WO2012063782A1 - Production method for β-2cao·sio2 - Google Patents

Production method for β-2cao·sio2 Download PDF

Info

Publication number
WO2012063782A1
WO2012063782A1 PCT/JP2011/075610 JP2011075610W WO2012063782A1 WO 2012063782 A1 WO2012063782 A1 WO 2012063782A1 JP 2011075610 W JP2011075610 W JP 2011075610W WO 2012063782 A1 WO2012063782 A1 WO 2012063782A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
raw material
mass
2cao
production method
Prior art date
Application number
PCT/JP2011/075610
Other languages
French (fr)
Japanese (ja)
Inventor
慎 庄司
盛岡 実
樋口 隆行
山本 賢司
亮悦 吉野
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201180054445.2A priority Critical patent/CN103209925B/en
Priority to JP2012542912A priority patent/JP5852964B2/en
Publication of WO2012063782A1 publication Critical patent/WO2012063782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • C04B7/3453Belite cements, e.g. self-disintegrating cements based on dicalciumsilicate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention mainly relates to a method for producing ⁇ -2CaO ⁇ SiO 2 that can be advantageously used as a cement material.
  • 2CaO ⁇ SiO 2 has known crystal forms such as ⁇ -type, ⁇ -type, and ⁇ -type. Of these, ⁇ -type and ⁇ -type are stable at room temperature.
  • the ⁇ type is known as one of the ingredients of Portland cement, and it is weak but hydraulic. On the other hand, although the ⁇ type does not have hydraulic properties, it has a high carbonation activity and has recently been found to be useful as a cement admixture.
  • 2CaO ⁇ SiO 2 has been found to be used by utilizing the characteristics of both ⁇ -type and ⁇ -type, so if a method for controlling the crystal form of 2CaO ⁇ SiO 2 can be established, it will be industrially applied. It is beneficial.
  • Non-patent Document 1 Non-Patent Document 2 and Non-Patent Document 3).
  • the present invention provides a method for producing ⁇ -2CaO ⁇ SiO 2 that has high whiteness, does not contain harmful substances, does not inhibit the setting and hardening of cement, can reduce energy costs during firing, and has a high yield. To do.
  • the present inventors have found that the slaked lime produced as a by-product after generating acetylene from calcium carbide contains little of the above-mentioned third component, and is conventionally known, ⁇ -2CaO ⁇ SiO Although ⁇ -2CaO ⁇ SiO 2 is easily produced by heat-treating a raw material in which a siliceous material is blended with the content necessary to produce 2 and no third component. I found it. In addition, ⁇ -2CaO ⁇ SiO 2 obtained by this method has high whiteness, does not contain harmful substances, does not inhibit the setting and hardening of cement, can reduce energy costs during firing, and has a high yield. The present inventors have found a method for producing -2CaO.SiO 2 and have completed the present invention. It was found useful in industry.
  • the present invention has the following gist.
  • a process for producing ⁇ -2CaO ⁇ SiO 2 characterized by heat-treating a raw material containing slaked lime by-produced after reacting calcium carbide with water to generate acetylene and a siliceous substance.
  • Slaked lime is CaO 71-74% by mass, loss on ignition (LOI) 23-25% by mass, SiO 2 0.5-1.5% by mass, Fe 2 O 3 0.2-0 .35% by mass, Al 2 O 3 by 0.3 to 0.7% by mass, MgO by less than 0.2% by mass, Na 2 O and K 2 O both by less than 0.1% by mass, and SO 3 by 2.
  • the obtained ⁇ -2CaO ⁇ SiO 2 has high whiteness, does not inhibit the setting and hardening of cement, and can reduce the energy cost during firing. , There is an effect such as high yield.
  • ⁇ -2CaO ⁇ SiO 2 of the present invention is a kind of dicalcium silicate (2CaO ⁇ SiO 2 ) among compounds mainly composed of CaO and SiO 2 .
  • dicalcium silicate (2CaO ⁇ SiO 2 ) ⁇ -type, ⁇ -prime type, ⁇ -type, and ⁇ -type crystal forms exist.
  • the present invention relates to ⁇ -type dicalcium silicate.
  • slaked lime (calcium hydroxide) by-produced after the reaction of calcium carbide with water to generate acetylene is used as the CaO raw material.
  • ⁇ -type 2CaO ⁇ SiO 2 is obtained.
  • ⁇ -2CaO ⁇ SiO 2 of the present invention cannot be obtained.
  • the slaked lime used for the CaO raw material in the present invention is a by-product after generating acetylene by reacting calcium carbide and water according to the following reaction formula. CaC 2 + 2H 2 O ⁇ C 2 H 2 + Ca (OH) 2
  • the components of slaked lime produced as a by-product after generating acetylene by reacting calcium carbide with water CaO is about 71 to 74%, preferably 72 to 73%, and loss on ignition (LOI) is 23 to 25. %, Preferably 23.5 to 24.5%, SiO 2 is about 0.5 to 1.5%, preferably 0.75 to 1.25%, Fe 2 O 3 is 0.2 to 0.35 %, Preferably 0.25 to 0.3%, Al 2 O 3 is about 0.3 to 0.7%, preferably 0.4 to 0.6%, and MgO is less than 0.2%, preferably 0. Less than 0.1%, Na 2 O and K 2 O are both less than 0.1%, preferably less than 0.05%, and SO 3 is about 1.0 to 1.5%, preferably 1.2 to 1. About 3% is included.
  • the content of the third component Fe 2 O 3 and Al 2 O 3 that stabilizes 2CaO.SiO 2 as ⁇ -type is in the range of 1.05% or less in total even if estimated to be large.
  • the amount does not affect the formation of ⁇ -2CaO.SiO 2 ( ⁇ -C 2 S).
  • the total amount of these contents is preferably 5% or more.
  • the sulfur component has some influence.
  • the sulfur content is about 1.0 to 1.5%, preferably 1.2 to 1 in terms of SO 3. .3% included.
  • a siliceous substance (SiO 2 raw material) is used in addition to slaked lime (CaO raw material) by-produced after the reaction of calcium carbide with water to generate acetylene.
  • siliceous substance (SiO 2 raw material) is not particularly limited, silica fine powder, silica fume, diatomaceous earth, fused silica dust, and the like can be used.
  • silica fine powder silica fume, diatomaceous earth, fused silica dust, and the like
  • the presence of impurities in the siliceous material (SiO 2 raw material) may be preferable.
  • ⁇ -2CaO ⁇ can be obtained by using slaked lime produced as a by-product after generating acetylene by reacting calcium carbide with water. it is possible to obtain SiO 2.
  • slaked lime (CaO raw material) by-produced after reacting calcium carbide and water to generate acetylene, and a siliceous material (SiO 2 raw material) were blended.
  • the raw material is heat-treated.
  • the heat treatment method is not particularly limited.
