JPS6212186B2 - - Google Patents

Info

Publication number
JPS6212186B2
JPS6212186B2 JP57022595A JP2259582A JPS6212186B2 JP S6212186 B2 JPS6212186 B2 JP S6212186B2 JP 57022595 A JP57022595 A JP 57022595A JP 2259582 A JP2259582 A JP 2259582A JP S6212186 B2 JPS6212186 B2 JP S6212186B2
Authority
JP
Japan
Prior art keywords
specific gravity
foaming
aggregate
parts
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57022595A
Other languages
Japanese (ja)
Other versions
JPS58140365A (en
Inventor
Kaoru Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIJIMA BUTSUSAN KK
Original Assignee
NIIJIMA BUTSUSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIJIMA BUTSUSAN KK filed Critical NIIJIMA BUTSUSAN KK
Priority to JP2259582A priority Critical patent/JPS58140365A/en
Publication of JPS58140365A publication Critical patent/JPS58140365A/en
Publication of JPS6212186B2 publication Critical patent/JPS6212186B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、人工の超軽量骨材の製造法に関す
る。 従来、人工軽量骨材としては、発泡性頁岩を焼
成したものが多く、その軽量特性が認められて、
建築構造物の骨材として使用されている。しか
し、かかる骨材は製造に燃料を多量に消費するた
め経済性が問題となつている。一方、軽量骨材の
中でも、構造用には使用できないが、超軽量の比
重が0.1〜0.3位の真珠岩や黒曜石の発泡体があ
る。これらは比重が軽く、構造用の人工骨材に比
べると、焼成発泡のために要する熱量はかなり少
なくなる。しかし、これらは強度において用途が
制限されることや、また産地が限られることなど
により、大量生産されないため、価格的には上記
発泡性頁岩よりつくつた人工軽量骨材より高価な
ものとなる。しかも、真珠岩や黒曜石は天然の結
晶水を発泡剤とするため、産地によつてバラツキ
があり、発泡状態のコントロールが難しい。又、
真珠岩の発泡体は開放気孔が多く、セメント等の
バインダを多量に吸収し、結果的に軽量にならな
い場合が多い。このような欠点を補うものとし
て、超微粒中空体であるシラスバルーン等が開発
されているが、原料の精選及び焼成の困難さか
ら、工業化がむずかしいものとなつている。 本発明はかかる現況に鑑みなされたもので、わ
が国では到るところにあつて入手し易い材料であ
る抗火石、流紋岩の如き火山ガラス質鉱物を用い
て、独立気泡をもち、品質の安定した超軽量骨材
を安価に提供せんとするものである。 すなわち、本発明は、抗火石、流紋岩の如き火
山ガラス質鉱物を、20μ以下の粒子が70%以上の
微粉末となし、これに発泡材および粘着材を加え
て造粒し、1000〜1300℃にて焼成発泡させること
を特徴とする超軽量骨材の製造法をその要旨とす
るものである。 本発明の最も特徴とするところは、火山ガラス
質鉱物を、20μ以下の粒子が70%以上の微粉末と
なして用いる点にある。このような微粉末とする
ことにより、発泡材を加えて焼成したものは均一
な発泡をするとともに、独立気泡で吸水率の小さ
な強度の高い超軽量体を製造することができるよ
うになる。又、重量が軽減されるだけ燃料は節減
できることとなる。 発泡材としてはSiCが最も適している。SiCは
ガラス質の溶融温度において最もよく発泡作用を
する。 粘着材としては、粘土、ベントナイト、水ガラ
ス等を用いる。これらは造粒作用をもつて、製品
を一定の大きさのものとなすとともに、製品に一
定の強度を付与する。 焼成温度は1000〜1300℃の範囲が好適であり、
これ以外の温度では十分な発泡が得られない。 発泡材には発泡助剤として、三酸化アンチモン
又は亜ヒ酸を添加して用いるとよい。 本発明においては、原料の微粉化をすすめるこ
とにより、製品の比重は0.3まで可能となるが、
発泡助剤として三酸化アンチモン又は亜ヒ酸を用
いるとさらに低比重のものが得られ、比重0.15ま
で可能となる。 以下、実施例並びに比較例について説明する。 実施例 1 抗火石をローラーミルにて325メツシユ通過
99.5%で、かつ20μ以下の粒子が70%に粒砕し、
その100部に対してベントナイト5部、発泡材と
してSiC0.45部を添加して、ミキサーにて乾式混
合した。ついで、皿型造粒機により水を噴射しな
がら造粒した。つぎに造粒したものを乾燥させ、
直径430mm、長さ12mの重油燃焼式の向流型ロー
タリーキルンにて、傾斜勾配3.5%、回転数3
回/分、滞留時間約1時間にて焼成した。焼成温
度は1190℃とした。その結果、比重0.85、吸水率
2.3%の骨材が得られた。 実施例 2 実施例1と同様にして、焼成温度を1220℃とな
し、粗骨材、細骨材とも造粒して焼成した。その
結果、比重0.65、吸水率3.1%の粗骨材および比
重0.84〜1.35の細骨材が得られた。 実施例 3 抗火石をローラーミル粉砕機により微粉砕し、
バツクフイルタにて5μ以下の粒子を70%含有す
る抗火石粉末を採取し、それを原料とした。この
原料の乾燥粉末100部に対し、発泡材としてSiC
を0.55部、ベントナイトを5部それぞれ添加し、
ミキサーでよく乾式混合し、実施例1と同様にロ
ータリーキルンにて1230℃で焼成した。その結
果、比重0.43、吸水率7.1%の粗骨材、同じく比
重0.8の細骨材が得られた。 以上の実施例で得られた粗骨材さらには細骨材
を用いて、JIS A―5002に基づくコンクリート強
度の試験を行なつた。試験の内容および結果を表
に示す。
The present invention relates to a method for producing artificial ultralight aggregates. Traditionally, artificial lightweight aggregates have often been made from calcined foamed shale, which has been recognized for its lightweight properties.
It is used as aggregate for building structures. However, since such aggregates consume a large amount of fuel to produce, their economic efficiency has become a problem. On the other hand, among lightweight aggregates, there are pearlite and obsidian foams that are extremely lightweight and have a specific gravity of 0.1 to 0.3, although they cannot be used for structural purposes. These materials have a light specific gravity, and the amount of heat required for firing and foaming is considerably lower than that of structural artificial aggregates. However, these materials are not mass-produced because their strength limits their uses and because their production areas are limited, so they are more expensive than artificial lightweight aggregates made from the above-mentioned expandable shale. Moreover, because pearlite and obsidian use natural crystal water as a foaming agent, there are variations depending on the production area, making it difficult to control the foaming state. or,
