JP5914188B2 - 露点温度計測システム - Google Patents

露点温度計測システム Download PDF

Info

Publication number
JP5914188B2
JP5914188B2 JP2012129365A JP2012129365A JP5914188B2 JP 5914188 B2 JP5914188 B2 JP 5914188B2 JP 2012129365 A JP2012129365 A JP 2012129365A JP 2012129365 A JP2012129365 A JP 2012129365A JP 5914188 B2 JP5914188 B2 JP 5914188B2
Authority
JP
Japan
Prior art keywords
dew point
temperature measurement
point temperature
mirror surface
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012129365A
Other languages
English (en)
Other versions
JP2013253854A (ja
Inventor
良之 金井
良之 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2012129365A priority Critical patent/JP5914188B2/ja
Publication of JP2013253854A publication Critical patent/JP2013253854A/ja
Application granted granted Critical
Publication of JP5914188B2 publication Critical patent/JP5914188B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

この発明は、一方の面が低温側、他方の面が高温側とされる熱電冷却素子を用いて冷却される鏡面の上に生じる結露や結霜から露点温度を計測する鏡面冷却式露点計を用いた露点温度計測システムに関するものである。
従来より、湿度測定法として、被測定気体の温度を低下させ、その被測定気体に含まれる水蒸気の一部を結露させたときの温度を測定することにより露点を検出する露点検出法が知られている。例えば、寒剤、冷凍機、電子冷却器などを用いて鏡を冷却し、この冷却した鏡の鏡面上の反射光の強度の変化を検出し、反射光の強度が平衡状態になった時の鏡面の温度を測定することによって、被測定気体中の水分の露点を検出する鏡面冷却式露点計が用いられている。
この鏡面冷却式露点計には、利用する反射光の種類によって、2つのタイプがある。1つは、正反射光を利用する正反射光検出方式(例えば、特許文献1参照)、もう1つは、散乱光を利用する散乱光検出方式(例えば、特許文献2参照)である。
〔正反射光検出方式〕
図22に正反射光検出方式を採用した従来の鏡面冷却式露点計におけるセンサ部の構成を示す。このセンサ部101は、被測定気体が流入されるチャンバ1と、このチャンバ1の底部に設けられた熱電冷却素子(ペルチェ素子)2を備えている。熱電冷却素子2の冷却面2−1には鏡3が取り付けられており、熱電冷却素子2の加熱面2−2にはヒートパイプ4を介して放熱部材5が取り付けられている。すなわち、ヒートパイプ4の一端4−1が熱電冷却素子2の加熱面2−2に取り付けられており、熱電冷却素子2から離されたヒートパイプ4の他端4−2に放熱部材5が取り付けられている。
また、熱電冷却素子2とヒートパイプ4の一端4−1にはその周囲を覆うように断熱部材6が設けられており、鏡3の上面(鏡面)3−1には温度検出素子7が取り付けられている。また、チャンバ1の上部に、鏡3の鏡面3−1に対して斜めに光を照射する発光素子8と、この発光素子8から鏡面3−1に対して照射された光の正反射光を受光する受光素子9とが設けられている。また、熱電冷却素子2へのリード線10が断熱部材6を貫通して設けられている。
このセンサ部101において、チャンバ1内には、不図示の主配管から分岐された分岐管路を介して、被測定気体が流入される。これにより、チャンバ1内の鏡面3−1が、被測定気体に晒される。鏡面3−1に結露が生じていなければ、発光素子8から照射された光はそのほゞ全量が正反射し、受光素子9で受光される。したがって、鏡面3−1に結露が生じていない場合、受光素子9で受光される反射光の強度は大きい。
熱電冷却素子2への電流を増大し、熱電冷却素子2の冷却面2−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面3−1に結露し、その水の分子に発光素子8から照射した光の一部が吸収されたり、乱反射したりする。これにより、受光素子9で受光される反射光(正反射光)の強度が減少する。この鏡面3−1における正反射光の変化を検出することにより、鏡面3−1上の状態の変化、すなわち鏡面3−1上に水分(水滴)が付着したことを知ることができる。さらに、この時の鏡面3−1の温度を温度検出素子7で測定することにより、被測定気体中の水分の露点を知ることができる。
〔散乱光検出方式〕
図23に散乱光検出方式を採用した従来の鏡面冷却式露点計におけるセンサ部の構成を示す。このセンサ部102は、正反射光検出方式を採用したセンサ部101とほゞ同構成であるが、受光素子9の取り付け位置が異なっている。このセンサ部102において、受光素子9は、発光素子8から鏡面3−1に対して照射された光の正反射光を受光する位置ではなく、散乱光を受光する位置に設けられている。
このセンサ部102において、チャンバ1内には、不図示の主配管から分岐された分岐管路を介して、被測定気体が流入される。これにより、チャンバ1内の鏡面3−1が、被測定気体に晒される。鏡面3−1に結露が生じていなければ、発光素子8から照射された光はそのほゞ全量が正反射し、受光素子9での受光量は極微量である。したがって、鏡面3−1に結露が生じていない場合、受光素子9で受光される反射光の強度は小さい。
熱電冷却素子2への電流を増大し、熱電冷却素子2の冷却面2−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面3−1に結露し、その水の分子に発光素子8から照射した光の一部が吸収されたり、乱反射したりする。これにより、受光素子9で受光される乱反射された光(散乱光)の強度が増大する。この鏡面3−1における散乱光の変化を検出することにより、鏡面3−1上の状態の変化、すなわち鏡面3−1上に水分(水滴)が付着したことを知ることができる。さらに、この時の鏡面3−1の温度を温度検出素子7で測定することにより、被測定気体中の水分の露点を知ることができる。
なお、上述した露点計においては、鏡面3−1に生じる結露(露点)を検出する例で説明したが、同様の構成によって鏡面3−1に生じる結霜(霜点)を検出することも可能である。本明細書では、霜点も含めた温度を露点温度として定義する。
このような鏡面冷却式露点計では、被測定気体に低温で凝縮する物質(例えば、有機溶剤)が混入している場合がある。すなわち、通常は気体で被測定気体に含まれ、露点温度よりも高い低温で固体になる物質が含まれている場合がある。このような物質が露点温度計測のための冷却に伴って凝縮して鏡面に付着すると、この鏡面上に付着した凝縮物質により反射光や散乱光に対して悪影響を及ぼし、正確な露点温度の計測が行えなくなる。例えば、連続露点計測中に凝縮物質が付着して鏡面が汚れると、計測が不安定になったり、汚れにより結露の検出が異常になり、結露し過ぎていると判断し、露点温度が上昇することがある。
そこで、従来は、鏡面の汚れを防ぐために、定期的に露点温度計測を中断して、人手により綿棒などで鏡面を清掃するようにしたり、特許文献3に示されているように、被測定気体に含まれる凝縮物質を鏡面に導かれる前に除去装置によって除去するようにしたり、特許文献4に示されるように、CO2ガスを吹きかけて凝縮物質を鏡面上から吹き飛ばすようにしている。
特開昭61−75235号公報 特公平07−104304号公報 特開2002−189007号公報 特開平05−99846号公報
しかしながら、人手により鏡面を清掃する方法では、露点温度計測を定期的に中断しなければならず、鏡面の汚れを確認する際に鏡面汚れアラームが多発することがある。また、清掃作業が面倒であり、清掃作業のために比較的長時間、露点温度計測を中断しなければならず、露点温度の連続計測ができない。
また、被測定気体が鏡面に導かれる前に凝縮物質を除去する方法では、事前に凝縮物質が特定されていて、それを化学反応などによって除去するための除去装置が必要となる。また、全ての凝縮物質に対して適応していない。
CO2ガスを吹きかけて凝縮物質を鏡面上から吹き飛ばす方法では、CO2ガスを吹きかける装置が必要であり、CO2ガスを吹きかけている間は露点温度の計測を中断しなければならない。
本発明は、このような課題を解決するためになされたもので、その目的とするところは、鏡面の自動クリーニング制御中だけではなく、露点温度計測制御中も中断させることなく、露点温度計測を連続して行わせることが可能で、かつ人手による鏡面の清掃を不要とし、凝縮物質を除去する装置を別途設ける必要のない露点温度計測システムを提供することにある。
このような目的を達成するために本発明は、被測定気体に晒される鏡面と、この鏡面を冷却する熱電冷却素子と、鏡面の温度を検出する温度センサと、鏡面に対して光を照射する投光手段と、投光手段から鏡面に対して照射された光の反射光を受光する受光手段と、受光手段が受光する反射光の光量に基づいて熱電冷却素子へ供給する電流を制御する制御手段とを備え、制御手段は、受光手段が受光する反射光の光量に基づいて熱電冷却素子へ供給する電流を鏡面に生じる結露もしくは結霜の増減がなくなる平衡状態になるように制御し、その平衡状態において温度センサが検出する鏡面の温度を露点温度として計測する露点温度計測制御を実行する手段と、露点温度計測制御を定期的に中断して受光手段が受光する反射光の光量に基づいて鏡面の状態の正常/異常の判断を実行する鏡面状態判断手段と、鏡面に付着しているであろう、通常は気体で被測定気体に含まれ、露点温度よりも高い低温で固体となり、鏡面を汚す凝縮物質を蒸発又は昇華させて除去させる自動クリーニング制御を実行する手段とを備えた第1および第2の鏡面冷却式露点計を有する露点温度計測システムであって、第1の鏡面冷却式露点計は運用当初の計測用の露点計として設定され、第2の鏡面冷却式露点計は運用当初の補助用の露点計として設定され、第2の鏡面冷却式露点計は、露点温度計測制御を常時実行し、この露点温度計測制御を定期的に中断して、鏡面の状態の正常/異常の判断を行い、鏡面の状態が異常と判断された場合、露点温度計測制御を中止して、自動クリーニング制御に移行し、その後、露点温度計測制御に復帰し、第1の鏡面冷却式露点計は、露点温度計測制御を常時実行し、第2の鏡面冷却式露点計が露点温度計測制御に復帰にした後、露点温度計測制御を中止して、自動クリーニング制御に移行し、第1の鏡面冷却式露点計は、自動クリーニング制御に移行するまでの露点温度計測制御中、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止され、第2の鏡面冷却式露点計は、自動クリーニング制御に移行するまでの露点温度計測制御中、その露点温度の計測値が無効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が許可され、さらに、第1の鏡面冷却式露点計が自動クリーニング制御中である時に、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止されることを特徴とする。
この発明において、第1の鏡面冷却式露点計は運用当初の計測用の露点計として設定され、第2の鏡面冷却式露点計は運用当初の補助用の露点計として設定される。運用当初の補助用の露点計として設定された第2の鏡面冷却式露点計は、露点温度計測制御を常時実行し、この露点温度計測制御を定期的に中断して、鏡面の状態の正常/異常の判断を行い、鏡面の状態が異常と判断された場合、露点温度計測制御を中止して、自動クリーニング制御に移行し、その後、露点温度計測制御に復帰する。運用当初の計測用の露点計として設定された第1の鏡面冷却式露点計は、露点温度計測制御を常時実行し、第2の鏡面冷却式露点計が露点温度計測制御に復帰にした後、露点温度計測制御を中止して、自動クリーニング制御に移行する。
ここで、第1の鏡面冷却式露点計は、自動クリーニング制御に移行するまでの露点温度計測制御中、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止される。一方、第2の鏡面冷却式露点計は、自動クリーニング制御に移行するまでの露点温度計測制御中、その露点温度の計測値が無効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が許可される。また、第2の鏡面冷却式露点計は、第1の鏡面冷却式露点計が自動クリーニング制御中である時にその露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止される。
このようにして、本発明では、第1の鏡面冷却式露点計の露点温度計測制御中は、この第1の鏡面冷却式露点計の露点温度の計測値が有効な計測値とし、第1の鏡面冷却式露点計が自動クリーニング制御中である時には、第2の鏡面冷却式露点計の露点温度の計測値が有効な計測値とし、第1の鏡面冷却式露点計(運用当初の計測用の露点計)での自動クリーニング制御中に、鏡面が正常な状態に戻された第2の鏡面冷却式露点計(運用当初の補助用の露点計)で露点温度の計測値を有効な計測値とする露点温度計測制御が行われるようにして、露点温度の計測を連続して行わせることが可能となる。また、第1の鏡面冷却式露点計(運用当初の計測用の露点計)でも、第2の鏡面冷却式露点計(運用当初の補助用の露点計)でも、露点温度の計測値を有効な計測値とする露点温度計測制御中は、鏡面の状態の正常/異常の判断が実行されないようにして、鏡面の自動クリーニング制御中だけではなく、露点温度計測制御中も中断させることなく、露点温度の計測を連続して行わせることが可能となる。
例えば、本発明では、第1の方式として、第1の鏡面冷却式露点計は、自動クリーニング制御に移行した後、露点温度計測制御に復帰し、この露点温度計測制御に復帰した後、その露点温度の計測値が無効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が許可され、第2の鏡面冷却式露点計は、第1の鏡面冷却式露点計が露点温度計測制御に復帰した後も、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止される、という方式を採用する。
この第1の方式を採用した場合、第1の鏡面冷却式露点計(運用当初の計測用の露点計)は、自動クリーニング制御に移行した後、露点温度計測制御に復帰すると、その露点温度の計測値が無効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が許可されるようになる。この場合、第1の鏡面冷却式露点計は、それまでの計測用の露点計から、補助用の露点計に切り換わる。また、第2の鏡面冷却式露点計(運用当初の補助用の露点計)は、第1の鏡面冷却式露点計が露点温度計測制御に復帰した後も、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止される。この場合、第2の鏡面冷却式露点計は、それまでの補助用の露点計から、計測用の露点計に切り換わる。すなわち、この第1の方式を採用した場合、第1の鏡面冷却式露点計と第2の鏡面冷却式露点計とは、その露点温度の計測値の有効/無効が交互に切り換えられるものとなる。
例えば、本発明では、第2の方式として、第1の鏡面冷却式露点計は、自動クリーニング制御に移行した後、露点温度計測制御に復帰し、この露点温度計測制御が安定した状態となるまで待った後に、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止され、第2の鏡面冷却式露点計は、第1の鏡面冷却式露点計が露点温度計測制御に復帰した後、この第1の鏡面冷却式露点計の露点温度計測制御が安定した状態となるまで待った後に、その露点温度の計測値が無効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が許可される、という方式を採用する。
この第2の方式を採用した場合、第1の鏡面冷却式露点計(運用当初の計測用の露点計)は、自動クリーニング制御に移行した後、露点温度計測制御に復帰すると、この露点温度計測制御が安定した状態となるまで待った後に、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止されるようになる。この場合、第1の鏡面冷却式露点計、計測用の露点計に戻る。また、第2の鏡面冷却式露点計(運用当初の補助用の露点計)は、第1の鏡面冷却式露点計が露点温度計測制御に復帰すると、この第1の鏡面冷却式露点計の露点温度計測制御が安定した状態となるまで待った後に、その露点温度の計測値が無効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が許可されるようになる。この場合、第2の鏡面冷却式露点計は、補助用の露点計に戻る。すなわち、この第2の方式を採用した場合、第1の鏡面冷却式露点計と第2の鏡面冷却式露点計とは、その露点温度の計測値の有効/無効が一時的に切り換えられるものとなる。
本発明では、鏡面に付着しているであろう凝縮物質を蒸発又は昇華させて除去させる自動クリーニング制御を実行するが、この自動クリーニング制御として、鏡面に付着しているであろう凝縮物質を蒸発又は昇華させて除去させるべく、鏡面の温度を上昇させるように熱電冷却素子へ供給する電流を制御する方式、鏡面に付着しているであろう凝縮物質を蒸発又は昇華させて除去させるべく、鏡面、熱電冷却素子、温度センサ、投光手段および受光手段を収容するチャンバ内の圧力を減圧制御する方式を採用することが考えられる。
本発明によれば、第1の鏡面冷却式露点計を運用当初の計測用の露点計として設定し、第2の鏡面冷却式露点計を運用当初の補助用の露点計として設定し、第2の鏡面冷却式露点計は、露点温度計測制御を常時実行し、この露点温度計測制御を定期的に中断して、鏡面の状態の正常/異常の判断を行い、鏡面の状態が異常と判断された場合、露点温度計測制御を中止して、自動クリーニング制御に移行し、その後、露点温度計測制御に復帰し、第1の鏡面冷却式露点計は、露点温度計測制御を常時実行し、第2の鏡面冷却式露点計が露点温度計測制御に復帰にした後、露点温度計測制御を中止して、自動クリーニング制御に移行するものとしたので、第1の鏡面冷却式露点計(運用当初の計測用の露点計)での自動クリーニング制御中に、鏡面が正常な状態に戻された第2の鏡面冷却式露点計(運用当初の補助用の露点計)で露点温度の計測値を有効な計測値とする露点温度計測制御を行わせるようにして、露点温度の計測を連続して行わせることが可能となる。
また、本発明によれば、第1の鏡面冷却式露点計は、自動クリーニング制御に移行するまでの露点温度計測制御中、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止され、第2の鏡面冷却式露点計は、自動クリーニング制御に移行するまでの露点温度計測制御中、その露点温度の計測値が無効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が許可され、さらに、第1の鏡面冷却式露点計が自動クリーニング制御中である時に、その露点温度の計測値が有効な計測値とされると共に、鏡面の状態の正常/異常の判断の実行が禁止されるものとしたので、第1の鏡面冷却式露点計(運用当初の計測用の露点計)でも、第2の鏡面冷却式露点計(運用当初の補助用の露点計)でも、露点温度の計測値を有効な計測値とする露点温度計測制御中は、鏡面の状態の正常/異常の判断が実行されないようにして、鏡面の自動クリーニング制御中だけではなく、露点温度計測制御中も中断させることなく、露点温度の計測を連続して行わせることが可能となる。
