JP5912794B2 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
JP5912794B2
JP5912794B2 JP2012090635A JP2012090635A JP5912794B2 JP 5912794 B2 JP5912794 B2 JP 5912794B2 JP 2012090635 A JP2012090635 A JP 2012090635A JP 2012090635 A JP2012090635 A JP 2012090635A JP 5912794 B2 JP5912794 B2 JP 5912794B2
Authority
JP
Japan
Prior art keywords
tread
tire
slice
carcass
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012090635A
Other languages
English (en)
Other versions
JP2013216279A (ja
Inventor
一夫 浅野
一夫 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012090635A priority Critical patent/JP5912794B2/ja
Publication of JP2013216279A publication Critical patent/JP2013216279A/ja
Application granted granted Critical
Publication of JP5912794B2 publication Critical patent/JP5912794B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Description

本発明は、空気入りタイヤに関する。
従来、タイヤの転がり抵抗は、車両の走行性能、燃料消費率等に悪影響を与えることが知られている。転がり抵抗の要因は、タイヤの回転に伴う、タイヤのゴムやコードからなる構成部材の繰り返し変形によって生じるヒステリシスロスによる抵抗、空気抵抗、路面からの摩擦抵抗等である。これらのうちの主たる要因はタイヤ構成部材のヒステリシスロスによる抵抗である。
そこで、従来、タイヤの転がり抵抗を低減するための種々の方策がとられている。これらのうちの一つとして、走行時に生じる変形が大きく、且つ、ゴムの使用量が多いトレッドに対し、エネルギー損失の比較的少ないゴムを使用する方法がある。しかし、この方法では、タイヤのグリップ性能が損なわれるおそれがある。特に、ウエット時のグリップ性能の低下が問題となる。
他の方法として、使用されるリムのフランジ高さを低くすることがなされている。これにより、タイヤをリムに組み込んだときに、サイドウォールの変形領域が拡大され、トレッド領域の変形挙動が抑制されるというものである。しかし、この方法を採用するに当たっては、リムのフランジ部分を特殊な形状にする必要がある。このため、かかる製品を市場に普及させにくいという問題がある。
タイヤ内圧を通常より高めに設定することにより、荷重負荷時のタイヤの変形を低減する方法も知られている。しかし、この方法では、タイヤのバネ定数が上昇し、振動の減衰不良を招来し、乗り心地が悪化するおそれがある。
特開昭57−87704号公報は、タイヤの赤道を中心としたベルトの繰り返し曲げ変形による内部損失が、タイヤの転がり抵抗に大きな影響を与えること、及び、上記内部損失は、トレッドの表面形状とベルトの配置形状とに特定の関係を持たせることによって低減しうること、を教示している。この技術では、転がり抵抗に影響を及ぼすタイヤ構造上のパラメータとして、荷重が負荷されたタイヤの、トレッド面の頂点位置、及び、ベルト面の頂点位置の凹み寸法(半径方向内側への変位量)を採用している。この技術では、タイヤの広い範囲のアライメント、及び、三次元的な広い範囲の変形が考慮されていない。
特開昭57−87704号公報
本発明は、かかる現状に鑑みてなされたものであり、タイヤの転がり抵抗に影響を及ぼすタイヤの変形について、より実際に近い態様を設定し、この変形に基づいて、転がり抵抗が低減されうるように特定された構成を有する空気入りタイヤの提供を目的としている。
本発明に係る空気入りタイヤは、
その外面がトレッド面をなすトレッドと、
上記トレッドのタイヤ軸方向の両端からタイヤ半径方向内向きに延びるサイドウォールと、
トレッド及びサイドウォールの内側に沿って配設されたカーカスとを有しており、