Pearlite foam has many open pores and absorbs large amounts of binders such as cement, resulting in it often not being lightweight. In order to compensate for these drawbacks, ultrafine hollow particles such as Shirasu balloons have been developed, but industrialization is difficult due to the difficulty in selecting raw materials and firing them. The present invention was made in view of the current situation, and uses volcanic glassy minerals such as anti-flame rock and rhyolite, which are widely available and easily available materials in Japan, and has closed cells and stable quality. The aim is to provide ultra-lightweight aggregate at low cost. That is, in the present invention, volcanic glassy minerals such as anti-firestone and rhyolite are made into a fine powder containing 70% or more of particles of 20μ or less, and granulated by adding a foaming material and an adhesive material. The gist of this is a method for producing ultra-light aggregate, which is characterized by firing and foaming at 1300°C. The most distinctive feature of the present invention is that the volcanic glassy mineral is used in the form of a fine powder containing 70% or more of particles of 20 μm or less. By forming such a fine powder, it becomes possible to uniformly foam the product by adding the foaming material and firing it, and to produce a highly strong, ultra-light body with closed cells and low water absorption. Furthermore, fuel can be saved as the weight is reduced. SiC is the most suitable foam material. SiC works best at foaming temperatures at glassy melting temperatures. As the adhesive material, clay, bentonite, water glass, etc. are used. These have a granulating effect, making the product a certain size and imparting a certain strength to the product. The firing temperature is preferably in the range of 1000 to 1300℃,
At temperatures other than this, sufficient foaming cannot be obtained. Antimony trioxide or arsenous acid may be added to the foaming material as a foaming aid. In the present invention, by pulverizing the raw materials, it is possible to achieve a product with a specific gravity of up to 0.3.
If antimony trioxide or arsenite is used as a foaming aid, even lower specific gravity can be obtained, with specific gravity down to 0.15 possible. Examples and comparative examples will be described below. Example 1 325 meshes of anti-firestone passed through a roller mill
99.5% and 70% particles of 20μ or less are crushed,
To 100 parts of the mixture, 5 parts of bentonite and 0.45 parts of SiC as a foaming material were added and dry mixed using a mixer. Then, the mixture was granulated using a dish-type granulator while spraying water. Next, dry the granulated material,
A heavy oil-fired countercurrent rotary kiln with a diameter of 430 mm and a length of 12 m, with a slope of 3.5% and a rotation speed of 3.
Firing was performed at a rate of 1 hour per minute and a residence time of about 1 hour. The firing temperature was 1190°C. As a result, specific gravity 0.85, water absorption rate
2.3% aggregate was obtained. Example 2 In the same manner as in Example 1, the firing temperature was set to 1220°C, and both coarse aggregate and fine aggregate were granulated and fired. As a result, coarse aggregate with a specific gravity of 0.65 and water absorption rate of 3.1% and fine aggregate with a specific gravity of 0.84 to 1.35 were obtained. Example 3 Anti-firestone was finely pulverized using a roller mill pulverizer,
Anti-flinder powder containing 70% particles of 5μ or less was collected using a back filter and used as a raw material. For 100 parts of dry powder of this raw material, SiC is added as a foaming material.
Add 0.55 parts of and 5 parts of bentonite,
The mixture was thoroughly dry mixed using a mixer, and fired at 1230° C. in a rotary kiln in the same manner as in Example 1. As a result, coarse aggregate with a specific gravity of 0.43 and water absorption rate of 7.1%, and fine aggregate with a specific gravity of 0.8 were obtained. Using the coarse aggregate and fine aggregate obtained in the above examples, a concrete strength test was conducted based on JIS A-5002. The contents and results of the test are shown in the table.

【表】 実施例 4 実施例3と同様の抗火石粉末に、SiC0.60部、
三酸化アンチモン3部、水ガラス5部を添加し、
ミキサーにて乾式混合し、ついで水を20部水滴状
にして加え、ミキサー内で造粒させた。造粒した
ものを乾燥器内にて110℃で乾燥させ、電気炉型
ロータリーキルンにて、滞留時間30分、焼成温度
1230℃をもつて焼成した。その結果、比重0.23、
吸水率8.7%の超軽量骨材および細骨材として比
重0.6の超軽量骨材を得た。 以上の実施例から判るように、本発明により得
られた骨材では超軽量でありながら強度が高いも
のが得られる。本発明品の気乾比重とコンクリー
ト強度との関係を図に示すと、枠Aの範囲内のも
のであり、現在一般に使用されている軽量コンク
リートのB(第1種)、C(第2種)、D(第3
種)、E(第4種)、F(第5種)、G(A社パー
ライトコンクリート)、H(第1種サーモコン)、
I(第2種サーモコン)、J(気泡コンクリー
ト)に対して、比強度の高い新らしいコンクリー
ト分野を形成することとなる。 比較例 抗火石をローラーミルにて粉砕し、325メツシ
ユ通過85%、20μ通過60%の粉末を得て、その
100部に対して実施例1と同様の配合をして造粒
し、1190℃と1220℃の異なる条件で焼成した。前
者で得られた粗骨材の比重は0.92で吸水率は7.5
%であつた。後者で得られた粗骨材の比重は
0.67、吸水率は12.6%であつた。又、細骨材の比
重は1.42であつた。 これらの軽量骨材を用いてJIS A―5002に基づ
くコンクリート強度の試験を行なつた。試験の内
容および結果を表に示す。
[Table] Example 4 0.60 parts of SiC was added to the same anti-flinder powder as in Example 3.
Add 3 parts of antimony trioxide and 5 parts of water glass,
The mixture was dry mixed in a mixer, and then 20 parts of water was added in the form of droplets and granulated in the mixer. The granulated product was dried at 110℃ in a dryer, and then heated in an electric furnace rotary kiln at a residence time of 30 minutes and a firing temperature of
It was fired at 1230℃. As a result, the specific gravity was 0.23,
An ultra-light aggregate with a water absorption rate of 8.7% and an ultra-light aggregate with a specific gravity of 0.6 as fine aggregate were obtained. As can be seen from the above examples, the aggregate obtained according to the present invention is extremely lightweight yet has high strength. A diagram showing the relationship between the air-dry specific gravity and concrete strength of the product of the present invention shows that it falls within the range of frame A, and that it falls within the range of B (type 1) and C (type 2) of the currently commonly used lightweight concrete. ), D (third
species), E (Type 4), F (Type 5), G (Company A pearlite concrete), H (Type 1 thermocon),
This will create a new field of concrete with high specific strength compared to I (Type 2 thermocon) and J (cellular concrete). Comparative example Anti-flinder was crushed in a roller mill to obtain a powder with 85% passing through 325 mesh and 60% passing through 20μ.
The same formulation as in Example 1 was made for 100 parts, granulated, and fired under different conditions of 1190°C and 1220°C. The specific gravity of the coarse aggregate obtained in the former method is 0.92 and the water absorption rate is 7.5.
It was %. The specific gravity of the coarse aggregate obtained in the latter is
0.67, and the water absorption rate was 12.6%. In addition, the specific gravity of the fine aggregate was 1.42. Concrete strength tests based on JIS A-5002 were conducted using these lightweight aggregates. The contents and results of the test are shown in the table.

【表】 以上のように、原料の粒度を粗くして得た骨材
を用いた場合、前記実施例との対比において、同
一比重のものでもコンクリート強度が低下し、超
軽量骨材の性能が発揮できなくなり、図の斜線部
分より下側にはずれてしまつて、コンクリートと
しての新規性を失う。
[Table] As shown above, when aggregate obtained by coarsening the particle size of the raw material is used, the concrete strength decreases even with the same specific gravity, and the performance of the ultra-light aggregate decreases in comparison with the above example. It no longer exhibits its full potential and falls below the shaded area in the diagram, losing its novelty as concrete.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明製品の気乾比重と圧縮強度との関
係を示すグラフである。
The figure is a graph showing the relationship between air-dried specific gravity and compressive strength of the product of the present invention.

Claims (1)

【特許請求の範囲】 1 抗火石、流紋岩の如き火山ガラス質鉱物を、
20μ以下の粒子が70%以上の微粉末となし、これ
に発泡材および粘着材を加えて造粒し、1000〜
1300℃にて焼成発泡させることを特徴とする超軽
量骨材の製造法。 2 発泡材としてSiCを用いる特許請求の範囲第
1項記載の超軽量骨材の製造法。 3 発泡助剤として三酸化アンチモン又は亜ヒ酸
を添加する特許請求の範囲第2項記載の超軽量骨
材の製造法。
[Claims] 1. Volcanic glassy minerals such as anti-firestone and rhyolite,
A fine powder with 70% or more of particles of 20μ or less is made, and a foaming material and an adhesive are added to it to granulate it, and a powder of 1,000 to
A method for producing ultra-lightweight aggregate that is characterized by firing and foaming at 1300℃. 2. A method for producing ultra-light aggregate according to claim 1, using SiC as the foam material. 3. The method for producing ultra-light aggregate according to claim 2, wherein antimony trioxide or arsenite is added as a foaming aid.
JP2259582A 1982-02-17 1982-02-17 Manufacture of super lightweght aggregate Granted JPS58140365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2259582A JPS58140365A (en) 1982-02-17 1982-02-17 Manufacture of super lightweght aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2259582A JPS58140365A (en) 1982-02-17 1982-02-17 Manufacture of super lightweght aggregate

Publications (2)

Publication Number Publication Date
JPS58140365A JPS58140365A (en) 1983-08-20
JPS6212186B2 true JPS6212186B2 (en) 1987-03-17

Family

ID=12087189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2259582A Granted JPS58140365A (en) 1982-02-17 1982-02-17 Manufacture of super lightweght aggregate

Country Status (1)

Country Link
JP (1) JPS58140365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120290U (en) * 1987-01-30 1988-08-03

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674180B2 (en) * 1986-04-07 1994-09-21 清水建設株式会社 Ultra-light cement hardened body and method for producing the same
JPS6433083A (en) * 1987-07-30 1989-02-02 Shimizu Construction Co Ltd Extra-light-weight concrete
US10155695B2 (en) 2016-10-04 2018-12-18 Romeo Ilarian Ciuperca Manufactured natural pozzolan, improved manufactured natural pozzolan-based cement and method of making and using same
US9822037B1 (en) * 2017-05-15 2017-11-21 Romeo Ilarian Ciuperca Hyaloclastite pozzolan, hyaloclastite based cement, hyaloclastite based concrete and method of making and using same
ES2840400T3 (en) 2017-05-15 2021-07-06 Romeo Ilarian Ciuperca Pozzolana of the hialoclastite, sideromelano or taquilite type, cement and concrete that use the same and process of production and use of the same
US11236018B2 (en) 2017-05-15 2022-02-01 Romeo Ilarian Ciuperca Hyaloclastite, sideromelane or tachylite pozzolan-based geopolymer cement and concrete and method of making and using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118690A (en) * 1973-03-17 1974-11-13
JPS5184815A (en) * 1975-01-23 1976-07-24 Sumitomo Chemical Co JINKOKEIRYOKOTSUZAINOSEIZOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118690A (en) * 1973-03-17 1974-11-13
JPS5184815A (en) * 1975-01-23 1976-07-24 Sumitomo Chemical Co JINKOKEIRYOKOTSUZAINOSEIZOHOHO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120290U (en) * 1987-01-30 1988-08-03

Also Published As

Publication number Publication date
JPS58140365A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
JP7038708B2 (en) Lightweight and high-strength ceramic particles and their manufacturing method
US4341562A (en) Lightweight aggregate
US4143202A (en) Ash coated cellular glass pellet
US4772330A (en) Process for producing low water-absorption artificial lightweight aggregate
US4332907A (en) Granulated foamed glass and process for the production thereof
US3600476A (en) Method for manufacture of light weight aggregates
JPS6212186B2 (en)
JPH02283678A (en) Production of ceramic product such as artificial light-weight aggregate from industrial waste
CN106146024A (en) A kind of preparation method of basalt porous insulation material
JPH04119952A (en) Production of artificial light aggregate
JPS6245187B2 (en)
US2456207A (en) Lightweight aggregate and method of producing same
JP6614537B2 (en) Method for manufacturing closed foam tile and closed foam tile
US3801343A (en) Preparation of granular aggregate for use in concrete objects and structures
KR920006804B1 (en) Preparation method of artificial-lightweight-aggregate material
JP2518737B2 (en) Fine-grained ceramic balloon manufacturing method
CH502964A (en) Foamed silicate granules for light weight - building materials
RU2255058C1 (en) Method of preparing blend for fabricating glass foam
JPH06191963A (en) Production of lightweight high-strength building material
KR960011329B1 (en) Process for preparing aggregate material using flyash and clay
JPH02175676A (en) Production of expanded lightweight aggregate
DE2638707A1 (en) LIGHT PARTICLE-SHAPED UNIT AND PROCESS FOR ITS MANUFACTURING
JPH0741343A (en) Artificial lightweight aggregate composed mainly of coal ash
KR19980046660A (en) Method for manufacturing artificial lightweight aggregate for concrete structure
KR0153485B1 (en) Process for the preparation of light weight aggregate material