JPS6344708B2 - - Google Patents

Info

Publication number
JPS6344708B2
JPS6344708B2 JP56116482A JP11648281A JPS6344708B2 JP S6344708 B2 JPS6344708 B2 JP S6344708B2 JP 56116482 A JP56116482 A JP 56116482A JP 11648281 A JP11648281 A JP 11648281A JP S6344708 B2 JPS6344708 B2 JP S6344708B2
Authority
JP
Japan
Prior art keywords
raw material
clinker
raw materials
rankinite
rotary kiln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56116482A
Other languages
Japanese (ja)
Other versions
JPS5820758A (en
Inventor
Hajime Kato
Masaru Shirasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP56116482A priority Critical patent/JPS5820758A/en
Publication of JPS5820758A publication Critical patent/JPS5820758A/en
Publication of JPS6344708B2 publication Critical patent/JPS6344708B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はランキナイト(3CaO、2SiO2)を主
要構成々分とする合成原料を製造する方法に関す
るものである。 ランキナイトは偽ケイ灰石(高温型CaO、
SiO2)と共にCaOを含有する鉱物のうちで水和
活性が少く、かつ結合水を持たない、化学的に安
定した鉱物であつて、これを窯業原料として使用
した場合、焼成収縮の少ない製品が得られ、かつ
製品の透光性などの物理的性質を改善することが
できる。この鉱物は天然に産することは知られて
いるが、その量は工業的に利用できる程度でな
い。 本発明者等はこのランキナイトを主成分とした
合成原料を石灰質原料とケイ酸質原料とより製造
せんとし種々研究したところ、石灰質原料粉末と
ケイ酸質原料粉末とをそれぞれCaOおよびSiO2
換算にてモル比で3:2の割合に混合し、融点以
下の温度に長時間焼成しても、反応はなかなか完
結せず、得られたクリンカ中のランキナイトは少
なく、遊離石灰、ケイ酸二石灰(2CaO・SiO2
などの水和活性に富む中間生成物を大量に含有す
るクリンカになつた。しかるに石灰質原料、ケイ
酸質原料との化学組成(CaO/SiO2重量比)が
特定割合になるように混合し、この混合物に鉱化
剤としてアルミナ質原料を添加し、しかもこの混
合物と鉱化剤との粉砕物の粒径が特定範囲になる
ように粉砕調整したものをロータリーキルンに送
入して焼成することによりクリンカ中のランキナ
イトの主要構成鉱物が50重量%以上で遊離石灰が
0.1重量%未満で結合水が0.4重量%未満の合成原
料を合成できることを知見した。 次に実験例について説明する。 実験例 1 第1表に示す如き原料の化学組成の石灰石、ケ
イ石および粘土をCaO/SiO2重量比が第2表の
如き割合で混合し、粘土が後述の生成クリンカ中
にAl2O3として3.0%になるように混合し、この混
合物を粉砕して粉砕物の0.044mm目篩通過量が第
2表に示す如き割合になるようにし、水と混練し
てペレツトを造つた。 このペレツトを110℃で24時間乾燥した後第2
表に示した温度でそれぞれ20分間実験用電気炉で
焼成した、得られた焼成物(クリンカ)を0.088
mm目篩を通過するように粉砕してクリンカ中の遊
離石灰、およびランキナイトの量を定量した。 但しランキナイトの定量はX線回折により行つ
た。次に粉砕されたクリンカを沸騰水中で48時間
煮沸後、110℃で24時間乾燥し、乾燥クリンカを
1000℃で1時間焼成して煮沸養生により生じた結
合水を定量した。その結果は第2表の通りであ
る。
The present invention relates to a method for producing a synthetic raw material containing rankinite (3CaO, 2SiO2 ) as a main constituent. Rankinite is pseudowollastonite (high-temperature CaO,
It is a chemically stable mineral that has low hydration activity and no bound water among minerals that contain CaO as well as SiO 2 ), and when used as a ceramic raw material, it produces products with little firing shrinkage. and can improve physical properties such as translucency of the product. Although it is known that this mineral occurs naturally, the amount is not large enough to be used industrially. The present inventors attempted to produce a synthetic raw material containing rankinite as a main component from a calcareous raw material and a silicic raw material, and conducted various studies .