トレッドから、仮想接地平面であるトレッドスライスカット面によって切り取られたトレッドスライス部の縦断面の面積Atに対する、カーカスからカーカススライスカット面によって切り取られたカーカススライス部の縦断面の面積Acの比Ac/Atが、0.68以上1.0以下であり、
上記仮想接地平面は、上記トレッドスライス部の仮想接地平面による切断面の面積Asがタイヤに負荷される荷重をタイヤに充填される内圧で除して得られる面積と等しくなる平面であり、
上記カーカススライスカット面が、タイヤの軸を含む平面で切った断面において、上記トレッドスライスカット面とタイヤ半径方向内方に対応する平面である。
好ましくは、上記トレッドスライス部の縦断面の面積Atは、トレッドスライス部を、トレッドスライスカット面及びタイヤ赤道面のいずれにも垂直で且つタイヤ半径を含む切断平面によって切った断面の面積であり、
上記カーカススライス部の縦断面の面積Acは、トレッドスライス部の縦断面のタイヤ軸方向両端それぞれからタイヤ半径方向に延びる直線とカーカスとの交点同士を結ぶ仮想直線と、上記切断平面上のカーカス断面線とで囲まれた面積である。
好ましくは、上記比Ac/Atが、0.68以上0.85以下である。
好ましくは、上記トレッドスライス部の体積Vsを、トレッドスライス部のトレッドスライスカット面による切断面の面積Asで除した値Vs/Asが、3.9以上4.7以下である。
好ましくは、上記値Vs/Asが、4.1以上4.5以下である。
好ましくは、仮想接地面の面積である上記トレッドスライス部のトレッドスライスカット面による切断面の面積Asは、タイヤに負荷される荷重をタイヤに充填される内圧で除して得られる面積である。
好ましくは、上記トレッドスライスカット面が、タイヤ赤道面に垂直な平面から、タイヤ軸方向に対して1.0°以上2.0°以下の範囲で傾斜している。
本発明に係る空気入りタイヤによれば、トレッドゴム材質の変更、特殊形状のリムの使用等を伴うことなく、トレッド等の構成を物理量によって規定することにより、転がり抵抗の低減が可能となる。
図1は、本発明の一実施形態に係る空気入りタイヤを示す、その中心軸を含む面で切った断面図である。 図2は、図1のタイヤに荷重が負荷されたときの変形の一例を示す断面図である。 図3は、図1のタイヤの半分におけるトレッド面、及び、そのトレッドスライス部を、XYZ各軸からなる三次元座標上に概略的に示す斜視図である。 図4は、図1のタイヤのトレッドスライス部及びトレッドスライスカット面(仮想接地面)を示す斜視図である。 図5は、図1のタイヤのトレッド負荷面、カーカス負荷面及び仮想接地形状を示す図である。
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
図1は、本発明の一実施形態に係る空気入りタイヤ1の一部を示す、子午線方向に切った断面図である。図1において、上下方向がタイヤ半径方向(以下、単に半径方向ともいう)であり、左右方向がタイヤ軸方向(以下、単に軸方向ともいう)であり、紙面に垂直な方向がタイヤ周方向(以下、単に周方向ともいう)である。このタイヤ1は、図1中の中心線CLに関してほぼ左右対称の形状を呈する。この中心線CLは、トレッドセンターラインとも呼び、タイヤ1の赤道面EQを表す。
このタイヤ1は、トレッド2、サイドウォール3、ビード4、カーカス5及びベルト6を備えている。このタイヤ1は、チューブレスタイプである。
トレッド2は耐摩耗性に優れた架橋ゴムからなる。トレッド2はトレッド面7を備えている。トレッド面7は、タイヤ1の子午線方向に切った断面において、半径方向外向きに凸な形状を呈している。このトレッド面7は路面と接地する。トレッド面7には、周方向に延びる複数本の溝8が刻まれている。この溝8により、トレッドパターンが形成されている。トレッド2のタイヤ軸方向外方部分はショルダー部15と呼ばれる。はサイドウォール3は、トレッド2の端から半径方向略内向きに延びている。このサイドウォール3は架橋ゴムからなる。
図1に示されるように、ビード4は、サイドウォール3よりも半径方向略内側に位置している。ビード4は、コア10と、このコア10から半径方向外向きに延びるエイペックス11とを備えている。コア10は、タイヤの周方向に沿ってリング状を呈している。コア10は、非伸縮性ワイヤーが巻かれてなる。典型的には、コア10にスチール製ワイヤーが用いられる。エイペックス11は半径方向外向きに先細りである。エイペックス11は高硬度な架橋ゴムからなる。