  • a rotary kiln, an electric furnace, a tunnel furnace, a shaft kiln, a fluidized bed incinerator, etc. can be used. Among these, it is preferable to select a rotary kiln from the viewpoints of continuous operation, cost performance, and the like.
  • the baking temperature during the heat treatment is preferably 1300 ° C to 1600 ° C, more preferably 1400 ° C to 1500 ° C. If it is less than 1300 ° C., the efficiency may be deteriorated or it may be burnt. If it exceeds 1600 ° C., it will not only melt and become difficult to operate, but it may be easily coated and the yield may be reduced. .
  • the burning point temperature referred to in the present invention means the maximum temperature in the kiln. Usually, the maximum temperature in the kiln is around 1 to 3 meters in front of the flame (flame shape) extending from the burner.
  • the production method of ⁇ -2CaO ⁇ SiO 2 according to the present invention is characterized in that the yield is 75% or more, preferably 80% or more.
  • the yield means the percentage of the heat-treated product obtained with respect to the fed raw material.
  • a higher yield is preferable because it leads to a reduction in manufacturing cost.
  • the theoretical value is about 83%, this is the upper limit.
  • a yield of 80% or more can be obtained almost stably.
  • the CaO / SiO 2 molar ratio of the raw material is preferably adjusted to 1.8 to 2.2, more preferably 1.9 to 2.2.
  • the CaO / SiO 2 molar ratio of the raw material is less than 1.8, ⁇ -type wollastonite and lankinite are by-produced, and the content of ⁇ -2CaO ⁇ SiO 2 in the product becomes low.
  • the CaO / SiO 2 molar ratio of the raw material exceeds 2.2, 3CaO ⁇ SiO 2 and free lime are by-produced, and the content of ⁇ -2CaO ⁇ SiO 2 in the product is also lowered.
  • the content of ⁇ -2CaO ⁇ SiO 2 can be 90% or more, preferably 95% or more.
  • the particle sizes of the CaO raw material and the SiO 2 raw material are preferably adjusted so as to pass 90% by mass or more through a 150 ⁇ m sieve, and more preferably adjusted so as to pass 90% by mass or more through a 100 ⁇ m sieve. If the particle size of the raw material is not fine within the above range, the purity of ⁇ -2CaO ⁇ SiO 2 tends to deteriorate. Specifically, free lime and insoluble residue increase.
  • the granulation is an operation of forming the blended raw material into a dumpling shape, and the granulation is performed so that the particle size (diameter) is preferably 1 to 50 mm, more preferably 10 to 30 mm.
  • the granulation method include a method of granulating a raw material and water into a disc-shaped rotary drum, a method of using a so-called pelletizer in which the raw material is placed in a mold and press-molded.
  • the amount of water used for granulation is preferably from 0.1 to 0.3 / 1, more preferably from 0.15 to 0.25 / 1 in terms of the mass ratio of water / raw material. If the amount of water used is less than 0.1, the granulated raw material tends to collapse, the raw material is collected and the yield becomes poor, or the firing reaction may not proceed sufficiently during firing in a rotary kiln. On the other hand, if the amount of water used exceeds 0.3, the granulated raw material becomes watery, and it tends to collapse, and the firing reaction may not sufficiently proceed during firing in the rotary kiln. In addition, since the raw material contains a large amount of water, a large amount of firing energy is required to evaporate the raw material, which is uneconomical and the environmental load increases, which is not preferable.
  • the cooling operation is performed after the heat treatment, but the cooling conditions are not particularly limited, but it is not necessary to perform a special rapid cooling operation.
  • a method according to the general cooling conditions of Portland cement clinker may be used. For example, after firing in a rotary kiln, cooling may be performed through a cooler or the like in an atmospheric environment.
  • Example 1 Various CaO raw materials and SiO 2 raw materials were blended so that the CaO / SiO 2 molar ratio was 2.0. This blended raw material was granulated using a granulator (small bread type, manufactured by Sansho Industry Co., Ltd.). At this time, 20% of water was added to the powder. The granulated material was heat-treated using a rotary kiln. The heat treatment temperature was 1450 ° C. as the burning point temperature of the burner. The samples after firing were evaluated as follows. The evaluation results are also shown in Table 1.
  • CaO raw material (1) slaked lime produced as a by-product after the reaction of calcium carbide and water to generate acetylene, CaO 73.1%, MgO 0.07%, Al 2 O 3 0.55% Fe 2 O 3 is 0.28%, SiO 2 is 0.95%, SO 3 is 1.31%, Na 2 O is 0.03%, K 2 O is 0.02%, and ignition loss is 23.80%.
  • the passing rate of the 150 ⁇ m sieve is 99.5%, and the passing rate of the 100 ⁇ m sieve is 96.9%.
  • CaO raw material (2) fine limestone powder, CaO 55.4%, MgO 0.37%, Al 2 O 3 0.05%, Fe 2 O 3 0.02%, SiO 2 0 .10%, and ignition loss is 43.57%.
  • the passing rate of the 150 ⁇ m sieve is 97. %,
  • the passage rate of the 100 ⁇ m sieve is 91.9%.
  • CaO raw material (3) commercially available slaked lime, CaO 74.10%, MgO 0.07%, Al 2 O 3 0.36%, Fe 2 O 3 0.22%, SiO 2 0 .90%, SO 3 0.09%, Na 2 O 0.13%, K 2 O 0.12%, and ignition loss 24.00%.
  • the passing rate of the 150 ⁇ m sieve is 99.5%, and the passing rate of the 100 ⁇ m sieve is 96.9%.
  • CaO raw material (4) Reagent calcium hydroxide with a purity of 99%.
  • SiO 2 raw material fine silica powder, CaO 0.02%, MgO 0.04%, Al 2 O 3 2.71%, Fe 2 O 3 0.27%, SiO 2 95. 83%, TiO 2 is 0.23%, and the loss on ignition is 0.51%.
  • the passing rate of the 150 ⁇ m sieve is 95.1%, and the passing rate of the 100 ⁇ m sieve is 90.3%.
  • Water tap water
  • Firing energy The total energy of the amount of heavy oil used and the amount of power used when limestone corresponding to the prior art is used as a CaO raw material is defined as 100 and expressed as a relative value. Yield: The ratio of the mass of the fired product obtained when the mass of the raw material fed to the rotary kiln was taken as 100 was expressed as a percentage.
  • Setting time and compressive strength 10 parts of ⁇ -2CaO ⁇ SiO 2 and ⁇ -2CaO ⁇ SiO 2 were added to 90 parts of ordinary Portland cement to obtain a cement composition. Using this cement composition, a mortar was prepared according to JIS R 5201, and the setting completion time was measured. The compressive strength at 1 day of age was also measured.
  • Example 3 The experiment was performed in the same manner as in Experimental Example 1 except that the CaO / SiO 2 molar ratio of the CaO raw material and the SiO 2 raw material was changed as shown in Table 3. The results are shown in Table 3.
  • Example 4 The test was performed in the same manner as in Experimental Example 1 except that the burn point temperature of the burner as the heat treatment temperature was changed as shown in Table 4. The results are shown in Table 4.