Even if they are mixed at a molar ratio of 3:2 and calcined for a long time at a temperature below the melting point, the reaction will not be completed easily, and the resulting clinker will contain little rankinite, free lime, and silicic acid. Dilime (2CaO・SiO 2 )
This resulted in clinker containing a large amount of intermediate products with high hydration activity, such as However, the calcareous raw material and the silicic raw material are mixed so that the chemical composition (CaO/SiO 2 weight ratio) is in a specific ratio, and the alumina raw material is added as a mineralizing agent to this mixture. By pulverizing and adjusting the particle size of the pulverized product with a specific range of powder and sending it to a rotary kiln and firing it, the main constituent minerals of rankinite in the clinker are 50% by weight or more, and free lime is present.
We found that it is possible to synthesize synthetic raw materials with less than 0.1% by weight of bound water and less than 0.4% by weight of bound water. Next, an experimental example will be explained. Experimental Example 1 Limestone, silica stone, and clay having the chemical composition of raw materials as shown in Table 1 are mixed at a CaO/SiO 2 weight ratio as shown in Table 2, and the clay is mixed with Al 2 O 3 in the produced clinker as described below. This mixture was pulverized so that the amount of the pulverized material passing through a 0.044 mm sieve was as shown in Table 2, and the mixture was kneaded with water to make pellets. After drying this pellet at 110℃ for 24 hours,
The resulting fired product (clinker) was fired in an experimental electric furnace for 20 minutes each at the temperatures shown in the table.
The amount of free lime and rankinite in the clinker was determined by crushing the clinker so that it passed through a mm-sized sieve. However, the quantitative determination of rankinite was carried out by X-ray diffraction. Next, the crushed clinker was boiled in boiling water for 48 hours, then dried at 110℃ for 24 hours to obtain dried clinker.
The bound water produced by baking at 1000°C for 1 hour and boiling and curing was determined. The results are shown in Table 2.