カーカス5はカーカスプライ12からなる。カーカスプライ12は、両側のビード4の間に架け渡されており、トレッド2及びサイドウォール3の内側に沿っている。カーカスプライ12は、コア10の周りを、タイヤ軸方向内側から外側に向かって折り返されている。図示されていないが、カーカスプライ12は、並列された多数のコードとトッピングゴムとからなる。各コードが赤道面EQ(CL)に対してなす角度の絶対値は、通常は70°から90°である。換言すれば、このカーカス5はラジアル構造を有する。
ベルト6はカーカス5の半径方向外側に位置している。ベルト6はカーカス5に積層されている。ベルト6はカーカス5を補強する。ベルト6は、内層ベルト13及び外層ベルト14からなる。本実施形態では、両ベルト13、14の幅が異なっている。本実施形態では、内層ベルト13の幅が外層ベルト14の幅より広い。両ベルト13、14の幅の差は、10mm以上20mm以下とされるのが好ましい。より具体的には、幅狭の外層ベルト14の端部から外方に露出した幅広の内層ベルト13の部分(ステップ)17の幅が、5mm以上10mm以下とされるのが好ましい。この幅が5mm未満であると、ベルト6の端部外側のすべりが多くなって段差摩耗(端部の内側と外側との高低差)が生じるおそれがある。一方、この幅が10mmを超えると、ベルト6の端部近傍の跳ね上がり挙動が大きくなり、接地圧の不連続性が増大して偏摩耗を生じるおそれがある。
図示されてはいないが、内層ベルト13及び外層ベルト14のそれぞれは、並列された多数のコードとトッピングゴムとからなる。各コードは、赤道面EQに対して傾斜している。内層ベルト13のコードの傾斜方向は、外層ベルトのコードの傾斜方向とは逆である。
タイヤ1にキャンバー角が設定されている場合、トレッドの接地面の外縁(接地端と呼ぶ)は、タイヤ軸方向外方へ移動する。この場合であっても、少なくとも上記幅広の内層ベルト13の幅方向端部(エッジ部)16は、上記接地端よりタイヤ軸方向外方に位置しうるように構成される。すなわち、内層ベルト13の幅は、タイヤ1に対してキャンバー角が1.5°±0.5°の範囲内で設定された場合であっても、エッジ部16が接地端よりタイヤ軸方向外方に位置しうるように決定される。このようなベルト6により、キャンバー角が設定されるタイヤであっても、ショルダー部15の耐摩耗性の低下が防止されうる。
図示されていないが、ベルト6のタイヤ半径方向外側にバンドが積層されているのが好ましい。このバンドの幅はベルト6の幅よりも大きい。このバンドは、コードとトッピングゴムとからなる。コードは、螺旋状に巻かれている。このコードによりベルトが拘束されるので、ベルト6のリフティングが抑制される。コードは、有機繊維からなる。好ましい有機繊維としては、ナイロン繊維、ポリエステル繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。
図示されていないが、ベルト6のタイヤ半径方向外側であって、かつベルト6の幅方向端部(エッジ部)近傍に、エッジバンドが配設されているのが好ましい。このエッジバンドも、上記バンドと同様、コードとトッピングゴムとからなる。上記エッジバンドの一例としては、幅広の内層ベルト13のステップ17の上面に積層されるものである。このエッジバンドのコードは、幅狭の外層ベルト14のコードの方向と同一方向に傾斜し、幅広の内層ベルト13のコードとバイアスする。傾斜角は20°以上90°以下の範囲である。このエッジバンドにより、ベルト6のエッジ部において幅方向に生じやすい剛性の不連続性に起因した挙動が抑制される。その結果、偏摩耗の発生が抑制されうる。
図示されていないが、ベルト6の幅方向端部(エッジ部)近傍において、クッションゴム層がカーカス5と積層されているのが好ましい。クッション層は、軟質な架橋ゴムからなる。クッション層は、ベルトの端の応力を吸収する。このクッション層により、ベルトのリフティングが抑制される。
図2には、内圧が充填され且つ荷重が負荷されたときのタイヤ1の、典型的な変形態様が示されている。タイヤ1は、上記のとおり、ゴム2、3、11とコード5、6、10との複合材料から形成されている。剛性の高いカーカス5やベルト6が、タイヤ内圧と釣り合ってタイヤ1としての形状を保っている。タイヤ1に車体からの荷重や走行による荷重が負荷されると、図中に二点鎖線で示されるように、トレッド面7は路面に沿って平坦になる。トレッド面7は概ね半径方向内方へ変位する。タイヤ1内部のベルト6及びカーカス5にも、トレッドへの負荷分の変位が伝達され、その曲率を変化させる曲げモーメントMが作用する。このときに生じる曲げエネルギーがタイヤの転がり抵抗を大きくする要因となる。トレッド2の変形が大きいタイヤほど、耐転がり抵抗に不利である。特に、剛性の高いベルト6及びカーカス5の変形が大きくなるタイヤはさらに不利となる。このベルト6とカーカス5との積層体は、ブレーカーパッケージとも呼ばれる。
本タイヤ1では、回転時に生じる曲げエネルギーが小さくなるように工夫されている。本タイヤ1は、荷重が負荷されたときの、トレッド面7の仮想変位とカーカス5の仮想変位とが、所定の関係となるように構成されている。タイヤの条件は、JATMA規格の正規内圧が充填され、正規リムに装着された状態である。この構成により、回転時の曲げエネルギーが低減される。上記トレッド面7の仮想変位とカーカス5の仮想変位とは、以下のように定量化される。すなわち、トレッド面7の仮想変位は、図5を参照しつつ後述するトレッドスライス部18の最大縦断面積(トレッド負荷面積ともいう)Atによって特定され、カーカス5の仮想変位は、後述するカーカススライス部19の最大縦断面積(ケース負荷面積ともいう)Acによって特定される。
図3では、XYZ各軸からなる三次元座標上に、タイヤ1のトレッド面7のほぼ上半分が示されている。Rはタイヤの赤道面内半径である。図3中、Y軸方向はタイヤ軸20と一致している。図4(a)には、上記トレッドスライス部18が示され、図4(b)には、後述する仮想接地形状22が示されている。図3及び図4に示されるように、タイヤ1のトレッド2に対し、荷重負荷による接地面が設定される。これを仮想接地面21と呼ぶ。仮想接地面21は平面である。図3に示されるように、JATMA規格の正規内圧が充填され、正規リムに装着された状態にあるタイヤ1のトレッド2から仮想接地面21によって切り取られた部分がトレッドスライス部18である。従って、このトレッドスライス部18は、トレッド2のうち、概ね、荷重負荷時にタイヤ1の中心方向に押し込まれるように変形する部分であると言える。
本実施形態に係るタイヤ1が装着された車輪には、1.5°のキャンバー角βが設定されている。従って、仮想接地面21は、タイヤ赤道面EQに垂直な位置から、タイヤ軸方向に対して1.5°傾斜している。キャンバー角βが設定されていないタイヤの場合は、その仮想接地面は、タイヤ赤道面EQに垂直な面となる。
仮想接地面21のタイヤ半径方向の位置は、以下のように設定される。図3に示されるように、タイヤ1のトレッド2を、タイヤ赤道面EQに垂直な位置からタイヤ軸方向に対して1.5°傾斜した平面(トレッドスライスカット面と呼ぶ)で切断したとき、トレッド2の切断面(図3、図4(b)、図5(b)参照)22の面積Asが、タイヤに負荷される荷重をタイヤに充填される内圧で除して得られる面積と一致する位置である。この位置は、図3に示されるように、タイヤ赤道面EQ内のタイヤ半径方向とトレッド面が交差する位置(クラウンセンター)23から、δだけタイヤ半径方向内側の位置である。この位置δにおけるトレッドスライスカット面が、仮想接地面21である。以上のごとく、仮想接地面21は容易に設定されうる。また、上記トレッド2の切断面(図3、図4(b)、図5(b)参照)22は、仮想接地形状22であると言える。
図3に示されるように、トレッドスライス部18を、仮想接地面21及びタイヤ赤道面EQのいずれにも垂直で且つタイヤ半径を含む切断平面(Z軸面)24によって切断したのが、トレッド負荷面25である。このトレッド負荷面25の面積が、前述したトレッド負荷面積Atであり、トレッド面7の仮想変位を特定する。上記仮想接地面21は容易に設定されるので、トレッド2のプロファイルが明確になっていれば、トレッド負荷面積Atも容易に算出されうる。また、トレッドスライス部18の形状及び体積も容易に算出されうる。
図5にもトレッド負荷面25が示されている。図5(a)は、図3におけるタイヤ1をZ軸面24で切断した断面図である。図5(a)中の上方にはトレッド面7の断面が示され、下方にはカーカス5の断面が示されている。図中には、赤道面EQに垂直な水平面27から、タイヤ軸方向に対してキャンバー角β(1.5°)だけ傾斜した仮想接地面21が示されている。仮想接地面21は、トレッド面7のクラウンセンター23から赤道面EQ上のδ下方に位置している。トレッド面7と仮想接地面21とに囲まれた範囲がトレッド負荷面25である。このトレッド負荷面25の面積はトレッド負荷面積Atであり、トレッド面7の仮想変位を特定する。