  • Example 5 The experiment was performed in the same manner as in Experimental Example 1 except that the water ratio during granulation was changed as shown in Table 5. The results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Provided is a production method for β-2CaO·SiO2, wherein the whiteness is high, the condensation curing of cement is not blocked, the energy cost at firing can be reduced, and the yield is high. A production method for β-2CaO·SiO2 characterized by heat-treating a raw material that is obtained by mixing a siliceous material with slaked lime generated as a by-product after acetylene is produced by reacting calcium carbide with water. The CaO/SiO2 molar ratio of the raw material is adjusted to 1.8 to 2.2 and CaO and SiO2 were mixed, the mixed raw material is granulated and fired at a burning point temperature of 1300 to 1600°C in a rotary kiln. The yield of the product obtained by heat treatment is 75% or more with respect to the raw material and the purity of β-2CaO·SiO2 is 90% or more.

Description

β-2CaO・SiO2の製造方法Method for producing β-2CaO · SiO 2
 本発明は、主に、セメント材料として有利に利用可能なβ-2CaO・SiOの製造方法に関する。 The present invention mainly relates to a method for producing β-2CaO · SiO 2 that can be advantageously used as a cement material.
 2CaO・SiOには、α型、β型、γ型などの結晶形が知られる。このうち、常温で安定なのはβ型とγ型である。β型はポルトランドセメントの成分のひとつとして知られ、弱いながらも水硬性を持つ。一方、γ型は水硬性を持たないものの、炭酸化活性が高く、セメント混和材としての有用性が近年見出されている。このように、2CaO・SiOは、β型もγ型もそれぞれの特徴を活かした使途が見出されているので、2CaO・SiOの結晶形態を制御する方法の確立が出来れば工業的に有益である。 2CaO · SiO 2 has known crystal forms such as α-type, β-type, and γ-type. Of these, β-type and γ-type are stable at room temperature. The β type is known as one of the ingredients of Portland cement, and it is weak but hydraulic. On the other hand, although the γ type does not have hydraulic properties, it has a high carbonation activity and has recently been found to be useful as a cement admixture. As described above, 2CaO · SiO 2 has been found to be used by utilizing the characteristics of both β-type and γ-type, so if a method for controlling the crystal form of 2CaO · SiO 2 can be established, it will be industrially applied. It is beneficial.
 純粋な2CaO-SiOの系では、β型の2CaO・SiOは生成せず、γ型になる。2CaO・SiOの結晶形態に影響を及ぼす要因としては、(1)第三成分の影響、(2)冷却条件の影響、(3)酸化-還元雰囲気などが知られる。 In the pure 2CaO—SiO 2 system, β-type 2CaO · SiO 2 is not generated, but becomes γ-type. As factors affecting the crystal form of 2CaO.SiO 2 , (1) the effect of the third component, (2) the effect of cooling conditions, (3) the oxidation-reduction atmosphere, and the like are known.
 第三成分の影響としては、ホウ素、リン、バリウム、ストロンチウム、鉄、アルミニウム、モリブデンなどがある一定量以上混在すると、β-2CaO・SiOが生成することが知られている(非特許文献1、非特許文献2、および非特許文献3参照)。 As an influence of the third component, it is known that β-2CaO · SiO 2 is generated when a certain amount or more of boron, phosphorus, barium, strontium, iron, aluminum, molybdenum, etc. is mixed (Non-patent Document 1). Non-Patent Document 2 and Non-Patent Document 3).
 本発明は、白色度が高く、有害物質も含まず、セメントの凝結硬化も阻害することもなく、焼成時のエネルギーコストも削減でき、収率も高いβ-2CaO・SiOの製造方法を提供する。 The present invention provides a method for producing β-2CaO · SiO 2 that has high whiteness, does not contain harmful substances, does not inhibit the setting and hardening of cement, can reduce energy costs during firing, and has a high yield. To do.
 本発明者らは、種々検討を重ねた結果、カルシウムカーバイドからアセチレンを発生させた後に副生する消石灰には、上記の第三成分がほとんど含まれず、従来知られている、β-2CaO・SiOを生成するのに必要な含有量で第三成分を含まないにも拘わらず、これにシリカ質物質を配合した原料を熱処理することで、容易にβ-2CaO・SiOが生成することを見出した。しかも、この方法で得られるβ-2CaO・SiOは、白色度が高く、有害物質も含まず、セメントの凝結硬化も阻害することなく、焼成時のエネルギーコストも削減でき、収率も高いβ-2CaO・SiOの製造方法を見出し、本発明を完成するに至った。産業上も有用であることを見出した。 As a result of various studies, the present inventors have found that the slaked lime produced as a by-product after generating acetylene from calcium carbide contains little of the above-mentioned third component, and is conventionally known, β-2CaO · SiO Although β-2CaO · SiO 2 is easily produced by heat-treating a raw material in which a siliceous material is blended with the content necessary to produce 2 and no third component. I found it. In addition, β-2CaO · SiO 2 obtained by this method has high whiteness, does not contain harmful substances, does not inhibit the setting and hardening of cement, can reduce energy costs during firing, and has a high yield. The present inventors have found a method for producing -2CaO.SiO 2 and have completed the present invention. It was found useful in industry.
 すなわち、本発明は、以下の要旨を有するものである。
(1)カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰と、シリカ質物質とを配合した原料を熱処理することを特徴とするβ-2CaO・SiOの製造方法。
(2)消石灰が、CaOを71~74質量%、強熱減量(LOI)を23~25質量%、SiOを0.5~1.5質量%、Feを0.2~0.35%質量、Alを0.3~0.7質量%、MgOを0.2質量%未満、NaO、KOをいずれも0.1質量%未満、およびSOを1.0~1.5質量%含有する上記1に記載の製造方法。
(3)シリカ質物質が、ケイ石微粉、シリカフューム、珪藻土、または溶融シリカである上記(1)又は(2)に記載の製造方法。
(4)上記消石灰及び/又はシリカ質物質が、100μmの篩いを90質量%以上通過する粒度を有する上記(1)~(3)のいずれかに記載の製造方法。
(5)CaO/SiOモル比を1.8~2.2になるように配合した原料をロータリーキルンにて、焼点温度が1300~1600℃で焼成する上記(1)~(4)のいずれかに記載の製造方法。
(6)配合した原料を、100μmの篩いを90質量%以上通過する粒度に造粒し、得られる造粒物をロータリーキルンにフィードする上記(5)に記載の製造方法。
(7)水/原料の質量比で10~30%の水を使用して造粒する上記(6)に記載の製造方法。
(8)熱処理生成物の収率が、原料に対して75%以上である上記(1)~(7)のいずれかに記載の製造方法。
(9)熱処理生成物中のβ-2CaO・SiOの純度が90%以上である上記(1)~(8)のいずれかに記載の製造方法。
(10)上記(1)~(9)のいずれかに記載の製造方法で得られるβ-2CaO・SiOを用いたセメント混和材。
That is, the present invention has the following gist.
(1) A process for producing β-2CaO · SiO 2 characterized by heat-treating a raw material containing slaked lime by-produced after reacting calcium carbide with water to generate acetylene and a siliceous substance.
(2) Slaked lime is CaO 71-74% by mass, loss on ignition (LOI) 23-25% by mass, SiO 2 0.5-1.5% by mass, Fe 2 O 3 0.2-0 .35% by mass, Al 2 O 3 by 0.3 to 0.7% by mass, MgO by less than 0.2% by mass, Na 2 O and K 2 O both by less than 0.1% by mass, and SO 3 by 2. The production method according to 1 above, containing 1.0 to 1.5% by mass.
(3) The production method according to the above (1) or (2), wherein the siliceous substance is quartzite fine powder, silica fume, diatomaceous earth, or fused silica.
(4) The production method according to any one of (1) to (3) above, wherein the slaked lime and / or siliceous substance has a particle size that passes through a 100 μm sieve by 90% by mass or more.
(5) Any of the above (1) to (4), wherein the raw material blended so that the molar ratio of CaO / SiO 2 is 1.8 to 2.2 is baked in a rotary kiln at a burning point temperature of 1300 to 1600 ° C. The manufacturing method of crab.
(6) The manufacturing method as described in said (5) which granulates the mix | blended raw material in the particle size which passes 90 mass% or more of a 100 micrometers sieve, and feeds the obtained granulated material to a rotary kiln.
(7) The production method according to the above (6), wherein granulation is performed using 10 to 30% of water by mass ratio of water / raw material.
(8) The production method according to any one of (1) to (7) above, wherein the yield of the heat treatment product is 75% or more based on the raw material.
(9) The production method according to any one of (1) to (8) above, wherein the purity of β-2CaO.SiO 2 in the heat treatment product is 90% or more.
(10) A cement admixture using β-2CaO · SiO 2 obtained by the production method according to any one of (1) to (9) above.
 本発明のβ-2CaO・SiOの製造方法によれば、得られるβ-2CaO・SiOは、白色度が高く、セメントの凝結硬化も阻害することもなく、焼成時のエネルギーコストも削減でき、収率も高いなどの効果を奏する。 According to the method for producing β-2CaO · SiO 2 of the present invention, the obtained β-2CaO · SiO 2 has high whiteness, does not inhibit the setting and hardening of cement, and can reduce the energy cost during firing. , There is an effect such as high yield.
 以下、本発明を詳細に説明する。
 なお、本発明における「部」や「%」は特に規定しない限り、「質量基準」で示す。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are indicated by “mass standard” unless otherwise specified.
 本発明のβ-2CaO・SiOは、CaOとSiOを主成分とする化合物のうち、ダイカルシウムシリケート(2CaO・SiO)の一種である。ダイカルシウムシリケート(2CaO・SiO)には、α型、αプライム型、β型、およびγ型の結晶形が存在する。本発明はβ型のダイカルシウムシリケートに関する。 Β-2CaO · SiO 2 of the present invention is a kind of dicalcium silicate (2CaO · SiO 2 ) among compounds mainly composed of CaO and SiO 2 . In dicalcium silicate (2CaO · SiO 2 ), α-type, α-prime type, β-type, and γ-type crystal forms exist. The present invention relates to β-type dicalcium silicate.
 本発明では、CaO原料としてカルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰(水酸化カルシウム)を用いる。これを用いると、β型の2CaO・SiOが得られる。試薬の水酸化カルシウムや、その他の工業原料として入手可能な消石灰を用いても、本発明のβ-2CaO・SiOは得られない。
 本発明でCaO原料に使用される消石灰は、下記の反応式に従ってカルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生するものである、
   CaC + 2HO → C + Ca(OH)
In the present invention, slaked lime (calcium hydroxide) by-produced after the reaction of calcium carbide with water to generate acetylene is used as the CaO raw material. When this is used, β-type 2CaO · SiO 2 is obtained. Even if calcium hydroxide as a reagent or slaked lime available as another industrial raw material is used, β-2CaO · SiO 2 of the present invention cannot be obtained.
The slaked lime used for the CaO raw material in the present invention is a by-product after generating acetylene by reacting calcium carbide and water according to the following reaction formula.
CaC 2 + 2H 2 O → C 2 H 2 + Ca (OH) 2
 本発明では、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰の成分は、CaOが71~74%程度、好ましく72~73%、強熱減量(LOI)が23~25%程度、好ましくは23.5~24.5%、SiOが0.5~1.5%程度、好ましくは0.75~1.25%、Feは0.2~0.35%程度、好ましくは0.25~0.3%、Alは0.3~0.7%程度、好ましくは0.4~0.6%、MgOが0.2%未満、好ましく0.1%未満、NaO、KOはいずれも0.1%未満、好ましくは0.05%未満、およびSOを1.0~1.5%程度、好ましくは1.2~1.3%程度含むものである。 In the present invention, the components of slaked lime produced as a by-product after generating acetylene by reacting calcium carbide with water, CaO is about 71 to 74%, preferably 72 to 73%, and loss on ignition (LOI) is 23 to 25. %, Preferably 23.5 to 24.5%, SiO 2 is about 0.5 to 1.5%, preferably 0.75 to 1.25%, Fe 2 O 3 is 0.2 to 0.35 %, Preferably 0.25 to 0.3%, Al 2 O 3 is about 0.3 to 0.7%, preferably 0.4 to 0.6%, and MgO is less than 0.2%, preferably 0. Less than 0.1%, Na 2 O and K 2 O are both less than 0.1%, preferably less than 0.05%, and SO 3 is about 1.0 to 1.5%, preferably 1.2 to 1. About 3% is included.
 一般に、2CaO・SiOをβ型として安定化させる第三成分のFeやAlの含有量は、多く見積もっても総量で1.05%以下の範囲であり、これらの含有量がβ-2CaO・SiO(β-CS)の生成に影響するわけではない。
 しかし、FeやAlによりβ-2CaO・SiOを安定化させるためには、通常、これらの含有量の総量は5%以上が好ましいと言われている。
 市販の消石灰では、本発明で使用するカルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰と同様の化学組成を有するものもあるが、本発明の効果は得られない。その理由は定かではないが、イオウ成分が何らかの影響を及ぼしていると推察される。本発明のカルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰の特徴としては、イオウ分をSO換算で1.0~1.5%程度、好ましくは1.2~1.3%含む。
In general, the content of the third component Fe 2 O 3 and Al 2 O 3 that stabilizes 2CaO.SiO 2 as β-type is in the range of 1.05% or less in total even if estimated to be large. The amount does not affect the formation of β-2CaO.SiO 2 (β-C 2 S).
However, in order to stabilize β-2CaO.SiO 2 with Fe 2 O 3 or Al 2 O 3 , it is usually said that the total amount of these contents is preferably 5% or more.