【表】【table】

【表】 第2表において結合水は遊離石灰および水硬性
のダイカルシウムシリケートが水和したため生じ
たものと考えられる。 第2表記載のクリンカをブレーン比表面積約
5000cm2/gに粉砕し、その後、クリンカ粉末50重
量部に対し、木節粘土20重量部、ロー石20重量部
を混合し、100×50×7mmの大きさに成形圧300
Kg/cm2で加圧成形しタイル素地を調製した。タイ
ル素地に釉薬をかけて乾燥後1030℃で20分間焼成
した。焼成したタイルについて、10気圧、1時間
オートクレーブ養生を実施した。 養生後のタイルについて顕微鏡観察によりクラ
ツクの発生状況を観察したところ、実験番号1、
3、5、7、9、10のクリンカを使用したタイル
に関してはクラツクの発生が見られた。 即ち結合水が0.5%以上のクリンカは水和膨張
を起こし、タイル素地材料として不満であること
が認められた。 第2表から明らかなように、調合原料の0.044
mm目篩通過分が80%以上になるように粉砕したも
のを焼成すると調合原料は反応性に富むようにな
るので、クリンカ中の遊離石灰の残存量は著るし
く減少することが認められる。またランキナイト
の生成量は混合原料中のCaO/SiO2(重量比)が
1.05未満では少くなり、偽ケイ灰石が多くなる。
またCaO/SiO2(重量比)が1.45を越すと水硬性
のダイカルシウムシリケートの生成量が急激に増
加し、製品の不安定性が増すようになり、ランキ
ナイトの生成量が著しく減少することが認められ
た。 実験例 2 実験例1と同様にして造つたペレツトを110℃
で24時間乾燥した後、第3表に示した温度で、そ
れぞれ20分間実験用電気炉で焼成した。得られた
クリンカを0.088mm目篩以下になるように粉砕し
て実験例1と同様に煮沸処理して後乾燥し遊離石
灰、ランキナイトおよび結合水を定量し、第3表
の結果を得た。 第3表の焼成温度水準Tmax(℃)は実験例1
の第2表のC/S比に対応する焼成温度と同一
で、クリンカ粒が融着し始める温度である。ロー
タリーキルンで焼成するとき、この温度
(Tmax)以上の高温になるとクリンカ同志は融
着して巨塊に生長する。なおTmaxは原料の化学
組成、粉末度により変化する。それ故Tmaxは操
業できる上限温度であり、またTmax−40℃は
Tmaxよりも40℃低い焼成温度であることを示
す。
[Table] In Table 2, it is thought that the bound water was generated due to the hydration of free lime and hydraulic dicalcium silicate. The clinker listed in Table 2 has a Blaine specific surface area of approximately
Grind to 5000 cm 2 /g, then mix 50 parts by weight of clinker powder, 20 parts by weight of Kibushi clay, and 20 parts by weight of low stone, and mold at a pressure of 300 to a size of 100 x 50 x 7 mm.
A tile base was prepared by pressure molding at Kg/cm 2 . The tile base was coated with glaze, dried and then fired at 1030°C for 20 minutes. The fired tiles were autoclaved at 10 atm for 1 hour. When we observed the occurrence of cracks on the tiles after curing using a microscope, we found that experiment number 1,
Cracks were observed in tiles using clinkers 3, 5, 7, 9, and 10. That is, clinker containing 0.5% or more of bound water causes hydration expansion and is found to be unsatisfactory as a tile base material. As is clear from Table 2, 0.044 of the blended raw materials
If the material is pulverized so that 80% or more passes through a mm-sized sieve and then calcined, the blended raw material becomes highly reactive, and the amount of free lime remaining in the clinker is found to be significantly reduced. The amount of lanquinite produced depends on the CaO/SiO 2 (weight ratio) in the mixed raw materials.
If it is less than 1.05, it will be less and pseudowollastonite will be more abundant.
Furthermore, when the CaO/SiO 2 (weight ratio) exceeds 1.45, the amount of hydraulic dicalcium silicate produced increases rapidly, the instability of the product increases, and the amount of rankinite produced decreases significantly. Admitted. Experimental example 2 Pellets made in the same manner as experimental example 1 were heated to 110°C.
After drying for 24 hours, each sample was fired in an experimental electric furnace at the temperatures shown in Table 3 for 20 minutes. The obtained clinker was crushed to a size of 0.088 mm or less, boiled and dried in the same manner as in Experimental Example 1, and free lime, rankinite, and bound water were determined, and the results shown in Table 3 were obtained. . The firing temperature level Tmax (℃) in Table 3 is experimental example 1.
It is the same as the firing temperature corresponding to the C/S ratio in Table 2, and is the temperature at which clinker grains begin to fuse. When firing in a rotary kiln, if the temperature exceeds this temperature (Tmax), the clinker will fuse together and grow into a huge lump. Note that Tmax varies depending on the chemical composition and fineness of the raw materials. Therefore, Tmax is the upper limit temperature that can be operated, and Tmax−40℃ is
Indicates that the firing temperature is 40°C lower than Tmax.

【表】 ロータリーキルンによる焼成においては、その
バーナーフレームの不安定性のために±20℃の温
度巾が存在しないと安定な操業は出来ない。従つ
てこの場合はTmaxから20℃位低い焼成温度にな
るように設定する必要がある。例えば実験番号
17、18の原料をロータリーキルンで焼成する場合
は、焼成温度Tmax−20℃位に設定することにな
る。この時フレーム温度が変化して20℃上昇した
としても良好なクリンカを焼成出来るが、フレー
ム温度が20℃低下したとき、すなわちTmax−40
℃のときは遊離石灰および結合水の多い不安定な
クリンカが生成する。 従つてランキナイトが50%以上、遊離石灰0.1
未満、結合水が0.4%未満のクリンカが得られる
実験番号17の原料でも粉末度が0.44mm篩通過量
74.0%ではロータリーキルンで良好なクリンカは
得られない。 第3表から明らかなように、調合原料の粒径を
0.044mm目篩通過分を80%以上になるように粉砕
すれば比較的低温でクリンカを融着せしめること
なく、遊離石灰の残存量が非常に少なく、かつ水
硬性鉱物の含有量も非常に少ない合成原料クリン
カを製造せしめることができる。 実験例 3 実験例1の場合と同じ原料を使用し第4表に示
す如くCaO/SiO2重量比およびAl2O3重量%が異
なる調合原料を調製し、この混合物を粉砕して粉
砕物の0.044mm目篩通過量が調合原料に対しいず
れも80〜81%になるようにし、水と混練してペレ
ツトを造つた。 このペレツトを110℃で24時間乾燥した後第4
表に示した温度でそれぞれ20分間実験用電気炉で
焼成した。得られた焼成物中の遊離石灰、ランキ
ナイトおよび結合水を定量し、第4表の結果を得
た。なおAl2O3重量%は調合原料の強度減量基準
で横軸にCaO/SiO2重量比と縦軸にAl2O3重量%
をとり、第4表の結果を記録し、ランキナイトの
含有量が50重量%以上、遊離石灰が0.1重量%未
満、結合水が0.4重量%未満のクリンカが得られ
る範囲を示したものが添附図面のABCDで囲ま
れた範囲である。
[Table] Due to the instability of the burner flame in rotary kiln firing, stable operation is not possible unless there is a temperature range of ±20°C. Therefore, in this case, it is necessary to set the firing temperature to be about 20°C lower than Tmax. For example experiment number
When firing the raw materials 17 and 18 in a rotary kiln, the firing temperature should be set to about Tmax - 20°C. At this time, even if the flame temperature changes and increases by 20℃, a good clinker can be fired, but when the flame temperature decreases by 20℃, that is, Tmax−40
℃, unstable clinker with a large amount of free lime and bound water is produced. Therefore, rankinite is more than 50% and free lime is 0.1%.
Even with the raw material of experiment number 17, which yields clinker with less than 0.4% of bound water, the amount passing through the sieve has a fineness of 0.44mm.
At 74.0%, good clinker cannot be obtained in a rotary kiln. As is clear from Table 3, the particle size of the blended raw materials
If the material that passes through the 0.044 mm sieve is crushed to 80% or more, the clinker will not fuse at relatively low temperatures, the amount of free lime remaining will be very small, and the content of hydraulic minerals will be very low. Synthetic raw material clinker can be produced. Experimental Example 3 Using the same raw materials as in Experimental Example 1, mixed raw materials with different CaO/SiO 2 weight ratios and Al 2 O 3 % by weight were prepared as shown in Table 4, and this mixture was pulverized to obtain a pulverized product. The amount passing through the 0.044 mm sieve was adjusted to 80 to 81% of the blended raw materials, and the pellets were kneaded with water to make pellets. After drying this pellet at 110℃ for 24 hours,
Each sample was fired in an experimental electric furnace for 20 minutes at the temperatures shown in the table. Free lime, lanquinite, and bound water in the obtained calcined product were determined, and the results shown in Table 4 were obtained. Note that Al 2 O 3 % by weight is based on the strength reduction standard of the blended raw material, and the horizontal axis shows the CaO/SiO 2 weight ratio and the vertical axis shows Al 2 O 3 % by weight.
Record the results in Table 4, and attach a document showing the range in which clinker with a rankinite content of 50% by weight or more, free lime of less than 0.1% by weight, and bound water of less than 0.4% by weight can be obtained. This is the area surrounded by ABCD in the drawing.