図5(a)にはカーカス負荷面26も示されている。カーカス負荷面26は、図5(a)において、トレッド負荷面25とタイヤ半径方向に対応している。トレッドスライス部18の幅の両端位置から、すなわち、仮想接地面21とトレッド面7の断面線との2箇所の交点から、タイヤ半径方向内方へ下ろした直線とカーカス5の断面線との交点H、Kが、カーカス負荷面26の幅方向両端位置である。この交点H、K同士を結んだ直線28と、カーカス5の断面線とに囲まれた範囲が、カーカス負荷面26である。このカーカス負荷面26の面積はカーカス負荷面積Acであり、カーカス5の仮想変位を特定する。トロイダル状に配設されたカーカス5を、Z軸面24に垂直で且つ上記直線28を含んだ平面であるカーカススライスカット面29で切断した上方部分は、カーカススライス部19である。
図5(b)には、仮想接地形状22が示されている。この仮想接地形状22は、トレッド2を、前述した位置δにおいてトレッドスライスカット面(仮想接地面)21によって切断したときの切断面の形状である。この仮想接地形状22は、前述したトレッドスライス部18の底面形状である。この仮想接地形状22は、タイヤ1が完全なトロイダル状である限り、平面視で、タイヤ軸20に関して対称形である。上記トレッドスライス部18を、上記対称形の中心線及びタイヤ軸20を通る平面で切断した断面が、トレッド負荷面25である。仮想接地形状22は、赤道面EQに関しては対称形ではない。仮想接地面21が、赤道面EQに垂直な位置から、キャンバー角βだけタイヤ軸方向に対して傾斜しているからである。キャンバー角βが設定されていなければ、仮想接地形状22は、赤道面EQに関しても概ね対称形となる。
この実施形態に係るタイヤ1では、上記カーカス負荷面積Acが、上記トレッド負荷面積Atと同一か又はより小さくされている。具体的には、このタイヤ1は、トレッド負荷面積Atに対するカーカス負荷面積Acの比Ac/Atが、
0.68 ≦ Ac/At ≦ 1.00
となるように構成されている。タイヤ1の回転に伴う曲げ変形のエネルギーを小さくすることができるからである。
図5(a)に示されるようなカーカス5の断面形状について、一般的な傾向として、無負荷時のカーカスの曲率が小さく、カーカスの配置形状がややフラットであるタイヤにおいては、荷重付加後にカーカスの中央が凹状に湾曲する。一方、無負荷時のカーカスの曲率が大きく中央が凸状に湾曲したタイヤにおいては、荷重付加後にカーカスがややフラットになる。いずれのタイヤも、上記比Ac/Atが比較的大きいタイヤであると言える。これらのタイヤは、荷重負荷時のカーカスの曲率変化が大きく、それに費やされるエネルギーは大きくなる。その結果、タイヤの転がり抵抗が増大する。しかしながら、上記比Ac/Atが小さすぎると、カーカスやベルトのタイヤ軸方向両側が跳ね上がるような変形が生じやすい。その結果、トレッドのショルダー部(図1における符号15)の接地性が悪化し、偏摩耗を発生するおそれがある。かかる観点からすれば、比Ac/Atは、
0.68 ≦ Ac/At ≦ 0.85
の範囲にあるのがさらに好ましい。
タイヤ1の製造工程において、上記比Ac/Atが上記好ましい範囲に収まるようにするために、例えば、トレッド2のプロファイルを定めておき、このトレッドの負荷面積Atに対して、その負荷面積Acが上記比Ac/Atの範囲となるようにカーカス5の配設形状を定めることができる。
前述したように、トレッドスライス部18(図3、図4(a))は、トレッド2のうち、概ね、荷重負荷時にタイヤ1の中心方向に押し込まれるように変形した部分を模擬している。このようなトレッドスライス部18の体積Vsが大きいほど、回転時のタイヤ1で消費されるエネルギーが大きくなる。この荷重負荷時のトレッド2の変位の指標として、上記トレッドスライス部18の体積Vsを、前述したトレッドスライスカット面積Asで除した値で表すことが可能である。この値は、荷重負荷時のトレッド面7の内方押し込み程度の指標と言える。
本実施形態に係るタイヤ1では、トレッドスライス部18の体積Vsを、前述したトレッドスライスカット面積Asで除した値Vs/Asが、
3.9 ≦ Vs/As ≦ 4.7
となるように構成されている。前述したごとく、トレッドスライス部18の体積Vs、及び、トレッドスライスカット面積Asともに、容易に算出することができる。
この値Vs/Asが4.7を超えるほど大きいと、回転時のタイヤが消費するエネルギーが大きくなり、転がり抵抗が増大するおそれがある。逆に、上記値Vs/Asが3.9を下回るほど小さいと、トレッドのプロファイルを、赤道面EQに関する左右対称形とすることが困難になるおそれがある。非対称プロファイルでは、車両への装着について、汎用性に欠けるおそれがある。かかる観点からすれば、上記値Vs/Asは、
4.1 ≦ Vs/As ≦ 4.5
の範囲にあるのがさらに好ましい。
本実施形態では、キャンバー角βが1.5°に設定されている。しかし、本発明ではかかる角度には限定されない。キャンバー角βが設定されていなくてもよい。すなわち、β=0°であってもよい。しかし、キャンバー角βが1.5°±0.5°の範囲で設定されたタイヤにとって、上記比Ac/At及び上記値Vs/Asを、それぞれ前述した範囲に制限する効果が特に大きい。この場合、上記トレッドスライスカット面(仮想接地面)21は、タイヤ赤道面に垂直な平面から、タイヤ軸方向に対して1.0°以上2.0°以下の範囲で傾斜させられる。
以下に、上記タイヤ1の構成の評価を行うための、タイヤの転がり抵抗の測定要領、ショルダー部15のエッジ摩耗の評価要領、及び、タイヤの対称設計の容易性の評価要領が説明される。
[転がり抵抗の測定]
タイヤの転がり抵抗の測定には、回転駆動ドラムを有する台上試験機が用いられる。供試タイヤのサイズは、195/65R15である。タイヤの正転時及び逆転時のそれぞれについて、転がり抵抗値が測定される。試験環境温度は25°にされる。試験用リムに組み込まれた供試タイヤのアライメントについて、トー角は0°に設定され、キャンバー角βは1.5°に設定される。タイヤ内圧は210kPa、タイヤ荷重は350kgfである。供試タイヤの走行速度は80km/hである。
[エッジ摩耗の評価]
ショルダー部のエッジ摩耗の評価は、上記転がり抵抗測定に供されるタイヤと同一仕様のタイヤに対し、摩耗エネルギー測定機を用いて行われる。評価の方法の概略は以下のとおりである。トレッドのクラウン部とミドル部(クラウン部とショルダー部との間)とショルダー部(エッジ部)とに対して摩耗エネルギーが測定される。ショルダー部(エッジ部)の摩耗エネルギーが、クラウン部及びミドル部の摩耗エネルギーより大きい場合を「劣」とする。
[対称設計容易性の評価]
タイヤを、その赤道面に関して対称形となるように設計することの容易性は、前述したAc/At、及び、Vs/Asの各値によって評価されうる。例えば、Ac/Atが小さく、Vs/Asが大きくなると、クラウン部とショルダー部とのトレッド厚さの差が大きくなる。このような知見に基づき、対称設計容易性は、Ac/At、及び、Vs/Asの各値の大小によって評価される。
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
[実施例1−5]
実施例1から5として、図1に示された空気入りタイヤが製作された。これらのタイヤのサイズは、195/65R15である。これらのタイヤのトレッド負荷面積At、カーカス負荷面積Ac、これらの比Ac/At、トレッドスライス部18の体積Vs、トレッドスライスカット面積As、及び、これらの比Vs/Asは、いずれも表1に記載されているとおりである。タイヤのその他の構成は、実施例1から5について同一である。実施例1から5の各タイヤに対して、転がり抵抗、ショルダー部15のエッジ摩耗、及び、タイヤの対称設計の容易性、の各評価が行われた。評価の方法、要領は前述したとおりである。評価結果は、指数によって表1に示されている。
[実施例6、7]
実施例6及び7として、図1に示された空気入りタイヤが製作された。これらのタイヤのトレッド負荷面積At、カーカス負荷面積Ac、これらの比Ac/At、トレッドスライス部18の体積Vs、トレッドスライスカット面積As、及び、これらの比Vs/Asは、いずれも表2に記載されているとおりである。タイヤのその他の構成は、実施例1の構成と同一である。実施例6及び7のタイヤに対して、転がり抵抗、ショルダー部15のエッジ摩耗、及び、タイヤの対称設計の容易性、の各評価が行われた。評価の方法、要領は前述したとおりである。評価結果は、指数によって表2に示されている。
[比較例1−3]
比較例1から3として、図1に示された空気入りタイヤが製作された。これらのタイヤのトレッド負荷面積At、カーカス負荷面積Ac、これらの比Ac/At、トレッドスライス部18の体積Vs、トレッドスライスカット面積As、及び、これらの比Vs/Asは、いずれも表2に記載されているとおりである。タイヤのその他の構成は、実施例1の構成と同一である。比較例1から3の各タイヤに対して、転がり抵抗、ショルダー部15のエッジ摩耗、及び、タイヤの対称設計の容易性、の各評価が行われた。評価の方法、要領は前述したとおりである。評価結果は、指数によって表2に示されている。
[比較例4、5]
比較例4及び5として、図1に示された空気入りタイヤが製作された。これらのタイヤのトレッド負荷面積At、カーカス負荷面積Ac、これらの比Ac/At、トレッドスライス部18の体積Vs、トレッドスライスカット面積As、及び、これらの比Vs/Asは、いずれも表3に記載されているとおりである。タイヤのその他の構成は、実施例1の構成と同一である。比較例4及び5のタイヤに対して、転がり抵抗、ショルダー部15のエッジ摩耗、及び、タイヤの対称設計の容易性、の各評価が行われた。評価の方法、要領は前述したとおりである。評価結果は、指数によって表3に示されている。
Figure 0005912794
Figure 0005912794
Figure 0005912794
[全体評価]
表1から3に、実施例1から7、及び、比較例1から5の各タイヤの各種性能評価の結果が示されている。転がり抵抗の評価は、比較例2の結果を100とした指数値によって示されている。この数値が小さいほど良好である。ショルダー部15のエッジ摩耗の評価も、比較例2の結果を100とした指数値によって示されている。この数値が大きいほど良好である。タイヤの対称設計の容易性の評価も、比較例2の結果を100とした指数値によって示されている。この数値が大きいほど良好である。この評価結果から、本発明の優位性は明らかである。
以上説明された空気入りタイヤは、乗用車等の車両に適用されうる。
1・・・タイヤ
2・・・トレッド
3・・・サイドウォール
4・・・ビード
5・・・カーカス
6・・・ベルト
7・・・トレッド面
8・・・溝
10・・・コア
11・・・エイペックス
12・・・カーカスプライ
13・・・内層ベルト
14・・・外層ベルト
15・・・ショルダー部
16・・・幅広ベルトの端部位置
17・・・ステップ
18・・・トレッドスライス部
19・・・カーカススライス部
20・・・タイヤ軸
21・・・仮想接地面
22・・・仮想接地形状
23・・・クラウンセンター
24・・・Z軸面
25・・・トレッド負荷面
26・・・カーカス負荷面
27・・・水平面
28・・・(HとKとを結ぶ)直線
29・・・カーカススライスカット面
Ac・・・カーカス負荷面積
As・・・トレッドスライスカット面積
At・・・トレッド負荷面積
M・・・曲げモーメント
R・・・タイヤの半径
Vs・・・トレッドスライス部の体積
β・・・キャンバー角

Claims (4)

  1. 空気入りタイヤの設計方法であって、
    この空気入りタイヤが、その外面がトレッド面をなすトレッドと、上記トレッドのタイヤ軸方向の両端からタイヤ半径方向内向きに延びるサイドウォールと、トレッド及びサイドウォールの内側に沿って配設されたカーカスとを有しており、
    トレッドから、仮想接地平面であるトレッドスライスカット面によって切り取られたトレッドスライス部の縦断面の面積Atに対する、カーカスからカーカススライスカット面によって切り取られたカーカススライス部の縦断面の面積Acの比Ac/At、0.68以上1.0以下とし
    上記仮想接地平面は、上記トレッドスライス部の仮想接地平面による切断面の面積Asがタイヤに負荷される荷重をタイヤに充填される内圧で除して得られる面積と等しくなる平面であり、
    上記カーカススライスカット面、タイヤの軸を含む平面で切った断面において、上記トレッドスライスカット面のタイヤ半径方向内方に対応する面であり、
    上記トレッドスライス部の縦断面の面積Atは、トレッドスライス部を、トレッドスライスカット面及びタイヤ赤道面のいずれにも垂直で且つタイヤ半径を含む切断平面によって切った断面の面積であり、
    上記カーカススライス部の縦断面の面積Acは、トレッドスライス部の縦断面のタイヤ軸方向両端それぞれからタイヤ半径方向に延びる直線とカーカスとの交点同士を結ぶ仮想直線と、上記切断平面上のカーカス断面線とで囲まれた面積であり、
    上記トレッドスライス部の体積Vsを、トレッドスライス部のトレッドスライスカット面による切断面の面積Asで除した値Vs/Asを、3.9以上4.7以下とし、
    上記切断面の面積Asが、タイヤに負荷される荷重をタイヤに充填される内圧で除して得られる面積である空気入りタイヤの設計方法
  2. 上記比Ac/At、0.68以上0.85以下とする請求項1に記載の空気入りタイヤの設計方法
  3. 上記値Vs/As、4.1以上4.5以下とする請求項1又は2に記載の空気入りタイヤの設計方法
  4. 上記トレッドスライスカット面、タイヤ赤道面に垂直な平面から、タイヤ軸方向に対して1.0°以上2.0°以下の範囲で傾斜させる請求項1から3のいずれかに記載の空気入りタイヤの設計方法
JP2012090635A 2012-04-12 2012-04-12 空気入りタイヤ Expired - Fee Related JP5912794B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090635A JP5912794B2 (ja) 2012-04-12 2012-04-12 空気入りタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012090635A JP5912794B2 (ja) 2012-04-12 2012-04-12 空気入りタイヤ

Publications (2)

Publication Number Publication Date
JP2013216279A JP2013216279A (ja) 2013-10-24
JP5912794B2 true JP5912794B2 (ja) 2016-04-27

Family

ID=49588934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090635A Expired - Fee Related JP5912794B2 (ja) 2012-04-12 2012-04-12 空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP5912794B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140772A1 (en) * 2021-08-24 2023-03-01 Sumitomo Rubber Industries, Ltd. Tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6604163B2 (ja) * 2015-11-26 2019-11-13 住友ゴム工業株式会社 空気入りタイヤの評価方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787704A (en) * 1980-11-20 1982-06-01 Bridgestone Corp Pneumatic tire with reduced rolling resistance
US9132700B2 (en) * 2010-04-07 2015-09-15 Bridgestone Corporation Pneumatic tire
JP2013079018A (ja) * 2011-10-04 2013-05-02 Bridgestone Corp 空気入りタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140772A1 (en) * 2021-08-24 2023-03-01 Sumitomo Rubber Industries, Ltd. Tire

Also Published As

Publication number Publication date
JP2013216279A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5576908B2 (ja) ランフラットタイヤ
US20150165822A1 (en) Pneumatic Tire
JP5858181B1 (ja) 空気入りタイヤ
WO2017110643A1 (ja) 空気入りタイヤ
WO2015182449A1 (ja) 空気入りタイヤ
WO2017043205A1 (ja) 空気入りタイヤ
JP6623751B2 (ja) 空気入りタイヤ
JP2016107725A (ja) 空気入りタイヤ
JP2012131459A (ja) 空気入りタイヤ
JP5559235B2 (ja) 空気入りタイヤ
JP5912794B2 (ja) 空気入りタイヤ
JP5878384B2 (ja) 空気入りタイヤ
JP2016132342A (ja) 空気入りタイヤ
JP5497509B2 (ja) 空気入りタイヤ
WO2020008709A1 (ja) 空気入りタイヤおよび空気入りタイヤの製造方法
JP5760704B2 (ja) 空気入りタイヤ
JP6620552B2 (ja) 空気入りタイヤ
JP6450111B2 (ja) 空気入りタイヤ
JP5680881B2 (ja) 空気入りタイヤ
JP6455095B2 (ja) 空気入りタイヤ
JP2013079018A (ja) 空気入りタイヤ
JP2019059264A (ja) 乗用車用空気入りタイヤ
JP7363152B2 (ja) 重荷重用空気入りタイヤ
US11097575B2 (en) Pneumatic tire
JP6501600B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees