JPS6245187B2 - - Google Patents

Info

Publication number
JPS6245187B2
JPS6245187B2 JP16827079A JP16827079A JPS6245187B2 JP S6245187 B2 JPS6245187 B2 JP S6245187B2 JP 16827079 A JP16827079 A JP 16827079A JP 16827079 A JP16827079 A JP 16827079A JP S6245187 B2 JPS6245187 B2 JP S6245187B2
Authority
JP
Japan
Prior art keywords
glass
limestone
parts
powder
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16827079A
Other languages
Japanese (ja)
Other versions
JPS5692158A (en
Inventor
Akira Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Semento Kk
Original Assignee
Chichibu Semento Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Semento Kk filed Critical Chichibu Semento Kk
Priority to JP16827079A priority Critical patent/JPS5692158A/en
Publication of JPS5692158A publication Critical patent/JPS5692158A/en
Publication of JPS6245187B2 publication Critical patent/JPS6245187B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials

Description

【発明の詳細な説明】[Detailed description of the invention]

従来、我国で生産されている人工超軽量骨材
は、黒曜岩、真珠岩及び松脂岩を粉砕し焼成して
球状にした膨張パーライトや、同様な方法にて製
造する膨張ひる石(バーミキユライト)がある。
なお、該骨材に着色を施したものはまつたく市販
されていない。しかも上記膨張パーライトや膨張
ひる石は吸水量が過多であるばかりでなく、骨材
自体の強度が弱いため、モルタル及びコンクリー
トの強度が弱くなり、なお練り減りを生ずるなど
の欠点がある。 そこで本発明者は、従来法の問題点を改善せん
として、多岐にわたる実験研究を重ねた結果、廃
棄ガラス、粘土、火山灰及び石灰石粉末を混和し
たものに水ガラスの適量を添加し、調整すること
によつて、従来法によつてなる人工超軽量骨材と
比重がほぼ同等で、且つ、強度の優れた製品が得
られ、しかも比較的低温度で焼成可能であること
の知見を得た。これが本発明の第1の特長であ
り、該骨材を用いたコンクリートは強度が大で、
軽量性に富み、熱伝導率が小さく、遮音効果も良
好であることが第2の特長である。第3の特長は
上記配合造粒物の原料として金属酸化物顔料を添
加し焼成することによつて表面及び内部にわたつ
て美麗なる有色骨材を得たことである。 本発明は現在旧型で生産性が悪いため遊休のセ
メント製造装置をそのまま、利用し得る製造方
法、即ちセメント製造に用いられる造粒機(ペレ
タイザー)とロータリーキルンを有効利用し得る
製造方法を提案するもので、これが第4の特長で
ある。 即ち、本発明による人工超軽量骨材は、ガラス
粉末に、スレート、頁岩、シルト、泥岩等の粘土
質粉末及び火山灰を混和し、更に、石灰石粉末及
び水ガラスの適量を添加して造粒し、更に必要に
応じて金属酸化物顔料の適量を造粒物の原料に加
え、これら造粒物を焼成することを特徴とするも
ので、人工超軽量骨材を安価に提供し、資源の枯
渇化を緩和し、これらの問題解決の一助にせんと
するものである。 本発明において、上述のように原料の組成範囲
及び焼成温度範囲を限定したこと等について、実
験結果に基づいて詳細に説明すれば次の通りであ
る。 〔実験方法〕 本実験は、ガラス−粘土(粘土質原料)−火山
灰−石灰石−水ガラス及びこれに金属酸化物顔料
を加える系について行なつたものである。 (1) 供試材料 供試材料のうち、水ガラス及び金属酸化物顔
料以外は総て、試験ミルにて粉砕し、粒径149
μ以下に調整して使用した。ただし石灰石は88
μ以下のものを使用した。 ガラス:一般家庭で使用している食品容器用の
ガラスや通常の窓ガラスを使用した。プレー
ン値(比表面積)3300cm2/g。 粘土:スレート、頁岩、シルト、あるいは泥岩
質のもののうち、どれを用いてもさしつかえ
ないが、本実験ではシルト質粘土を用いた。
プレーン値3000cm2/g。 火山灰:一般的な凝灰岩質火山ガラスでさしつ
かえないが、本実験では、鹿児島県鹿屋市産
及び福島県須賀川市産の火山ガラスを使用し
た。プレ−値4000cm2/g。 石灰石:セメント工業で使用する一般的な石灰
石を使用した。プレーン値6300cm2/g。 珪酸ソーダ:市販のJIS3号水ガラスを使用し
た。 顔料:市販の一般的な金属酸化物顔料を使用し
た。 (2) 造粒 乾燥したガラス粉末、粘土粉末、火山灰粉
末、石灰石粉末を所定割合で混合し、その混合
物に、場合によつては金属酸化物顔料の所定量
を加え、水又は水と水ガラスの混合液を水分が
20重量%になるように加えて混合物を直径約15
〜17mmのペレツトに作製し、このペレツトを90
〜100℃で3時間乾燥した。造粒にはペレタイ
ザーを使用する方法も行なつたが、この場合、
約0.2〜15mmまでのペレツトを造粒した。 (3) 焼成・冷却 焼成は箱型電気炉を用いた。焼成方法は、予
め400℃に調整した電気炉内に造粒物を入れ、
1分間に約10℃の昇温速度にて所定温度迄昇温
し、その温度で10分間保持する方法に統一し、
焼成物の冷却は炉内徐冷とした。 ロータリーキルンで焼成する場合には、箱型
電気炉による焼成結果を参考にして800〜830℃
にて焼成した。この場合、特に徐冷を要しなか
つた。
Conventionally, the artificial ultra-light aggregates produced in Japan include expanded perlite, which is made by crushing and firing obsidian, nacre, and pine rock, and expanded vermiculite, which is manufactured by a similar method. Urite).
Note that colored aggregates are not commercially available. Moreover, the expanded pearlite and expanded vermiculite not only absorb excessive amounts of water, but also have weak aggregates themselves, which weaken the strength of mortar and concrete, resulting in loss of kneading. Therefore, in an attempt to improve the problems of the conventional method, the present inventor has conducted a wide range of experimental research, and as a result, the present inventor has added an appropriate amount of water glass to a mixture of waste glass, clay, volcanic ash, and limestone powder. As a result, it was found that a product with almost the same specific gravity and excellent strength as artificial ultra-light aggregate made by conventional methods can be obtained, and can be fired at a relatively low temperature. This is the first feature of the present invention; concrete using this aggregate has high strength;