【表】 本発明はこれらの知見に基くものであつて、石
灰質原料とケイ酸原料との混合物をロータリーキ
ルンで焼成してランキナイトを主構成鉱物として
含む合成原料を製造するに当り、石灰質原料とケ
イ酸質原料との混合物に、さらにアルミナ質原料
を加え、綜合混合物中のCaO/SiO2(重量比)と
Al2O3との割合が、強熱減量基準で添附図面の
ABCDで囲まれた範囲になるように混合し、か
つ該綜合原料混合物の粒径が0.044mm目篩を少く
とも80%通過するように粉砕したものをロータリ
ーキルンに送入して焼成することを特徴とするラ
ンキナイトを主要構成鉱物として含む合成原料の
製造方法である。 本発明において、石灰質原料としては石灰石、
生石灰、消石灰等が用いられ、ケイ酸質原料とし
てはケイ石、ケイ砂、副産シリカ、粘土等が用い
られそしてアルミナ質原料としては粘土、バイヤ
ー法アルミナ等が用いられる。 本発明においてアルミナ質原料は石灰質原料と
ケイ酸原料との反応における鉱化剤の作用をなす
ものであつて、この他に酸化鉄、フツ素化合物な
ども使用することができるが、酸化鉄の場合は原
料中のFe2O3量が0.5重量%以上になると得られる
クリンカが茶褐色になるので好ましくない。 本発明に使用する綜合原料の形態は少くとも80
%が0.044目篩以下の粒径のものをそのまゝロー
タリーキルンに送入しても、またペレツトあるい
は圧縮成形したものを送入してもよい。 本発明によれば石灰質原料粉末とケイ酸質原料
粉末との混合物に特定の鉱化剤を添加しロータリ
ーキルンで焼成することによりランキナイト含有
量の多い合成原料を製造することができるので、
その工業的価値は大きい。 実施例 1 実験例1で使用したものと同じ原料(CaO/
SiO2=1.05および1.2)を混合粉砕して2種の調
合原料を調整した。調合原料の0.044mm目篩通過
分は何れも80.5%であつた。この調合原料の半量
をパンペレタイザーで造粒し、造粒後乾燥した。 斯くして造つたペレツトと調合原料粉末とを小
型ロータリーキルン(径0.5m長さ10m)に投入
し第5表記載の温度で焼成して(原料通過時間約
1.5時間)クリンカを造つた。得られたクリンカ
を分析して第5表の結果を得た。
[Table] The present invention is based on these findings, and in producing a synthetic raw material containing rankinite as a main constituent mineral by firing a mixture of a calcareous raw material and a silicic acid raw material in a rotary kiln, the calcareous raw material and the silicic acid raw material are used. An alumina raw material is further added to the mixture with a silicic acid raw material, and the CaO/SiO 2 (weight ratio) in the combined mixture is
The ratio with Al 2 O 3 is based on the ignition loss standard as shown in the attached drawing.
The combined raw material mixture is mixed so as to be in the range surrounded by ABCD, and is pulverized so that at least 80% of the particle size of the combined raw material mixture passes through a 0.044 mm sieve, and then sent to a rotary kiln and fired. This is a method for producing a synthetic raw material containing rankinite as a main constituent mineral. In the present invention, the calcareous raw materials include limestone,
Quicklime, slaked lime, etc. are used, silicic acid raw materials include silica stone, silica sand, by-product silica, clay, etc., and alumina raw materials include clay, Bayer process alumina, etc. In the present invention, the alumina raw material acts as a mineralizing agent in the reaction between the calcareous raw material and the silicic acid raw material, and iron oxide, fluorine compounds, etc. can also be used. In this case, if the amount of Fe 2 O 3 in the raw material exceeds 0.5% by weight, the clinker obtained will turn brown, which is not preferable. The form of the combined raw material used in the present invention is at least 80%
Particles having a particle size of 0.044 sieve or less may be fed into the rotary kiln as they are, or pellets or compression-molded particles may be fed into the rotary kiln. According to the present invention, a synthetic raw material with a high rankinite content can be produced by adding a specific mineralizer to a mixture of calcareous raw material powder and silicic raw material powder and firing it in a rotary kiln.
Its industrial value is great. Example 1 The same raw materials used in Experimental Example 1 (CaO/
SiO 2 =1.05 and 1.2) were mixed and pulverized to prepare two types of mixed raw materials. The proportion of the blended raw materials that passed through the 0.044 mm sieve was 80.5%. Half of this mixed raw material was granulated using a pan pelletizer, and after granulation, it was dried. The pellets thus produced and the blended raw material powder were put into a small rotary kiln (diameter 0.5 m length 10 m) and fired at the temperature listed in Table 5 (raw material passing time was approximately
1.5 hours) Made clinker. The obtained clinker was analyzed and the results shown in Table 5 were obtained.

【表】 なお表中のロータリーキルンの焼成温度は、電
気炉の焼成温度のTmaxよりも20℃または40℃低
い、温度である。ロータリーキルンの焼成温度を
Tmaxよりも20℃または40℃低い温度でも調合原
料の形態にかゝわらずキルン操業が安定してお
り、好ましい性質のクリンカが得られた。 実施例 2 第6表に記載の生石灰、副産アモルフアスシリ
カおよびバイヤー法アルミナを混合粉砕して
0.044mm目篩通過分が92%である調合原料を調整
した後プレスして厚さ10〜15mmの成形物を造つ
た。この成形物を実施例1で使用したものと同じ
小型ロータリーキルンで第7表記載の温度で焼成
しクリンカを造つた。得られたクリンカを分析し
第7表の結果を得た。
[Table] The firing temperature of the rotary kiln in the table is 20°C or 40°C lower than the firing temperature Tmax of the electric furnace. Rotary kiln firing temperature
Even at temperatures 20°C or 40°C lower than Tmax, the kiln operation was stable regardless of the form of the raw material, and clinker with favorable properties was obtained. Example 2 Quicklime, by-product amorphous silica, and Bayer process alumina listed in Table 6 were mixed and ground.
A blended raw material with 92% passing through a 0.044 mm sieve was prepared and then pressed to produce a molded product with a thickness of 10 to 15 mm. This molded product was fired in the same small rotary kiln as used in Example 1 at the temperatures listed in Table 7 to produce clinker. The obtained clinker was analyzed and the results shown in Table 7 were obtained.

【表】【table】

【表】 ロータリーキルンの焼成温度を1310℃、即ち電
気炉の焼成温度Tmaxが1330℃であつたが、それ
よりも20℃低い温度で良質のクリンカが得られて
いるが、本実施例ではケイ酸質原料として副産ア
モルフアスシリカを使用したためTmaxよりも60
℃低い1270℃でもクリンカの品質は大きく影響さ
れず、良質なクリンカが得られた。
[Table] The firing temperature of the rotary kiln was 1310℃, that is, the firing temperature Tmax of the electric furnace was 1330℃, but good quality clinker was obtained at a temperature 20℃ lower than that. 60 higher than Tmax due to the use of by-product amorphous silica as a raw material.
Even at a low temperature of 1270°C, the quality of clinker was not significantly affected and high quality clinker was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はクリンカ中のランキナイト含有量が50重
量%、遊離石灰が0.1重量%未満、結合水が0.4重
量%未満のものが得られる調合原料中のC/S比
(重量)とAl2O3%との範囲をABCDで図示した
ものである。
The drawing shows the C/S ratio (weight) and Al 2 O 3 in the blended raw material that yields clinker with a lanquinite content of 50% by weight, free lime of less than 0.1% by weight, and bound water of less than 0.4% by weight. % and the range is shown in ABCD.

Claims (1)

【特許請求の範囲】[Claims] 1 石灰質原料とケイ酸質原料との混合物をロー
タリーキルンで焼成してランキナイトを主構成鉱
物として含む合成原料を製造するに当り、石灰質
原料とケイ酸質原料との混合物に、さらにアルミ
ナ質原料を加え、綜合原料混合物中のCaO/
SiO2(重量比)とAl2O3との割合が、強熱原料基
準で添附図面のABCDで囲まれた範囲になるよ
うに混合し、かつ該綜合原料混合物の粒径が
0.044mm目篩を少くとも80%通過するように粉砕
したものをロータリーキルンに送入して焼成する
ことを特徴とするランキナイトを主要構成鉱物と
して含む合成原料の製造方法。
1. When producing a synthetic raw material containing rankinite as a main constituent mineral by firing a mixture of calcareous raw materials and silicic raw materials in a rotary kiln, an alumina raw material is further added to the mixture of calcareous raw materials and silicic raw materials. In addition, CaO/
Mix so that the ratio of SiO 2 (weight ratio) and Al 2 O 3 falls within the range surrounded by ABCD in the attached drawing based on ignited raw materials, and the particle size of the combined raw material mixture is
A method for producing a synthetic raw material containing rankinite as a main constituent mineral, which comprises pulverizing the material so that at least 80% of the material passes through a 0.044 mm sieve and sending the material to a rotary kiln for firing.
JP56116482A 1981-07-27 1981-07-27 Manufacture of synthetic raw material containing rankinite as major constituent ore Granted JPS5820758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56116482A JPS5820758A (en) 1981-07-27 1981-07-27 Manufacture of synthetic raw material containing rankinite as major constituent ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56116482A JPS5820758A (en) 1981-07-27 1981-07-27 Manufacture of synthetic raw material containing rankinite as major constituent ore

Publications (2)

Publication Number Publication Date
JPS5820758A JPS5820758A (en) 1983-02-07
JPS6344708B2 true JPS6344708B2 (en) 1988-09-06

Family

ID=14688197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56116482A Granted JPS5820758A (en) 1981-07-27 1981-07-27 Manufacture of synthetic raw material containing rankinite as major constituent ore

Country Status (1)

Country Link
JP (1) JPS5820758A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970001242B1 (en) * 1991-04-09 1997-02-04 니혼 세멘또 가부시끼가이샤 Low heat building cement composition
AT508506B8 (en) * 2009-07-03 2012-09-15 Novak Denes Dipl Ing CEMENT AND METHOD FOR THE PRODUCTION OF CEMENT

Also Published As

Publication number Publication date
JPS5820758A (en) 1983-02-07

Similar Documents

Publication Publication Date Title
US7594964B2 (en) High strength magnesium slag brick and method of producing the same
US4772330A (en) Process for producing low water-absorption artificial lightweight aggregate
US3066031A (en) Cementitious material and method of preparation thereof
CN102976641A (en) Micro-expansive moderate-heat Portland cement and production method thereof
US5183506A (en) Modified flux composition for cement
EP0188371B1 (en) Artificial lightweight aggregate
CN106588059A (en) Prefabricated member for lime rotary kiln and preparation method of prefabricated member
CN103864320A (en) Low heat Portland slag cement and production method thereof
JP5914492B2 (en) Method for producing γ-2CaO · SiO 2
JPH0977543A (en) Artificial lightweight aggregate and its production
JPS6344708B2 (en)
CN107117836A (en) A kind of method that carbide slag cement is prepared by carbide slag
JPS5857378B2 (en) Cement and its manufacturing method
JPH0568406B2 (en)
US2543752A (en) Refractory and semirefractory materials and process for manufacture
GB1574623A (en) Anhydrite for use in binding agents
JPS6245187B2 (en)
US4133693A (en) Process for producing cement
JPS6321244A (en) Artificial lightweight aggregate
JPH0463008B2 (en)
US2315198A (en) Heat resistive material, especially building material, and method of making same
CN107162445A (en) A kind of method that portland cement is prepared by carbide slag and copper ashes melting slag
JPS6112871B2 (en)
JP4275381B2 (en) Tile manufacturing method using molten slag
GB2208857A (en) Flux for cement clinker formation