また、本発明によれば、運用当初の計測用の露点計として設定される第1の鏡面冷却式露点計や運用当初の補助用の露点計として設定される第2の鏡面冷却式露点計において、鏡面に付着しているであろう凝縮物質を蒸発又は昇華させて除去させる自動クリーニング制御を実行させることにより、人手による鏡面の清掃が不要となり、凝縮物質を除去する装置を別途設ける必要もなくなる。
本発明に係る露点温度計測システムに用いる鏡面冷却式露点計の概略構成図である。 この鏡面冷却式露点計のサンプリングチャンバ内に被測定気体を導くための仕切り弁および吸引ポンプの設置状況を示す図である。 この鏡面冷却式露点計におけるサブコントローラ側での動作を示すフローチャートである。 この鏡面冷却式露点計における鏡面に対して照射されるパルス光および鏡面から受光される反射パルス光を示す図である。 この鏡面冷却式露点計におけるサブクーラおよび第1の熱電冷却素子の冷却曲線(特性I,II)を示す図である。 この鏡面冷却式露点計において定期的に行われる鏡面状態の正常/異常の判断および自動クリーニングへの移行動作を示すフローチャートである。 この鏡面冷却式露点計において鏡面状態の正常/異常の判断を鏡面温度の変化が生じなくなったことを確認して行うようにした場合の動作を示すフローチャートである。 この鏡面冷却式露点計において鏡面状態の正常/異常の判断を反射光量の変化が生じなくなったことを確認して行うようにした場合の動作を示すフローチャートである。 この鏡面冷却式露点計において定期的に行われる鏡面状態の正常/異常の判断および自動クリーニングへの移行動作の別の例を示すフローチャートである。 この鏡面冷却式露点計において鏡面状態の正常/異常の判断を鏡面温度の変化が生じなくなったことを確認して行うようにした場合の別の例の動作を示すフローチャートである。 この鏡面冷却式露点計において鏡面状態の正常/異常の判断を反射光量の変化が生じなくなったことを確認して行うようにした場合の別の例の動作を示すフローチャートである。 この鏡面冷却式露点計の要部の機能ブロック図である。 この鏡面冷却式露点計における制御モードの変化を示すタイムチャートである。 本発明に係る露点温度計測システムの一実施の形態の要部の機能ブロック図である。 この露点温度計測システムを運用方式1(実施の形態1)で運用した場合の第1の鏡面冷却式露点計および第2の鏡面冷却式露点計における制御モードの変化を制御モード変化の各ケースの期間と合わせて示すタイムチャートである。 この露点温度計測システムを運用方式1で運用した場合の第1の鏡面冷却式露点計および第2の鏡面冷却式露点計の制御フローチャートである。 この露点温度計測システムを運用方式1で運用した場合の統括コントローラの制御フローチャートである。 図17に続く統括コントローラのケース2の場合の制御フローチャートである。 図17に続く統括コントローラのケース3の場合の制御フローチャートである。 この露点温度計測システムを運用方式2(実施の形態2)で運用した場合の第1の鏡面冷却式露点計および第2の鏡面冷却式露点計における制御モードの変化を制御モード変化の各ケースの期間と合わせて示すタイムチャートである。 第1の鏡面冷却式露点計と第2の鏡面冷却式露点計とを直列に設置した場合の構成例を示す図である。 正反射光検出方式を採用した従来の鏡面冷却式露点計におけるセンサ部の構成を示す図である。 散乱光検出方式を採用した従来の鏡面冷却式露点計におけるセンサ部の構成を示す図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
先ず、本発明に係る露点温度計測システムの実施の形態の説明に入る前に、この露点温度計測システムに用いる鏡面冷却式露点計について説明する。
〔鏡面冷却式露点計〕
図1はこの鏡面冷却式露点計の単体の概略構成図である。この鏡面冷却式露点計201はセンサ部201Aとコントロール部201Bとを有している。
〔センサ部〕
センサ部201Aにおいて、11は鏡であり、その表面11−1が鏡面とされている。鏡11は、例えばシリコンチップとされており、鏡11の裏面11−2側に第1の熱電冷却素子(ペルチェ素子)2の冷却面2−1が取り付けられている。また、鏡11と第1の熱電冷却素子2の冷却面2−1との間には、例えば白金による第1の温度センサ12が設けられている。第1の温度センサ12は鏡11の裏面11−2の温度を鏡面温度tPpvとして検出する。
また、第1の熱電冷却素子2は、その加熱面2−2を底面として、センサボディ13の先端部13aの傾斜面13bに取り付けられている。傾斜面13bはセンサボディ13の中心軸に対して30゜〜45゜の傾斜角とされている。したがって、第1の熱電冷却素子2の冷却面2−1に第1の温度センサ12を挟んで取り付けられた鏡11の鏡面11−1もセンサボディ13の中心軸に対して30゜〜45゜の角度で傾けられている。
センサボディ13の先端部13aにつながる後端部13cは円柱状とされている。この後端部13cには、その先端面を鏡面11−1に対向させて、投受光一体型の光ファイバ14が保持されている。投受光一体型の光ファイバ14の投光軸および受光軸はセンサボディ13の中心軸と平行とされている。なお、この例では、後端部13cから鏡面11−1に向かって突き出ている投受光一体型の光ファイバ14の光ファイバ14−1,14−2のうち、14−1を投光側の光ファイバ、14−2を受光側の光ファイバとしている。
センサボディ13の後端部13cの後部には冷却ブロック15が接合されている。また、冷却ブロック15の後部には、冷却板16が接合されている。センサボディ13、冷却ブロック15、冷却板16はいずれも熱伝導性の部材とされており、このセンサボディ13と冷却ブロック15と冷却板16とによって熱伝導体17が構成されている。
冷却板15の後部には第2の熱電冷却素子(ペルチェ素子)18が設けられている。第2の熱電冷却素子18は、その冷却面18−1を冷却板16側として、熱伝導体17に取り付けられている。すなわち、熱伝導体17の一端に第1の熱電冷却素子2の加熱面2−2が取り付けられ、熱伝導体17の他端に第2の熱電冷却素子18の冷却面18−1が取り付けられている。この鏡面冷却式露点計201において、第2の熱電冷却素子18の冷却能力は、そのサイズを比較しても分かるように、第1の熱電冷却素子2の冷却能力よりも遙かに大きいものとされている。
第2の熱電冷却素子18の加熱面18−2にはヒートシンク19が放熱体として接合されている。ヒートシンク19には多数の放熱フィン19aが形成されている。このヒートシンク19も熱伝導体17と同様、熱伝導性の部材とされている。また、ヒートシンク19の後方には冷却ファン20が設けられており、冷却板16には第2の温度センサ21が設けられている。第2の温度センサ21は、第2の熱電冷却素子18の冷却面18−1の温度をサブクーラ温度tSpvとして検出する。
この鏡面冷却式露点計201では、冷却板16と第2の熱電冷却素子18とヒートシンク19と冷却ファン20とを合わせた構成を補助冷却器(サブクーラ)と呼ぶが、補助冷却器(サブクーラ)の主要構成は第2の熱電冷却素子18であり、第2の熱電冷却素子18単体を補助冷却器(サブクーラ)と呼んでもよい。ここでは、冷却板16と第2の熱電冷却素子18とヒートシンク19と冷却ファン20とを合わせた構成をサブクーラSCとする。
また、この鏡面冷却式露点計201において、第1の熱電冷却素子2や鏡11,第1の温度センサ12,投光側の光ファイバ14−1,受光側の光ファイバ14−2などを含む検出部DTは、被測定気体が引き込まれるサンプリングチャンバ31内に断熱材32を通して設けられている。また、サンプリングチャンバ31に対しては、図2に示すように、このサンプリングチャンバ31に被測定気体を導くための仕切り弁40と吸引ポンプ41が設置されている。
また、センサ部201Aには、光電変換器22が設けられている。光電変換器22は、コントロール部201Bからの電気信号を光信号に変換して投光側の光ファイバ14−1へ与えたり、受光側の光ファイバ14−2からの光信号を電気信号に変換してコントロール部201Bへ与えたりする。光電変換器22とコントロール部201Bとの接続関係については後述する。また、センサ部201Aに対しては、冷却ファン20が吸い込む外気の温度をtoutとして検出する外気温度センサ23が設けられている。外気温度センサ23が検出する外気温度toutはコントロール部201Bへ送られる。
〔コントロール部〕
コントロール部201Bには、メインコントローラ24と、サブコントローラ25と、電源26と、電源スイッチ27と、露点計測ON/OFFスイッチ28と、サブクーラ制御ON/OFFスイッチ29と、サブクーラ低温/高温/連動切替セレクタスイッチ30とが設けられている。
メインコントローラ24は、CPU24−1と、第1のA/D変換器24−2と、第2のA/D変換器24−3と、露点温度出力部24−4と、RAM24−5と、ROM24−6とを備えている。CPU24−1は、外部からの各種入力情報を得て、RAM24−5にアクセスしながら、ROM24−6に格納されたプログラムに従って動作する。ROM24−6には露点計測プログラムが格納されている。
なお、メインコントローラ24において、第1のA/D変換器24−2は、光電変換器22からの電気信号に変換された受光側の光ファイバ14−2からの光信号(信号S4)をデジタル信号に変換してCPU24−1へ与える。また、第2のA/D変換器24−3は、第1の温度センサ12からの鏡面温度tPpv(信号S2)をデジタル信号に変換して露点温度出力部24−4およびCPU24−1へ与える。露点温度出力部24−4は第1の温度センサ12からのデジタル信号に変換された鏡面温度tPpvを露点温度として上位装置へ送る。
サブコントローラ25は、CPU25−1と、第1のA/D変換器25−2と、第2のA/D変換器25−3と、RAM25−4と、ROM25−5とを備えている。CPU25−1は、外部からの各種入力情報を得て、RAM25−4にアクセスしながら、ROM25−5に格納されたプログラムに従って動作する。ROM25−5にはサブクーラ制御プログラムが格納されている。
なお、サブコントローラ25において、第1のA/D変換器25−2は、第2の温度センサ21からのサブクーラ温度tSpv(信号S6)をデジタル信号に変換してCPU25−1へ与える。また、第2のA/D変換器25−3は、外気温度センサ23からの外気温度tout(信号S8)をデジタル信号に変換してCPU25−1へ与える。また、CPU25−1には、メインコントローラ24における第2のA/D変換器24−3を介して、第1の温度センサ12からの鏡面温度tPpvが与えられる。また、サブコントローラ25のCPU25−1は、図2に示されるように、メインコントローラ24のCPU24−1からの指令を受けて、仕切り弁40の開閉および吸引ポンプ41の運転/停止も制御する。
〔サブクーラ低温/高温/連動の切替設定〕
この鏡面冷却式露点計201では、サブクーラSCに対して、「低温(例えば、−5℃固定)」で動作させるのか、「高温(例えば、25℃固定)」で動作させるのか、「連動(鏡面温度+α)」で動作させるのかについて、サブクーラ低温/高温/連動切替セレクタスイッチ30を用いてその動作モードを選択的に設定することが可能である。
〔動作モードを「低温」としての露点計測〕
今、サブクーラ低温/高温/連動切替セレクタスイッチ30を「低温」に設定して、露点計測を開始するものとする。なお、この場合、電源スイッチ27は既にONとされており、メインコントローラ24およびサブコントローラ25には電源が供給された状態にあるものとする。
露点計測を開始させる場合、露点計測ON/OFFスイッチ28とサブクーラ制御ON/OFFスイッチ29とを共にONとする。なお、先に、サブクーラ制御ON/OFFスイッチ29をONとし、ある程度時間が経った後に露点計測ON/OFFスイッチ28をONとするようにしてもよいが、ここでは露点計測ON/OFFスイッチ28とサブクーラ制御ON/OFFスイッチ29とを同時にONとするものとする。
メインコントローラ24のCPU24−1は、サブクーラ制御ON/OFFスイッチ29がONとされると、サブクーラ低温/高温/連動切替セレクタスイッチ30の現在の設定状態と合わせて、サブクーラ制御ON/OFFスイッチ29がONとされた旨をサブコントローラ25のCPU25−1に知らせる。
〔サブコントローラ側での動作〕
サブコントローラ25のCPU25−1は、メインコントローラ24からサブクーラ制御ON/OFFスイッチ29がONとされた旨の知らせを受けると(図3:ステップS101のYES)、仕切り弁40を開とし(ステップS102)、吸引ポンプ41の運転を開始して(ステップS103)、サンプリングチャンバ31への被測定気体の流入を開始すると共に、冷却ファン20の運転を開始する(ステップS104、信号S5)。なお、電源スイッチ27がONとされたときにサンプリングチャンバ31への被測定気体の導入(仕切り弁40の開、吸引ポンプ41の運転)および冷却ファン20の運転を開始するように構成してもよい。
また、サブコントローラ25のCPU25−1は、メインコントローラ24から知らされるサブクーラ低温/高温/連動切替セレクタスイッチ30の現在の設定状態をチェックする(ステップS105)。この場合、サブクーラ低温/高温/連動切替セレクタスイッチ30の設定状態は「低温」とされているので、ステップS108を経てステップS109へ進み、サブクーラの設定目標温度Tspを低温(例えば、−5℃)とする。
そして、第2の温度センサ21からのサブクーラ温度tSpvを取り込み(ステップS114、信号S6)、サブクーラ温度tSpvと設定目標温度Tspとが一致するように、第2の熱電冷却素子18へ供給する電流をON/OFF制御する(ステップS115、信号S7)。
〔メインコントローラ側での動作〕
一方、メインコントローラ24のCPU24−1は、露点計測ON/OFFスイッチ28がONとされると、光電変換器22へ信号S3を送り、投光側の光ファイバ14−1の先端面より、鏡面11−1に対して所定の周期で光を照射させる(図4(a)参照)。なお、電源スイッチ27がONされると投光側の光ファイバ14−1の先端面より光を照射させるように光電変換器22を構成してもよい。
鏡面11−1は被測定気体に晒されており、鏡面11−1に結露が生じていなければ、投光側の光ファイバ14−1の先端から照射された光はそのほゞ全量が正反射し、受光側の光ファイバ14−2を介して受光される鏡面11−1からの反射光(散乱光)の量は極微量である。したがって、鏡面11−1に結露が生じていない場合、受光側の光ファイバ14−2を介して受光される反射光の強度は小さい。受光側の光ファイバ14−2を介して受光される反射光は、光電変換器22によって電気信号に変換され、メインコントローラ24の第1のA/D変換器24−2へ送られ、デジタル信号に変換されてCPU24−1に取り込まれる。
CPU24−1は、受光側の光ファイバ14−2を介して受光される反射光の上限値と下限値との差を反射光の強度として求める。この場合、反射光の強度はほゞ零であり、予め定められている閾値(結露判定用の設定値)に達していないので、CPU24−1は、第1の熱電冷却素子2への電流を増大させる(信号S1)。これにより、第1の熱電冷却素子2の冷却面2−1の温度が下げられて行く。
第1の熱電冷却素子2の冷却面2−1の温度、すなわち鏡面11−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面11−1に結露し、その水の分子に投光側の光ファイバ14−1の先端から照射された光の一部が吸収されたり、乱反射したりする。これにより、受光側の光ファイバ14−2を介して受光される鏡面11−1からの反射光(散乱光)の強度が増大する。
ここで、受光側の光ファイバ14−2を介して受光される反射光の強度が閾値を超えると、CPU24−1は、第1の熱電冷却素子2への電流を減少させる。これにより、第1の熱電冷却素子2の冷却面2−1の温度の低下が抑えられ、結露の発生が抑制される。この結露の抑制により、受光側の光ファイバ14−2を介して受光される反射光の強度が小さくなり、閾値を下回ると、CPU24−1は、第1の熱電冷却素子2への電流を増大させる。
この動作の繰り返しによって、受光側の光ファイバ14−2を介して受光される反射光の強度が閾値とほゞ等しくなるように、第1の熱電冷却素子2の冷却面2−1の温度が調整される。この調整された温度、すなわち鏡面11−1に生じた結露が平衡状態に達した温度(露点温度)が、露点温度出力部24−4に送られる。
この露点の検出動作において、第1の熱電冷却素子2の加熱面2−2は熱伝導体17を介して、第2の熱電冷却素子18を含むサブクーラSCによって冷却される。図5に特性IとしてサブクーラSCの冷却曲線を示し、特性IIとして第1の熱電冷却素子2の冷却曲線を示す。また、参考として、サブクーラSCを用いず、鏡面冷却用の熱電冷却素子を大型の多段ペルチェとした場合の冷却曲線を特性IIIとして示す。
特性IIと特性IIIとを比較して分かるように、鏡面冷却用の熱電冷却素子を大型の多段ペルチェとした場合には、鏡面周りの熱容量が大きくなるので、応答性が悪化する。これに対して、サブクーラSCを用いた場合には、鏡面周りの熱容量を小さなままとすることができるので、応答性が悪化することがない。
このようにして、この鏡面冷却式露点計201では、サブクーラSCを用いることによって、第1の熱電冷却素子2として冷却能力が比較的小さい小型の素子(冷却スピードの速いペルチェ)を用いることができている。このため、応答性が犠牲になることがなく、鏡面周りのサイズの大型化も避けられる。また、サブクーラSCにペルチェ式の冷却器を採用していることから、冷媒式の冷却器や配管が不要であり、装置が複雑化せず、小型となる。また、冷媒漏れの心配もない。
〔動作モードを「連動」としての露点計測〕
次に、サブクーラ低温/高温/連動切替セレクタスイッチ30を「連動」に設定して、露点計測を開始する場合について説明する。この場合も、露点計測ON/OFFスイッチ28とサブクーラ制御ON/OFFスイッチ29とを同時にONとするものとする。
メインコントローラ24のCPU24−1は、サブクーラ制御ON/OFFスイッチ29がONとされると、サブクーラ低温/高温/連動切替セレクタスイッチ30の現在の設定状態と合わせて、サブクーラ制御ON/OFFスイッチ29がONとされた旨をサブコントローラ25のCPU25−1に知らせる。
〔サブコントローラ側での動作〕
サブコントローラ25のCPU25−1は、メインコントローラ24からサブクーラ制御ON/OFFスイッチ29がONとされた旨の知らせを受けると(図3:ステップS101のYES)、仕切り弁40を開とし(ステップS102)、吸引ポンプ41の運転を開始して(ステップS103)、サンプリングチャンバ31への被測定気体の流入を開始すると共に、冷却ファン20の運転を開始する(ステップS104、信号S5)。
また、サブコントローラ25のCPU25−1は、メインコントローラ24から知らされるサブクーラ低温/高温/連動切替セレクタスイッチ30の現在の設定状態をチェックする(ステップS105)。この場合、サブクーラ低温/高温/連動切替セレクタスイッチ30の設定状態は「連動」とされているので、第1の温度センサ12からの鏡面温度tPpvを取得し(ステップS106)、サブクーラの設定目標温度Tspを鏡面温度tPpv+αとする(ステップS107)。
そして、外気温度センサ23からの外気温度toutを取り込み(ステップS111)、ステップS107で定めた設定目標温度Tspと外気温度toutとを比較する(ステップS112)。ここで、設定目標温度Tspが外気温度tout以下であれば(ステップS112のYES)、第2の温度センサ21からのサブクーラ温度tSpvを取り込み(ステップS114)、サブクーラ温度tSpvと設定目標温度Tspとが一致するように、第2の熱電冷却素子18へ供給する電流をON/OFF制御する(ステップS115)。
これに対し、設定目標温度Tspが外気温度toutよりも高い場合には(ステップS112のNO)、設定目標温度Tspを外気温度toutとし(ステップS113)、すなわち設定目標温度Tspの上限値を外気温度toutで規制し、サブクーラ温度tSpvと設定目標温度Tspとが一致するように、第2の熱電冷却素子18へ供給する電流をON/OFF制御する(ステップS114、S115)。
〔メインコントローラ側での動作〕
メインコントローラ24側での動作は、サブクーラ低温/高温/連動切替セレクタスイッチ30を「低温」に設定した場合と同じであるので、ここでの説明は省略する。
サブクーラ低温/高温/連動切替セレクタスイッチ30を「低温」に設定した場合、すなわちサブクーラの設定目標温度Tspを低温(例えば、−5℃)に固定するものとした場合、その固定された設定目標温度Tspよりも高い露点は測定することができない。また、測定範囲の上限付近の露点を測定する際でも、設定目標温度Tspが固定であるので、多くのエネルギーを消費してしまう。
これに対して、サブクーラ低温/高温/連動切替セレクタスイッチ30を「連動」に設定すると、すなわちサブクーラの設定目標温度Tspを鏡面温度tPpv+αとすると、鏡面温度tPpvが上昇すると設定目標温度Tspも上昇することになるので、周囲温度と同じ温度まで露点計測を行うことが可能となる。また、設定目標温度Tspは、常に鏡面温度tPpv+αで変動しているため、消費されるエネルギーも必要最小限となる。
〔鏡面のメンテナンス(1)〕
例えば、動作モードを「低温」としての露点計測中、鏡面11−1のメンテナンスを行いたいものとする。この場合、露点計測ON/OFFスイッチ28をOFFとし、サブクーラ低温/高温/連動切替セレクタスイッチ30を「高温」に設定する。
すると、メインコントローラ24のCPU24−1は、第1の熱電冷却素子2による鏡面11−1の冷却動作を中断すると共に、サブクーラ低温/高温/連動切替セレクタスイッチ30が「高温」に設定された旨をサブコントローラ25のCPU25−1に知らせる。
サブコントローラ25のCPU25−1は、メインコントローラ24からサブクーラ低温/高温/連動切替セレクタスイッチ30が「高温」に設定された旨の知らせを受けると、サブクーラの設定目標温度Tspを高温(例えば、25℃)とする(図3:ステップS108,S110)。
そして、第2の温度センサ21からのサブクーラ温度tSpvを取り込み(ステップS114)、サブクーラ温度tSpvと設定目標温度Tspとが一致するように、第2の熱電冷却素子18へ供給する電流をON/OFF制御する(ステップS115)。この場合、設定目標温度Tspがサブクーラ温度tSpvよりも高いので、第2の熱電冷却素子18へは逆電流がかけられる。これにより、サブクーラSCが加熱器として利用され、鏡面周りが短時間で常温に戻される。
〔鏡面のメンテナンス(2)〕
例えば、動作モードを「連動」としての露点計測中、鏡面11−1のメンテナンスを行いたいものとする。この場合、動作モードを「低温」としての露点計測中と同様にして、露点計測ON/OFFスイッチ28をOFFとし、サブクーラ低温/高温/連動切替セレクタスイッチ30を「高温」に設定するようにしてもよいが、露点計測ON/OFFスイッチ28をOFFとするだけとしてもよい。
露点計測ON/OFFスイッチ28がOFFにされると、メインコントローラ24のCPU24−1は、第1の熱電冷却素子2による鏡面11−1の冷却動作を中断する。この場合、サブコントローラ25のCPU25−1は、サブクーラの設定目標温度Tspを鏡面温度tPpv+αとする制御を続ける。これにより、鏡面11−1の冷却動作の中断による温度の上昇に伴って、サブクーラの設定目標温度Tspも上昇して行く。
このようにして、動作モードを「連動」としての露点計測中でれば、露点計測ON/OFFスイッチ28をOFFとするのみで、サブクーラの設定目標温度Tspを高温に切り替えることなく、自動的に鏡面周りを常温に戻すようにすることができる。
〔メインコントローラおよびサブコントローラの性能〕
この鏡面冷却式露点計201において、鏡面11−1上での結露の生成スピードは非常に速く、また鏡面温度tPpvや鏡面からの反射光の光量は高精度に測定する必要がある。その一方で、サブクーラSCの制御は、熱容量が大きいため制御スピードが遅く、また、サブクーラ温度tSpvの検出はあまり精度を必要としない。
そこで、この鏡面冷却式露点計201では、メインコントローラ24は、高速制御と高精度測定が必要であるので、高性能・高価格コントローラを用い、サブコントローラ25は、制御性能・計測精度はあまり必要としないので、低性能・低価格のコントローラを用いるようにして、メインコントローラ24とサブコントローラ25のコストと性能をバランスさせ、製品コストを安くしている。
この点について、さらに具体的に述べる。メインコントローラ24は、受光側の光ファイバ14−2が受光する反射光の光量をA/D変換し、そのA/D変換値に基づいて第1の熱電冷却素子2へ供給する電流を所定の制御周期で制御する。また、第1の温度センサ12が検出する鏡面温度tPpvをA/D変換し、その刻々の鏡面温度tPpvを表示する。そして、鏡面11−1に生じた結露が平衡状態に達した時の温度を露点温度として表示する。一方、サブコントローラ25は、第2の温度センサ21が検出するサブクーラ温度tSpvをA/D変換し、そのA/D変換値に基づいて第2の熱電冷却素子18へ供給する電流を所定の制御周期で制御する。
メインコントローラ24において、受光側の光ファイバ14−2が受光する反射光の光量のA/D変換は第1のA/D変換器24−2で行われ、そのA/D変換値に基づく第1の熱電冷却素子2への供給電流の所定の制御周期での制御はCPU24−1で行われる。また、第1の温度センサ12が検出する鏡面温度tPpvのA/D変換は第2のA/D変換器24−3で行われる。一方、サブコントローラ25において、第2の温度センサ21が検出するサブクーラ温度tSpvのA/D変換は第1のA/D変換器25−2で行われ、そのA/D変換値に基づく第2の熱電冷却素子18への供給電流の所定の制御周期での制御はCPU25−1で行われる。
ここで、メインコントローラ24とサブコントローラ25のコストと性能をバランスさせるために、メインコントローラ24における第1のA/D変換器24−2や第2のA/D変換器24−3のA/D変換の精度は、サブコントローラ25における第1のA/D変換器25−2のA/D変換の精度よりも高くされている。また、メインコントローラ24における第1の熱電冷却素子2への供給電流の制御周期は、サブコントローラ25における第2の熱電冷却素子18への供給電流の制御周期よりも短周期とされている。
なお、サブコントローラ25において、第2のA/D変換器24−3のA/D変換の精度は、第1のA/D変換器25−2と同程度とされている。この例では、説明上、第1のA/D変換器25−2と第2のA/D変換器25−3とを別々に設けるものとしたが、第1のA/D変換器25−2と第2のA/D変換器25−3とを1つとし、その1つのA/D変換器を時分割で用いるようにしてもよい。
また、この鏡面冷却式露点計201において、メインコントローラ24からの第1の熱電冷却素子2への供給電流の制御周期はサブコントローラ25からの第2の熱電冷却素子18への供給電流の制御周期よりも短周期とされているが、メインコントローラ24からの第1の熱電冷却素子2への供給電流の制御を比例制御、サブコントローラ25からの第2の熱電冷却素子18への供給電流の制御をON/OFF制御とするようにしてもよい。
すなわち、結露を平衡状態に制御するメインコントローラ24は、高速で緻密な制御を必要とするので比例制御を採用し、サブクーラの温度を制御するサブコントローラ25は、比較的アバウトな制御でよいので、制御性能が高くなく低価格で実現可能なON/OFF制御を採用するというように、その制御方式を異ならせるようにしてもよい。勿論、メインコントローラ24/サブコントローラ25ともに、その供給電流の制御を比例制御で行うようにしてもよい。
〔受光量基準範囲を用いての鏡面の状態の正常/異常判断〕
メインコントローラ24のCPU24−1は、定期的な割り込み処理動作として、鏡面11−1に生じる結露の増減がなくなる平衡状態になるような第1の熱電冷却素子2への供給電流の制御(露点温度計測制御)を中断する(図6:ステップS201)。
そして、所定時間の経過を待って(ステップS202のYES)、受光側の光ファイバ14−2を介して受光される鏡面11−1からの反射光の光量(受光量)Rpvを求める(ステップS203)。そして、この求めた受光量Rpvが予め定められている受光量基準範囲に入っているか否かをチェックする(ステップS204)。
すなわち、CPU24−1は、露点温度計測制御の中断後(ステップS201)、所定時間の経過を待つことによって(ステップS202)、鏡面11−1に結露が生じていない状態を作り出し、この時の鏡面11−1からの反射光の受光量Rpvを求め(ステップS203)、この求めた受光量Rpvが予め定められている受光量基準範囲に入っているか否かをチェックする(ステップS204)。
ここで、受光量Rpvが受光量基準範囲に入っていれば(ステップS204のYES)、CPU24−1は、鏡面11−1の状態が正常であると判断し、露点温度計測制御を再開する(ステップS205)。
〔自動クリーニング制御への移行〕
これに対して、受光量Rpvが受光量基準範囲から外れていれば(ステップS204のNO)、CPU24−1は、鏡面11−1の状態が異常であると判断し、鏡面11−1に付着しているであろう凝縮物質を除去させるべく、鏡面11−1の温度を上昇させるように第1の熱電冷却素子2へ供給する電流を制御する(ステップS206)。すなわち、露点温度計測制御を中止して、鏡面11−1の温度を上昇させるような第1の熱電冷却素子2への供給電流の制御(自動クリーニング制御)に移行する。この例では、第1の熱電冷却素子2へ供給する電流を予め定められた所定の電流値まで増大し、鏡面11−1の温度を上昇させる。
そして、所定時間の経過を待って(ステップS207のYES)、N(初期値0)をN=N+1とし(ステップS208)、N>Nmaxではないことを確認のうえ(ステップS209のNO)、ステップS203の処理へ戻る。すなわち、所定時間の経過を待つことにより、鏡面11−1の温度をステップS206でアップした電流値に対応する値まで上昇させるものとし、その上昇させた温度で再度、鏡面11−1からの反射光の受光量Rpvを求める。
この場合、鏡面11−1に付着していた汚れが凝縮物質であって、その凝縮物質が鏡面11−1の温度上昇によって蒸発又は昇華して除去されれば、鏡面11−1からの反射光の受光量Rpvは受光量基準範囲に入るものとなり(ステップS204のYES)、CPU24−1は、鏡面11−1の状態が正常に戻ったと判断し、露点温度計測制御を再開する(ステップS205)。
これに対して、鏡面11−1からの反射光の受光量Rpvが受光量基準範囲から外れていれば(ステップS204のNO)、CPU24−1は、鏡面11−1の状態が正常に戻らなかったと判断し、第1の熱電冷却素子2へ供給する電流を所定量アップし(ステップS206)、鏡面11−1の温度をさらに上昇させる。
そして、所定時間の経過を待って(ステップS207のYES)、N=N+1とし(ステップS208)、N>Nmaxではないことを確認のうえ(ステップS209のNO)、ステップS203の処理へ戻り、その上昇させた温度で再度、鏡面11−1からの反射光の受光量Rpvを求める。
以下同様にして、鏡面11−1からの反射光の受光量Rpvが受光量基準範囲に入っているか否かをチェックし(ステップS204)、受光量基準範囲に入っていれば鏡面11−1の状態が正常に戻ったと判断して(ステップS204のYES)、露点温度計測制御を再開し(ステップS205)、受光量基準範囲から外れていれば鏡面11−1の状態が正常に戻らなかったと判断して(ステップS204のNO)、第1の熱電冷却素子2へ供給する電流を所定量アップし(ステップS206)、鏡面11−1の温度をさらに上昇させる、という処理動作を繰り返す。
このようにして、この鏡面冷却式露点計201では、鏡面11−1に凝縮物質が付着していた場合、その凝縮物質が鏡面11−1の温度上昇によって速いスピードで蒸発又は昇華するものとなり、人手による鏡面の清掃が不要となり、凝縮物質を除去する装置を別途設ける必要もなくなる。また、この鏡面冷却式露点計201では、鏡面11−1に付着していた汚れが凝縮物質であった場合、その凝縮物質の種類が分からなくても、鏡面11−1の温度の上昇過程の途中でその凝縮物質が蒸発又は昇華するものとなる。したがって、事前に凝縮物質を特定しなくても、鏡面11−1の状態を正常な状態に戻すことが可能となる。
なお、ステップS206〜S209の繰り返し処理中、N>Nmaxとなると(ステップS209のYES)、CPU24−1は、鏡面11−1の汚れが温度上昇では回復することができない異常であると判断し、警報を発する(ステップS210)。例えば、鏡面11−1にゴミが付着していたり、検出系の劣化などが生じていた場合、鏡面11−1の温度上昇では回復することができないので、警報が発せられる。この警報は露点温度出力部24−4を介して上位装置へ送られる。
なお、図6に示したフローチャートでは、露点温度計測制御を中断した後、所定時間経過後の鏡面11−1からの反射光の受光量Rpvを求めるようにしたが、第1の熱電冷却素子2への供給電流の制御を中断した後、第1の温度センサ12からの鏡面温度tPpvの変化をチェックし、鏡面温度tPpvの変化が生じなくなった時の鏡面11−1からの反射光の受光量Rpvを求めるようにしてもよい。
図7にこの場合のフローチャートを例示する。このフローチャートは図6に対応するフローチャートであり、ステップS202−1において鏡面温度tPpvの変化をチェックし、ステップS202−2において鏡面温度tPpvの変化が生じなくなった時点を判断する。なお、鏡面温度tPpvの変化が生じなくなった時点は、鏡面温度tPpvの変化する割合が所定値を下回ったタイミングとして判断する。
また、図8に示すように、ステップS202−1において鏡面温度tPpvの変化をチェックする代わりに、鏡面11−1からの反射光の受光量Rpvをチェックし、ステップS202−2においてその受光量Rpvの変化が生じなくなった時点を判断するようにしてもよい。なお、受光量pvの変化が生じなくなった時点は、受光量Rpvの変化する割合が所定値を下回ったタイミングとして判断する。
なお、この鏡面冷却式露点計201では、鏡面11−1に生じる結露(露点)を検出するようにしているが、同様の構成によって鏡面11−1に生じる結霜(霜点)を検出することもできる。すなわち、鏡面11−1に生じる結霜の増減がなくなる平衡状態になるように第1の熱電冷却素子2への供給電流を制御することによって、鏡面11−1に生じる結霜(霜点)を検出することも可能である。
また、この鏡面冷却式露点計201では、露点計測ON/OFFスイッチ28とサブクーラ制御ON/OFFスイッチ29とを別個に設けるようにしているが、露点計測ON/OFFスイッチ28とサブクーラ制御ON/OFFスイッチ29とを1つのスイッチで構成するようにしてもよい。この場合、露点計測のONとサブクーラの制御のONが同時に行われ、露点計測のOFFとサブクーラの制御のOFFが同時に行われるものとなる。
また、この鏡面冷却式露点計201では、第1の熱電冷却素子2を1段のペルチェとしているが、2段のペルチェとするなどしてもよい。すなわち、鏡面回りのサイズや応答性に余裕があれば、多段のペルチェとサブクーラとを組み合わせた構成としても構わない。また、この鏡面冷却式露点計201では、第2の熱電冷却素子18を設けるようにしているが、第2の熱電冷却素子18は必ずしも設けなくてもよく、第1の熱電冷却素子2のみを設けた構成であっても構わない。
また、この鏡面冷却式露点計201では、例えば図6におけるステップS206〜S209の処理で示されるように、鏡面11−1の温度を徐々に上昇させるようにしているが、適切な温度(例えば、100℃)を定めて、その温度に一気に上昇させるようにしてもよい。この場合、例えば、所定時間が経過しても鏡面11−1正常な状態に戻らなければ、警報を発するようにする。
また、この鏡面冷却式露点計201では、自動クリーニング制御として、 鏡面11−1に付着しているであろう凝縮物質を除去させるべく、鏡面11−1の温度を上昇させるように熱電冷却素子2へ供給する電流を制御するようにしたが、鏡面11−1に付着しているであろう凝縮物質を除去させるべく、サンプリングチャンバ31内の圧力を減圧制御するようにしてもよい。
鏡面11−1を加熱して鏡面11−1に付着しているであろう凝縮物質を除去させるようにした場合、ヒートショックによって、ダメージを受ける。これに対し、サンプリングチャンバ31内の圧力の減圧によって鏡面11−1に付着しているであろう凝縮物質を除去させると、加熱する場合のようなヒートショックがなく、ダメージを与えないようにすることが可能となる。
図9に、鏡面11−1に付着しているであろう凝縮物質を除去させるべく、サンプリングチャンバ31内の圧力を減圧制御する場合の図6に対応するフローチャートを示す。このフローチャートにおいて、ステップS301〜S304までの処理は図6のステップS201〜204までの処理と同じであるので、その説明を省略する。
CPU24−1は、受光量Rpvが受光量基準範囲から外れていれば(ステップS304のNO)、鏡面11−1の状態が異常であると判断し、鏡面11−1に付着しているであろう凝縮物質を除去させるべく、仕切り弁40を閉とし、吸引ポンプ41の運転を継続させることにより、サンプリングチャンバ31内の圧力を減圧させる(ステップS306)。すなわち、吸引ポンプ41の運転を継続させた状態で、仕切り弁40を閉とすることにより、サンプリングチャンバ31内の圧力を低下させて行くような減圧制御(自動クリーニング制御)に移行する。なお、仕切り弁40の閉は、サブコントローラ25のCPU25−1を経由して行われる。
そして、所定時間の経過を待って(ステップS307のYES)、N(初期値0)をN=N+1とし(ステップS309)、N>Nmaxではないことを確認のうえ(ステップS309のNO)、ステップS303の処理へ戻る。すなわち、所定時間の経過を待つことにより、サンプリングチャンバ31内の圧力を所定の値まで低下させるものとし、この圧力を低下させた状態で再度、鏡面11−1からの反射光の受光量Rpvを求める。
この場合、鏡面11−1に付着していた汚れが凝縮物質であって、その凝縮物質がサンプリングチャンバ31内の圧力の低下によって蒸発又は昇華して除去されれば、鏡面11−1からの反射光の受光量Rpvは受光量基準範囲に入るものとなり(ステップS304のYES)、CPU24−1は、鏡面11−1の状態が正常に戻ったと判断し、吸引ポンプ41の運転を継続させた状態で、仕切り弁40を開とし、露点温度計測制御を再開する(ステップS305)。
これに対して、鏡面11−1からの反射光の受光量Rpvが受光量基準範囲から外れていれば(ステップS304のNO)、CPU24−1は、鏡面11−1の状態が正常に戻らなかったと判断し、仕切り弁40を閉としたままの状態で所定時間の経過を待ち(ステップS307のYES)、サンプリングチャンバ31内の圧力をさらに低下させる。なお、この場合のステップS307での経過時間は、1回目の経過時間よりも短いものとし、サンプリングチャンバ31内の圧力の低下量は少ないものとする。これにより、サンプリングチャンバ31内の圧力は、1回目は所定値PLまで低下し、2回目はPL−αまで低下するものとなる。
そして、CPU24−1は、N=N+1とし(ステップS308)、N>Nmaxではないことを確認のうえ(ステップS309のNO)、ステップS303の処理へ戻り、その上昇させた温度で再度、鏡面11−1からの反射光の受光量Rpvを求める。
以下同様にして、鏡面11−1からの反射光の受光量Rpvが受光量基準範囲に入っているか否かをチェックし(ステップS304)、受光量基準範囲に入っていれば鏡面11−1の状態が正常に戻ったと判断して(ステップS304のYES)、露点温度計測制御を再開し(ステップS305)、受光量基準範囲から外れていれば鏡面11−1の状態が正常に戻らなかったと判断して(ステップS304のNO)、サンプリングチャンバ31内の圧力を所定量α低下させる(ステップS306,307)、という処理動作を繰り返す。