The second feature is that it is lightweight, has low thermal conductivity, and has a good sound insulation effect. The third feature is that by adding a metal oxide pigment as a raw material to the above-mentioned blended granules and firing them, a beautiful colored aggregate can be obtained both on the surface and inside. The present invention proposes a manufacturing method that can utilize currently idle cement manufacturing equipment that is old and has low productivity, that is, a manufacturing method that can effectively utilize the granulator (pelletizer) and rotary kiln used in cement manufacturing. And this is the fourth feature. That is, the artificial ultra-light aggregate according to the present invention is made by mixing glass powder with clay powder such as slate, shale, silt, mudstone, and volcanic ash, and then adding an appropriate amount of limestone powder and water glass and granulating it. Furthermore, if necessary, an appropriate amount of metal oxide pigment is added to the raw material of the granules, and these granules are fired, thereby providing an artificial ultra-light aggregate at a low cost and reducing resource depletion. The aim is to help alleviate these problems and help solve these problems. In the present invention, the limitation of the composition range of the raw materials and the firing temperature range as described above will be explained in detail based on experimental results as follows. [Experimental Method] This experiment was conducted on a system in which glass-clay (clay raw material)-volcanic ash-limestone-water glass and a metal oxide pigment were added thereto. (1) Test materials All of the test materials, except for water glass and metal oxide pigments, were ground in a test mill and had a particle size of 149.
It was used after adjusting it to below μ. However, limestone is 88
A material less than μ was used. Glass: Glass for food containers and ordinary window glass used in ordinary households were used. Plain value (specific surface area) 3300cm 2 /g. Clay: Any of slate, shale, silt, or mudstone may be used, but silty clay was used in this experiment.
Plain value 3000cm 2 /g. Volcanic ash: General tuffaceous volcanic glass can be used, but in this experiment, volcanic glass from Kanoya City, Kagoshima Prefecture and Sukagawa City, Fukushima Prefecture was used. Play value 4000cm 2 /g. Limestone: Common limestone used in the cement industry was used. Plain value 6300cm 2 /g. Sodium silicate: Commercially available JIS No. 3 water glass was used. Pigment: A commercially available general metal oxide pigment was used. (2) Granulation Mix dry glass powder, clay powder, volcanic ash powder, and limestone powder in a specified ratio, add a specified amount of metal oxide pigment to the mixture, and mix with water or water and water glass. The mixture of
Add the mixture to a diameter of about 15% by weight.
~17mm pellets are made, and the pellets are made into 90mm pellets.
Dry at ~100°C for 3 hours. A method of using a pelletizer was also used for granulation, but in this case,
Pellets were granulated from approximately 0.2 to 15 mm. (3) Firing and cooling A box electric furnace was used for firing. The firing method involves placing the granules in an electric furnace pre-adjusted to 400°C.
The method has been unified to raise the temperature to a specified temperature at a heating rate of about 10℃ per minute and hold it at that temperature for 10 minutes.
The fired product was cooled slowly in the furnace. When firing in a rotary kiln, the temperature should be 800 to 830℃, referring to the results of firing in a box-type electric furnace.
It was fired at. In this case, no particular slow cooling was required.

【表】【table】

〔実験結果〕〔Experimental result〕

(A) 箱型電気炉焼成 (i) 石灰石、水ガラス配合焼成物の石灰石量
と絶乾比重、吸水量及び物理強度 スレート、頁岩、シルト、あるいは泥岩
質の粘土等の種類によつては、含水粘土鉱
物、微結晶カルサイト、微細鉄化合物及び
有機質物又は微細長石類等の発泡成分の含
有量が異なるため、発泡助剤として石灰石
粉末を添加して、焼成温度を変化させ、数
多の実験を行なつた。その一例について絶
乾比重、吸水量及び物理強度に関してを第
1表に、絶乾比重及び物理強度についてを
第1図に示す。この第1表及び第1図に示
すとおり、粘土、火山灰混合粉末にガラス
粉末を80%加え、更に石灰石粉末および水
ガラスを配合することにより、いずれもか
なり低温度で膨張する。石灰石粉末の添加
効果は1〜2%まで正の効果が認められた
が、5%以上では負の効果を示す。粘土と
火山灰を置換配合した場合でも、石灰石粉
末を1〜2%添加すれば物性的にはほとん
ど差異がなく、絶乾比重は約0.4程度に膨
張し、点荷重は約90Kg程度と大きい。内部
は独立性の微細な気泡構造をなし、表面は
緻密で堅硬な組識を有する良質な発泡体が
得られた。この発泡体の色は表面及び内部
ともガラス粉末量が多いと灰色を帯び、ガ
ラス量を40%以下に減じていくと表面およ
び内部とも茶色に変化する。 (ii) 石灰石、水ガラス配合焼成物の水ガラス
量と絶乾比重、吸水量及び物理強度 上述の実験結果に基づき、石灰石の配合
割合を最適値の1%及び2%に定め、水ガ
ラス配合割合が焼成物に与える効果を検討
した。焼成温度を変化させた数多の実験結
果のち、一例について絶縁比重、吸水量及
び物理強度に関してを第2表に、絶乾比重
及び物理強度に関してを第2図に示す。
(A) Box-type electric furnace firing (i) Limestone amount, absolute dry specific gravity, water absorption amount, and physical strength of limestone and water glass mixed fired products Depending on the type of slate, shale, silt, or mudstone clay, Because the content of foaming components such as hydrated clay minerals, microcrystalline calcite, fine iron compounds, organic substances, or fine feldspars differs, limestone powder is added as a foaming aid and the firing temperature is varied to create a large number of foaming components. I conducted an experiment. For one example, the bone dry specific gravity, water absorption and physical strength are shown in Table 1, and the bone dry specific gravity and physical strength are shown in FIG. As shown in Table 1 and Figure 1, by adding 80% glass powder to the mixed powder of clay and volcanic ash, and further adding limestone powder and water glass, both expand at a fairly low temperature. The addition effect of limestone powder was found to be positive up to 1 to 2%, but a negative effect was observed at 5% or more. Even when clay and volcanic ash are substituted, if 1 to 2% of limestone powder is added, there is almost no difference in physical properties, the absolute dry specific gravity expands to about 0.4, and the point load is as large as about 90 kg. A high-quality foam was obtained which had a fine independent cell structure inside and a dense and hard structure on the surface. The color of this foam becomes gray when the amount of glass powder is large both on the surface and inside, and when the amount of glass is reduced to 40% or less, both the surface and inside change to brown. (ii) Amount of water glass, absolute dry specific gravity, water absorption amount, and physical strength of calcined product containing limestone and water glass Based on the above experimental results, the blending ratio of limestone was set at the optimum value of 1% and 2%, and water glass was mixed. The effect of ratio on fired products was investigated. After numerous experimental results obtained by varying the firing temperature, the insulation specific gravity, water absorption and physical strength of one example are shown in Table 2, and the absolute dry specific gravity and physical strength are shown in Figure 2.

【表】【table】

【表】 この第2表及び第2図に示すとおり、水
ガラス配合量を増加させると、絶乾比重が
小となる。ガラス配合割合を80%に定め、
絶乾比重を0.6以下にするには、石灰石粉
末及び水ガラスの添加が必要であり、石灰
石粉末の添加量を1ないし2%とした場
合、水ガラスの配合割合を2%以上にする
必要がある。 (iii) 石灰石、水ガラス配合焼成物の焼成温度
と焼成物の絶乾比重、吸水量及び物理強度 石灰石及び水ガラス配合割合を一定と
し、ガラス配合割合を変化させ、焼成温度
を800〜950℃に変化させて焼成した場合の
焼成物の絶乾比重、吸水量、物理強度に関
してを第3表−1及び第3表−2に、絶乾
比重及び物理強度に関してを第3図−1及
び第3図−2に示す。
[Table] As shown in Table 2 and Figure 2, as the amount of water glass added increases, the absolute dry specific gravity decreases. The glass blending ratio is set at 80%,
In order to reduce the absolute dry specific gravity to 0.6 or less, it is necessary to add limestone powder and water glass, and when the amount of limestone powder added is 1 to 2%, the blending ratio of water glass must be 2% or more. be. (iii) Firing temperature of limestone and water glass blended fired product and absolute dry specific gravity, water absorption and physical strength of the fired product The limestone and water glass blending ratio was kept constant, the glass blending ratio was varied, and the firing temperature was 800 to 950°C. Tables 3-1 and 3-2 show the absolute dry specific gravity, water absorption, and physical strength of the fired product when the temperature was changed to It is shown in Figure 3-2.

【表】【table】

【表】【table】

【表】【table】

【表】 上記第3表−1〜2及び第3図−1〜2に
示すとおり、ガラス配合割合を多くすれば、
独立気泡を多量に有する軽量発泡体となり、
絶乾比重が小となる傾向をとる。物理強度を
0.6以下とするにはガラス配合割合を80%以
上にし、焼成温度を800〜900℃、好ましくは
800℃に制える必要がある。この場合、粘土
中に含まれるガス発生剤及びガス発生剤とし
て加えた石灰石粉末のガス発生の時期と被焼
成物の最適塑性状態(105〜108cps)とが一
致し、約0.2〜1mmの気泡直径を80%以下有
する良質な発泡体が得られた。ガラス配合割
合が80%以上でも焼成温度を950℃以上にす
ると、一旦発生した気泡がつぶれ、絶乾比重
が急激に大きくなる。なお、850〜900℃では
気泡の独立性がやや失われ、連続ポアが増え
てくる傾向がある。 石灰石の配合割合を1%とし水ガラスの配
合割合を10%として、ガラス配合割合を60〜
85%に変化させ、焼成温度も変化させて数多
の実験を行なつたうち、代表例を第3表−3
に示す。
[Table] As shown in Table 3-1-2 and Figure 3-1-2 above, if the glass blending ratio is increased,
It is a lightweight foam with a large amount of closed cells,
The absolute dry specific gravity tends to be small. physical strength
To make it 0.6 or less, the glass blending ratio should be 80% or more, and the firing temperature should be 800-900℃, preferably
It is necessary to control the temperature to 800℃. In this case, the timing of gas generation from the gas generating agent contained in the clay and the limestone powder added as the gas generating agent coincides with the optimum plasticity state (10 5 to 10 8 cps) of the fired material, and approximately 0.2 to 1 mm A high-quality foam having a cell diameter of 80% or less was obtained. Even if the glass blending ratio is 80% or more, if the firing temperature is increased to 950°C or higher, the air bubbles that have been generated will collapse and the absolute dry specific gravity will suddenly increase. In addition, at 850 to 900°C, the independence of bubbles tends to be somewhat lost and the number of continuous pores increases. The blending ratio of limestone is 1%, the blending ratio of water glass is 10%, and the glass blending ratio is 60~
85% and various firing temperatures, representative examples are shown in Table 3-3.
Shown below.

【表】 この第3表−3によると、ガラス70%、粘
土9.5%、火山灰9.5%、石灰石1%、水ガラ
ス10%配合による焼成物は、絶乾比重が0.50
に膨張し、点荷重は125Kgと比較的大きく、
内部は独立性の微細な気泡構造で、表面が緻
密で堅硬な組織を有する良質な発泡体が得ら
れた。 (B) ロータリーキルン焼成 (i) 焼成物の諸物性 箱型電気炉による実験結果に基づき、ロ
ータリーキルンを用いて数多の焼成実験を
行なつたうち、代表例を第4表に示す。
[Table] According to this Table 3-3, a fired product made from a mixture of 70% glass, 9.5% clay, 9.5% volcanic ash, 1% limestone, and 10% water glass has an absolute dry specific gravity of 0.50.
The point load is relatively large at 125Kg.
A high-quality foam with a fine, independent cell structure on the inside and a dense and hard structure on the surface was obtained. (B) Rotary kiln firing (i) Physical properties of fired product Based on the results of experiments using a box-type electric furnace, a number of firing experiments were conducted using a rotary kiln, and representative examples are shown in Table 4.

【表】 この第4表に示すとおり、粒径5〜20cm
の焼成物の絶乾比重及び吸水量は、箱型電
気炉による結果とほぼ同等の値が得られ
た。粒度が小さくなると絶乾比重は大とな
る個向をとるが、粒径0.3〜1.2mmの焼成物
においても、絶乾比重が0.69に膨張し、内
部はほぼ独立性の微細な気泡構造で、堅硬
で良質な発泡体が得られた。 (ii) 焼成物を用いた断熱ブロツクの特性 従来法においては、断熱ブロツクの材料
として粗骨材にビルトン又はメサライトを
使用し、細骨材にパーライトを用いる方法
が一般的であるが、28日圧縮強度を180Kg
f/cm2に設定した場合、ブロツクの生比重
が1.5Kg/と大きく、熱伝導率も0.3〜
0.4Kcal/m.h.℃程度より小さくすること
ができなかつた。 これに対し本発明によつて得た焼成骨材
を用いることによつて、生比重が約1.1
Kg/と小さく、熱伝導率も0.18〜
0.19Kcal/m.h.℃と小さい良好な断熱ブロ
ツクが得られた。これを第5表に示す。
[Table] As shown in this Table 4, particle size is 5 to 20 cm.
The absolute dry specific gravity and water absorption of the fired product were almost the same as those obtained using a box-type electric furnace. As the particle size decreases, the absolute dry specific gravity tends to increase, but even in fired products with a particle size of 0.3 to 1.2 mm, the absolute dry specific gravity expands to 0.69, and the inside has a nearly independent fine cell structure. A hard and high quality foam was obtained. (ii) Characteristics of insulation blocks using fired products In the conventional method, biltong or mesalite is generally used as the coarse aggregate and perlite is used as the fine aggregate for the insulation blocks, but 28 days Compressive strength 180Kg
When set to f/ cm2 , the raw specific gravity of the block is as large as 1.5Kg/, and the thermal conductivity is 0.3~
It was not possible to reduce the temperature below about 0.4 Kcal/mh°C. In contrast, by using the fired aggregate obtained by the present invention, the raw specific gravity is approximately 1.1.
As small as Kg/, the thermal conductivity is 0.18 ~
A good heat insulation block with a small value of 0.19Kcal/mh℃ was obtained. This is shown in Table 5.

【表】 (4) 適正発泡条件と焼成物の物性 前述した(A)〜(B)の実験結果に基づき、適正発
泡条件を考察すれば第6表のとおりとなる。
[Table] (4) Appropriate foaming conditions and physical properties of fired products Table 6 shows the appropriate foaming conditions based on the experimental results of (A) to (B) described above.

