricks in the fired zone were changed as shown in Table 4. The results are shown in Table 4.
<Materials used>
High purity alumina brick: Al 2 O 3 content is 95% or more.
Silica-alumina brick: SiO 2 content 30% and Al 2 O 3 content 70%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明のγ-2CaO・SiOの製造方法によれば、炭酸化活性が高く、白色度が高く、セメントの凝結硬化も阻害することもなく、焼成時のエネルギーコストも削減でき、収率も高いγ-2CaO・SiOの製造方法であるため、セメント分野などで広範に利用できる。 According to the method for producing γ-2CaO · SiO 2 of the present invention, the carbonation activity is high, the whiteness is high, the setting hardening of the cement is not inhibited, the energy cost at the time of firing can be reduced, and the yield is also increased. Since it is a high production method of γ-2CaO · SiO 2 , it can be widely used in the cement field and the like.
 なお、2012年6月27日に出願された日本特許出願2012-143769号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-143769 filed on June 27, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (9)

  1.  カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰原料と、シリカ質原料 と、を配合した原料混合物であり、かつCaO/SiOモル比が1.6以上2.0以下で全アルカリ量が0.05質量%~1.00質量%であるか、又はCaO/SiOモル比が2.0超え2.4以下で全アルカリ量が0.50質量%以下、となるように調整した原料混合物を、ロータリーキルンにて焼成温度1300℃~1600℃で焼成することを特徴とするγ-2CaO・SiOの製造方法。 And slaked lime material by-produced after reacting the calcium carbide and water to generate acetylene and siliceous material, a raw material mixture was blended, and CaO / SiO 2 molar ratio of 1.6 to 2.0 The total alkali amount is 0.05 mass% to 1.00 mass%, or the CaO / SiO 2 molar ratio is more than 2.0 and 2.4 or less, and the total alkali amount is 0.50 mass% or less. A method for producing γ-2CaO · SiO 2 , wherein the raw material mixture thus prepared is fired at a firing temperature of 1300 ° C. to 1600 ° C. in a rotary kiln.
  2.  ロータリーキルンの焼成帯のレンガが、マグネシア-スピネル系又は高純度アルミナ系である請求項1に記載のγ-2CaO・SiOの製造方法。 The method for producing γ-2CaO · SiO 2 according to claim 1, wherein the bricks in the rotary kiln firing zone are magnesia-spinel or high-purity alumina.
  3.  消石灰原料が、CaOを71~74質量%、強熱減量(LOI)を23~25質量%、SiOを0.5~1.5質量%、Feを0.2~0.35質量%、Alを0.3~0.7質量%、MgOを0.2質量%未満、NaO、KOをいずれも0.1質量%未満、及びSOを1.0~1.5質量%含有する、請求項1又は2に記載のγ-2CaO・SiOの製造方法。 The slaked lime raw material is CaO 71-74% by mass, ignition loss (LOI) 23-25% by mass, SiO 2 0.5-1.5% by mass, Fe 2 O 3 0.2-0.35. % By mass, Al 2 O 3 by 0.3 to 0.7% by mass, MgO by less than 0.2% by mass, Na 2 O and K 2 O by less than 0.1% by mass, and SO 3 by 1. The method for producing γ-2CaO · SiO 2 according to claim 1 or 2, comprising 0 to 1.5 mass%.
  4.  シリカ質原料が、ケイ石微粉、シリカフューム、珪藻土、又は溶融シリカのダストである、請求項1~3のいずれかに記載のγ-2CaO・SiOの製造方法。 The method for producing γ-2CaO · SiO 2 according to any one of claims 1 to 3, wherein the siliceous raw material is quartzite fine powder, silica fume, diatomaceous earth, or fused silica dust.
  5.  消石灰原料及び/又はシリカ質原料が、150μmの篩を90質量%以上通過する粒度を有する、請求項1~4のいずれかに記載のγ-2CaO・SiOの製造方法。 The method for producing γ-2CaO · SiO 2 according to any one of claims 1 to 4, wherein the slaked lime raw material and / or the siliceous raw material has a particle size that passes 90 mass% or more through a 150 µm sieve.
  6.  原料混合物を造粒し、得られる造粒物をロータリーキルンにフィードしてなる、請求項1~5のいずれかに記載のγ-2CaO・SiOの製造方法。 The method for producing γ-2CaO · SiO 2 according to any one of claims 1 to 5, wherein the raw material mixture is granulated and the resulting granulated material is fed to a rotary kiln.
  7.  水/原料混合物の質量比で10~30%の水を使用して造粒する請求項6に記載のγ-2CaO・SiOの製造方法。 The method for producing γ-2CaO · SiO 2 according to claim 6, wherein the granulation is performed using 10 to 30% of water by mass ratio of the water / raw material mixture.
  8.  原料混合物中のアルカリ物質が、炭酸カリウム及び/又は炭酸ナトリウムである、請求項1~7のいずれかに記載のγ-2CaO・SiOの製造方法。 The method for producing γ-2CaO · SiO 2 according to any one of claims 1 to 7, wherein the alkaline substance in the raw material mixture is potassium carbonate and / or sodium carbonate.
  9.  焼成温度が1450℃~1550℃である、請求項1~8のいずれかに記載のγ-2CaO・SiOの製造方法。 The method for producing γ-2CaO · SiO 2 according to any one of claims 1 to 8, wherein the firing temperature is 1450 ° C to 1550 ° C.
PCT/JP2013/065731 2012-06-27 2013-06-06 METHOD FOR PRODUCING γ-2CaO• SiO2 WO2014002727A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380034489.8A CN104411637B (en) 2012-06-27 2013-06-06 Method for producing gamma-2CaO. SiO2
JP2014522514A JP6057389B2 (en) 2012-06-27 2013-06-06 Method for producing γ-2CaO · SiO 2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012143769 2012-06-27
JP2012-143769 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014002727A1 true WO2014002727A1 (en) 2014-01-03

Family

ID=49782893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065731 WO2014002727A1 (en) 2012-06-27 2013-06-06 METHOD FOR PRODUCING γ-2CaO• SiO2

Country Status (3)

Country Link
JP (1) JP6057389B2 (en)
CN (1) CN104411637B (en)
WO (1) WO2014002727A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210685A1 (en) * 2020-04-17 2021-10-21 デンカ株式会社 Cement admixture and cement composition
WO2022039035A1 (en) * 2020-08-18 2022-02-24 デンカ株式会社 Cement admixture, and cement composition
WO2023153259A1 (en) * 2022-02-10 2023-08-17 デンカ株式会社 Cement, cement composition, cured cement product, and method for producing cured cement product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467382B (en) * 2018-10-24 2021-05-04 武汉理工大学 Based on gamma-C2S conductive material and preparation method thereof
CN109694224B (en) * 2018-12-19 2021-10-22 武汉理工大学 High-durability concrete product with gradient structure and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217013A (en) * 1985-07-11 1987-01-26 Onoda Cement Co Ltd Production of gamma-type dicalcium silicate powder
WO2012063782A1 (en) * 2010-11-11 2012-05-18 電気化学工業株式会社 Production method for β-2cao·sio2

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764562B (en) * 2011-08-25 2015-08-26 电气化学工业株式会社 γ-2CaOSiO 2manufacture method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217013A (en) * 1985-07-11 1987-01-26 Onoda Cement Co Ltd Production of gamma-type dicalcium silicate powder
WO2012063782A1 (en) * 2010-11-11 2012-05-18 電気化学工業株式会社 Production method for β-2cao·sio2

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210685A1 (en) * 2020-04-17 2021-10-21 デンカ株式会社 Cement admixture and cement composition
JP6967178B1 (en) * 2020-04-17 2021-11-17 デンカ株式会社 Cement admixture and cement composition
CN115427369A (en) * 2020-04-17 2022-12-02 电化株式会社 Cement admixture and cement composition
CN115427369B (en) * 2020-04-17 2023-10-20 电化株式会社 Cement admixture and cement composition
WO2022039035A1 (en) * 2020-08-18 2022-02-24 デンカ株式会社 Cement admixture, and cement composition
WO2023153259A1 (en) * 2022-02-10 2023-08-17 デンカ株式会社 Cement, cement composition, cured cement product, and method for producing cured cement product

Also Published As

Publication number Publication date
CN104411637A (en) 2015-03-11
CN104411637B (en) 2017-04-12
JP6057389B2 (en) 2017-01-11
JPWO2014002727A1 (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP6057389B2 (en) Method for producing γ-2CaO · SiO 2
JP2019507098A (en) Calcium silicate cement capable of white carbonation, and production method and use thereof
JP2017527516A (en) Carbonate-capable calcium silicate composition and method for producing the same
JP5914492B2 (en) Method for producing γ-2CaO · SiO 2
Nour et al. Recycled wastes as precursor for synthesizing wollastonite
JP5867734B2 (en) Method for producing β-2CaO · SiO 2
JP5852964B2 (en) Method for producing β-2CaO · SiO 2
JP2018002546A (en) Manufacturing method of calcium aluminate
JP2018002547A (en) Manufacturing method of calcium aluminate
JP5867929B2 (en) Method for producing γ-2CaO · SiO 2
WO2022039035A1 (en) Cement admixture, and cement composition
JP3526315B2 (en) Alumina cement composition and amorphous refractory using the same
JP6956502B2 (en) Cement admixtures and cement compositions and hydraulic compositions
CN107117838B (en) Sulphate aluminium cement clinker containing tricalcium silicate and preparation method thereof
JP4164242B2 (en) Cement composition
CA3232026A1 (en) Method for producing calcined product containing .gamma.-2cao-sio2
JP3531748B2 (en) Cement composition
RU2168475C1 (en) Method of production of clinker used as raw material for manufacture of phosphate binder or fertilizer
Otakulov MODERN TECHNOLOGIES IN PORTLAND CEMENT PRODUCTION
JPS5913457B2 (en) Production method of calcia clinker
JP5227150B2 (en) Fast-curing composition and method for producing the same
PL239948B1 (en) Method for obtaining high-temperature refractory magnesium clinker, modified by zirconium compounds
PL236014B1 (en) Method for obtaining refractory aggregate
JPH0632641A (en) Cement composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809654

Country of ref document: EP

Kind code of ref document: A1