ステップS306〜S309の繰り返し処理中、N>Nmaxとなると(ステップS309のYES)、CPU24−1は、鏡面11−1の汚れが減圧では回復することができない異常であると判断し、警報を発する(ステップS310)。
図9に示したフローチャートでは、第1の熱電冷却素子2への供給電流の制御を中断した後、所定時間経過後の鏡面11−1からの反射光の受光量Rpvを求めるようにしたが、図7のフローチャートに対応する図10のフローチャートが示すように、第1の熱電冷却素子2への供給電流の制御を中断した後、第1の温度センサ12からの鏡面温度tPpvの変化をチェックし、鏡面温度tPpvの変化が生じなくなった時の鏡面11−1からの反射光の受光量Rpvを求めるようにしてもよい。
また、図11に示すように、ステップS302−1において鏡面温度tPpvの変化をチェックする代わりに、鏡面11−1からの反射光の受光量Rpvをチェックし、ステップS302−2においてその受光量Rpvの変化が生じなくなった時点を判断するようにしてもよい。なお、受光量pvの変化が生じなくなった時点は、受光量Rpvの変化する割合が所定値を下回ったタイミングとして判断する。
〔鏡面冷却式露点計の要部の機能ブロック図〕
図12に上述した鏡面冷却式露点計201の要部の機能ブロック図を示す。同図において、図1,図2と同一符号は図1,図2を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。この鏡面冷却式露点計201において、コントロール部201Bは露点温度計測制御部34と、鏡面異常状態判断部35と、自動クリーニング制御部36と、制御モード選択部37とを備えている。なお、露点計測を開始するにあたって、吸引ポンプ41が運転され、仕切り弁40が開とされるが、この仕切り弁40および吸引ポンプ41に対する制御部は示していない。
コントロール部201Bにおいて、露点温度計測制御部34は、受光側の光ファイバ14−2を介して受光される鏡面11−1からの反射光の光量に基づいて熱電冷却素子2へ供給する電流を鏡面11−1に生じる結露もしくは結霜の増減がなくなる平衡状態になるように制御し、その平衡状態において温度センサ12が検出する鏡面11−1の温度tx1を取り込み、露点温度の計測値tx1として制御モード選択部37へ送る。
コントロール部201Bにおいて、鏡面異常状態判断部35は、受光側の光ファイバ14−2を介して受光される鏡面11−1からの反射光の光量に基づいて鏡面11−1の状態の正常/異常を判断し、その判断結果を制御モード選択部37へ送る。
コントロール部201Bにおいて、自動クリーニング制御部36は、鏡面11−1に付着しているであろう凝縮物質を除去させるべく、鏡面11−1の温度を上昇させるように熱電冷却素子2へ供給する電流を制御する。なお、この例では、温度センサ12が検出する鏡面11−1の温度tx1を自動クリーニング制御部36に与えているが、この例では熱電冷却素子2へ供給する電流値をアップさせる方法をとっているので、温度センサ12が検出する鏡面11−1の温度tx1は必ずしも必要とはしない。
コントロール部201Bにおいて、制御モード選択部37は、露点温度計測制御部34に対して露点温度計測制御を常時実行するように指示すると共に、この露点温度計測制御を定期的に中断させて、鏡面異常状態判断部35による鏡面11−1の状態の正常/異常の判断を実行させ、鏡面11−1の状態が異常であった場合、自動クリーニング制御部36による鏡面11−1の自動クリーニングを実行させる。この自動クリーニングによって鏡面11−1の状態が正常に戻った場合、制御モード選択部37は、露点温度計測制御部34による露点温度計測制御を再開させる。また、制御モード選択部37は、露点温度計測制御部34による露点温度計測制御中、露点温度計測制御部34からの露点温度の計測値tx1を上位装置に出力する。
図13はこの鏡面冷却式露点計201における制御モードの変化を示すタイムチャートである。制御モード選択部37は、露点温度計測制御部34による露点温度計測制御を常時実行させる。露点温度計測制御中(期間TA)、制御モード選択部37は、この露点温度計測制御を定期的に中断させて、鏡面異常状態判断部35による鏡面11−1の状態の正常/異常の判断を実行させる(t1,t2,t3点)。ここで、例えば、t3点において、鏡面11−1の状態が異常であると判断されると、制御モード選択部37は、露点温度計測制御部34による露点温度計測制御を中止させて、自動クリーニング制御部36による自動クリーニング制御に移行させる。そして、この自動クリーニング制御への移行後、鏡面異常状態判断部35によって鏡面11−1の状態が正常に戻ったことが確認されると(t4点)、制御モード選択部37は、露点温度計測制御部34による露点温度計測制御を再開させる。
この鏡面冷却式露点計201単体では、鏡面11−1に付着しているであろう凝縮物質を除去させるべく、露点温度計測制御を一度中止(停止)させて鏡面11−1を加熱している。このため、図13に期間TBとして示されるように、露点温度を計測することができない期間が生じる。
〔露点温度計測システム〕
そこで、本実施の形態の露点温度計測システムでは、鏡面冷却式露点計201を2台用い、1台は運用当初の計測用の露点計とし、もう1台は運用当初の補助用の露点計とすることで、一方の露点計が自動クリーニング制御中であっても露点温度を連続して計測することができるようにする。すなわち、露点温度を計測することができない期間TBが生じないようにする。また、露点温度を有効な計測値としている露点計では、鏡面の状態の正常/異常の定期的な判断が実行されないようにして、自動クリーニング制御中だけではなく、露点温度計測制御中も中断させることなく、露点温度の計測を連続して行わせることができるようにする。
〔実施の形態1:露点温度の計測値の有効/無効を一時的に切り換える方式(運用方式1)〕
図14に本発明に係る露点温度計測システムの一実施の形態の要部の機能ブロック図を示す。この露点温度計測システムでは、鏡面冷却式露点計201を2台用い、一方の鏡面冷却式露点計201を第1の鏡面冷却式露点計(露点計1)201Lとし、他方の鏡面冷却式露点計201を第2の鏡面冷却式露点計(露点計2)201Rとする。
第1の鏡面冷却式露点計201Lにおいて、コントロール部201BLは露点温度計測制御部34Lと、鏡面異常状態判断部35Lと、自動クリーニング制御部36Lと、制御モード選択部37Lと、露点温度計測制御安定確認部38Lとを備えている。
第2の鏡面冷却式露点計201Rにおいて、コントロール部201BRは露点温度計測制御部34Rと、鏡面異常状態判断部35Rと、自動クリーニング制御部36Rと、制御モード選択部37Rと、露点温度計測制御安定確認部38Rとを備えている。
なお、第1の鏡面冷却式露点計201Lに対しては仕切り弁40Lと吸引ポンプ41Lとが設けられ、第2の鏡面冷却式露点計201Rに対しては仕切り弁40Rと吸引ポンプ41Rとが設けられている。これら仕切り弁40L,40Rおよび吸引ポンプ41L,41Rに対する制御部は示していないが、露点計測を開始するにあたって、吸引ポンプ41L,41Rが運転され、仕切り弁40L,40Rが開とされることにより、サンプリングチャンバ31L,31Rへ被測定気体が分岐して供給される。すなわち、本実施の形態では、第1の鏡面冷却式露点計201Lと第2の鏡面冷却式露点計201Rとを並列に設置し、供給源を同一とする被測定気体をサンプリングチャンバ31L,31Rに同時に流入させるようにしている。
また、この露点温度計測システムにおいて、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rに対しては、この鏡面冷却式露点計201Lおよび201Rの動作を制御する統括コントローラ300が設けられている。統括コントローラ300は、露点計制御モード指定部301と、露点温度計測値選択部302と、露点計現在制御モード認識部303と、鏡面状態判断結果認識部304とを備えている。
第1の鏡面冷却式露点計201Lにおいて、制御モード選択部37Lは、統括コントローラ300の露点計制御モード指定部301からの制御モードの指定(信号D1)を受け、第1の鏡面冷却式露点計201Lにおける現在の制御モードを露点温度計測制御モードとするか、自動クリーニング制御モードとするかを選択する。また、制御モード選択部37Lは、現在選択している制御モード(信号B1)を統括コントローラ300の露点計現在制御モード認識部303に送る。また、制御モード選択部37Lは、第1の鏡面冷却式露点計201Lにおける現在の制御モードを露点温度計測制御モードとして選択している場合、露点温度計測制御安定確認部38Lにその動作をオンとする指令を送る。
また、制御モード選択部37Lは、統括コントローラ300の露点計制御モード指定部301からの自己を有効な露点計(露点温度の計測値を有効な計測値として用いる露点計)とするか否かの通知(信号E)を受け、有効な露点計とする旨の通知を受けている場合には鏡面状態判断部35Lの露点温度計測制御中の鏡面11−1Lの状態の定期的な正常/異常の判断動作を禁止し、有効な露点計とする旨の通知を受けていない場合(無効な露点計とする旨の通知を受けている場合)には鏡面状態判断部35Lの露点温度計測制御中の鏡面11−1Lの状態の定期的な正常/異常の判断動作を許可する。また、制御モード選択部37Lは、第1の鏡面冷却式露点計201Lにおける現在の制御モードを自動クリーニング制御モードとして選択している場合には、鏡面状態判断部35Lの自動クリーニング制御中の鏡面11−1Lの状態の正常/異常の判断動作を許可する。
また、制御モード選択部37Lは、露点温度計測制御安定確認部38Lが露点温度計測制御の安定を確認していることを条件として、露点温度計測制御部34Lからの露点温度の計測値tx1(信号A1)を統括コントローラ300の露点温度計測値選択部302および露点計測制御モード指定部301に送る。すなわち、制御モード選択部37Lは、露点温度計測制御部34Lから露点温度の計測値tx1を受けても、その露点温度計測制御が安定するまでの間は、その露点温度の計測値tx1(信号A1)の統括コントローラ300への通知を禁止する。
また、第1の鏡面冷却式露点計201Lにおいて、鏡面状態判断部35Lは、鏡面11−1Lの状態の正常/異常の判断結果(信号C1)を自己の制御モード選択部37Lではなく、統括コントローラ300の鏡面状態判断結果認識部304へ送る。また、露点温度計測制御安定確認部38Lは、露点温度計測制御部34Lからの制御目標値を入力とし、鏡面11−1Lからの反射光の光量がその制御目標値を中心として定められる制御目標範囲に入っているか否かを確認し、制御目標範囲に入っていれば露点温度計測制御が安定していると判断し、制御目標範囲に入っていなければ露点温度計測制御が安定していないと判断し、その判断結果を制御モード選択部37Lに通知する。
第2の鏡面冷却式露点計201Rにおいて、制御モード選択部37Rは、統括コントローラ300の露点計制御モード指定部301からの制御モードの指定(信号D2)を受け、鏡面冷却式露点計201Rにおける現在の制御モードを露点温度計測制御モードとするか、自動クリーニング制御モードとするかを選択する。また、制御モード選択部37Rは、現在選択している制御モード(信号B2)を統括コントローラ300の露点計現在制御モード認識部303に送る。また、制御モード選択部37Rは、第2の鏡面冷却式露点計201Rにおける現在の制御モードを露点温度計測制御モードとして選択している場合、露点温度計測制御安定確認部38Rにその動作をオンとする指令を送る。
また、制御モード選択部37Rは、統括コントローラ300の露点計制御モード指定部301からの自己を有効な露点計(露点温度の計測値を有効な計測値として用いる露点計)とするか否かの通知(信号E)を受け、有効な露点計とする旨の通知を受けている場合には鏡面状態判断部35Rの露点温度計測制御中の鏡面11−1Rの状態の定期的な正常/異常の判断動作を禁止し、有効な露点計とする旨の通知を受けていない場合(無効な露点計とする旨の通知を受けている場合)には鏡面状態判断部35Rの露点温度計測制御中の鏡面11−1Rの状態の定期的な正常/異常の判断動作を許可する。また、制御モード選択部37Rは、第2の鏡面冷却式露点計201Rにおける現在の制御モードを自動クリーニング制御モードとして選択している場合には、鏡面状態判断部35Rの自動クリーニング制御中の鏡面11−1Rの状態の正常/異常の判断動作を許可する。
また、制御モード選択部37Rは、露点温度計測制御安定確認部38Rが露点温度計測制御の安定を確認していることを条件として、露点温度計測制御部34Rからの露点温度の計測値tx2(信号A2)を統括コントローラ300の露点温度計測値選択部302および露点計測制御モード指定部301に送る。すなわち、制御モード選択部37Rは、露点温度計測制御部34Rから露点温度の計測値tx2を受けても、その露点温度計測制御が安定するまでの間は、その露点温度の計測値tx2(信号A2)の統括コントローラ300への通知を禁止する。
また、第2の鏡面冷却式露点計201Rにおいて、鏡面状態判断部35Rは、鏡面11−1Rの状態の正常/異常の判断結果(信号C2)を自己の制御モード選択部37Rではなく、統括コントローラ300の鏡面状態判断結果認識部304へ送る。また、露点温度計測制御安定確認部38Rは、露点温度計測制御部34Rからの制御目標値を入力とし、鏡面11−1Rからの反射光の光量が制御目標値を中心として定められる制御目標範囲に入っているか否かを確認し、制御目標範囲に入っていれば露点温度計測制御が安定していると判断し、制御目標範囲に入っていなければ露点温度計測制御が安定していないと判断し、その判断結果を制御モード選択部37Rに通知する。
統括コントローラ300の露点計現在制御モード認識部303は、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rから送られてくる現在選択している制御モード(信号B1,B2)を認識し、その認識結果を露点計制御モード指定部301へ送ると共に、上位装置へ通知する。
統括コントローラ300の鏡面状態判断結果認識部304は、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rから送られてくる鏡面状態の判断結果(信号C1,C2)を認識し、その認識結果を露点計制御モード指定部301へ送ると共に、上位装置へ通知する。
統括コントローラ300の露点計制御モード指定部301は、露点計現在制御モード認識部303からの第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rにおいて現在選択されている制御モードの認識結果(B1,B2)と、鏡面状態判断結果認識部304からの第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rにおける鏡面状態の正常/異常の認識結果(C1,C2)と、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rからの露点温度の計測値tx1(信号A1)およびtx2(信号A2)とから、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rに対して指定する制御モード(D1,D2)を決定すると共に、現在の有効な露点計(露点温度の計測値を有効な計測値として用いる露点計)を露点温度計測値選択部302および第1の鏡面冷却式露点計201Lならびに第2の鏡面冷却式露点計201Rへ通知する(信号E)。
統括コントローラ300の露点温度計測値選択部302は、第1の鏡面冷却式露点計201Lからの露点温度の計測値tx1(信号A1)と、第2の鏡面冷却式露点計201Rからの露点温度の計測値tx2(信号A2)とを入力とし、露点計制御モード指定部301から通知される有効な露点計の露点温度を選択し、その選択した露点温度の計測値を露点温度計測システムの計測露点温度(有効な計測値)として上位装置に通知する(信号F)。
なお、統括コントローラ300の露点計制御モード指定部301は、この露点温度計測システムの運用開始時、初期設定として、第1の鏡面冷却式露点計201L(露点計1)をその露点温度の計測値を常に有効な計測値として用いる主要露点計として設定し、第2の鏡面冷却式露点計201R(露点計2)を主要露点計が自動クリーニング制御中である時にその露点温度の計測値を有効な計測値として用いる補助露点計として設定する。
また、露点計制御モード指定部301は、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rに対して、制御モードとして共に露点温度計測制御モードを指定し、第1の鏡面冷却式露点計201Lに対して制御モードとして露点温度計測制御モードを指定している場合には、露点温度計測値選択部302に対して第1の鏡面冷却式露点計201Lを有効な露点計として通知し、第1の鏡面冷却式露点計201Lに対して制御モードとして自動クリーニング制御モードを指定している場合には、露点温度計測値選択部302に対して第2の鏡面冷却式露点計201Rを有効な露点計として通知する。
また、露点計制御モード指定部301は、特別ルールとして、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rからの露点温度の計測値tx1(信号A1)およびtx2(信号A2)のうち1つしか通知されてきていない場合には、通知されている側の露点計を有効な露点計として露点温度計測値選択部302に対して通知する。なお、露点計制御モード指定部301からの有効な露点計の通知は、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rへも通知される。
また、統括コントローラ300から主要露点計として設定された第1の鏡面冷却式露点計201Lおよび補助露点計として設定された第2の鏡面冷却式露点計201Rでは、第2の鏡面冷却式露点計(補助露点計)201Rの鏡面状態判断部35Rの方が第1の鏡面冷却式露点計(主要露点計)201Lの鏡面状態判断部35Lよりも異常と判断する閾値が低く設定される。すなわち、補助露点計として用いられる第2の鏡面冷却式露点計201Rは、主要露点計として用いられる第1の鏡面冷却式露点計201Lよりも鏡面の状態の異常検知(汚れ検知)に対して敏感とされ、露点温度計測制御モードの状態で汚れ検知センサとして機能する。
〔運用〕
図15(b)および(c)はこの露点温度計測システムを運用方式1で運用した場合の第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rにおける制御モードの変化を示すタイムチャートであり、図15(a)には、この制御モードの変化と合わせて、制御モード変化の各ケースの期間を示している。
統括コントローラ300の露点計制御モード指定部301は、最初に、第1の鏡面冷却式露点計201Lを主要露点計(運用当初の計測用の露点計に相当)として設定し、第2の鏡面冷却式露点計201Rを補助露点計(運用当初の補助用の露点計に相当)として設定する。また、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rに対して、制御モードとして共に露点温度計測制御モードを指定する。また、露点温度計測値選択部302に対して第1の鏡面冷却式露点計201Lを有効な露点計として通知する。また、この露点温度計測値選択部302への通知と合わせて、露点計制御モード指定部301は、第1の鏡面冷却式露点計201Lに対してその露点計を有効な露点計として通知し、第2の鏡面冷却式露点計201Rに対してその露点計を有効ではない露点計(無効な露点計)として通知する。以下、主要露点計として設定された第1の鏡面冷却式露点計201L(露点計1)をメイン露点計と呼び、補助露点計として設定された第2の鏡面冷却式露点計201R(露点計2)をサブ露点計と呼ぶ。
メイン露点計201Lの制御モード選択部37Lは、露点温度計測制御部34Lによる露点温度計測制御を常時実行させ、サブ露点計201Rの制御モード選択部37Rは、露点温度計測制御部34Rによる露点温度計測制御を常時実行させる。
図16にこの露点温度計測システムを運用方式1で運用した場合のメイン露点計201Lおよびサブ露点計201Rの制御フローチャートを示し、図17〜図19に統括コントローラ300の制御フローチャートを分割して示す。