Some commercially available slaked lime has a chemical composition similar to that of slaked lime produced as a by-product after generating acetylene by reacting calcium carbide and water used in the present invention, but the effect of the present invention cannot be obtained. The reason is not clear, but it is assumed that the sulfur component has some influence. As a feature of slaked lime produced as a by-product after acetylene is generated by reacting calcium carbide and water of the present invention, the sulfur content is about 1.0 to 1.5%, preferably 1.2 to 1 in terms of SO 3. .3% included.
 本発明では、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰(CaO原料)の他に、シリカ質物質(SiO原料)を用いる。 In the present invention, a siliceous substance (SiO 2 raw material) is used in addition to slaked lime (CaO raw material) by-produced after the reaction of calcium carbide with water to generate acetylene.
 シリカ質物質(SiO原料)は特に限定されるものではないが、ケイ石微粉や、シリカフューム、珪藻土、溶融シリカのダストなどを用いることができる。
 β-2CaO・SiOを得る目的では、シリカ質物質(SiO原料)中の不純物の存在は好ましい場合がある。
Although the siliceous substance (SiO 2 raw material) is not particularly limited, silica fine powder, silica fume, diatomaceous earth, fused silica dust, and the like can be used.
For the purpose of obtaining β-2CaO · SiO 2 , the presence of impurities in the siliceous material (SiO 2 raw material) may be preferable.
 ただし、本発明では、高純度なシリカ質物質(SiO原料)を用いたとしても、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰を用いることによって、β-2CaO・SiOを得ることが可能である。 However, in the present invention, even if a high-purity siliceous material (SiO 2 raw material) is used, β-2CaO ·· can be obtained by using slaked lime produced as a by-product after generating acetylene by reacting calcium carbide with water. it is possible to obtain SiO 2.
 本発明のβ-2CaO・SiOの製造方法は、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰(CaO原料)と、シリカ質物質(SiO原料)とを配合した原料を熱処理することを特徴とする。 In the production method of β-2CaO · SiO 2 of the present invention, slaked lime (CaO raw material) by-produced after reacting calcium carbide and water to generate acetylene, and a siliceous material (SiO 2 raw material) were blended. The raw material is heat-treated.
 熱処理方法は、特に限定されるものではない。ロータリーキルン、電気炉、トンネル炉、シャフトキルン、流動床式焼却炉などを用いることができる。中でも、ロータリーキルンを選定することが連続操業、コストパフォーマンスなどの観点から好ましい。 The heat treatment method is not particularly limited. A rotary kiln, an electric furnace, a tunnel furnace, a shaft kiln, a fluidized bed incinerator, etc. can be used. Among these, it is preferable to select a rotary kiln from the viewpoints of continuous operation, cost performance, and the like.
 熱処理時の焼点温度は、1300℃~1600℃が好ましく、1400℃~1500℃がより好ましい。1300℃未満では、効率が悪くなる場合や、生焼けとなる場合があり、1600℃を超えると、溶融して操業が困難になるばかりか、コーチングがつきやすくなり、収率が低下する場合がある。本発明で言う焼点温度とは、キルン内の最高温度を意味する。通常、キルン内の最高温度はバーナーから伸びるフレーム(炎の形)の前方1~3m付近にある。 The baking temperature during the heat treatment is preferably 1300 ° C to 1600 ° C, more preferably 1400 ° C to 1500 ° C. If it is less than 1300 ° C., the efficiency may be deteriorated or it may be burnt. If it exceeds 1600 ° C., it will not only melt and become difficult to operate, but it may be easily coated and the yield may be reduced. . The burning point temperature referred to in the present invention means the maximum temperature in the kiln. Usually, the maximum temperature in the kiln is around 1 to 3 meters in front of the flame (flame shape) extending from the burner.
 本発明のβ-2CaO・SiOの製造方法では、収率が75%以上、好ましくは80%以上で得られることを特徴とする。ここで収率とは、フィードした原料に対する得られた熱処理物の百分率を意味する。収率は高いほど、製造コストの削減につながるため好ましいが、理論値で約83%であるため、これが上限値となる。本発明のβ-2CaO・SiOの製造方法では、ほぼ安定して80%以上の収率を得ることができる。 The production method of β-2CaO · SiO 2 according to the present invention is characterized in that the yield is 75% or more, preferably 80% or more. Here, the yield means the percentage of the heat-treated product obtained with respect to the fed raw material. A higher yield is preferable because it leads to a reduction in manufacturing cost. However, since the theoretical value is about 83%, this is the upper limit. In the method for producing β-2CaO · SiO 2 of the present invention, a yield of 80% or more can be obtained almost stably.
 本発明では、原料のCaO/SiOモル比を1.8~2.2に調整することが好ましく、1.9~2.2がより好ましい。原料のCaO/SiOモル比が1.8未満では、α型のワラストナイトやランキナイトが副生し、生成物中のβ-2CaO・SiOの含有率が低くなる。原料のCaO/SiOモル比が2.2を超えると、3CaO・SiOや遊離石灰が副生し、やはり生成物中のβ-2CaO・SiOの含有率が低くなる。原料のCaO/SiOモル比を1.8~2.2に調整することにより、β-2CaO・SiOの含有率を90%以上、好ましくは95%以上とすることが出来る。 In the present invention, the CaO / SiO 2 molar ratio of the raw material is preferably adjusted to 1.8 to 2.2, more preferably 1.9 to 2.2. When the CaO / SiO 2 molar ratio of the raw material is less than 1.8, α-type wollastonite and lankinite are by-produced, and the content of β-2CaO · SiO 2 in the product becomes low. When the CaO / SiO 2 molar ratio of the raw material exceeds 2.2, 3CaO · SiO 2 and free lime are by-produced, and the content of β-2CaO · SiO 2 in the product is also lowered. By adjusting the CaO / SiO 2 molar ratio of the raw material to 1.8 to 2.2, the content of β-2CaO · SiO 2 can be 90% or more, preferably 95% or more.
 CaO原料とSiO原料の粒度は、150μmの篩いを90質量%以上通過するように調整することが好ましく、100μmの篩いを90質量%以上通過するように調整することがより好ましい。原料の粒度が前記範囲まで細かくないと、β-2CaO・SiOの純度が悪くなる傾向にある。具体的には、遊離石灰や不溶解残分が多くなる。 The particle sizes of the CaO raw material and the SiO 2 raw material are preferably adjusted so as to pass 90% by mass or more through a 150 μm sieve, and more preferably adjusted so as to pass 90% by mass or more through a 100 μm sieve. If the particle size of the raw material is not fine within the above range, the purity of β-2CaO · SiO 2 tends to deteriorate. Specifically, free lime and insoluble residue increase.