【表】【table】

【表】 なお、上述の実験では粘土としてすべてシルト
質粘土を用いたが、シルトの代りにスレート、頁
岩、あるいは泥岩質粉末を用いた場合も同様の結
果が得られる。又上述の実験に使用したシルト質
粘土は含水粘土鉱物、微結晶カルサイト、微細鉄
化合物、有機質物及び微細長石類等の発泡成分の
含有量が比較的少ない原料であることをX線分析
及び示差熱分析(DTA)によつて確かめ、しか
も、焼成物の高強度性と軽量性を得ようとしたも
のである。 また、ガラス、粘土、火山灰及び石灰石の粉末
度と焼成物の物性について数多の実験を行なつた
結果、各原材料ともプレーン値(比表面積)で
3000cm2/g程度以上であれば物性的に問題がない
が、直径0.3〜1.2mm程度の小粒径焼成物を軽量化
するには、各原材料とも149μ程度以上の粗粉分
を除去する必要があつた。又火山灰については2
種の火山灰使用において焼成物に物性的差異はな
かつた。 骨材の着色に際しても、金属酸化物顔料を原料
に配合すると共に、過ホウ酸ナトリウム又は硝酸
カルシウム、もしくは硝酸カリウムの適量を添加
することによつて、焼成溶融の際共成する無機顔
料の還元反応を防止し、色調表現を安定化できる
ことの知見を得た。 次に本発明の人工超軽量骨材の実施例を示すと
次の通りである。 廃棄ガラス(例えば一般家庭で使用済みの飲食
容器用のもの)をミルにて紛砕し、プレーン値で
約3000cm2/gに調製し、次に頁岩、スレートある
いは泥岩質粘土を同様に粉砕、調整し、なお火山
灰を同様な方法にて粉砕、調整し、なお上述の各
原料粉末に石灰石粉末及び水ガラスならびに水
を、水分が重量比で20%になるように加え、よく
混ぜ合せ、この混合物を直径15〜17mm程度のペレ
ツトに作成する。なお、骨材に着色を施す必要が
あれば、水ガラスならびに水を加える前に金属酸
化物顔料及び過ホウ酸ナトリウム又は硝酸カルシ
ウムなどの適量を加えてペレツトにし、このペレ
ツトを90〜100℃で3時間乾燥を行ない、次いで
乾燥ペレツトを焼成炉内において所定温度にて焼
成し、該焼成物を炉内徐冷して超軽量骨材を得
た。直径0.2〜15mm程度のペレツトを作製し、こ
のペレツトを上記のように乾燥してロータリーキ
ルンで焼成する方法によつても、良質な超軽量骨
材を得た。 上記方法による実施例を列挙すれば次のように
なる。 実施例 1 ガラス80部、粘土8.5部、火山灰8.5部、石灰石
1部よりなる混合物に水ガラスを2部加え、更に
水が水分が20重量%になるように加え、直径15〜
17mmに造粒し、乾燥後電気炉を使用して、1分間
に約10℃の昇温速度で800℃まで昇温し、10分間
保つた後炉内徐冷して、絶乾比重0.55、吸水量
5.2%、点荷重85Kgの発泡体を得た。 実施例 2 ガラス80部、粘土7部、火山灰7部、石灰石1
部、水ガラス5部よりなる混合物を実施例1の条
件にて処理し、絶乾比重0.40、吸水量7.8%、点
荷重87Kgの発泡体を得た。 実施例 3 ガラス80部、粘土4.5部、火山灰4.5部、石灰石
1部、水ガラス10部よりなる混合物も実施例1の
条件にて処理し、絶乾比重0.29、吸水量9.0%、
点荷重56Kgの発泡体を得た。 実施例 4 ガラス90部、粘土2部、火山灰2部、石灰石1
部、水ガラス5部よりなる混合物を実施例1の条
件にて処理し、絶乾比重0.28、吸水量6.8%、点
荷重68Kgの発泡体を得た。 実施例 5 ガラス80部、粘土15部、水ガラス5部よりなる
混合物を実施例1の条件にて処理し、絶乾比重
0.6、吸水量8.6%、点荷重195Kgの発泡体を得
た。 実施例 6 ガラス80部、粘土7部、火山灰7部、石灰石1
部、水ガラス5部、酸化クローム0.5部、過ホウ
酸ナトリウム0.5部よりなる混合物を実施例1の
条件にて処理し、絶乾比重0.43、吸水量7.5%、
点荷重90Kgの緑色の発泡体を得た。 実施例 7 ガラス80部、粘土6.5部、火山灰6.5部、石灰石
2部、水ガラス5部、コバルトブルー1部、硝酸
カルシウム0.5部よりなる混合物を実施例1の条
件にて処理し、絶乾比重0.49、吸水量9.5%、点
荷重115Kgの青色の発泡体を得た。 実施例 8 ガラス70部、粘土9.5部、火山灰9.5部、石灰石
1部、水ガラス10部、チタンイエロー2部、硝酸
カリウム0.5部よりなる混合物を実施例1の条件
にて処理し、絶乾比重0.52、吸水量13.5%、点荷
重130Kgの黄色の発泡体を得た。 以上述べたように、本発明による人工超軽量骨
材は廃棄ガラス、粘土、火山灰、石灰石粉末及び
水ガラスの配合割合を適正にすれば、比較的高強
度となり、本発明品を用いると保温性に優れた高
強度軽量コンクリート、即ち高強度軽量断熱ブロ
ツクが得られ、なお有色骨材としての用途も多岐
にわたるため、土木、建築、左官等の分野におい
て極めて有益である。
[Table] Although silty clay was used as the clay in all of the above experiments, similar results could be obtained if slate, shale, or mudstone powder was used instead of silt. Furthermore, X-ray analysis and analysis showed that the silty clay used in the above experiment was a raw material with a relatively low content of foaming components such as hydrated clay minerals, microcrystalline calcite, fine iron compounds, organic matter, and fine feldspars. This was confirmed by differential thermal analysis (DTA), and moreover, it was an attempt to obtain high strength and light weight of the fired product. In addition, as a result of numerous experiments on the powderiness of glass, clay, volcanic ash, and limestone and the physical properties of fired products, we found that the plain value (specific surface area) of each raw material
If it is about 3000cm 2 /g or more, there is no problem in terms of physical properties, but in order to reduce the weight of small-particle fired products with a diameter of about 0.3 to 1.2mm, it is necessary to remove coarse particles of about 149μ or more from each raw material. It was hot. Regarding volcanic ash, see 2.
There were no physical differences in the fired products when different types of volcanic ash were used. When coloring aggregates, metal oxide pigments are added to the raw materials and an appropriate amount of sodium perborate, calcium nitrate, or potassium nitrate is added to reduce the reduction reaction of inorganic pigments co-formed during firing and melting. We have obtained knowledge that it is possible to prevent this and stabilize color tone expression. Next, examples of the artificial ultra-lightweight aggregate of the present invention are as follows. Waste glass (for example, used food and beverage containers used in ordinary households) is crushed in a mill to a plain value of approximately 3000 cm 2 /g, and then shale, slate, or mudstone clay is crushed in the same way. Add limestone powder, water glass, and water to each of the above-mentioned raw material powders so that the water content is 20% by weight, and mix well. Form the mixture into pellets with a diameter of approximately 15-17 mm. If it is necessary to color the aggregate, before adding water glass and water, add an appropriate amount of metal oxide pigment and sodium perborate or calcium nitrate to form pellets, and heat the pellets at 90 to 100°C. After drying for 3 hours, the dried pellets were then fired in a firing furnace at a predetermined temperature, and the fired product was slowly cooled in the furnace to obtain an ultra-lightweight aggregate. A high-quality ultra-lightweight aggregate was also obtained by preparing pellets with a diameter of approximately 0.2 to 15 mm, drying the pellets as described above, and firing the pellets in a rotary kiln. Examples of the above method are listed below. Example 1 2 parts of water glass was added to a mixture consisting of 80 parts of glass, 8.5 parts of clay, 8.5 parts of volcanic ash, and 1 part of limestone, and then water was added so that the moisture content was 20% by weight.
After drying, the granules were granulated to a size of 17 mm, heated to 800°C at a rate of about 10°C per minute using an electric furnace, kept for 10 minutes, and then slowly cooled in the furnace to give an absolute dry specific gravity of 0.55. Water absorption
A foam with a weight of 5.2% and a point load of 85 kg was obtained. Example 2 80 parts glass, 7 parts clay, 7 parts volcanic ash, 1 part limestone
A mixture of 5 parts of water glass and 5 parts of water glass was treated under the conditions of Example 1 to obtain a foam having an absolute dry specific gravity of 0.40, a water absorption of 7.8%, and a point load of 87 kg. Example 3 A mixture consisting of 80 parts of glass, 4.5 parts of clay, 4.5 parts of volcanic ash, 1 part of limestone, and 10 parts of water glass was also treated under the conditions of Example 1, resulting in an absolute dry specific gravity of 0.29, water absorption of 9.0%,
A foam with a point load of 56 kg was obtained. Example 4 90 parts glass, 2 parts clay, 2 parts volcanic ash, 1 part limestone
A mixture of 5 parts of water glass and 5 parts of water glass was treated under the conditions of Example 1 to obtain a foam having an absolute dry specific gravity of 0.28, a water absorption of 6.8%, and a point load of 68 kg. Example 5 A mixture consisting of 80 parts of glass, 15 parts of clay, and 5 parts of water glass was treated under the conditions of Example 1, and the absolute dry specific gravity was
0.6, a water absorption amount of 8.6%, and a point load of 195 kg was obtained. Example 6 80 parts glass, 7 parts clay, 7 parts volcanic ash, 1 part limestone
A mixture consisting of 5 parts of water glass, 0.5 parts of chromium oxide, and 0.5 parts of sodium perborate was treated under the conditions of Example 1 to obtain an absolute dry specific gravity of 0.43, water absorption of 7.5%,
A green foam with a point load of 90Kg was obtained. Example 7 A mixture consisting of 80 parts of glass, 6.5 parts of clay, 6.5 parts of volcanic ash, 2 parts of limestone, 5 parts of water glass, 1 part of cobalt blue, and 0.5 part of calcium nitrate was treated under the conditions of Example 1, and the absolute dry specific gravity was determined. 0.49, a water absorption of 9.5%, and a point load of 115 kg. Example 8 A mixture consisting of 70 parts of glass, 9.5 parts of clay, 9.5 parts of volcanic ash, 1 part of limestone, 10 parts of water glass, 2 parts of titanium yellow, and 0.5 parts of potassium nitrate was treated under the conditions of Example 1, and the absolute dry specific gravity was 0.52. A yellow foam with a water absorption of 13.5% and a point load of 130 kg was obtained. As mentioned above, the artificial ultra-light aggregate according to the present invention has relatively high strength when the proportions of waste glass, clay, volcanic ash, limestone powder, and water glass are properly mixed, and when the product of the present invention is used, it has good heat retention properties. It produces high-strength lightweight concrete with excellent properties, that is, high-strength lightweight concrete, and has a wide range of uses as a colored aggregate, making it extremely useful in fields such as civil engineering, architecture, and plastering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石灰石、水ガラス配合焼成物の石灰石
粉末量と絶乾比重及び物理強度との関係を示すグ
ラフ、第2図は石灰石、水ガラス配合焼成物の水
ガラス量と絶乾比重及び物理強度との関係を示す
グラフ、第3図−1は石灰石粉末量を1%とした
場合の各種配合物の焼成温度と絶乾比重及び物理
強度との関係を示すグラフ、第3図−2は石灰石
粉末量を2%とした場合の各種配合物の焼成温度
と絶乾比重及び物理強度との関係を示すグラフで
ある。
Figure 1 is a graph showing the relationship between the amount of limestone powder, absolute dry specific gravity, and physical strength in the fired product containing limestone and water glass, and Figure 2 is the graph showing the relationship between the amount of water glass, absolute dry specific gravity, and physical strength in the fired product containing limestone and water glass. Figure 3-1 is a graph showing the relationship between strength and strength, and Figure 3-2 is a graph showing the relationship between firing temperature, absolute dry specific gravity, and physical strength of various compounds when the amount of limestone powder is 1%. It is a graph showing the relationship between the firing temperature, absolute dry specific gravity, and physical strength of various formulations when the amount of limestone powder is 2%.

Claims (1)

【特許請求の範囲】 1 ガラス粉末とスレート、頁岩、シルト、泥岩
等のような粘土質粉末及び火山灰(凝灰岩質)に
石灰石粉末ならびに水ガラスの適量を加え、混和
して造粒し、その造粒物を焼成することを特徴と
する人工超軽量骨材の製造法。 2 ガラス粉末を約70〜90%(重量比)、スレー
ト、頁岩、シルト、泥岩等のような粘土質粉末及
び火山灰(凝灰岩質)を約2〜25%、石灰石粉末
を約1〜5%、造粒物の焼成温度を750℃〜900℃
としたことを特徴とする特許請求の範囲第1項記
載の人工超軽量骨材の製造法。 3 造粒物の原料として更に金属酸化物顔料を添
加して、着色することを特徴とする特許請求の範
囲第1項記載の人工超軽量骨材の製造法。
[Scope of Claims] 1. Appropriate amounts of limestone powder and water glass are added to glass powder, clay powder such as slate, shale, silt, mudstone, etc., and volcanic ash (tuff), mixed, and granulated. A method for producing artificial ultra-light aggregate characterized by firing granules. 2 Glass powder at about 70-90% (weight ratio), clayey powder such as slate, shale, silt, mudstone, etc. and volcanic ash (tuff) at about 2-25%, limestone powder at about 1-5%, The firing temperature of granules is 750℃~900℃
A method for producing an artificial ultra-lightweight aggregate according to claim 1, characterized in that: 3. The method for producing artificial ultra-light aggregate according to claim 1, characterized in that a metal oxide pigment is further added as a raw material for the granules for coloring.
JP16827079A 1979-12-26 1979-12-26 Manufacture of high strength artificial super lightweight aggregate as main material of waste glass Granted JPS5692158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16827079A JPS5692158A (en) 1979-12-26 1979-12-26 Manufacture of high strength artificial super lightweight aggregate as main material of waste glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16827079A JPS5692158A (en) 1979-12-26 1979-12-26 Manufacture of high strength artificial super lightweight aggregate as main material of waste glass

Publications (2)

Publication Number Publication Date
JPS5692158A JPS5692158A (en) 1981-07-25
JPS6245187B2 true JPS6245187B2 (en) 1987-09-25

Family

ID=15864897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16827079A Granted JPS5692158A (en) 1979-12-26 1979-12-26 Manufacture of high strength artificial super lightweight aggregate as main material of waste glass

Country Status (1)

Country Link
JP (1) JPS5692158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911689A (en) * 1994-03-07 1997-01-14 Akiyoshi Koga Change of framework type compass and central axis stable jig into compass capable of scratching off circle on side surface of pillar

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119952A (en) * 1990-09-11 1992-04-21 Nippon Jiryoku Senko Kk Production of artificial light aggregate
JPH0733295B2 (en) * 1991-01-30 1995-04-12 工業技術院長 Method for producing surface-colored inorganic foam molded article
JP2514865B2 (en) * 1991-03-25 1996-07-10 宇部興産株式会社 Method for producing inorganic foam particles
US6695908B1 (en) * 2001-04-24 2004-02-24 Douglas E. Raisch Method of producing aggregate products using glass
JP2006160570A (en) * 2004-12-08 2006-06-22 Takasago Ind Co Ltd Method for manufacturing vitreous bulk foamed body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911689A (en) * 1994-03-07 1997-01-14 Akiyoshi Koga Change of framework type compass and central axis stable jig into compass capable of scratching off circle on side surface of pillar

Also Published As

Publication number Publication date
JPS5692158A (en) 1981-07-25

Similar Documents

Publication Publication Date Title
CN101831981B (en) Composite light building block and preparation method thereof
US4332907A (en) Granulated foamed glass and process for the production thereof
US4308065A (en) Lightweight porous aggregate comprising alkali metal borosilicoaluminate and process for the preparation thereof
US3600476A (en) Method for manufacture of light weight aggregates
CN111116210A (en) Method for preparing light ceramsite by utilizing biological coal ecological sintering waste soil
CA2263759C (en) Process for obtaining a thermally insulating building material
JPS61163152A (en) Manufacture of artificial lightweight aggregate
CN103755379A (en) Method of preparing foamed air brick by taking iron tailings as main material
JPS6245187B2 (en)
US3990901A (en) Method for the production of foam ceramics and shaped articles thereof
CN106146024A (en) A kind of preparation method of basalt porous insulation material
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
US20210363057A1 (en) Novel method of producing improved lightweight ceramic sand and uses thereof
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
US2023511A (en) Substance preparation and article of manufacture
JPH11209130A (en) Manufacture of super-lightweight aggregate
JPH08253352A (en) Production of high-strength inorganic foam
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
JPS6212186B2 (en)
KR100392933B1 (en) Composition for lightweight aggregate
US3998650A (en) Expanded synthetic calcium silicates
RU2197450C1 (en) Method of porous refractory material production
US3801343A (en) Preparation of granular aggregate for use in concrete objects and structures
US3928058A (en) Expanded synthetic calcium silicates
JP2013249219A (en) Porous sintered body and method for manufacturing the same