メイン露点計201Lの制御モード選択部37Lは、露点温度計測制御中、鏡面異常状態判断部35Lによる鏡面11−1Lの状態の定期的な正常/異常の判断動作を禁止し、露点温度計測制御安定確認部38Lの動作をオンとする。すなわち、メイン露点計201Lは、現在の自己の制御モードを確認し(図16:ステップS401)、現在の自己の制御モードが露点温度計測制御であるので(ステップS402のYES)、自己の露点計が有効な露点計として通知されているか否か確認する(ステップS403)。この場合、有効な露点計として通知されているので(ステップS403のYES)、メイン露点計201Lは、ステップS404以降の鏡面11−1Lの状態の定期的な正常/異常の判断動作には進まず、ステップS409以降の露点温度計測制御の安定確認動作へ進む。
この露点温度計測制御の安定確認動作では、鏡面11−1からの反射光の光量(受光量)Rpvを求め(ステップS409)、この求めた受光量Rpvが露点温度計測制御部34Lからの制御目標値を中心として定められる制御目標範囲に入っているか否かを確認する(ステップS410)。ここで、受光量Rpvが制御目標範囲に入っていれば(ステップS411のYES)、露点温度の計測値tx1(信号A1)を統括コントローラ300へ通知する。受光量Rpvが制御目標範囲に入っていなければ(ステップS411のNO)、露点温度の計測値tx1(信号A1)の統括コントローラ300への通知は行わない。
サブ露点計201Rの制御モード選択部37Rは、露点温度計測制御中、鏡面異常状態判断部35Rによる鏡面11−1Rの状態の定期的な正常/異常の判断動作を許可し、露点温度計測制御安定確認部38Rの動作をオンとする。すなわち、サブ露点計201Rは、現在の自己の制御モードを確認し(図16:ステップS401)、現在の自己の制御モードが露点温度計測制御であるので(ステップS402のYES)、自己の露点計が有効な露点計として通知されているか否かを確認する(ステップS403)。この場合、無効な露点計として通知されているので(ステップS403のNO)、サブ露点計201Rは、ステップS404以降の鏡面11−1Rの状態の定期的な正常/異常の判断動作に進む。
この鏡面11−1Rの状態の定期的な正常/異常の判断動作では、鏡面状態の確認タイミングか否かをチェックし(ステップS404)、鏡面状態の確認タイミングであれば(ステップS404のYES)、露点温度計測制御を中断させて、鏡面11−1Rの状態(正常/異常)を確認する(ステップS405)。
サブ露点計201Rは、鏡面11−1Rの状態が正常であることを確認すると(ステップS406のYES)、その旨を統括コントローラ300に通知し(ステップS408)、 鏡面11−1Rの状態が異常であることを確認すると(ステップS406のNO)、その旨を統括コントローラ300に通知する(ステップS407)。また、この露点温度計測制御中、鏡面状態の確認タイミングにない場合(ステップS403のNO)、サブ露点計201Rは、ステップS409以降の露点温度計測制御の安定確認動作へ進み、鏡面11−1Rからの受光量Rpvが制御目標範囲に入っていれば(ステップS411のYES)、露点温度の計測値tx2(信号A2)を統括コントローラ300に通知する(ステップS412)。受光量Rpvが制御目標範囲に入っていなければ(ステップS411のNO)、露点温度の計測値tx2(信号A2)の統括コントローラ300への通知は行わない。
〔ケース1:メイン露点計とサブ露点計が共に露点温度計測制御モード(通常状態)〕
統括コントローラ300の露点計制御モード指定部301は、露点計現在制御モード認識部303からの認識結果から、メイン露点計201Lおよびサブ露点計201Rの現在の制御モードを確認する(図17:ステップS501)。
運用開始時、メイン露点計201Lおよびサブ露点計201Rの制御モードは共に露点温度計測制御モードとされている。この場合、露点計制御モード指定部301は、ステップS502,503のYESに応じて、ステップS504へ進む。
そして、メイン露点計201Lおよびサブ露点計201Rから露点温度の計測値tx1(信号A1)およびtx2(信号A2)が入力されていることを確認のうえ(ステップS504,S505のYES)、鏡面状態判断結果認識部304からの認識結果から、サブ露点計201Rの鏡面11−1Rの状態を確認し(ステップS506)、サブ露点計201Rの鏡面11−1Rの状態が正常か否かを判断する(ステップS507)。
今、図15(c)に示すt1点,t2点にあって、サブ露点計201Rから鏡面11−1Rの状態が正常である旨の判断結果が送られてくれば(ステップS507のYES)、露点計制御モード指定部301は、露点温度計測値選択部302に対してメイン露点計201Lを有効な露点計として通知する。これにより、露点温度計測値選択部302は、メイン露点計201Lからの露点温度の計測値tx1を露点温度計測システムの計測露点温度として上位装置に通知し続ける(ステップS509)。
〔ケース2:メイン露点計は露点温度計測制御モード、サブ露点計は自動クリーニング制御モード(サブ露点計でメイン露点計の異常の前段階検知)〕
今、図15(c)に示すt3点にあって、サブ露点計201Rから鏡面11−1Rの状態が異常である旨の判断結果が送られてくれば(ステップS507のNO)、露点計制御モード指定部301は、サブ露点計201Rに対して制御モードを自動クリーニング制御モードに移行するように切換指令を送る(ステップS510)。
この場合、サブ露点計201Rは、メイン露点計201Lよりも鏡面の汚れ検知に対して敏感とされており、もしメイン露点計201Lで鏡面11−1Lの状態の正常/異常の判断が行われているものと仮定した場合、メイン露点計201Lの鏡面11−1Lの状態が異常と判断されるよりも前に、サブ露点計201Rの鏡面11−1Rの状態が異常と判断される。すなわち、この時、メイン露点計201Lの鏡面11−1Lの状態はまだ正常であり、サブ露点計201Rが汚れ検知センサとして機能し、メイン露点計201Lの鏡面11−1Lの状態が異常の前段階にあることを検知する。
サブ露点計201Rの制御モード選択部37Rは、統括コントローラ300の露点計制御モード指定部301からの自動クリーニング制御モードへの切換指令を受けて、制御モードをそれまでの露点温度計測制御モードから自動クリーニング制御モードに切り換える(図15(c)に示すt3点)。すなわち、それまでの露点温度計測制御を中止させて、自動クリーニング制御に移行させる。
露点計制御モード指定部301は、サブ露点計201Rの制御モードが自動クリーニング制御モードに切り換えられた後も、露点温度計測値選択部302に対してメイン露点計201Lを有効な露点計として通知し続ける。これにより、露点温度計測値選択部302は、メイン露点計201Lからの露点温度の計測値tx1を露点温度計測システムの計測露点温度として上位装置に通知し続ける(ステップS509)。
サブ露点計201Rの制御モード選択部37Rは、自動クリーニング制御として、定期的に鏡面11−1Rの自動クリーニングを実行させると共に、鏡面異常状態判断部35Rによってそのクリーニング後の鏡面11−1Rの状態の正常/異常の判断を行わせる。鏡面異常状態判断部35Rは、その正常/異常の判断結果を統括コントローラ300に通知する(ステップS414)。
統括コントローラ300の露点計制御モード指定部301は、露点計現在制御モード認識部303からの認識結果から、メイン露点計201Lおよびサブ露点計201Rの現在の制御モードを確認する(ステップS501)。
このケース(ケース2)では、メイン露点計201Lの制御モードが露点温度計測制御モードとされ(ステップS502のYES)、サブ露点計201Rの制御モードが自動クリーニング制御モードとされているので(ステップS503のNO)、露点計制御モード指定部301は、鏡面状態判断結果認識部304からの認識結果から、サブ露点計201Rの鏡面11−1Rの状態を確認する(図18:ステップS510)。
このサブ露点計201Rの自動クリーニング制御中、露点計制御モード指定部301は、鏡面状態判断結果認識部304からの認識結果から、サブ露点計201Rの鏡面11−1Rの状態を確認しながら(ステップS510,S511)、露点温度計測値選択部302に対してメイン露点計201Lを有効な露点計として通知し続ける。これにより、露点温度計測値選択部302は、メイン露点計201Lからの露点温度の計測値tx1を露点温度計測システムの計測露点温度として上位装置に通知し続ける(ステップS512)。
〔ケース5:メイン露点計とサブ露点計とが共に露点温度計測制御モード(サブ露点計の露点温度計測制御の安定確認待ち状態)〕
今、図15(c)に示すt4点にあって、サブ露点計201Rから鏡面11−1Rの状態が正常となった旨の判断結果が送られてくれば(ステップS511のYES)、露点計制御モード指定部301は、サブ露点計201Rに対して制御モードを露点温度計測制御モードに移行するように切換指令を送る(ステップS513)。
サブ露点計201Rの制御モード選択部37Rは、統括コントローラ300の露点計制御モード指定部301からの露点温度計測制御モードへの切換指令を受けて、制御モードをそれまでの自動クリーニング制御モードから露点温度計測制御モードに切り換える(図15(c)に示すt4点)。すなわち、それまでの自動クリーニング制御を中止させて、露点温度計測制御に復帰させる。
サブ露点計201Rが露点温度計測制御に復帰したことにより、サブ露点計201Rの制御モード選択部37Rには露点温度計測制御部34Rからの露点温度の計測値tx2が入力され始めるが、露点温度計測制御安定確認部38Rで露点温度計測制御の安定が確認されるまでの間は、露点温度計測制御部34Rからの露点温度の計測値tx2(信号A2)は統括コントローラ300へは通知されない。
このケース(ケース5)において、統括コントローラ300の露点制御モード指定部301は、メイン露点計201Lおよびサブ露点計201Rの制御モードが共に露点温度計測制御モードとされており(ステップS502,503のYES)、メイン露点計201Lからの露点温度の計測値tx1(信号A1)は通知されているが(ステップS504のYES)、サブ露点計201Rからの露点温度の計測値tx2(信号A2)は通知されていないので(ステップS505のNO)、露点温度計測値選択部302に対するメイン露点計201Lの有効な露点計としての通知を続ける(ステップS513)。
〔ケース3:メイン露点計は自動クリーニング制御モード、サブ露点計は露点温度計測制御モード(サブ露点計で露点温度計測)〕
サブ露点計201Rにおいて、自動クリーニング制御の終了後、露点温度計測制御に復帰し、この露点温度計測制御が安定したことが確認されると、サブ露点計201Rから露点温度の計測値tx2(信号A2)が通知され始める。
統括コントローラ300の露点制御モード指定部301は 、このサブ露点計201Rから露点温度の計測値tx2(信号A2)が通知され始めたことを確認して(ステップS514のYES)、露点温度計測値選択部302に対してサブ露点計201Rを有効な露点計として通知する。これにより、露点温度計測値選択部302は、サブ露点計201Rからの露点温度の計測値tx2を露点温度計測システムの計測露点温度として上位装置に通知し始める(ステップS515)。
また、露点制御モード指定部301からのサブ露点計201Rを有効な露点計とする通知は、サブ露点計201Rの制御モード選択部37Rへも送られる。サブ露点計201Rの制御モード選択部37Rは、自己を有効な露点計とする通知を受けて、鏡面状態判断部35Rの露点温度計測制御中の鏡面11−1Rの状態の定期的な正常/異常の判断動作を禁止する。
また、露点計制御モード指定部301は、メイン露点計201Lに対して制御モードを自動クリーニング制御モードに移行するように切換指令を送ると共に(ステップS516)、メイン露点計201Lの直近の自動クリーニング制御モード開始からの経過時間TYを計時するソフトタイマをスタートさせる(ステップS517)。
メイン露点計201Lの制御モード選択部37Lは、統括コントローラ300の露点計制御モード指定部301からの自動クリーニング制御モードへの切換指令を受けて、制御モードをそれまでの露点温度計測制御モードから自動クリーニング制御モードに切り換える(図15(c)に示すt5点)。すなわち、サブ露点計201Rの露点温度計測制御が安定した状態となるまで待った後(図15(c)に示すτ1時間の経過後)、それまでの露点温度計測制御を中止させて、自動クリーニング制御に移行させる。
このケース(ケース3)において、露点計制御モード指定部301は、メイン露点計201Lの制御モードが自動クリーニング制御モードとされているので(ステップS502のNO)、ステップS517(図19)へ進み、メイン露点計201Lの直近の自動クリーニング制御モード開始からの経過時間TYを求める。そして、この求めたメイン露点計201Lの直近の自動クリーニング制御モード開始からの経過時間TYと、予め定められている設定時間Tとを比較する(ステップS518)。
これにより、メイン露点計201Lの直近の自動クリーニング制御モード開始からの経過時間TYが設定時間Tに達するまでの間(テップS518のNO)、メイン露点計201における自動クリーニング制御が続けられ、露点温度計測値選択部302に対するサブ露点計201Rの有効な露点計としての通知が続けられ、サブ露点計201Rからの露点温度の計測値tx2が露点温度計測システムの計測露点温度として上位装置へ通知され続ける。
この実施の形態1において、設定時間Tは、メイン露点計201Lの鏡面11−1Lに付着しているであろう凝縮物質を除去させるに充分な所定時間の設定値として定められている。なお、この設定時間Tは、メイン露点計201Lが自己が異常で自動クリーニング制御モードに移行するのではなく、サブ露点計201Rが正常に戻ったことを受けて自動クリーニング制御モードに移行するので、すなわちメイン露点計201Lは正常な状態のままで自動クリーニング制御されるので、サブ露点計201のように正常な状態に戻ったか否かを判断することができないことがあるために、メイン露点計201Lの鏡面11−1Lに付着しているであろう凝縮物質を除去させるに充分な時間として定められているものである。
〔ケース4:メイン露点計とサブ露点計とが共に露点温度計測制御モード(メイン露点計の露点温度計測制御の安定確認待ち状態)〕
露点計制御モード指定部301は、メイン露点計201Lの直近の自動クリーニング制御モード開始からの経過時間TYが設定時間Tに達した場合(ステップS518のYES、(図15(b)に示すt6点)、メイン露点計201Lに対して制御モードを露点温度計測制御モードに移行するように切換指令を送り(ステップS519)、経過時間TYのソフトタイマをリセットして0に戻す(ステップS520)。
メイン露点計201Lの制御モード選択部37Lは、統括コントローラ300の露点計制御モード指定部301からの露点温度計測制御モードへの切換指令を受けて、制御モードをそれまでの自動クリーニング制御モードから露点温度計測制御モードに切り換える(図15(b)に示すt6点)。すなわち、それまでの自動クリーニング制御を中止させて、露点温度計測制御に復帰させる。
メイン露点計201Lが露点温度計測制御に復帰したことにより、メイン露点計201Lの制御モード選択部37Lには露点温度計測制御部34Lからの露点温度の計測値tx1が入力され始めるが、露点温度計測制御安定確認部38Lで露点温度計測制御の安定が確認されるまでの間は、露点温度計測制御部34Lからの露点温度の計測値tx1(信号A1)は統括コントローラ300へは通知されない。
このケース(ケース4)において、統括コントローラ300の露点制御モード指定部301は、メイン露点計201Lおよびサブ露点計201Rの制御モードが共に露点温度計測制御モードとされており(ステップS502,503のYES)、メイン露点計201Lからの露点温度の計測値tx1(信号A1)が通知されていないので(ステップS504のNO)、露点温度計測値選択部302に対するサブ露点計201Rの有効な露点計としての通知を続ける(図19:ステップS522)。
〔ケース1:メイン露点計とサブ露点計が共に露点温度計測制御モード(通常状態への復帰)〕
メイン露点計201Lにおいて、自動クリーニング制御の終了後、露点温度計測制御に復帰し、この露点温度計測制御が安定したことが確認されると(図15(a)に示すτ2時間の経過後)、メイン露点計201Lから露点温度の計測値tx1(信号A1)が通知され始める。
統括コントローラ300の露点制御モード指定部301は 、このメイン露点計201Lから露点温度の計測値tx1(信号A1)が通知され始めたことを確認して(ステップS523のYES)、露点温度計測値選択部302に対してメイン露点計201Lを有効な露点計として通知する。これにより、露点温度計測値選択部302は、メイン露点計201Lからの露点温度の計測値tx1を露点温度計測システムの計測露点温度として上位装置に通知し始める(ステップS524)。
また、露点制御モード指定部301からのメイン露点計201Lを有効な露点計とする通知は、メイン露点計201Lの制御モード選択部37Lへも送られる。また、このメイン露点計201Lを有効な露点計とする通知は、サブ露点計201Rを無効な露点計とする通知として、サブ露点計201Rへも送られる。メイン露点計201Lの制御モード選択部37Lは、自己を有効な露点計とする通知を受けて、鏡面状態判断部35Lの露点温度計測制御中の鏡面11−1Lの状態の定期的な正常/異常の判断動作を禁止する。サブ露点計201Rの制御モード選択部37Rは、自己を無効な露点計とする通知を受けて、鏡面状態判断部35Rの露点温度計測制御中の鏡面11−1Rの状態の定期的な正常/異常の判断動作を許可する。
このようにして、この実施の形態1では、メイン露点計201Lが異常となる前に、サブ露点計201Rが自動クリーニング制御を実行して正常に戻った時点で露点温度計測制御に復帰し、この後、サブ露点計201Rの露点温度計測制御が安定した状態となるまで待って、メイン露点計201Lが露点温度計測制御を中止して、自動クリーニング制御を実行するものとなり、メイン露点計201Lの露点温度計測制御中はこのメイン露点計201Lの露点温度の計測値tx1が有効な計測値として用いられる一方、メイン露点計201Lの自動クリーニング制御の実行中、およびこのメイン露点計201Lの自動クリーニング制御から露点温度計測制御への移行時の露点温度計測制御が安定するまでの間は、サブ露点計201Rの露点温度の計測値tx2が有効な計測値として用いられるものとなり、メイン露点計201Lの自動クリーニング制御中に、サブ露点計201Rで鏡面11−1Rが正常な状態で露点温度計測制御が行われるようにして、露点温度を連続して計測することができるようになる。また、メイン露点計201Lにおいても、サブ露点計201Rにおいても、その露点温度の計測値を有効な計測値として用いる露点温度計測制御中は、鏡面の状態の正常/異常の判断の実行が禁止されるものとなり、鏡面の自動クリーニング制御中だけではなく、露点温度計測制御中も中断させることなく、露点温度の計測を連続して行わせることができるようになる。
なお、この実施の形態1では、サブ露点計201Rの自動クリーニング制御中、鏡面11−1Rが正常な状態に戻ったことを確認して露点温度計測制御に復帰させるものとしたが、メイン露点計201Lと同様にして、サブ露点計201Rの鏡面11−1Rに付着しているであろう凝縮物質を除去させるに充分な所定時間Tを定め、この所定時間Tの経過後に露点温度計測制御に復帰させるようにしてもよい。
〔実施の形態2:露点温度の計測値の有効/無効を交互切り換える方式(運用方式2)〕
図20(b)および(c)はこの露点温度計測システムを別の運用方式(運用方式2)で運用した場合の第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rにおける制御モードの変化を示すタイムチャートであり、図20(a)には、この制御モードの変化と合わせて、制御モード変化の各ケースの期間を示している。