 本発明では、配合した原料を造粒することが好ましい。原料を造粒すると、β-2CaO・SiOの生成反応が進行しやすくなり、エネルギーコストが削減できるほか、純度が高くなる。
 造粒とは、配合した原料を団子状に成形する操作であり、造粒は、粒径(直径)が好ましくは1~50mm、より好ましくは10~30mmになるように行われる。造粒の方法としては、円盤型の回転ドラムに原料と水とを投入して造粒する方法や、型に原料を入れて加圧成形する、いわゆるペレタイザーを用いる方法等が挙げられる。造粒の際に使用する水の量は、水/原料の質量比で0.1~0.3/1が好ましく、0.15~0.25/1がより好ましい。水の使用量が0.1未満では、造粒した原料が崩れやすく、原料が集塵され収率が悪くなる場合や、ロータリーキルンでの焼成時に焼成反応が十分に進行しない場合がある。また、水の使用量が0.3を超えると、造粒した原料が水っぽくなり、やはり、崩れやすくなって、ロータリーキルンでの焼成時に焼成反応が十分に進行しない場合がある。また、原料に多くの水を含むため、これを蒸発させるために、焼成エネルギーを多く必要とするため不経済でもあり、また、環境負荷も大きくなるため好ましくない。
In the present invention, it is preferable to granulate the blended raw materials. When the raw material is granulated, the formation reaction of β-2CaO.SiO 2 is likely to proceed, so that the energy cost can be reduced and the purity becomes high.
The granulation is an operation of forming the blended raw material into a dumpling shape, and the granulation is performed so that the particle size (diameter) is preferably 1 to 50 mm, more preferably 10 to 30 mm. Examples of the granulation method include a method of granulating a raw material and water into a disc-shaped rotary drum, a method of using a so-called pelletizer in which the raw material is placed in a mold and press-molded. The amount of water used for granulation is preferably from 0.1 to 0.3 / 1, more preferably from 0.15 to 0.25 / 1 in terms of the mass ratio of water / raw material. If the amount of water used is less than 0.1, the granulated raw material tends to collapse, the raw material is collected and the yield becomes poor, or the firing reaction may not proceed sufficiently during firing in a rotary kiln. On the other hand, if the amount of water used exceeds 0.3, the granulated raw material becomes watery, and it tends to collapse, and the firing reaction may not sufficiently proceed during firing in the rotary kiln. In addition, since the raw material contains a large amount of water, a large amount of firing energy is required to evaporate the raw material, which is uneconomical and the environmental load increases, which is not preferable.
 本発明では、熱処理後、冷却操作を行うが、冷却条件は特に限定されるものではないが、特殊な急冷操作を行わなければよい。具体的には、一般的なポルトランドセメントクリンカーの冷却条件に準じた方法でよく、例えば、ロータリーキルンで焼成後、大気環境下でクーラー等を通して冷却すればよい。 In the present invention, the cooling operation is performed after the heat treatment, but the cooling conditions are not particularly limited, but it is not necessary to perform a special rapid cooling operation. Specifically, a method according to the general cooling conditions of Portland cement clinker may be used. For example, after firing in a rotary kiln, cooling may be performed through a cooler or the like in an atmospheric environment.
 次に、実施例及び比較例により本発明をより具体的に説明するが、本発明は、以下の実施例に限定して解釈されるべきではない。
「実験例1」
 各種CaO原料とSiO原料とをCaO/SiOモル比が2.0となるように配合した。この配合した原料を、造粒機(小型パン型、三庄インダストリー社製)を用いて造粒した。この時、粉体に対して20%の水を加えた。造粒物をロータリーキルンを用いて熱処理した。熱処理温度は、バーナーの焼点温度で1450℃で行った。焼成後のサンプルは、以下のような評価を行った。評価結果を表1に併記する。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention more concretely, this invention should not be limited and limited to the following Examples.
"Experiment 1"
Various CaO raw materials and SiO 2 raw materials were blended so that the CaO / SiO 2 molar ratio was 2.0. This blended raw material was granulated using a granulator (small bread type, manufactured by Sansho Industry Co., Ltd.). At this time, 20% of water was added to the powder. The granulated material was heat-treated using a rotary kiln. The heat treatment temperature was 1450 ° C. as the burning point temperature of the burner. The samples after firing were evaluated as follows. The evaluation results are also shown in Table 1.
 <使用材料>
 CaO原料(1):カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰であり、CaOが73.1%、MgOが0.07%、Alが0.55%、Feが0.28%、SiOが0.95%、SOが1.31%、NaOが0.03%、KOが0.02%、および強熱減量が23.80%である。150μmの篩いの通過率は99.5%、100μmの篩いの通過率は96.9%である。
 CaO原料(2):石灰石微粉末であり、CaOが55.4%、MgOが0.37%、Alが0.05%、Feが0.02%、SiOが0.10%、および強熱減量が43.57%である。150μmの篩いの通過率は97.%、100μmの篩いの通過率は91.9%である。
 CaO原料(3):市販の消石灰であり、CaOが74.10%、MgOが0.07%、Alが0.36%、Feが0.22%、SiOが0.90%、SOが0.09%、NaOが0.13%、KOが0.12%、および強熱減量が24.00%である。150μmの篩いの通過率は99.5%、100μmの篩いの通過率は96.9%である。
 CaO原料(4):試薬の水酸化カルシウムであり、純度は99%である。
 SiO原料:ケイ石微粉末であり、CaOが0.02%、MgOが0.04%、Alが2.71%、Feが0.27%、SiOが95.83%、TiOが0.23%、および強熱減量が0.51%である。150μmの篩いの通過率は95.1%、100μmの篩いの通過率は90.3%である。
 水:水道水
<Materials used>
CaO raw material (1): slaked lime produced as a by-product after the reaction of calcium carbide and water to generate acetylene, CaO 73.1%, MgO 0.07%, Al 2 O 3 0.55% Fe 2 O 3 is 0.28%, SiO 2 is 0.95%, SO 3 is 1.31%, Na 2 O is 0.03%, K 2 O is 0.02%, and ignition loss is 23.80%. The passing rate of the 150 μm sieve is 99.5%, and the passing rate of the 100 μm sieve is 96.9%.
CaO raw material (2): fine limestone powder, CaO 55.4%, MgO 0.37%, Al 2 O 3 0.05%, Fe 2 O 3 0.02%, SiO 2 0 .10%, and ignition loss is 43.57%. The passing rate of the 150 μm sieve is 97. %, The passage rate of the 100 μm sieve is 91.9%.
CaO raw material (3): commercially available slaked lime, CaO 74.10%, MgO 0.07%, Al 2 O 3 0.36%, Fe 2 O 3 0.22%, SiO 2 0 .90%, SO 3 0.09%, Na 2 O 0.13%, K 2 O 0.12%, and ignition loss 24.00%. The passing rate of the 150 μm sieve is 99.5%, and the passing rate of the 100 μm sieve is 96.9%.
CaO raw material (4): Reagent calcium hydroxide with a purity of 99%.
SiO 2 raw material: fine silica powder, CaO 0.02%, MgO 0.04%, Al 2 O 3 2.71%, Fe 2 O 3 0.27%, SiO 2 95. 83%, TiO 2 is 0.23%, and the loss on ignition is 0.51%. The passing rate of the 150 μm sieve is 95.1%, and the passing rate of the 100 μm sieve is 90.3%.
Water: tap water
<測定方法>
 化合物の同定:粉末X線回折法(マルチフレックス、リガク社製)により化合物を同定した。
 化学成分の定量:Al成分、Fe成分をJIS R 5202に準じて定量分析し、定量した。
 色の観察:目視により白色の程度を判定した。200ルクスの照度の部屋で観察し、ブレーン比表面積で3000±100cm/gに調製した粉末の白色程度を観察した。白い場合は○、黄色い場合は△、褐色の場合は×とした。
 焼成エネルギー:従来技術にあたる石灰石をCaO原料として用いた際の重油使用量と電力使用量の総和エネルギーを100とし、相対値で示した。
 収率:ロータリーキルンにフィードした原料の質量を100とした時の得られた焼成物の質量の比率を百分率で示した。
 凝結時間および圧縮強度:普通ポルトランドセメント90部に対して、β-2CaO・SiOやγ-2CaO・SiOをそれぞれ10部加えてセメント組成物とした。このセメント組成物を用いて、JIS R 5201に準じてモルタルを調製し、凝結の終結時間を測定した。また、材齢1日の圧縮強度も測定した。
<Measurement method>
Identification of compound: Compound was identified by powder X-ray diffraction method (Multiflex, manufactured by Rigaku Corporation).
Quantification of chemical components: Al 2 O 3 components and Fe 2 O 3 components were quantitatively analyzed and quantified according to JIS R 5202.
Observation of color: The degree of white was visually determined. Observation was performed in a room with an illuminance of 200 lux, and the degree of whiteness of the powder prepared to a brain specific surface area of 3000 ± 100 cm 2 / g was observed. In the case of white, ◯, in the case of yellow, Δ, and in the case of brown, X.
Firing energy: The total energy of the amount of heavy oil used and the amount of power used when limestone corresponding to the prior art is used as a CaO raw material is defined as 100 and expressed as a relative value.
Yield: The ratio of the mass of the fired product obtained when the mass of the raw material fed to the rotary kiln was taken as 100 was expressed as a percentage.
Setting time and compressive strength: 10 parts of β-2CaO · SiO 2 and γ-2CaO · SiO 2 were added to 90 parts of ordinary Portland cement to obtain a cement composition. Using this cement composition, a mortar was prepared according to JIS R 5201, and the setting completion time was measured. The compressive strength at 1 day of age was also measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
「実験例2」
 従来技術との比較を行った。表2に示すように、従来からβ-2CaO・SiOを安定化させる元素の酸化物として知られる、Fe、Al、BO、BaO、P、またはSrOを実験No.1-2の原料に外割りで添加したこと以外は実験例1と同様に行った。結果を表2に示す。
 ここで、外割りとは、添加成分の割合が、添加成分を除く被添加成分全体に対するものであることを意味する。
"Experimental example 2"
Comparison with the prior art was performed. As shown in Table 2, Fe 2 O 3 , Al 2 O 3 , BO 3 , BaO, P 2 O 5 , or SrO, which is conventionally known as an oxide of an element that stabilizes β-2CaO · SiO 2 , Experiment No. The test was conducted in the same manner as in Experimental Example 1 except that it was added to the raw material 1-2 in an external ratio. The results are shown in Table 2.
Here, “outside split” means that the ratio of the additive component is relative to the entire component to be added excluding the additive component.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
「実験例3」
 CaO原料とSiO原料のCaO/SiOモル比を表3に示すように変化したこと以外は実験例1と同様に行った。結果を表3に示す。
"Experiment 3"
The experiment was performed in the same manner as in Experimental Example 1 except that the CaO / SiO 2 molar ratio of the CaO raw material and the SiO 2 raw material was changed as shown in Table 3. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
「実験例4」
 熱処理温度であるバーナーの焼点温度を表4に示すように変化したこと以外は実験例1と同様に行った。結果を表4に示す。
"Experimental example 4"
The test was performed in the same manner as in Experimental Example 1 except that the burn point temperature of the burner as the heat treatment temperature was changed as shown in Table 4. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
「実験例5」
 造粒の際の水比を表5に示すように変化したこと以外は実験例1と同様に行った。結果を表5に示す。
“Experimental Example 5”
The experiment was performed in the same manner as in Experimental Example 1 except that the water ratio during granulation was changed as shown in Table 5. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のβ-2CaO・SiOの製造方法は、白色度が高く、セメントの凝結硬化も阻害することもなく、焼成時のエネルギーコストも削減でき、収率も高いβ-2CaO・SiOの製造方法であり、セメント分野で広範に利用できる。
 なお、2010年11月11日に出願された日本特許出願2010-253174号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Β-2CaO · SiO 2 of the manufacturing method of the present invention, high whiteness, it without inhibiting even condensation curing of the cement, energy costs during firing can also be reduced, the yield is also high β-2CaO · SiO 2 It is a manufacturing method and can be widely used in the cement field.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-253174 filed on November 11, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (10)

  1.  カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰と、シリカ質物質とを配合した原料を熱処理することを特徴とするβ-2CaO・SiOの製造方法。 A process for producing β-2CaO · SiO 2 characterized by heat-treating a raw material containing slaked lime by-produced after reacting calcium carbide and water to generate acetylene and a siliceous substance.
  2.  消石灰が、CaOを71~74質量%、強熱減量(LOI)を23~25質量%、SiOを0.5~1.5質量%、Feを0.2~0.35%質量、Alを0.3~0.7質量%、MgOを0.2質量%未満、NaO、KOをいずれも0.1質量%未満、およびSOを1.0~1.5質量%含有する請求項1に記載の製造方法。 Slaked lime is CaO 71-74% by mass, loss on ignition (LOI) 23-25% by mass, SiO 2 0.5-1.5% by mass, Fe 2 O 3 0.2-0.35% Mass, Al 2 O 3 0.3-0.7 mass%, MgO less than 0.2 mass%, Na 2 O and K 2 O are both less than 0.1 mass%, and SO 3 is 1.0 The production method according to claim 1, wherein the content is ˜1.5% by mass.
  3.  シリカ質物質が、ケイ石微粉、シリカフューム、珪藻土、または溶融シリカである請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the siliceous substance is silica fine powder, silica fume, diatomaceous earth, or fused silica.
  4.  上記消石灰及び/又はシリカ質物質が、100μmの篩いを90質量%以上通過する粒度を有する請求項1~3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the slaked lime and / or siliceous substance has a particle size passing through a 100 µm sieve by 90 mass% or more.
  5.  CaO/SiOモル比を1.8~2.2になるように配合した原料をロータリーキルンにて、焼点温度が1300~1600℃で焼成する請求項1~4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the raw material blended so that the CaO / SiO 2 molar ratio is 1.8 to 2.2 is baked in a rotary kiln at a burning point temperature of 1300 to 1600 ° C. .
  6.  配合した原料を、100μmの篩いを90質量%以上通過する粒度に造粒し、得られる造粒物をロータリーキルンにフィードする請求項5に記載の製造方法。 The production method according to claim 5, wherein the blended raw material is granulated to a particle size passing through 90% by mass of a 100 µm sieve, and the resulting granulated product is fed to a rotary kiln.
  7.  水/原料の質量比で10~30%の水を使用して造粒する請求項6に記載の製造方法。 The production method according to claim 6, wherein the granulation is performed using water of 10 to 30% by mass ratio of water / raw material.
  8.  熱処理生成物の収率が、原料に対して75%以上である請求項1~7のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the yield of the heat treatment product is 75% or more based on the raw material.
  9.  熱処理生成物中のβ-2CaO・SiOの純度が90%以上である請求項1~8のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the purity of β-2CaO · SiO 2 in the heat-treated product is 90% or more.
  10.  請求項1~9のいずれかに記載の製造方法で得られるβ-2CaO・SiOを用いたセメント混和材。 A cement admixture using β-2CaO · SiO 2 obtained by the production method according to any one of claims 1 to 9.
PCT/JP2011/075610 2010-11-11 2011-11-07 Production method for β-2cao·sio2 WO2012063782A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180054445.2A CN103209925B (en) 2010-11-11 2011-11-07 Production method for beta-2CaOSiO2
JP2012542912A JP5852964B2 (en) 2010-11-11 2011-11-07 Method for producing β-2CaO · SiO 2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253174 2010-11-11
JP2010-253174 2010-11-11

Publications (1)

Publication Number Publication Date
WO2012063782A1 true WO2012063782A1 (en) 2012-05-18

Family

ID=46050927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075610 WO2012063782A1 (en) 2010-11-11 2011-11-07 Production method for β-2cao·sio2

Country Status (3)

Country Link
JP (1) JP5852964B2 (en)
CN (1) CN103209925B (en)
WO (1) WO2012063782A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002727A1 (en) * 2012-06-27 2014-01-03 電気化学工業株式会社 METHOD FOR PRODUCING γ-2CaO• SiO2
JP2014237560A (en) * 2013-06-06 2014-12-18 電気化学工業株式会社 Binder for carbonized housing material and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712362A (en) * 2016-04-25 2016-06-29 武汉科技大学 Beta-dicalcium silicate and preparation method thereof
CN109467382B (en) * 2018-10-24 2021-05-04 武汉理工大学 Based on gamma-C2S conductive material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036147A (en) * 1996-07-23 1998-02-10 Denki Kagaku Kogyo Kk Slaked lime-containing substance and its production
JPH11292578A (en) * 1998-04-06 1999-10-26 Hisamitsu Tsuyuki Belite slag
JP2002348580A (en) * 2001-05-28 2002-12-04 Shin Etsu Chem Co Ltd Apparatus and method for acetylene production
JP2004123409A (en) * 2002-09-30 2004-04-22 A & A Material Corp Method for manufacturing calcium silicate hydrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1015537B (en) * 1987-12-04 1992-02-19 淮南发电总厂 Process for extraction of alumina from powder coal ash with formation of gelmaterial b-c25
CN1039582C (en) * 1994-11-30 1998-08-26 桦甸市松源水泥有限公司 Process for producing, early strength expansive cement
JP3750001B2 (en) * 1996-07-26 2006-03-01 株式会社Inax Method for producing dicalcium silicate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036147A (en) * 1996-07-23 1998-02-10 Denki Kagaku Kogyo Kk Slaked lime-containing substance and its production
JPH11292578A (en) * 1998-04-06 1999-10-26 Hisamitsu Tsuyuki Belite slag
JP2002348580A (en) * 2001-05-28 2002-12-04 Shin Etsu Chem Co Ltd Apparatus and method for acetylene production
JP2004123409A (en) * 2002-09-30 2004-04-22 A & A Material Corp Method for manufacturing calcium silicate hydrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUMIO SHIBATA ET AL.: "Effect of Thermal History on beta?y Transformation of Pure Ca_2SiO_4", JOURNAL OF THE CERAMIC ASSOCIATION, JAPAN, vol. 91, no. 1059, 1983, pages 497 - 502 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002727A1 (en) * 2012-06-27 2014-01-03 電気化学工業株式会社 METHOD FOR PRODUCING γ-2CaO• SiO2
CN104411637A (en) * 2012-06-27 2015-03-11 电气化学工业株式会社 Method for producing gamma-2CaO. SiO2
JPWO2014002727A1 (en) * 2012-06-27 2016-05-30 デンカ株式会社 Method for producing γ-2CaO · SiO 2
CN104411637B (en) * 2012-06-27 2017-04-12 电气化学工业株式会社 Method for producing gamma-2CaO. SiO2
JP2014237560A (en) * 2013-06-06 2014-12-18 電気化学工業株式会社 Binder for carbonized housing material and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2012063782A1 (en) 2014-05-12
JP5852964B2 (en) 2016-02-03
CN103209925B (en) 2015-06-10
CN103209925A (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5730087B2 (en) Cement clinker manufacturing method
CN102791648B (en) Fired cement clinker product and method for producing the same
JP6057389B2 (en) Method for producing γ-2CaO · SiO 2
JP2019507098A (en) Calcium silicate cement capable of white carbonation, and production method and use thereof
KR20140066714A (en) Method for producing ternesite
JP5867734B2 (en) Method for producing β-2CaO · SiO 2
CA2990086A1 (en) Mineralizer for calcium sulfoaluminate ternesite cements
JP5914492B2 (en) Method for producing γ-2CaO · SiO 2
KR20120116896A (en) Composition of calcium sulfoaluminate type clinker, cement comprising the same and method of preparing the same
JP5852964B2 (en) Method for producing β-2CaO · SiO 2
JP2018002546A (en) Manufacturing method of calcium aluminate
JP2018002547A (en) Manufacturing method of calcium aluminate
CN100591636C (en) Silicate cement for manufacturing advanced silica refractory and manufacturing technique thereof
JP5867929B2 (en) Method for producing γ-2CaO · SiO 2
KR100806645B1 (en) Composition of clinker and method for preparing thereof
CN107117838B (en) Sulphate aluminium cement clinker containing tricalcium silicate and preparation method thereof
JP4164242B2 (en) Cement composition
WO2023063236A1 (en) METHOD FOR PRODUCING CALCINED PRODUCT CONTAINING γ-2CAO∙SIO2
JPS5913457B2 (en) Production method of calcia clinker
RU2168475C1 (en) Method of production of clinker used as raw material for manufacture of phosphate binder or fertilizer
JP5227150B2 (en) Fast-curing composition and method for producing the same
US2287455A (en) Corrected basic refractory
PL239948B1 (en) Method for obtaining high-temperature refractory magnesium clinker, modified by zirconium compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839276

Country of ref document: EP

Kind code of ref document: A1