JP2014237560A - Binder for carbonized housing material and manufacturing method therefor - Google Patents

Binder for carbonized housing material and manufacturing method therefor Download PDF

Info

Publication number
JP2014237560A
JP2014237560A JP2013120212A JP2013120212A JP2014237560A JP 2014237560 A JP2014237560 A JP 2014237560A JP 2013120212 A JP2013120212 A JP 2013120212A JP 2013120212 A JP2013120212 A JP 2013120212A JP 2014237560 A JP2014237560 A JP 2014237560A
Authority
JP
Japan
Prior art keywords
binder
carbonized
less
mass
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013120212A
Other languages
Japanese (ja)
Other versions
JP6238579B2 (en
Inventor
盛岡 実
Minoru Morioka
実 盛岡
慎 庄司
Shin Shoji
慎 庄司
樋口 隆行
Takayuki Higuchi
隆行 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2013120212A priority Critical patent/JP6238579B2/en
Publication of JP2014237560A publication Critical patent/JP2014237560A/en
Application granted granted Critical
Publication of JP6238579B2 publication Critical patent/JP6238579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a binder for a carbonized housing material large in flexural strength after carbonized curing, excellent in freeze-thaw resistance and small in length change rate.SOLUTION: There are provided (1) a binder for a carbonized housing material having the content of β-2CaO SiOof 40 to 70 mass%, the total amount of 3CaO SiOand a gap phase of 30 to 60 mass% and the content of gypsum of less than 1 mass% in terms of SO, (2) the binder for the carbonized housing material of (1) having the gap phase of 10 mass% or less and the content of 3CaO AlOof 5 mass% or less, (3) a manufacturing method of the binder for the carbonized housing material of (1) or (2) manufactured by using byproduct hydrated lime for a part or all of CaO raw material, (4) a manufacturing method of the binder of the carbonized housing material of (3) in which the byproduct hydrated lime is produced during generation of acethylene from carbide and (5) a manufacturing method of the binder for the carbonized housing material of (1) to (4) having a unit of COdischarge during production of the binder of 200 kg-CO/ton or less.

Description

本発明は、主に、土木・建築業界において使用される炭酸化建材用の結合材およびその製造方法に関する。   The present invention mainly relates to a binder for carbonized building materials used in the civil engineering / building industry and a method for producing the same.

住宅建材の代表としてスレート板が知られ、世界的に使用されている。スレート板の歴史は古く、初期のスレート板は繊維材料としてアスベストを使用してきた歴史がある。
しかし、アスベストの健康被害が深刻化するのに伴い、パルプ繊維に置き換わってきている。これは、スレート板がオートクレーブ養生を施されて生産されるため、その高温条件に耐える繊維としてパルプ繊維が選定されているためである。
Slate plates are known as a representative building material and are used worldwide. Slate boards have a long history, and early slate boards have used asbestos as a fiber material.
However, as the health damage of asbestos has become serious, it has been replaced by pulp fiber. This is because the pulp fiber is selected as a fiber that can withstand the high temperature conditions because the slate plate is produced by autoclave curing.

オートクレーブ養生を施されて生産されたスレート板の特徴としては、寸法変化が小さいという利点がある。一方、供用開始後に空気中の二酸化炭素と反応して中性化すると、強度低下が起こり、炭酸化に伴う収縮も惹起されて耐久性が低下することも明らかになってきている。
また、オートクレーブ養生は重油消費量が大きく、環境負荷の大きな養生方法と言える。近年では、寸法変化や長期の耐久性に加え、環境性能も重要視されている。したがって、環境負荷の小さいスレート板の生産方法が強く求められるようになっている。
As a feature of the slate plate produced by autoclave curing, there is an advantage that a dimensional change is small. On the other hand, when it reacts with carbon dioxide in the air after the start of service and becomes neutral, the strength is lowered and shrinkage due to carbonation is also induced, resulting in a decrease in durability.
Autoclave curing is a curing method that consumes a large amount of heavy oil and has a large environmental load. In recent years, in addition to dimensional changes and long-term durability, environmental performance is also regarded as important. Therefore, there is a strong demand for a method for producing a slate plate with a low environmental load.

炭酸化養生によって建材を得ようとする提案について見る。木質系セメント硬化体を炭酸化処理することで反り返りが発生しにくく、寸法安定性に優れた木質系セメント硬化体が提案されている(特許文献1)。
しかしながら、この建材の寸法安定性は未だ十分なものではなく、また、二酸化炭素の固定化能力も十分でなく、環境負荷低減への貢献度も十分なものではなかった。また、可燃性の木材チップが配合されているため、耐火性にも課題があった。
See proposals for obtaining building materials through carbonation curing. There has been proposed a hardened wood cement that is less likely to be warped by carbonizing the hardened wood cement and has excellent dimensional stability (Patent Document 1).
However, the dimensional stability of this building material is not yet sufficient, the carbon dioxide immobilization ability is not sufficient, and the contribution to reducing the environmental load is not sufficient. Moreover, since the combustible wood chip | tip was mix | blended, there also existed a subject also in fire resistance.

高炉セメント、高炉スラグ、モノサルフェートとセッコウを主成分とするスラリーを成形し、養生し、乾燥させる無機質製品において、廃熱ガスを用いて、乾燥と炭酸化を行う方法も提案されている(特許文献2)。
しかしながら、この方法では、強度発現性が十分でないばかりか、寸法安定性も未だ十分なものではなかった。また、表面が脆弱なものであり、粉吹き現象を呈しやすく、耐久性や美観に課題があった。
There has also been proposed a method of drying and carbonating using waste heat gas in inorganic products that are formed, cured and dried from blast furnace cement, blast furnace slag, monosulfate and gypsum as the main component (patent) Reference 2).
However, in this method, not only strength development is not sufficient, but also dimensional stability is not yet satisfactory. Moreover, the surface is fragile, it is easy to exhibit a powder blowing phenomenon, and there are problems in durability and aesthetics.

中性化による白華の発生を抑制する目的で、相対湿度80%以上、二酸化炭素濃度5〜25体積%で炭酸化させたセメント硬化体の製造方法も提案されている(特許文献3)。
この方法は、アルカリの溶出を抑え、エフロも防止できるものの、強度発現性が十分でないことに加え、寸法安定性を付与できるものではなく、また、二酸化炭素の固定化能力も十分でなく、環境負荷低減への貢献度も十分なものではなかった。
In order to suppress the generation of white flower due to neutralization, a method for producing a hardened cement body that has been carbonated at a relative humidity of 80% or more and a carbon dioxide concentration of 5 to 25% by volume has also been proposed (Patent Document 3).
Although this method can suppress alkali elution and prevent effusion, it does not have sufficient strength development, it cannot provide dimensional stability, and it does not have sufficient carbon dioxide immobilization ability. The contribution to load reduction was not sufficient.

本発明者らは、ビーライトを38%以上含有する炭酸化建材用セメントを提案した(特許文献4)。このセメントは、炭酸化養生することで高強度が得られ、特に曲げ強度が高くなるものであった。そして、その組成は、ビーライト含有量が38%〜60%、エーライトとアルミネートとフェライトの合計が少なくとも40%以下、加えて、アルミネートとフェライトはそれぞれ10%以下であり、セッコウ類をSO換算で1〜5%含むものであった。 The present inventors have proposed a cement for carbonated building materials containing 38% or more of belite (Patent Document 4). This cement obtained high strength by carbonation curing, and particularly had high bending strength. And its composition is that belite content is 38% -60%, total of alite, aluminate and ferrite is at least 40% or less, in addition, aluminate and ferrite are each 10% or less, It contained 1 to 5% in terms of SO 3 .

上記の組成に当てはまるセメントとして、日本では、低熱ポルトランドセメントがJIS化されている。
しかしながら、建材には曲げ強度のほか、寸法安定性や長期耐久性が求められる。その観点から従来の炭酸化建材用のセメント組成物は改良の余地を残していた。
In Japan, low heat Portland cement is JISed as a cement applicable to the above composition.
However, building materials are required to have dimensional stability and long-term durability in addition to bending strength. From this point of view, the conventional cement composition for carbonized building materials has left room for improvement.

特開2000−7466号公報JP 2000-7466 A 特開昭56−22688号公報JP 56-22688 A 特開平11−278961号公報Japanese Patent Laid-Open No. 11-278961 特開平10−194798号公報Japanese Patent Laid-Open No. 10-194798

各種のポルトランドセメントには、SO換算で1〜5%のセッコウが必須成分として含まれる。セッコウはポルトランドセメント中のアルミネート相の初期水和を制御して流動性や作業性を確保する目的で添加され、加えて、強度発現性にも貢献する。このため、必須成分として位置付けられてきた。
しかしながら、本発明者らが、曲げ強度が高く、寸法安定性や耐久性に優れる建材の製造方法を鋭意検討した中で、セッコウをSO換算で1%未満の範囲とした結合材を適用し、炭酸化養生を施すことによって、曲げ強度の更なる向上と、寸法安定性や耐久性の向上が実現できることを知見した。
Various Portland cements contain 1 to 5% gypsum as an essential component in terms of SO 3 . Gypsum is added for the purpose of controlling the initial hydration of the aluminate phase in Portland cement to ensure fluidity and workability, and also contributes to strength development. For this reason, it has been positioned as an essential component.
However, while the present inventors diligently studied a method for manufacturing a building material having high bending strength and excellent dimensional stability and durability, a binder having a gypsum content of less than 1% in terms of SO 3 was applied. It was discovered that by applying carbonation curing, further improvement in bending strength and improvement in dimensional stability and durability can be realized.

さらに、この炭酸化建材用の結合材を製造する際に、副生の消石灰を用いることにより、セメント生産時の燃料消費量を著しく低減でき、低温焼成が可能となること、CO排出量を大幅に低減できることを見出した。 Furthermore, by using this by-product slaked lime when producing this binder for carbonized building materials, fuel consumption during cement production can be significantly reduced, low temperature firing becomes possible, and CO 2 emissions are reduced. It was found that it can be greatly reduced.

そこで、本発明者らは、鋭意努力を重ねた結果、特定の結合材を適用し、かつ、特殊な養生方法を行って製造した建材が、高い曲げ強度を発現するばかりでなく、オートクレーブ養生を行わなくても寸法安定性に優れ、供用後の炭酸化に伴う強度低下や収縮も起こさず、凍結融解抵抗性も向上し、しかも、環境負荷低減に貢献できることを知見し、本発明を完成するに至った。 Therefore, as a result of intensive efforts, the inventors have not only developed high bending strength, but also applied autoclave curing as a result of applying a specific binder and performing a special curing method. Even if it is not performed, it is excellent in dimensional stability, does not cause a decrease in strength and shrinkage due to carbonation after in-service, improves freeze-thaw resistance, and contributes to reducing environmental burden, and completes the present invention. It came to.

本発明は、(1)β-2CaO・SiOの含有量が40〜70質量%、3CaO・SiOと間隙相との合計量が30〜60質量%であり、セッコウ含有量がSO換算で1質量%未満である炭酸化建材用の結合材、(2)間隙相が10質量%以下であり、3CaO・Alの含有量が5質量%以下である(1)の炭酸化建材用の結合材、(3)CaO原料の一部または全部に副生消石灰を用いて製造してなる(1)または(2)の炭酸化建材用の結合材の製造方法、(4)副生消石灰が、カーバイドからアセチレンを発生させる際に生じたものである(3)の炭酸化建材用の結合材の製造方法、(5)結合材生産時のCO排出量原単位が200kg−CO/ton以下である(1)〜(4)の炭酸化建材用の結合材の製造方法。である。 In the present invention, (1) the content of β-2CaO · SiO 2 is 40 to 70% by mass, the total amount of 3CaO · SiO 2 and the gap phase is 30 to 60% by mass, and the gypsum content is converted to SO 3 (1) Carbonation of (1) wherein the interstitial phase is 10% by mass or less and the content of 3CaO.Al 2 O 3 is 5% by mass or less. (1) or (2) a method for producing a carbonized building material binder, wherein (4) the binder is used for building materials; (3) a part or all of the CaO raw material is produced using by-product slaked lime; raw slaked lime, a method of manufacturing a binder for carbonation building materials arose in generating the acetylene from carbide (3), (5) CO 2 emissions per unit of time binding material production 200 kg-CO is 2 / ton or less (1) to manufacture side of the binder for carbonation building materials (4) . It is.

本発明の炭酸化建材用の結合材を用いて炭酸化養生を施すことにより、従来のセメント組成物を用いてオートクレーブ養生を施したセメント硬化体と比較して、強度発現性に優れ、寸法安定性に優れ、供用後の炭酸化に伴う強度低下や収縮も起こさず、凍結融解抵抗性も向上し、環境負荷の小さい建材が得られるなどの効果を奏する。   By applying carbonation curing using the binder for carbonized building materials of the present invention, compared with a hardened cement body subjected to autoclave curing using a conventional cement composition, it has excellent strength development and dimension stability. It has excellent properties, does not cause a decrease in strength and shrinkage due to carbonation after in-service, improves freeze-thaw resistance, and produces a building material with a small environmental load.

以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定しない限り質量基準で示す。
また、本発明で云うセメントコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートの総称である。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
The cement concrete referred to in the present invention is a general term for cement paste, cement mortar, and concrete.

本発明で使用する炭酸化建材用の結合材は、β-2CaO・SiOの含有量が40〜70%、3CaO・SiOと間隙相(3CaO・Alと4CaO・Al・Fe)との合計量が30〜60%であり、セッコウ含有量がSO換算で1%未満であることを特徴とする。
間隙相の含有量は10%以下が好ましく、中でも3CaO・Alの含有量が5%以下であることがより好ましい。間隙相が10%を超えたり、3CaO・Al含有量が5%を超えると、流動性が悪くなったり、炭酸化養生後の曲げ強度が十分でない場合がある。
β-2CaO・SiOの含有量が40%未満では、炭酸化養生後の曲げ強度が十分でない場合や、流動性が悪くなる場合がある。逆に、70%を超えると、脱型強度の確保が難しくなり、生産性が悪くなる場合がある。
3CaO・SiOと間隙相との合計量が30%未満では、脱型強度の確保が難しくなり、逆に、60%を超えると、炭酸化養生後の曲げ強度が十分でない場合や、流動性が悪くなる場合がある。特に間隙相の含有量は10%以下が好ましい。間隙相が10%を超えると、流動性が悪くなる場合や、炭酸化養生後の曲げ強度が十分でない場合がある。
Binder for carbonation building materials for use in the present invention, beta-2CaO · SiO 2 content is 40 to 70%, 3CaO · SiO 2 and a gap phase (3CaO · Al 2 O 3 and 4CaO · Al 2 O 3 · Fe 2 O 3) total amount of is 30 to 60% gypsum content and less than 1% converted to SO 3.
The interstitial phase content is preferably 10% or less, and more preferably 3CaO.Al 2 O 3 content is 5% or less. If the interstitial phase exceeds 10% or the 3CaO · Al 2 O 3 content exceeds 5%, the fluidity may deteriorate or the bending strength after carbonation curing may not be sufficient.
If the content of β-2CaO · SiO 2 is less than 40%, the bending strength after carbonation curing may not be sufficient, or the fluidity may deteriorate. On the other hand, when it exceeds 70%, it is difficult to secure the mold release strength, and the productivity may deteriorate.
If the total amount of 3CaO.SiO 2 and the interstitial phase is less than 30%, it is difficult to ensure the demolding strength. Conversely, if it exceeds 60%, the bending strength after carbonation curing is insufficient, or the fluidity May get worse. In particular, the gap phase content is preferably 10% or less. If the interstitial phase exceeds 10%, the fluidity may be deteriorated or the bending strength after carbonation curing may not be sufficient.

本発明のセッコウとは、無水、半水、および二水の各セッコウを総称するもので特に限定されるものではない。
本発明では、セッコウ含有量はSO換算で1%未満である。本発明において、セッコウ含有量は極めて重要である。セッコウ含有量をSO換算で1%未満とすることで、炭酸化養生後の曲げ強度をさらに高めることができる。また、寸法安定性や耐久性が向上する。耐久性の具体例としては、供用後の強度低下がないこと、凍結融解抵抗性が向上することが挙げられる。より好ましくは、SO換算で0.5%以下であり、0.3%以下が最も好ましい。
The gypsum of the present invention is a general term for each gypsum of anhydrous, semi-water, and dihydrate, and is not particularly limited.
In the present invention, the gypsum content is less than 1% in terms of SO 3 . In the present invention, the gypsum content is extremely important. By setting the gypsum content to less than 1% in terms of SO 3 , the bending strength after carbonation curing can be further increased. Moreover, dimensional stability and durability are improved. Specific examples of durability include no reduction in strength after in-service and improved freeze-thaw resistance. More preferably, it is 0.5% or less in terms of SO 3 and most preferably 0.3% or less.

本発明の結合材を製造する際の原料としては、特に限定されるものではないが、CaO原料としては、例えば、石灰石や炭酸カルシウムの他、水酸化カルシウムを用いることもできる。本発明では、CaO原料の一部または全部に、副生消石灰を用いて製造することが望ましい。CaO原料として、副生消石灰を用いることにより、本発明の結合材を製造する際のCO排出量原単位を著しく低減することが可能である。特に、副生消石灰が、カーバイドからアセチレンを発生させる際に生じたものであることが望ましい。
これを適用することで、本発明の結合材を生産する際のCO排出量原単位が200kg−CO/ton以下となる。通常、ポルトランドセメントのCO排出量原単位は750kg−CO/ton程度とされ、副産物である高炉スラグを多量に混和した高炉セメントのCO排出量原単位でも450kg−CO/ton程度とされている(土木学会:コンクリート技術シリーズ No.44、コンクリートの環境負荷評価、p.I−25(2002))。つまり、本発明の結合材は大幅に環境負荷低減に貢献できるのである。
SiO原料としては、特に限定されるものではないが、ケイ石微粉末、粘土、シリカフューム、フライアッシュ、非晶質シリカ、その他、各産業から副生するシリカ質の物質を選定できる。
Al原料としては、特に限定されるものではないが、フライアッシュ、粘土、明礬石、ボーキサイト、その他、各産業から副生するアルミ質の物質を選定できる。
Fe原料としては、特に限定されるものではないが、フライアッシュ、ヘマタイト、リモナイト、マグネタイト、ウスタイト、マグヘマイト、その他、各産業から副生する鉄質の物質を選定できる。
Although it does not specifically limit as a raw material at the time of manufacturing the binder of this invention, As a CaO raw material, calcium hydroxide can also be used other than limestone or calcium carbonate, for example. In the present invention, it is desirable to produce by-product slaked lime for some or all of the CaO raw material. By using by-product slaked lime as a CaO raw material, it is possible to remarkably reduce the CO 2 emission basic unit when producing the binder of the present invention. In particular, it is desirable that the byproduct slaked lime is generated when acetylene is generated from carbide.
By applying this, the CO 2 emission basic unit when producing the binding material of the present invention is 200 kg-CO 2 / ton or less. Normally, the basic unit of CO 2 emission of Portland cement is about 750 kg-CO 2 / ton, and the basic unit of CO 2 emission of blast furnace cement mixed with a large amount of by-product blast furnace slag is about 450 kg-CO 2 / ton. (Japan Society of Civil Engineers: Concrete Technology Series No. 44, Environmental Impact Assessment of Concrete, p.I-25 (2002)). That is, the binding material of the present invention can greatly contribute to reducing the environmental load.
The SiO 2 raw material is not particularly limited, can be selected quartzite powder, clay, silica fume, fly ash, amorphous silica, etc., the material of the siliceous by-produced from each industry.
The al 2 O 3 raw material, is not particularly limited, can be selected fly ash, clay, alunite, bauxite, other substances aluminum electrolyte by-produced from each industry.
The Fe 2 O 3 raw material is not particularly limited, but it is possible to select fly ash, hematite, limonite, magnetite, wustite, maghemite, and other iron-based substances by-produced from each industry.

本発明の結合材は、CaO原料、SiO原料、あるいは、CaO原料、SiO原料、Al原料、Fe原料を混合して、熱処理することによって得られる。熱処理方法は、キルンでの焼成や電気炉での溶融等が挙げられる。
熱処理温度は、原料の配合にもよるが1200℃〜1600℃が好ましく、1250℃〜1500℃がより好ましい。1200℃未満では効率良く反応が進まず遊離石灰が多く生成する場合がある。逆に、熱処理温度が1600℃を超えても化合物の生成反応の更なる改善は期待できない一方、消費エネルギーが大きくなり、コスト高となるばかりか、環境負荷も大きくなるため望ましくない。
The binder of the present invention can be obtained by mixing and heat-treating a CaO raw material, a SiO 2 raw material, or a CaO raw material, a SiO 2 raw material, an Al 2 O 3 raw material, or a Fe 2 O 3 raw material. Examples of the heat treatment method include baking in a kiln and melting in an electric furnace.
Although heat processing temperature is based also on the mixing | blending of a raw material, 1200 to 1600 degreeC is preferable and 1250 to 1500 degreeC is more preferable. If it is less than 1200 degreeC, reaction may not advance efficiently and a lot of free lime may be generated. On the contrary, even if the heat treatment temperature exceeds 1600 ° C., further improvement of the compound formation reaction cannot be expected. On the other hand, not only is the energy consumption increased, the cost is increased, but the environmental load is also increased.

CaO原料とSiO原料などの混合物を熱処理して得られたクリンカーを粉砕して粉末にすることで結合材として利用できる。
結合材の粉末度は、ブレーン比表面積値(以下、ブレーン値という)で2,000〜8,000cm/gが好ましく、3,000〜6,000cm/gがより好ましく、4,000〜5,000cm/gが最も好ましい。2000cm/g未満では充分な強度発現性が得られない場合があり、8,000cm/gを超えるように微粉化してもさらなる効果の向上が期待できず、消費エネルギーが大きくなり、コスト高となるばかりか、環境負荷も大きくなるため望ましくない。
The clinker obtained by heat-treating a mixture of a CaO raw material and a SiO 2 raw material is pulverized into a powder and can be used as a binder.
The fineness of the binder is preferably from 2,000 to 8,000 cm 2 / g, more preferably from 3,000 to 6,000 cm 2 / g, and more preferably from 4,000 to 2,000 in terms of the specific surface area of the brain (hereinafter referred to as the “brane value”). Most preferred is 5,000 cm 2 / g. If it is less than 2000 cm 2 / g, sufficient strength development may not be obtained, and even if it is pulverized to exceed 8,000 cm 2 / g, further improvement in effect cannot be expected, resulting in increased energy consumption and high cost. In addition, it is not desirable because it increases the environmental load.

本発明では、セッコウはSO換算で1%未満の範囲で添加できる。セッコウはクリンカーと同時粉砕しても良いし、別々に粉砕した後、混合してもよい。 In the present invention, gypsum can be added in a range of less than 1% in terms of SO 3 . Gypsum may be pulverized simultaneously with the clinker, or may be pulverized separately and then mixed.

本発明では、本発明の結合材の他に、高炉スラグ、フライアッシュ、シリカフューム、石灰石粉末、高炉徐冷スラグ微粉末、都市ゴミ焼却灰、下水汚泥焼却灰、砂等の細骨材や砂利等の粗骨材、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、従来の防錆剤、防凍剤、収縮低減剤、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、繊維物質からなる群のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。   In the present invention, in addition to the binder of the present invention, blast furnace slag, fly ash, silica fume, limestone powder, blast furnace slow-cooled slag fine powder, municipal waste incineration ash, sewage sludge incineration ash, fine aggregates such as sand, gravel, etc. Coarse aggregate, expansion material, rapid hardening material, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, antifoaming agent, thickener, conventional rust preventive agent, antifreeze agent, shrinkage reducing agent , A coagulation modifier, clay minerals such as bentonite, anion exchangers such as hydrotalcite, or one or more of the group consisting of fiber materials, in a range that does not substantially impair the object of the present invention. Is possible.

本発明において、材料の混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、およびナウタミキサ等の使用が可能である。   In the present invention, any existing apparatus can be used as the material mixing apparatus. For example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.

以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.

「実験例1」
まず、炭酸化建材用の結合材を製造した。CaO原料として石灰石微粉末を、SiO原料としてケイ石微粉末、SiO原料、Al原料、Fe原料としてフライアッシュを使用した。
この原料を所定の割合で混合粉砕し、造粒し、熱処理して表1に示すようなクリンカーを製造した。熱処理温度は、バーナーの焼点温度で1450℃±30℃で行った。得られたクリンカーを粉砕し、セッコウを添加することなくそのまま炭酸化建材用の結合材とした。
この結合材を用いて、水/結合材比50%、結合材と砂の質量比率が1/3のモルタルを調製した。50℃で4時間の蒸気養生を施した後、脱型し、脱型時の強度を測定した。さらに、脱型後から炭酸化養生を施し、所定の材齢で強度を測定し、さらに、凍結融解、長さ変化を測定した。炭酸化養生の条件は、30℃・相対湿度60%・COガス濃度10体積%の条件で7日間行った。
"Experiment 1"
First, a binder for carbonized building materials was manufactured. Limestone powder as CaO raw material, was used Silica fine powder as SiO 2 raw material, SiO 2 material, Al 2 O 3 raw material, fly ash as Fe 2 O 3 raw material.
The raw materials were mixed and pulverized at a predetermined ratio, granulated, and heat-treated to produce clinker as shown in Table 1. The heat treatment temperature was 1450 ° C. ± 30 ° C. as the burning point temperature of the burner. The obtained clinker was pulverized and used as a binder for carbonated building materials without adding gypsum.
Using this binder, a mortar having a water / binder ratio of 50% and a mass ratio of binder to sand of 1/3 was prepared. After steam curing at 50 ° C. for 4 hours, the mold was removed and the strength at the time of removal was measured. Furthermore, carbonation curing was applied after demolding, the strength was measured at a predetermined age, and freeze-thaw and length change were further measured. The carbonation curing conditions were 7 days under the conditions of 30 ° C., relative humidity 60%, and CO 2 gas concentration 10 volume%.

<使用材料>
CaO原料(1):石灰石微粉末、CaOが55.4%、MgOが0.37%、Alが0.05%、Feが0.02%、SiOが0.10%、強熱減量が43.57%。150μm通過率97.%、100μm通過率91.9%。
SiO原料:ケイ石微粉末、SiO成分:97.0%、Al成分:2.0%、Fe成分:0.1%、
SiO原料、Al原料、Fe原料:フライアッシュ、CaO成分:5.2%、SiO成分:62.5%、Al成分:21.8%、Fe成分:4.8%、SO成分:0.5%、強熱減量:3.2%、その他2.0%。
<Materials used>
CaO raw material (1): limestone fine powder, CaO 55.4%, MgO 0.37%, Al 2 O 3 0.05%, Fe 2 O 3 0.02%, SiO 2 0.10 %, Loss on ignition is 43.57%. 150 μm passage rate 97. %, 100 μm passage rate 91.9%.
SiO 2 raw material: quartzite fine powder, SiO 2 component: 97.0%, Al 2 O 3 component: 2.0%, Fe 2 O 3 component: 0.1%,
SiO 2 raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material: fly ash, CaO component: 5.2%, SiO 2 component: 62.5%, Al 2 O 3 component: 21.8%, Fe 2 O 3 components: 4.8%, SO 3 components: 0.5%, loss on ignition: 3.2%, other 2.0%.

(試験方法)
鉱物組成:化学成分値からボーグの式を用いて求めた。
S=(4.07×CaO)−(7.60×SiO)−(6.72×Al)−(1.43×Fe)−(2.85×SO
S=(2.87×SiO)−(0.754×CS)
A=(2.65×Al)−(1.69×Fe
AF=(3.04×Fe
ここで、CSは3CaO・SiO、CSは2CaO・SiO、CAは3CaO・Al、CAFは4CaO・Al・Fe)、である。
モルタルの脱型強度:JIS R 5201に準じて圧縮強さを測定した。
炭酸化養生後のモルタルのCO含有量:クーロメータ(日本アンス社製)を用いて無機の炭素量から測定。
炭酸化養生後のモルタル曲げ強度:供試体サイズは4×4×16cmとし、それ以外はJIS A 1106に準じて曲げ強度を測定した。
炭酸化養生後のモルタルの凍結融解:JIS A 1148に準じて行った。500サイクルまで動弾性係数の相対値が60%以上を確保した場合は○、300サイクルまで動弾性係数の相対値が60%以上を確保した場合は△、300サイクル未満で動弾性係数の相対値が60%未満に低下した場合は×とした。
炭酸化養生後のモルタルの長さ変化率:JIS A 1129−3に準拠して測定した。
(Test method)
Mineral composition: It was determined from the chemical component value using the Borg formula.
C 3 S = (4.07 × CaO ) - (7.60 × SiO 2) - (6.72 × Al 2 O 3) - (1.43 × Fe 2 O 3) - (2.85 × SO 3 )
C 2 S = (2.87 × SiO 2 ) − (0.754 × C 3 S)
C 3 A = (2.65 × Al 2 O 3 ) − (1.69 × Fe 2 O 3 )
C 4 AF = (3.04 × Fe 2 O 3 )
Here, C 3 S is 3CaO · SiO 2, C 2 S is 2CaO · SiO 2, C 3 A is 3CaO · Al 2 O 3, C 4 AF are 4CaO · Al 2 O 3 · Fe 2 O 3), in is there.
Demolding strength of mortar: Compressive strength was measured according to JIS R 5201.
CO 2 content of the mortar after carbonation curing: measuring the carbon content of the inorganic using coulometer (manufactured by Nippon ans Co.).
Mortar bending strength after carbonation curing: The specimen size was 4 × 4 × 16 cm, and the bending strength was measured in accordance with JIS A 1106 for the rest.
Freezing and thawing of mortar after carbonation curing: Measured according to JIS A 1148. ○ when the relative value of the dynamic elastic modulus is 60% or more up to 500 cycles, △ when the relative value of the dynamic elastic modulus is 60% or more up to 300 cycles, and the relative value of the dynamic elastic modulus under 300 cycles X was reduced to less than 60%.
Rate of change in mortar length after carbonation curing: Measured according to JIS A 1129-3.

Figure 2014237560
Figure 2014237560

表1より、β-2CaO・SiOの含有量が40〜70%、3CaO・SiOと間隙相との合計量が30〜60%であり、セッコウ含有量がSO換算で1%未満であると、炭酸化養生後の曲げ強度が大きく、凍結融解抵抗性に優れ、長さ変化率も小さくなることがわかる。中でも、間隙相が10%以下であり、3CaO・Alの含有量が5%以下であるものが特に優れることが分かる。 From Table 1, the content of β-2CaO · SiO 2 40 to 70%, a total amount of 3CaO · SiO 2 and a gap phase 30-60% gypsum content is less than 1% converted to SO 3 If it exists, it turns out that the bending strength after carbonation curing is large, it is excellent in freeze-thaw resistance, and the length change rate also becomes small. In particular, it can be seen that those having a gap phase of 10% or less and a content of 3CaO.Al 2 O 3 of 5% or less are particularly excellent.

「実験例2」
実験No.1-4のクリンカーを使用し、SO含有量が表2のようになるように二水セッコウ(試薬、市販品)を添加したこと以外は実験例1と同様に行った。結果を表2に示す。
"Experimental example 2"
Experiment 1 was carried out in the same manner as in Experimental Example 1 except that the clinker of No. 1-4 was used and dihydrate gypsum (reagent, commercially available product) was added so that the SO 3 content was as shown in Table 2. The results are shown in Table 2.

Figure 2014237560
Figure 2014237560

表2より、SO換算で1%未満のセッコウ添加量であると、炭酸化養生後の曲げ強度が大きく、凍結融解抵抗性に優れ、長さ変化率も小さくなることが分かる。なお、2.0%はポルトランドセメントの標準的なSO添加率に相当する。 From Table 2, it can be seen that when the amount of gypsum added is less than 1% in terms of SO 3 , the bending strength after carbonation curing is large, the freeze-thaw resistance is excellent, and the length change rate is also small. Note that 2.0% corresponds to the standard SO 3 addition rate of Portland cement.

「実験例3」
実験No.1-4のクリンカー組成となるように原料を配合し、CaO原料として副生の消石灰を使用して比較検討したこと以外は実験例1と同様に行った。結果を表3に示す。
"Experiment 3"
The experiment was performed in the same manner as in Experiment Example 1 except that the raw materials were blended so as to have the clinker composition of Experiment No. 1-4 and a comparative study was performed using by-product slaked lime as a CaO raw material. The results are shown in Table 3.

<使用材料>
CaO原料(1):石灰石微粉末、CaOが55.4%、MgOが0.37%、Alが0.05%、Feが0.02%、SiOが0.10%、強熱減量が43.57%。150μm通過率97.%、100μm通過率91.9%。
CaO原料(2):副生消石灰、カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰、CaOが73.1%、MgOが0.07%、Alが0.55%、Feが0.28%、SiOが0.95%、SOが1.31%、NaOが0.03%、KOが0.02%、強熱減量が23.80%。150μm通過率99.5%、100μm通過率96.9%。
CaO原料(3):CaO原料(1)30%とCaO原料(2)70%の混合物。
CaO原料(4):CaO原料(1)50%とCaO原料(2)50%の混合物。
CaO原料(5):CaO原料(1)70%とCaO原料(2)30%の混合物。
<Materials used>
CaO raw material (1): limestone fine powder, CaO 55.4%, MgO 0.37%, Al 2 O 3 0.05%, Fe 2 O 3 0.02%, SiO 2 0.10 %, Loss on ignition is 43.57%. 150 μm passage rate 97. %, 100 μm passage rate 91.9%.
CaO raw material (2): by-product slaked lime, slaked lime produced as a by-product after the reaction of calcium carbide and water to generate acetylene, CaO 73.1%, MgO 0.07%, Al 2 O 3 0. 55%, Fe 2 O 3 0.28%, SiO 2 0.95%, SO 3 1.31%, Na 2 O 0.03%, K 2 O 0.02%, loss on ignition Is 23.80%. 150 μm passage rate 99.5%, 100 μm passage rate 96.9%.
CaO raw material (3): A mixture of 30% CaO raw material (1) and 70% CaO raw material (2).
CaO raw material (4): Mixture of CaO raw material (1) 50% and CaO raw material (2) 50%.
CaO raw material (5): a mixture of 70% CaO raw material (1) and 30% CaO raw material (2).

(測定方法)
焼成エネルギー:石灰石をCaO原料として用いた際の重油使用量と電力使用量の総和エネルギーを100とし、相対値で示した。
収率:ロータリーキルンにフィードした原料の質量を100とした時の得られた焼成物の質量の比率を100分率で示した。
(Measuring method)
Firing energy: The total energy of heavy oil usage and power usage when limestone is used as a CaO raw material is defined as 100, and is expressed as a relative value.
Yield: The ratio of the mass of the fired product obtained when the mass of the raw material fed to the rotary kiln was taken as 100 was shown as 100 fractions.

Figure 2014237560
Figure 2014237560

表3より、副生消石灰を用いた場合にエネルギーを大幅に削減でき、収率も著しく向上することが分かる。また、得られたクリンカーから調製した結合材の物性も良好であることが分かる。 From Table 3, it can be seen that when by-product slaked lime is used, the energy can be greatly reduced and the yield is also significantly improved. Moreover, it turns out that the physical property of the binder prepared from the obtained clinker is also favorable.

「実験例4」
実験例3の結合材の製造にかかる原料由来と燃料由来のCO排出量原単位を算出した。なお、重油や電力のCO排出量原単位は、土木学会、コンクリート技術シリーズ62、コンクリートの環境負荷評価(その2)、p.39のインベントリデータを用いて算出した。重油は2.97kg−CO/リットル、電力は0.407kg−CO/kWhを用いた。また、炭酸化養生後の供試体を用いてCO吸収量を定量した。結果を表4に示す。
"Experimental example 4"
The raw material-derived and fuel-derived CO 2 emission basic units for production of the binder of Experimental Example 3 were calculated. The basic unit of CO 2 emissions of heavy oil and electric power is the same as that of Japan Society of Civil Engineers, Concrete Technology Series 62, Environmental Impact Assessment of Concrete (Part 2), p. Calculations were made using 39 inventory data. Heavy oil 2.97kg-CO 2 / l, the power used was 0.407kg-CO 2 / kWh. Moreover, the amount of CO 2 absorption was quantified using the specimen after carbonation curing. The results are shown in Table 4.

(測定方法)
CO吸収量:クーロメータ(日本アンス社製)を用いて無機の炭素量から測定。強熱減量を差し引いた結合材100部に対するCO量に換算し、結合材1tあたりのCO吸収量を定量した。
CO排出量:原料由来のCO排出量と燃料由来のCO排出量を計算した。
(Measuring method)
CO 2 absorption amount: measured from the amount of inorganic carbon using a coulometer (manufactured by Nippon Anse). The amount of CO 2 absorbed per 1 ton of binding material was quantified by converting the amount of CO 2 to 100 parts of the binding material after subtracting the loss on ignition.
CO 2 emissions: calculated CO 2 emissions from the raw material and CO 2 emissions from the fuel.

Figure 2014237560
Figure 2014237560

表4より、副生消石灰をCaO原料の一部に用いた場合に、CO排出量原単位が著しく小さいことが分かる。また、CaO原料に占める副生消石灰の割合が一定以上になると、炭酸化養生後のCO吸収量の方が大きな値となっていることも分かる。 From Table 4, it can be seen that when by-product slaked lime is used as a part of the CaO raw material, the CO 2 emission basic unit is remarkably small. It can also be seen that when the proportion of by-product slaked lime in the CaO raw material exceeds a certain level, the amount of CO 2 absorbed after carbonation curing is larger.

本発明の炭酸化建材用の結合材を使用することにより、炭酸化養生後の曲げ強度が大きく、凍結融解抵抗性に優れ、長さ変化率も小さくなるため、主に、土木・建築業界などにおいて広範な用途に適する。   By using the binder for carbonated building materials of the present invention, the bending strength after carbonation curing is large, the resistance to freezing and thawing is excellent, and the rate of change in length is also small. Suitable for a wide range of applications.

Claims (5)

β-2CaO・SiOの含有量が40〜70質量%、3CaO・SiOと間隙相との合計量が30〜60質量%であり、セッコウ含有量がSO換算で1質量%未満である炭酸化建材用の結合材。 The content of β-2CaO · SiO 2 40 to 70 wt%, a total amount of 3CaO · SiO 2 and a gap phase 30 to 60% by weight, gypsum content is less than 1 mass% converted to SO 3 Bonding material for carbonated building materials. 間隙相が10質量%以下であり、3CaO・Alの含有量が5質量%以下である請求項1に記載の炭酸化建材用の結合材。 The binder for carbonized building materials according to claim 1, wherein the interstitial phase is 10% by mass or less, and the content of 3CaO · Al 2 O 3 is 5% by mass or less. CaO原料の一部または全部に副生消石灰を用いて製造してなる請求項1または2に記載の炭酸化建材用の結合材の製造方法。 The manufacturing method of the binder for carbonated building materials of Claim 1 or 2 formed by using by-product slaked lime for some or all of CaO raw materials. 副生消石灰が、カーバイドからアセチレンを発生させる際に生じたものであることを特徴とする請求項3に記載の炭酸化建材用の結合材の製造方法。 The method for producing a binder for a carbonated building material according to claim 3, wherein the by-product slaked lime is produced when acetylene is generated from carbide. 結合材生産時のCO排出量原単位が200kg−CO/ton以下であることを特徴とする請求項1〜4に記載の炭酸化建材用の結合材の製造方法。 Method for producing a binding material for the carbonation building material of claim 1, wherein the CO 2 emissions per unit of time of the binder production is less than 200 kg-CO 2 / ton.
JP2013120212A 2013-06-06 2013-06-06 A binder for carbonated building materials and a method for producing the same. Active JP6238579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013120212A JP6238579B2 (en) 2013-06-06 2013-06-06 A binder for carbonated building materials and a method for producing the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013120212A JP6238579B2 (en) 2013-06-06 2013-06-06 A binder for carbonated building materials and a method for producing the same.

Publications (2)

Publication Number Publication Date
JP2014237560A true JP2014237560A (en) 2014-12-18
JP6238579B2 JP6238579B2 (en) 2017-11-29

Family

ID=52135095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013120212A Active JP6238579B2 (en) 2013-06-06 2013-06-06 A binder for carbonated building materials and a method for producing the same.

Country Status (1)

Country Link
JP (1) JP6238579B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200095166A1 (en) * 2017-03-29 2020-03-26 Kusunoki Sekkai Co. Ltd. Molded article using hydraulic lime and method for producing same
WO2022264797A1 (en) * 2021-06-14 2022-12-22 Jfeスチール株式会社 Method for estimating carbonation rate of steelmaking slag and method for carbonation treatment of steelmaking slag
WO2023136328A1 (en) * 2022-01-14 2023-07-20 デンカ株式会社 Co2 fixing material and method for producing co2 fixation product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663851A (en) * 1979-10-29 1981-05-30 Shingijiyutsu Kigiyou Kk Cement
JPH10194798A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Carbonated cement, hardened cement and its production
JP2000072497A (en) * 1998-08-19 2000-03-07 Taiheiyo Cement Corp Cement for highly fluid shotcrete
WO2012063782A1 (en) * 2010-11-11 2012-05-18 電気化学工業株式会社 Production method for β-2cao·sio2

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663851A (en) * 1979-10-29 1981-05-30 Shingijiyutsu Kigiyou Kk Cement
JPH10194798A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Carbonated cement, hardened cement and its production
JP2000072497A (en) * 1998-08-19 2000-03-07 Taiheiyo Cement Corp Cement for highly fluid shotcrete
WO2012063782A1 (en) * 2010-11-11 2012-05-18 電気化学工業株式会社 Production method for β-2cao·sio2

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200095166A1 (en) * 2017-03-29 2020-03-26 Kusunoki Sekkai Co. Ltd. Molded article using hydraulic lime and method for producing same
WO2022264797A1 (en) * 2021-06-14 2022-12-22 Jfeスチール株式会社 Method for estimating carbonation rate of steelmaking slag and method for carbonation treatment of steelmaking slag
WO2023136328A1 (en) * 2022-01-14 2023-07-20 デンカ株式会社 Co2 fixing material and method for producing co2 fixation product
JP2023103808A (en) * 2022-01-14 2023-07-27 デンカ株式会社 Co2 immobilizing material and manufacturing method of co2 immobilized product
JP7474275B2 (en) 2022-01-14 2024-04-24 デンカ株式会社 Method for producing CO2 immobilization material and CO2 immobilization product

Also Published As

Publication number Publication date
JP6238579B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5091519B2 (en) Geopolymer composition and method for producing the same
JP5818579B2 (en) Neutralization suppression type early strong cement composition
JP5113496B2 (en) Ultrafast cement composition, superhard mortar or concrete composition, and ultrafast grout mortar
JPWO2002022518A1 (en) Cement composition
JP2013103865A (en) Method of manufacturing cement paste
JP2007320834A (en) Ultra rapid hardening cement composition, ultra rapid hardening cement concrete composition and ultra rapid hardening cement concrete
JP4290628B2 (en) Ultrafast cement composition, superhard mortar composition, and ultrafast grout mortar
KR101388202B1 (en) Ecofriendly binder and mortar composition for radiant heating floor panel
KR101201924B1 (en) High Functional Binder Composition for Carbon Dioxide Reduction Displaying Properties of Early Strength
JP6238579B2 (en) A binder for carbonated building materials and a method for producing the same.
JP4925564B6 (en) Super-fast-hardening cement admixture, super-fast-hardening cement composition, super-fast-hardening grout mortar, and cured mortar using the same
JP5122316B2 (en) Cement additive and cement composition
JP6036167B2 (en) Low carbon type cement paste composition
JP4908072B2 (en) Cement additive and cement composition
JP4201265B2 (en) Ultra-fast hardening / high flow mortar composition and super fast hardening / high flow mortar composition
JP6383417B2 (en) Method for producing binder for carbonated building materials
KR101345203B1 (en) Low alkali non-cement concrete composition with tannin and block unit comprising the same
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP6003900B2 (en) Cement admixture manufacturing method
JP7210677B1 (en) Non-hydraulic cement composition and cementitious material
JP2018158850A (en) Method for producing cement clinker
JP2023028441A (en) Grout material, grout mortar composition and cured body
JP2023030482A (en) Repair material, repair mortar composition, and cured product
JP5177963B2 (en) Method for imparting expansibility to hardened cement concrete
JP2012153565A (en) Building composition, and method for producing carbonated building material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250