この運用方式2(実施の形態2)において、統括コントローラ300の露点計制御モード指定部301は、最初に、第1の鏡面冷却式露点計201Lを運用当初の計測用の露点計として設定し、第2の鏡面冷却式露点計201Rを運用当初の補助用の露点計として設定する。統括コントローラ300から補助用の露点計として設定された鏡面冷却式露点計201Rでは、計測用の露点計として設定された鏡面冷却式露点計201Rよりも鏡面の状態の異常検知(汚れ検知)に対して敏感とされ(鏡面の状態を異常と判断する閾値が低く設定され)、露点温度計測制御モードの状態で汚れ検知センサとして機能する。
また、統括コントローラ300の露点計制御モード指定部301は、最初に、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rに対して、制御モードとして共に露点温度計測制御モードを指定する。また、露点温度計測値選択部302に対して第1の鏡面冷却式露点計201Lを有効な露点計として通知する。また、第1の鏡面冷却式露点計201Lに対してその露点計を有効な露点計として通知し、第2の鏡面冷却式露点計201Rに対してその露点計を有効ではない露点計(無効な露点計)として通知する。以下、運用当初の計測用の露点計として設定された第1の鏡面冷却式露点計201L(露点計1)を計測用露点計と呼び、運用当初の補助用の露点計として設定された第2の鏡面冷却式露点計201R(露点計2)を補助用露点計と呼ぶ。
〔ケース1:計測用露点計と補助用露点計が共に露点温度計測制御モード(通常状態)〕
計測用露点計201Lの制御モード選択部37Lは、統括コントローラ300の露点計制御モード指定部301から自己を有効な露点計とする通知を受けると、鏡面状態判断部35Lの露点温度計測制御中の鏡面11−1Lの状態の定期的な正常/異常の判断動作を禁止する。また、統括コントローラ300の露点計制御モード指定部301から露点温度計測制御モードの指定を受けると、露点温度計測制御部34Lによる露点温度計測制御を開始させると共に、露点温度計測制御安定確認部38Lの動作をオンとする。これにより、計測用露点計201Lは、鏡面11−1Rの状態の定期的な正常/異常の判断動作を行うことなく、露点温度計測制御を実行し、その露点温度の計測値tx1(信号A1)を統括コントローラ300に通知する。
一方、補助用露点計201Rの制御モード選択部37Rは、統括コントローラ300の露点計制御モード指定部301から自己を無効な露点計とする通知を受けると、鏡面状態判断部35Rの露点温度計測制御中の鏡面11−1Rの状態の定期的な正常/異常の判断動作を許可する。また、統括コントローラ300の露点計制御モード指定部301から露点温度計測制御モードの指定を受けると、露点温度計測制御部34Rによる露点温度計測制御を開始させると共に、露点温度計測制御安定確認部38Rの動作をオンとする。これにより、補助用露点計201Rは、鏡面11−1Rの状態の定期的な正常/異常の判断動作を行いながら、露点温度計測制御を実行し、その露点温度の計測値tx2(信号A2)を統括コントローラ300に通知する。
計測用露点計201Lからの露点温度の計測値tx1(信号A1)および補助用露点計201Rからの露点温度の計測値tx2(信号A2)は統括コントローラ300の露点温度計測値選択部302へ送られる。露点温度計測値選択部302は、露点計制御モード指定部301からの計測用露点計201Lを有効な露点計とする通知を受けて、計測用露点計201Lからの露点温度の計測値tx1を露点温度計測システムの計測露点温度として上位装置に通知する。
〔ケース2:計測用露点計は露点温度計測制御モード、補助用露点計は自動クリーニング制御モード(補助用露点計で計測用露点計の異常の前段階検知)〕
今、図20(c)に示すt3点にあって、補助用露点計201Rから鏡面11−1Rの状態が異常である旨の判断結果が送られてくると、統括コントローラ300の露点計制御モード指定部301は、補助用露点計201Rに対して制御モードを自動クリーニング制御モードに移行するように切換指令を送る。
この場合、補助用露点計201Rは、計測用露点計201Lよりも鏡面の汚れ検知に対して敏感とされており、もし計測用露点計201Lで鏡面11−1Lの状態の正常/異常の判断が行われているものと仮定した場合、計測用露点計201Lの鏡面11−1Lの状態が異常と判断されるよりも前に、補助用露点計201Rの鏡面11−1Rの状態が異常と判断される。すなわち、この時、計測用露点計201Lの鏡面11−1Lの状態はまだ正常であり、補助用露点計201Rが汚れ検知センサとして機能し、計測用露点計201Lの鏡面11−1Lの状態が異常の前段階にあることを検知する。
補助用露点計201Rの制御モード選択部37Rは、統括コントローラ300の露点計制御モード指定部301からの自動クリーニング制御モードへの切換指令を受けて、制御モードをそれまでの露点温度計測制御モードから自動クリーニング制御モードに切り換える(図20(c)に示すt3点)。すなわち、それまでの露点温度計測制御を中止させて、自動クリーニング制御に移行させる。
統括コントローラ300の露点計制御モード指定部301は、補助用露点計201Rの制御モードが自動クリーニング制御モードに切り換えられた後も、露点温度計測値選択部302に対して計測用露点計201Lを有効な露点計として通知し続ける。これにより、露点温度計測値選択部302は、計測用露点計201Lからの露点温度の計測値tx1を露点温度計測システムの計測露点温度として上位装置に通知し続ける。
統括コントローラ300の露点計制御モード指定部301は、補助用露点計201Rの制御モードの自動クリーニング制御モードへの切り換え後、補助用露点計201Rから鏡面11−1Rの状態が正常に戻った旨の判断結果が送られてきた時点で(図20(c)に示すt4点)、補助用露点計201Rに対して制御モードを露点温度計測制御モードに移行するように切換指令を送る。
露点計制御モード指定部301は、補助用露点計201Rから鏡面11−1Rの状態が正常に戻った旨の判断結果が送られてくるまでの間、露点温度計測値選択部302に対して計測用露点計201Lを有効な露点計として通知し続ける。これにより、補助用露点計201Rが自動クリーニング制御を実行している間、露点温度計測値選択部302は、計測用露点計201Lからの露点温度の計測値tx1を露点温度計測システムの計測露点温度として上位装置に通知し続ける。
〔ケース3:計測用露点計と補助用露点計とが共に露点温度計測制御モード(補助用露点計の露点温度計測制御の安定確認待ち状態)〕
露点計制御モード指定部301は、補助用露点計201Rから鏡面11−1Rの状態が正常に戻った旨の判断結果が送られてきても、補助用露点計201Rの露点温度計測制御が安定した状態が確認されるまでの間、計測用露点計201Lの露点温度計測制御を継続させ、露点温度計測値選択部302への計測用露点計201Lを有効な露点計とする通知を続ける。
これにより、露点温度計測値選択部302は、補助用露点計201Rが自動クリーニング制御を実行している間に加え、補助用露点計201Rの露点温度計測制御が安定した状態が確認されるまでの間(図20(c)に示すτ1時間の間)、計測用露点計201Lからの露点温度の計測値tx1を露点温度計測システムの計測露点温度として上位装置に通知し続ける。
〔ケース4:計測用露点計は自動クリーニング制御モード、補助用露点計は露点温度計測制御モード(補助用露点計で露点温度計測)〕
補助用露点計201Rの露点温度計測制御が安定した状態が確認されると、統括コントローラ300の露点計制御モード指定部301は、計測用露点計201Lに対して制御モードを自動クリーニング制御モードに移行するように切換指令を送る(図20(b)に示すt5点)。
計測用露点計201Lの制御モード選択部37Lは、統括コントローラ300の露点計制御モード指定部301からの自動クリーニング制御モードへの切換指令を受けて、制御モードをそれまでの露点温度計測制御モードから自動クリーニング制御モードに切り換える(図20(b)に示すt5点)。
統括コントローラ300の露点計制御モード指定部301は、露点計現在制御モード認識部303からの認識結果から、計測用露点計201Lおよび補助用露点計201Rの現在の制御モードを確認する。この場合、計測用露点計201Lの現在の制御モードが自動クリーニング制御モードであるので、露点計制御モード指定部301は、露点温度計測値選択部302に対して補助用露点計201Rを有効な露点計として通知する。この通知は補助用露点計201Rにも送られる。
補助用露点計201Rの制御モード選択部37Rは、統括コントローラ300の露点計制御モード指定部301からの自己を有効な露点計とする通知を受けると、鏡面状態判断部35Rの露点温度計測制御中の鏡面11−1Rの状態の定期的な正常/異常の判断動作を禁止する。これにより、補助用露点計201Rでは、鏡面11−1Rの状態の定期的な正常/異常の判断動作が禁止された状態で露点温度計測制御が行われる。また、露点温度計測値選択部302は、補助用露点計201Rからの露点温度の計測値tx2を露点温度計測システムの計測露点温度として上位装置に通知し始める。
露点計制御モード指定部301は、計測用露点計201Lの制御モードの自動クリーニング制御モードへの切り換え後、所定時間Tが経過すると(図20(b)に示すt6点)、計測用露点計201Lに対して制御モードを露点温度計測制御モードに移行するように切換指令を送る。すなわち、それまでの自動クリーニング制御を中止させて、露点温度計測制御に復帰させる。
〔ケース5:計測用露点計と補助用露点計が共に露点温度計測制御モード(通常状態(有効無効切換後の通常状態))〕
統括コントローラ300の露点計制御モード指定部301は、計測用露点計201Lの制御モードが露点温度計測制御モードに復帰した後も、露点温度計測値選択部302に対して補助用露点計201Rを有効な露点計として通知し続ける。計測用露点計201Lおよび補助用露点計201Rにも同様の通知が続けられる。
計測用露点計201Lの制御モード選択部37Lは、統括コントローラ300の露点計制御モード指定部301からの自己を無効な露点計とする通知を受けている状態では、鏡面状態判断部35Lの露点温度計測制御中の鏡面11−1Lの状態の定期的な正常/異常の判断動作を許可する。これにより、計測用露点計201Lは、鏡面11−1Lの状態の定期的な正常/異常の判断動作を行いながら、露点温度計測制御を行う。
一方、補助用露点計201Rの制御モード選択部37Rは、統括コントローラ300の露点計制御モード指定部301から自己を有効な露点計とする通知を受けている状態では、鏡面状態判断部35Rの露点温度計測制御中の鏡面11−1Rの状態の定期的な正常/異常の判断動作を禁止する。これにより、補助用露点計201Rは、鏡面11−1Rの状態の定期的な正常/異常の判断動作を行うことなく、露点温度計測制御を行う。
すなわち、このケース(ケース5)では、計測用露点計201Lと補助用露点計201Rの役割が入れ替わり、計測用露点計201Lが補助用露点計となり、補助用露点計201Rが計測用露点計となる。以下、計測用露点計201Lを補助用露点計と呼び変え、補助用露点計201Rを計測用露点計と呼び変える。この場合、統括コントローラ300の露点計制御モード指定部301は、鏡面の状態の異常検知(汚れ検知)の感度についても入れ替え、計測用露点計201Rよりも補助用露点計201Lの鏡面の状態の異常検知の感度を敏感とし、補助用露点計201Lを露点温度計測制御モードの状態で汚れ検知センサとして機能させる。
以下、同様にして、ケース2に相当するケース6で、計測用露点計201Rが露点温度計測制御モード、補助用露点計201Lが自動クリーニング制御モード(補助用露点計201Lで計測用露点計201Rの異常の前段階検知)とされ、ケース3に相当すケース7で計測用露点計201Rと補助用露点計201Lとが共に露点温度計測制御モード(補助用露点計201Lの露点温度計測制御の安定確認待ち状態)とされ、ケース4に相当するケース8で計測用露点計201Rが自動クリーニング制御モード、補助用露点計201Lが露点温度計測制御モード(補助用露点計201Lで露点温度計測)とされ、ケース1の状態に復帰する。
このようにして、この実施の形態2では、計測用露点計201L(201R)が異常となる前に、補助用露点計201R(201L)が自動クリーニング制御を実行して正常に戻った時点で露点温度計測制御に復帰し、この後、補助用露点計201R(201L)の露点温度計測制御が安定した状態となるまで待って、計測用露点計201L(201R)が露点温度計測制御を中止して、自動クリーニング制御を実行するものとなり、計測用露点計201L(201R)の露点温度計測制御中はこの計測用露点計201L(201R)の露点温度の計測値tx1(tx2)が有効な計測値として用いられる一方、計測用露点計201L(201R)の自動クリーニング制御の実行中は、補助用露点計201R(201L)の露点温度の計測値tx2(tx1)が有効な計測値として用いられるものとなり、計測用露点計201L(201R)の自動クリーニング制御中に、補助用露点計201R(201L)で鏡面11−1R(11−1L)が正常な状態で露点温度計測制御が行われるようにして、露点温度を連続して計測することができるようになる。また、計測用露点計201L(201R)においても、補助用露点計201R(201L)においても、その露点温度の計測値を有効な計測値として用いる露点温度計測制御中は、鏡面の状態の正常/異常の判断の実行が禁止されるものとなり、鏡面の自動クリーニング制御中だけではなく、露点温度計測制御中も中断させることなく、露点温度の計測を連続して行わせることができるようになる。
なお、上述し実施の形態1,2では、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rにおける自動クリーニング制御をともに鏡面を加熱する加熱制御方式としたが、ともにサンプリングチャンバ内の圧力を減圧させる減圧制御方式としてもよく、何れか一方を加熱制御方式、他方を減圧制御方式としてもよい。
また、上述した実施の形態1,2では、サンプリングチャンバ31(31L,31R)の上流側に仕切り弁40(40L,40R)を設け、下流側に吸引ポンプ41(41L,41R)を設け、仕切り弁40(40L,40R)を開とし、吸引ポンプ41(41L,41R)を運転することによって、サンプリングチャンバ31(31L,31R)内に被測定気体を流入させるような構成としたが、吸引ポンプを設けずに、上流側の圧力を高くして、サンプリングチャンバ31(31L,31R)内に被測定気体を流入させるような構成としてもよい。このような構成では、例えば、サンプリングチャンバ31(31L,31R)の上,下流に弁を設け、サンプリングチャンバ31(31L,31R)の近くに減圧用ポンプをポンプを設け、上,下流の弁を閉じ、減圧用ポンプを運転することによって、サンプリングチャンバ31(31L,31R)内の圧力を減圧させるようにすることが可能である。
また、上述した実施の形態1,2では、第1の鏡面冷却式露点計201Lと第2の鏡面冷却式露点計201Rとを並列に設置したが、直列に設置するようにしてもよい。図21に第1の鏡面冷却式露点計201Lと第2の鏡面冷却式露点計201Rとを直列に設置した場合の構成例を示す。直列に設置するようにした場合、第1の鏡面冷却式露点計201Lおよび第2の鏡面冷却式露点計201Rにおける自動クリーニング制御は、ともに加熱制御方式とする。
また、上述した実施の形態1,2では、第1の鏡面冷却式露点計201Lと第2の鏡面冷却式露点計201Rに対して統括コントローラ300を設けるようにしたが、統括コントローラ300の機能を第1の鏡面冷却式露点計201Lや第2の鏡面冷却式露点計201Rに持たせるようにしてもよい。
また、上述した実施の形態1,2では、第2の鏡面冷却式露点計201Rが露点温度計測制御に復帰した後、この第2の鏡面冷却式露点計201Rの露点温度計測制御が安定した状態となるまで待って、第1の鏡面冷却式露点計201Lを自動クリーニング制御に移行させるようにしたが、露点温度計測制御が安定するまでの時間が問題とならない場合もあり、このような場合、第2の鏡面冷却式露点計201Rが露点温度計測制御に復帰した後、直ちに第1の鏡面冷却式露点計201Lを自動クリーニング制御に移行させるようにしてもよい。また、第2の鏡面冷却式露点計201Rの鏡面11−1Rからの反射光の受光量から露点温度計測制御が安定したことを確認するのではなく、露点温度計測制御が安定するまでの所定時間を定め、この所定時間の経過後、第1の鏡面冷却式露点計201Lを自動クリーニング制御に移行させるようにしてもよい。
また、上述した実施の形態1では、第1の鏡面冷却式露点計201Lが露点温度計測制御に復帰した後も、この第1の鏡面冷却式露点計201Lの露点温度計測制御が安定した状態となるまでの間、第2の鏡面冷却式露点計201Rの露点温度の計測値tx2を有効な計測値として用いるようにしたが、第1の鏡面冷却式露点計201Lが露点温度計測制御に復帰した後、直ちに第1の鏡面冷却式露点計201Lの露点温度の計測値tx1を有効な計測値として用いるようにしてもよい。また、第1の鏡面冷却式露点計201Lの鏡面11−1Lからの反射光の受光量から露点温度計測制御が安定したことを確認するのではなく、露点温度計測制御が安定するまでの所定時間を定め、この所定時間の経過後、第1の鏡面冷却式露点計201Lの露点温度の計測値tx1を有効な計測値として用いるようにしてもよい。
また、実施の形態1において、設定時間Tを設けるのではなく、メイン露点計201Lにおいて、自動クリーニング制御に移行した後、自動クリーニング制御中の鏡面11−1Lからの反射光の光量をチェックし、この反射光の光量がある一定の範囲に入った場合、自動クリーニング制御を中止して、露点温度計測制御に復帰させるようにしてもよい。
また、上述した実施の形態2においても、設定時間Tを設けるのではなく、計測用露点計201L(201R)において、自動クリーニング制御に移行した後、自動クリーニング制御中の鏡面11−1L(11−1R)からの反射光の光量をチェックし、この反射光の光量がある一定の範囲に入った場合、自動クリーニング制御を中止して、露点温度計測制御に復帰させるようにしてもよい。
本発明の露点温度計測システムは、熱電冷却素子(ペルチェ素子)を用いた鏡面冷却式露点計を使用した露点温度計測システムとして、鏡の鏡面上に生じる結露や結霜から露点温度を連続して検出する露点計として利用することが可能である。
201(201L,201R)…鏡面冷却式露点計、201A…センサ部、201B…コントロール部、2…第2の熱電冷却素子(ペルチェ素子)、2−1…冷却面、2−2…加熱面、11…鏡、11−1…表面(鏡面)、11−2…裏面、12…第2の温度センサ、13…センサボディ、13a…先端部、13b…傾斜面、13c…後端部、14…投受光一体型の光ファイバ、14−1…投光側の光ファイバ、14−2…受光側の光ファイバ、15…冷却ブロック、16…冷却板、17…熱伝導体、18…第2の熱電冷却素子(ペルチェ素子)、18−1…冷却面、18−2…加熱面、19…ヒートシンク、19a…放熱フィン、20…冷却ファン、21…第2の温度センサ、22…光電変換器、23…外気温度センサ、DT…検出部、SC…サブクーラ、24…メインコントローラ、24−1…CPU、24−2…第2のA/D変換器、24−3…第2のA/D変換器、24−4…露点温度出力部、24−5…RAM、24−6…ROM、25…サブコントローラ、25−1…CPU、25−2…第2のA/D変換器、25−3…第2のA/D変換器、25−4…RAM、25−5…ROM、26…電源、27…電源スイッチ、28…露点計測ON/OFFスイッチ、29…サブクーラ制御ON/OFFスイッチ、30…サブクーラ低温/高温/連動切替セレクタスイッチ、31(31L,31R)…サンプリングチャンバ、40(40L,40R)…仕切り弁、41(41L,41R)…吸引ポンプ、34(34L,34R)…露点温度計測制御部、35(35L,35R)…自動クリーニング制御部、36(36L,36R)…鏡面状態判断部、37(37L,37R)…制御モード選択部、38(38L,38R)…露点温度計測制御安定確認部、300…統括コントローラ、301…露点計制御モード指定部、302…露点温度計測値選択部、303…露点計現在制御モード認識部、304…鏡面状態判断結果認識部。

Claims (12)

  1. 被測定気体に晒される鏡面と、
    この鏡面を冷却する熱電冷却素子と、
    前記鏡面の温度を検出する温度センサと、
    前記鏡面に対して光を照射する投光手段と、
    前記投光手段から前記鏡面に対して照射された光の反射光を受光する受光手段と、
    前記受光手段が受光する反射光の光量に基づいて前記熱電冷却素子へ供給する電流を制御する制御手段とを備え、
    前記制御手段は、
    前記受光手段が受光する反射光の光量に基づいて前記熱電冷却素子へ供給する電流を前記鏡面に生じる結露もしくは結霜の増減がなくなる平衡状態になるように制御し、その平衡状態において前記温度センサが検出する前記鏡面の温度を露点温度として計測する露点温度計測制御を実行する手段と、
    前記露点温度計測制御を定期的に中断して前記受光手段が受光する反射光の光量に基づいて前記鏡面の状態の正常/異常の判断を実行する鏡面状態判断手段と、
    前記鏡面に付着しているであろう、通常は気体で前記被測定気体に含まれ、前記露点温度よりも高い低温で固体となり、前記鏡面を汚す凝縮物質を蒸発又は昇華させて除去させる自動クリーニング制御を実行する手段と
    を備えた第1および第2の鏡面冷却式露点計を有する露点温度計測システムであって、
    前記第1の鏡面冷却式露点計は運用当初の計測用の露点計として設定され、
    前記第2の鏡面冷却式露点計は運用当初の補助用の露点計として設定され、
    前記第2の鏡面冷却式露点計は、
    前記露点温度計測制御を常時実行し、この露点温度計測制御を定期的に中断して、前記鏡面の状態の正常/異常の判断を行い、前記鏡面の状態が異常と判断された場合、前記露点温度計測制御を中止して、前記自動クリーニング制御に移行し、その後、前記露点温度計測制御に復帰し、
    前記第1の鏡面冷却式露点計は、
    前記露点温度計測制御を常時実行し、前記第2の鏡面冷却式露点計が前記露点温度計測制御に復帰にした後、前記露点温度計測制御を中止して、前記自動クリーニング制御に移行し、
    前記第1の鏡面冷却式露点計は、
    前記自動クリーニング制御に移行するまでの露点温度計測制御中、その露点温度の計測値が有効な計測値とされると共に、前記鏡面の状態の正常/異常の判断の実行が禁止され、
    前記第2の鏡面冷却式露点計は、
    前記自動クリーニング制御に移行するまでの露点温度計測制御中、その露点温度の計測値が無効な計測値とされると共に、前記鏡面の状態の正常/異常の判断の実行が許可され、
    さらに、前記第1の鏡面冷却式露点計が前記自動クリーニング制御中である時に、その露点温度の計測値が有効な計測値とされると共に、前記鏡面の状態の正常/異常の判断の実行が禁止される
    ことを特徴とする露点温度計測システム。
  2. 請求項1に記載された露点温度計測システムにおいて、
    前記第1の鏡面冷却式露点計は、
    前記自動クリーニング制御に移行した後、前記露点温度計測制御に復帰し、この露点温度計測制御に復帰した後、その露点温度の計測値が無効な計測値とされると共に、前記鏡面の状態の正常/異常の判断の実行が許可され、
    前記第2の鏡面冷却式露点計は、
    前記第1の鏡面冷却式露点計が前記露点温度計測制御に復帰した後も、その露点温度の計測値が有効な計測値とされると共に、前記鏡面の状態の正常/異常の判断の実行が禁止される
    ことを特徴とする露点温度計測システム。
  3. 請求項1に記載された露点温度計測システムにおいて、
    前記第1の鏡面冷却式露点計は、
    前記自動クリーニング制御に移行した後、前記露点温度計測制御に復帰し、この露点温度計測制御が安定した状態となるまで待った後に、その露点温度の計測値が有効な計測値とされると共に、前記鏡面の状態の正常/異常の判断の実行が禁止され、
    前記第2の鏡面冷却式露点計は、
    前記第1の鏡面冷却式露点計が前記露点温度計測制御に復帰した後、この第1の鏡面冷却式露点計の露点温度計測制御が前記安定した状態となるまで待った後に、その露点温度の計測値が無効な計測値とされると共に、前記鏡面の状態の正常/異常の判断の実行が許可される
    ことを特徴とする露点温度計測システム。
  4. 請求項1に記載された露点温度計測システムにおいて、
    前記第1の鏡面冷却式露点計は、
    前記第2の鏡面冷却式露点計が前記露点温度計測制御に復帰にした後、この第2の鏡面冷却式露点計の露点温度計測制御が安定した状態となるまで待って、前記自動クリーニング制御に移行する
    ことを特徴とする露点温度計測システム。
  5. 請求項1に記載された露点温度計測システムにおいて、
    前記鏡面の状態の正常/異常の判断の実行が許可された鏡面冷却式露点計での異常である旨の判断結果は、前記鏡面の状態の正常/異常の判断の実行が禁止された鏡面冷却式露点計の鏡面の状態が異常となる前段階にあることを示す
    ことを特徴とする露点温度計測システム。
  6. 請求項1に記載された露点温度計測システムにおいて、
    前記第1の鏡面冷却式露点計は、
    前記自動クリーニング制御に移行した後、この自動クリーニング制御中の前記受光手段が受光する反射光の光量をチェックし、この反射光の光量がある一定の範囲に入った場合、前記自動クリーニング制御を中止して、前記露点温度計測制御に復帰する
    ことを特徴とする露点温度計測システム。
  7. 請求項1に記載された露点温度計測システムにおいて、
    前記第1の鏡面冷却式露点計は、
    前記自動クリーニング制御に移行した後、所定時間の経過後、前記自動クリーニング制御を中止して、前記露点温度計測制御に復帰する
    ことを特徴とする露点温度計測システム。
  8. 請求項1に記載された露点温度計測システムにおいて、
    前記第1および第2の鏡面冷却式露点計の鏡面状態判断手段は、
    前記露点温度計測制御を定期的に中断して前記鏡面の状態の正常/異常の判断を行う場合、
    前記露点温度計測制御による前記熱電冷却素子への供給電流の制御の中断後、その中断から所定時間経過した後の前記受光手段が受光する反射光の光量に基づき、この反射光の光量が予め定められている受光量基準範囲から外れている場合に、前記鏡面の状態が異常であると判断する
    ことを特徴とする露点温度計測システム。
  9. 請求項1に記載された露点温度計測システムにおいて、
    前記第1および第2の鏡面冷却式露点計の鏡面状態判断手段は、
    前記露点温度計測制御を定期的に中断して前記鏡面の状態の正常/異常の判断を行う場合、
    前記露点温度計測制御による前記熱電冷却素子への供給電流の制御の中断後、前記鏡面の温度に変化が生じなくなったと判断したときの前記受光手段が受光する反射光の光量に基づき、この反射光の光量が予め定められている受光量基準範囲から外れている場合に、前記鏡面の状態が異常であると判断する
    ことを特徴とする露点温度計測システム。
  10. 請求項1に記載された露点温度計測システムにおいて、
    前記第1および第2の鏡面冷却式露点計の鏡面状態判断手段は、
    前記露点温度計測制御を定期的に中断して前記鏡面の状態の正常/異常の判断を行う場合、
    前記露点温度計測制御による前記熱電冷却素子への供給電流の制御の中断後、前記受光手段が受光する反射光の光量に変化が生じなくなったと判断したときの前記受光手段が受光する反射光の光量に基づき、この反射光の光量が予め定められている受光量基準範囲から外れている場合に、前記鏡面の状態が異常であると判断する
    ことを特徴とする露点温度計測システム。
  11. 請求項1〜3の何れか1項に記載された露点温度計測システムにおいて、
    前記第1および第2の鏡面冷却式露点計のうち少なくとも一方は、
    前記自動クリーニング制御として、
    前記鏡面に付着しているであろう凝縮物質を蒸発又は昇華させて除去させるべく、前記鏡面の温度を上昇させるように前記熱電冷却素子へ供給する電流を制御する
    ことを特徴とする露点温度計測システム。
  12. 請求項1〜3の何れか1項に記載された露点温度計測システムにおいて、
    前記第1および第2の鏡面冷却式露点計のうち少なくとも一方は、
    前記鏡面、前記熱電冷却素子、前記温度センサ、前記投光手段および前記受光手段を収容するチャンバを少なくとも備え、
    前記自動クリーニング制御として、
    前記鏡面に付着しているであろう凝縮物質を蒸発又は昇華させて除去させるべく、前記チャンバ内の圧力を減圧制御する
    ことを特徴とする露点温度計測システム。
JP2012129365A 2012-06-06 2012-06-06 露点温度計測システム Expired - Fee Related JP5914188B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012129365A JP5914188B2 (ja) 2012-06-06 2012-06-06 露点温度計測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012129365A JP5914188B2 (ja) 2012-06-06 2012-06-06 露点温度計測システム

Publications (2)

Publication Number Publication Date
JP2013253854A JP2013253854A (ja) 2013-12-19
JP5914188B2 true JP5914188B2 (ja) 2016-05-11

Family

ID=49951471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012129365A Expired - Fee Related JP5914188B2 (ja) 2012-06-06 2012-06-06 露点温度計測システム

Country Status (1)

Country Link
JP (1) JP5914188B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335597A (en) * 1980-03-28 1982-06-22 Eg & G, Inc. Dew point hygrometer with two cooled reflective surfaces
JPH0399388U (ja) * 1990-01-30 1991-10-17
JP5643602B2 (ja) * 2010-10-27 2014-12-17 アズビル株式会社 鏡面冷却式センサ

Also Published As

Publication number Publication date
JP2013253854A (ja) 2013-12-19

Similar Documents

Publication Publication Date Title
EP2894465B1 (en) Dew-point instrument
CN102560990B (zh) 具有环境温度传感器的干衣机
CN101512307B (zh) 原位晶片温度测量和控制
CN1804567B (zh) 温度或厚度的测量装置、测量方法、测量系统、控制系统和控制方法
EP0394256A1 (en) ICE DETECTION CIRCUIT.
US8011827B1 (en) Thermally compensated dual-probe fluorescence decay rate temperature sensor
KR102356420B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP5643602B2 (ja) 鏡面冷却式センサ
JP3719438B2 (ja) 車両検知システム
JP5912874B2 (ja) 湿度計測システム
JP5914152B2 (ja) 露点温度計測システム
JP5914188B2 (ja) 露点温度計測システム
JP5914187B2 (ja) 露点温度計測システム
JP5912875B2 (ja) 露点温度計測システム
JP6078365B2 (ja) 鏡面冷却式露点計
JP5890247B2 (ja) 鏡面冷却式露点計
JP5890246B2 (ja) 鏡面冷却式露点計
JP2012093218A (ja) 鏡面冷却式センサ
JP2007239612A (ja) 異常診断装置
JP5643603B2 (ja) 鏡面冷却式センサ
US20130128243A1 (en) Temperature balancing device of projection objective of lithography machine and method thereof
JP5643600B2 (ja) 鏡面冷却式センサ
JP5643601B2 (ja) 鏡面冷却式センサ
JP2015017853A (ja) 結露検出装置および機器
DK175914B1 (da) Apparat og fremgangsmåde til at styre temperaturen af en genstand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees