JP5904639B2 - 3ポートバルブ - Google Patents

3ポートバルブ Download PDF

Info

Publication number
JP5904639B2
JP5904639B2 JP2012104142A JP2012104142A JP5904639B2 JP 5904639 B2 JP5904639 B2 JP 5904639B2 JP 2012104142 A JP2012104142 A JP 2012104142A JP 2012104142 A JP2012104142 A JP 2012104142A JP 5904639 B2 JP5904639 B2 JP 5904639B2
Authority
JP
Japan
Prior art keywords
port
elastic
tube
pressure
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012104142A
Other languages
English (en)
Other versions
JP2013231482A (ja
Inventor
耕太郎 只野
耕太郎 只野
健嗣 川嶋
健嗣 川嶋
みずき 小宮
みずき 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2012104142A priority Critical patent/JP5904639B2/ja
Priority to US14/397,247 priority patent/US9279507B2/en
Priority to PCT/JP2013/053929 priority patent/WO2013161357A1/ja
Priority to EP13780674.1A priority patent/EP2843275B1/en
Publication of JP2013231482A publication Critical patent/JP2013231482A/ja
Application granted granted Critical
Publication of JP5904639B2 publication Critical patent/JP5904639B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/02Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
    • F16K7/04Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
    • F16K7/06Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force by means of a screw-spindle, cam, or other mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/14Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle
    • F16K11/16Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle which only slides, or only turns, or only swings in one plane
    • F16K11/168Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle which only slides, or only turns, or only swings in one plane only swings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/022Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising a deformable member
    • F16K11/027Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising a deformable member the fluid flowing through a constrictable tubular diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/02Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
    • F16K7/04Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3057Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having two valves, one for each port of a double-acting output member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87169Supply and exhaust
    • Y10T137/87217Motor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Multiple-Way Valves (AREA)
  • Servomotors (AREA)

Description

本発明は3ポートバルブに関し、特に流量制御や圧力制御に好適な3ポートバルブに関する。
通流する流体(空気等の気体、液体等)の供給方向や流量、圧力を制御するサーボバルブが用いられている。このようなサーボバルブには、供給口及び排出口等の複数のポートが備えられている。サーボバルブを用い、例えば圧力制御を行う場合、前記の供給口及び排出口に加えて、圧力が制御される制御対象物に接続される接続口が備えられる。このようなサーボバルブは、所謂3ポートバルブと呼称される。なお、通流する流体が気体である場合、前記の供給口は給気口になり、前記の排出口は排気口になる。
3ポートバルブとしては、例えば特許文献1に記載のサーボバルブが知られている。このサーボバルブは、3つのポート(供給ポート、負荷ポート及び排気ポート)を備えている。そして、このサーボバルブは、第1の弁体と第2の弁体を有するスプールと、該スプールを軸方向に移動可能に収容し、前記第1の弁体と前記第2の弁体との間にエアを供給する供給ポートを有するスリーブとを備えている。また、スプールは、前記弁体とは異なる第3の弁体も有している。
特開2009−019684号公報
特許文献1に記載のサーボバルブにおいては、サーボバルブ内でのラップ領域(内蔵される弁体とスリーブとが対向する領域)での流量特性が非線形となる。そのため、通流する流体の流量を制御しにくいことがある。さらには、通流する流体の流量と圧力との関係を把握しにくいため、圧力を制御しにくいことがある。
さらに、特許文献1に記載のサーボバルブは、構造上、通流する流体が漏出することがある。具体的には、サーボバルブの内壁と弁体との間に形成される隙間から、流体が漏出することがある。特に、流体として液体を用いる場合、サーボバルブには、密閉性が特に要求される。しかしながら、特許文献1に記載のサーボバルブにおいては、流体が漏出し易い隙間が存在しているため、液体の通流制御用バルブとして用いることが困難である。
このように、特許文献1に記載のサーボバルブにおいては、様々な流体を用いて正確な制御を行うことができないことがある。即ち、制御可能な流体の種類に制限があることがある。
さらには、特許文献1に記載のサーボバルブにおいては、サーボバルブを構成するための部品点数が多数必要になる。具体的には、特許文献1に記載のサーボバルブは、大きさの異なる3つの弁体(第1の弁体、第2の弁体及び第3の弁体)、スプール、スリーブ等を備えている。そのため、装置の構造が複雑になり、メンテナンス等が煩雑になることがある。また、様々な種類の部品によって構成されているため、装置の小型化が困難であるという課題もある。
本発明は前記課題に鑑みて為されたものであり、その目的は、スプール及び3つの弁体等を省略して1本の流路(管)に1つの流路制御手段(前記の弁体に相当)を設け、さらには、弾性材料の有する弾性力を利用して流路の開閉を制御することによって、3ポートバルブを構成する部品を少なくするとともに、簡便な構造で、種々の流体を用いてより正確に制御可能な3ポートバルブを提供することにある。
本発明者らは前記課題を解決するために鋭意検討した結果、以下の手段によって前記課題を解決できることを見出した。即ち、本発明の要旨は、以下の3ポートバルブである。
(1)
流体が通流する第1弾性管と、前記第1弾性管における供給排出口である第1ポートと、流体が通流する第2弾性管と、前記第2弾性管における供給排出口である第2ポートと、前記第1ポート及び前記第2ポートと連通する第3ポートと、第1弾性部材と、前記第1弾性管が貫通する第1可動子とを備え、前記第1弾性部材の弾性方向において外側方向に前記第1弾性部材の弾性力に抗して前記第1可動子を移動させることにより前記第1弾性管を変形させて、前記第1弾性管内を通流する流体の通流を制御する第1通流制御手段と、第2弾性部材と、前記第2弾性管が貫通する第2可動子とを備え、前記第2弾性部材の弾性方向において外側方向に前記第2弾性部材の弾性力に抗して前記第2可動子を移動させることにより前記第2弾性管を変形させて、前記第2弾性管内を通流する流体の通流を制御する第2通流制御手段と、前記第1通流制御手段及び前記第2通流制御手段を駆動させる揺動子と、前記第1弾性部材の弾性方向において前記揺動子の方向に前記第1弾性部材の弾性力に抗して移動されることにより、前記揺動子の駆動から独立して、前記第1可動子を貫通する前記第1弾性管を変形させて流量を調節する第1調節部材と、前記第2弾性部材の弾性方向において前記揺動子の方向に前記第2弾性部材の弾性力に抗して移動されることにより、前記揺動子の駆動から独立して、前記第2可動子を貫通する前記第2弾性管を変形させて流量を調節する第2調節部材と、を備え、前記第1通流制御手段及び前記第2通流制御手段は前記揺動子の両側にそれぞれ設けられ、前記第1弾性管及び前記第1通流制御手段と、前記第2弾性管及び前記第2通流制御手段とは、前記揺動子を中心として対称に設けられている。

前記揺動子は回転可能に設けられ、前記揺動子が回転して前記第1通流制御手段及び前記第2通流制御手段を駆動させる

前記第1弾性管及び前記第2弾性管は常閉である。

前記第1ポートは給気口であり、前記第2ポートは排気口であり、前記第3ポートは制御対象物が接続される供給排出口である。
本発明によれば、3ポートバルブを構成する部品を少なくするとともに、簡便な構造で、種々の流体を用いてより正確に制御可能な3ポートバルブを提供することができる。即ち、本発明の3ポートバルブは、特許文献1に記載の3ポートバルブとは異なり、簡便な構造になっている。また、揺動子に対して、各手段が対称に設けられている。そのため、部品点数や種類を削減することができる。さらに、簡便な構造になっているため、メンテナンスが容易になる。
さらに、弾性管を変形させることにより、当該弾性管を通流する流体の通流が制御されている。これにより、弾性管内の流路を完全に閉じることができる。そのため、弾性管を通流する流体の漏出を確実に防止することができる。しかも、本発明の3ポートバルブは密閉性に優れているため、密閉性が特に要求される流体(液体等)の通流制御にも用いることができる。従って、種々の流体を用いてより正確に、流量や圧力等を制御することができる。即ち、使用可能な流体が過度に制限されることなく、流量や圧力等の制御が可能になる。
本実施形態の3ポートバルブの上部斜視図である。 本実施形態の3ポートバルブの下部斜視図である。 本実施形態の3ポートバルブの(a)分解上面図及び(b)断面図である。 本実施形態の3ポートバルブにおける、空気の通流方向を示す図である。 本実施形態の3ポートバルブにおける、空気の通流制御時のフローである。 本実施形態の3ポートバルブが適用された例のブロック図である。 本実施形態の3ポートバルブが適用された別の例のブロック図である。 本実施形態の3ポートバルブにおいて、イモネジを突出させたときの分解上面図である。 本実施形態の3ポートバルブが適用された別の例のブロック図である。
以下、図面を参照しながら、本発明を実施するための形態(本実施形態)を説明する。ただし、本発明は以下の内容に何ら制限されず、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施可能である。
また、以下の説明においては、通流する流体の一例として気体(空気)を用いている。しかしながら、前記のように、本実施形態の3ポートバルブは液体の通流制御においても好適であり、通流する流体は気体に何ら限定されるものではない。
<構成>
図1は、本実施形態の3ポートバルブ100の上部斜視図である。図1に示すように、3ポートバルブ100は、サーボモータ1と、チューブ2a,2bと、マニホールド3と、カバー部材4と、ケース5と、を備えている。ケース5は中空部が形成され、後記する制御手段が収容されている。
ケース5の上面はカバー部材4によって封止されている。カバー部材4は、4つのねじ4aによってケース5に固定されている。ケース5の両側面には、固定子調節穴5a,5b(固定子調節穴5bは図1では図示しない)が形成されている。固定子調節穴5a,5b内には、後記するイモネジ10a,10b(図8を参照して後記する。図1では図示しない)が外部に臨んで設けられている。
ケース5の下面には、マニホールド3が固定されている。マニホールド3は、ねじ3dによってケース5に固定されている。
チューブ2a(第1弾性管)及びチューブ2b(第2弾性管)は、空気等の気体が通流するものである。チューブ2aにおいては、給気口2a1(第1ポート、供給排出口、供給口)から空気等が給気されるようになっている。また、チューブ2bにおいては、排気口2b1(第2ポート、供給排出口、排出口)から空気等が排気されるようになっている。チューブ2a,2bは、サーボモータ1の軸に並行な方向に延在して設けられている。そして、チューブ2a,2bは、カバー部材4及びケース5を貫通して、マニホールド3に接続されている。この接続については、図2を参照しながら後記する。
サーボモータ1は、図1では図示しない揺動子9a(図3参照)を駆動(回転)させるものである。サーボモータ1は、その側部及び上部がケースによって覆われて構成されている。サーボモータ1の揺動子9aに接続される軸(図示しない)は、カバー部材4を貫通して設けられている。これにより、サーボモータ1の駆動力が揺動子9aに伝達して、揺動子9aが駆動されるようになっている。
チューブ2a,2bは、弾性材料により構成される。このような弾性材料は、例えば樹脂、ゴム等である。
図2は、3ポートバルブ100の下部斜視図である。マニホールド3は、チューブ接続口3a,3b(供給排出口)と、密閉容器接続口3c(第3ポート、供給排出口)と、を備えている。チューブ接続口3aとチューブ接続口3bとは、同方向を向いて設けられている。一方で、チューブ接続口3a,3bと密閉容器接続口3cとは、逆方向を向いて設けられている。
前記のように、チューブ2a,2bは、カバー部材4及びケース5を貫通して、マニホールド3に接続されている。具体的には、チューブ2aはチューブ接続口3aに接続されている。また、チューブ2bはチューブ接続口3bに接続されている。なお、図2においては図示していないが、密閉容器接続口3cは、別のチューブによって、密閉容器(制御対象物)に接続されるようになっている。
チューブ接続口3a,3bと密閉容器接続口3cとは、相互に連通している。従って、例えばチューブ接続口3aから供給された空気は、チューブ接続口3bからも排出されるし、密閉容器接続口3cからも排出されるようになっている。外部から供給された空気の通流に関しては、図4を参照しながら後記する。
図3は、3ポートバルブ100の分解上面図である。即ち、図3は、図1に示す状態から、サーボモータ1及びカバー部材4を取り外したときの、ケース5内の制御手段を示す図である。なお、図3においては、図示の簡略化のために、固定子調節穴5a,5b及びイモネジ10a,10bを示していない。
ケース5内には、サーボモータ1(図3では図示しない)に接続された揺動子9aが設けられている。揺動子9aは、可動子7a及び可動子7bを駆動させるものである。揺動子9aは、ケース5内の底面で回転可能に設けられた回転部材9eに固定されている。また、サーボモータ1に接続されている軸(図示しない)が、孔9bに挿入固定されている。これにより、サーボモータ1の駆動力が揺動子9aに伝達されるようになっている。
なお、図示の例においては、マイナスの方向に揺動子9aが回転されているが、サーボモータ1の電源が断たれる等すると、後記する押しばね8a,8bにより、揺動子9aの位置はゼロの位置(プラスとマイナスとの中間)に戻るようになっている。
揺動子9aの両側(左右)には、揺動子9aを中心として対称になるように、固定子6a,6bと、可動子7a,7bと、押しばね8a,8bと、が、設けられている。即ち、固定子6a、可動子7a及び押しばね8a(第1通流制御手段)と、固定子6b、可動子7b及び押しばね8b(第2通流制御手段)とは、揺動子9aの両側にそれぞれ設けられている。
揺動子9aがプラスの方向に駆動したときに、固定子6a、可動子7a及び押しばね8a(これらが第1通流制御手段)が制御に関与するようになっている。また、揺動子9aがマイナスの方向に駆動したときに、固定子6b、可動子7b及び押しばね8b(これらが第2通流制御手段)が制御に関与するようになっている。このように、固定子6a、可動子7a及び押しばね8aと、固定子6b、可動子7b及び押しばね8bとは、独立して制御されるようになっている。
固定子6a、6bは、一端がケース5の内壁に固定され、他端が押しばね8aに接触している。固定子6a,6bには、チューブ2a,2bの太さ(外径)に対応する孔6a1,6b1が形成されている。そして、孔6a1,6b1には、それぞれチューブ2a,2bが挿入されている。
また、固定子6a,6bは、イモネジ10a,10bによって、揺動子9aの方向に進退可能になっている。即ち、前記の第1通流制御手段及び前記第2通流制御手段は、揺動子9aの方向に進退可能に設けられている。この点の詳細については、図8を参照しながら後記する。
可動子7a,7bは、揺動子9aの駆動によってローラ9cが接触した時に、ケース5の内壁面に沿って摺動するようになっている。ここで、前記固定子6a,6bの外端面と可動子7a,7bの内端面との間には、押しばね8a,8bが設けられている。そのため、可動子7a,7bは、押しばね8a,8bの弾性方向に、当該弾性力に抗して摺動するようになっている。
ここで、可動子7bが移動した際の、チューブ2bの形状変化を説明する。図3(b)は、図3(a)のA−A線断面図である。
図3(b)に示すように、固定子6bと可動子7bとは、交差状態の下に嵌合して設けられている。この時、孔6b1に挿入されたチューブ2bは、固定子6bと可動子7bとの両方に挟まれた状態になっており、流路が完全に閉じられている。従って、チューブ2bは常閉である。そして、揺動子9aがマイナス方向に駆動されると、可動子7bに接触する。揺動子9bの同方向への駆動量がさらに増加すると、揺動子9bは、押しばね8bの力に抗して、可動子7bをケース5の外側方向に摺動させる。これにより、チューブ2bの変形が自ずと戻り、チューブ2の流路が開くようになっている。即ち、固定子6b及び可動子7b(第2通流制御手段)がチューブ2b(第2弾性管)を変形させて、チューブ2b(第2弾性管)内を通流する気体の通流を制御するようになっている。このように、3ポートバルブ100においては、チューブ2a,2bの有する復元力を利用して、チューブ2a,2bの開閉制御が行われている。
なお、この動作は、揺動子9aがプラス方向に駆動した時に、可動子7aが摺動する際も同様の作用を行うものである。従って、ここでは説明を省略する。
チューブの変形による通流制御は、簡便な構成で実施可能あり、しかも、漏出がなく通流する気体をより確実に制御可能である。しかしながら、このような制御が可能な装置においては、従来、給気口(ポート)と排気口(ポート)との2つのポートしか設けることができなかった。しかしながら、3ポートバルブ100においては、固定子6a,6bと、可動子7a,7bと、押しばね8a,8bとは、揺動子9aを中心として、対称に設けられている。そして、これらによって制御されるチューブ2a,2bが、揺動子9aを中心として対称に設けられている。
即ち、3ポートバルブ100においては、チューブ2a(第1弾性管)及び固定子6aと可動子7aと押しばね8a(第1通流制御手段)と、チューブ2b(第2弾性管)及び固定子6bと可動子7bと押しばね8b(第2通流制御手段)とは、揺動子9aを中心として対称に設けられている。このように構成することにより、チューブの変形を利用した、3ポートバルブが得られる。これにより、簡便な構成で実施可能あり、しかも、漏出がなく、通流する気体をより確実に制御可能な3ポートバルブが得られる。
<作用>
図4は、3ポートバルブ100における空気の通流方向を示す図である。前記のように、チューブ2a,2bは常閉である。従って、チューブ2a,2bの開閉の状態に応じて、給気口2a1から取り込まれた空気は、密閉容器接続口3cに接続された密閉容器(図示しない)に供給されるようになっている。具体的には、チューブ2aが開状態であり、チューブ2bが閉状態である場合には、空気が密閉容器に供給されるようになっている。
また、チューブ2a,2bの開閉の状態に応じて、密閉容器接続口3cに接続された密閉容器内の空気が、排気口2b1から排気されるようになっている。具体的には、チューブ2bが開状態であり、チューブ2aが閉状態である場合には、密閉容器から空気が排気されるようになっている。
密閉容器の圧力を制御する際のフローを、図5及び図6を参照しながら説明する。図5に示すフローは、図6に示すように、密閉容器200に接続されている3ポートバルブ100に対して行われる。なお、揺動子9aの制御は前記のようにサーボモータ1が行うが、サーボモータ1の駆動制御は、図示のように制御部300が行うようになっている。また、チューブ2a,2b内の通流量とサーボモータ1の駆動量との対応関係(グラフ、関係式等)は、予め実験等によって決定される。
なお、制御部300は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等を備え、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。
給気口2a1に空気供給源(レギュレータ、コンプレッサ等;図示しない)が接続され、密閉容器接続口3cに密閉容器200が接続された後、図5に示すフローが行われる。このとき、チューブ2a(給気側)は閉じられている。また、チューブ2b(排気側)も閉じられている。はじめに、サーボモータ1は、揺動子9aをプラス方向に駆動する(ステップS10)。これにより、チューブ2aの流路が開く(ステップS11)。そして、密閉容器200に給気が開始される(ステップS12)。その後、制御部300は、圧力センサ201によって密閉容器200内の圧力を監視し、密閉容器200内の圧力が所定圧力(ユーザが設定した圧力等)になるまで給気を行う(ステップS13)。即ち、給気時においては、フィードバック制御が行われている。
密閉容器200内の圧力が所定圧力になったことを制御部300が検知すると、制御部300は、揺動子9aの駆動量をゼロに戻す(ステップS14)。これにより、チューブ2aの流路が閉じる(ステップS15)。そして、密閉容器200は密閉状態になって圧力が維持される(ステップS16、定常状態)。
定常状態において、ユーザから圧力変更の指示があると(ステップS20のYes方向)、制御部300は、指示された圧力が現在の密閉容器200内の圧力よりも高いか低いかを判断する。その結果、現在の圧力よりも昇圧する必要がある場合(ステップS21のYes方向)、制御部300は、揺動子9aをプラス方向に駆動する(ステップS22)。その後は、前記したステップS11〜S27と同様にして、密閉容器200内の圧力が所定の圧力まで昇圧される(ステップS23〜ステップS27)。このようにして、密閉容器200内の圧力の変更が行われる。
一方、ステップS21において、現在の圧力よりも降圧させる必要がある場合(ステップS21のNo方向)、制御部300は、揺動子9aをマイナス方向に駆動する(ステップS28)。これにより、チューブ2bの流路が開く(ステップS29)。チューブ2bは外部に開放されているため、チューブ2bの流路が開くことにより、密閉容器200から排気が開始される(ステップS30)。その後、制御部300は、圧力センサ201によって密閉容器200内の圧力を監視し、密閉容器200内の圧力が所定圧力になるまで排気を行う(ステップS31)。即ち、排気時においても、給気時同様、フィードバック制御が行われている。
密閉容器200内の圧力が所定圧力になることを制御部300が検知すると、制御部300は、揺動子9aの駆動量をゼロに戻す(ステップS32)。これにより、チューブ2bの流路が閉じる(ステップS33)。このようにして、密閉容器200内の圧力の変更が行われる。
図6に示す密閉容器としては、例えば図7に示すような空気圧シリンダ200が好適である。空気圧シリンダ200は、ピストン200cによって区切られた2つの空間200a,200bを備えている。ピストン200cは、ロッド200dによって、図示しないマニピュレータ(鉗子等)に接続されている。
空気圧シリンダ200の空間200a及び空間200bには、それぞれ3ポートバルブ100a,100bが設けられている。具体的には、空間200aには、サーボモータ1aを備える3ポートバルブ100aが接続されている。従って、空間200aの圧力は、3ポートバルブ100aによって制御されるようになっている。また、空間200bには、サーボモータ1bを備える3ポートバルブ100bが接続されている。従って、空間200bの圧力は、3ポートバルブ100bによって制御されるようになっている。
3ポートバルブ100a,100bは、同一の空気供給源(図示しない)から給気されるようになっている。ただし、排気は、独立して行われるようになっている。空気圧シリンダを密閉容器200として用いることにより、ピストン200cの位置を精度よく制御することができる。
ピストン200cに接続されたマニピュレータに外力が負荷されない場合、ピストン200cの移動量は、空間200aの圧力と空間200bの圧力との差圧によって決定される。即ち、空間200aの圧力が、空間200bの圧力よりも大きい場合、空間200bの体積が小さくなるようにピストン200cが移動する。この場合においては、ピストン200cは、紙面左方向に移動する。一方で、空間200aの圧力が、空間200bの圧力よりも小さい場合、空間200aの体積が小さくなるようにピストン200cが移動する。この場合においては、ピストン200cは、紙面右方向に移動する。
なお、ロッド200dは、ピストン200cの空間200b側に接続されている。そのため、ピストン200cにおいて、空間200a側の受圧面積と空間200b側の受圧面積とは厳密には異なっている。従って、空間200a内の圧力と空間200b内の圧力とが等しくなった場合でも、ピストン200cの移動は停止しない。そのため、マニピュレータの駆動を制御する場合には、この受圧面積を考慮して制御することが好ましい。ただし、ピストン200cにおける受圧面積の差は微小であるため、制御の簡便さの観点から、受圧面積の差を無視してマニピュレータを駆動制御することもできる。
このように、空間200a,200bの圧力を制御することにより、ピストン200cを移動させることができる。そして、これにより、ピストン200cに接続されたマニピュレータ等の駆動(ピストン200cが移動する方向への駆動)を制御することができる。
<効果>
3ポートバルブ100がこのような構成を有することにより、従来よりも精度よく制御可能な3ポートバルブとすることができる。特に、3ポートバルブ100は通流する空気の漏出がないため、特に良好な制御を行うことができる。
また、3ポートバルブ100においては、チューブ2a,2bの2系統を利用し、3つのポートが設けられている。そのため、2ポートのみの従来とは異なり、給気及び排気を独立して行うことができる。そのため、例えば、密閉容器に供給される空気の流量を精度よく制御できるようになる。また、例えば、密閉容器内の圧力を制御する場合等において、密閉容器内の圧力を上昇させたり、低下させたりすることが精度よくできるようになる。
3ポートバルブ100においては、設けられる揺動子9aの数は1つである。そのため、装置を小型化し、簡便な構造にすることができる。従って、3ポートバルブ100によれば、従来よりも簡便、小型化しつつも、精度よく制御を行うことができる。
また、3ポートバルブ100においては、サーボモータ1の電力が遮断された場合には、チューブ2a,2bが閉じられるようになっている(即ち常閉)。そのため、例えば予期せぬ停電等に十分に対応することができる。
<別の実施形態>
前記の3ポートバルブ100においては、圧力が実測されて、フィードバック制御が行われている(前記のステップS13、ステップS25及びステップS31参照)。しかしながら、例えば、図1において説明したイモネジ10a,10bを調整することにより、このようなフィードバック制御を行わなくても圧力制御が可能になる。
図8に、イモネジ10a(固定子6aに接触するねじ)をケース5内に突出させたときの分解上面図である。図8に示すように、イモネジ10aが突出することにより、固定子6aの位置が、突出していないときと比べて、揺動子9a側にやや進む。その結果、イモネジ10aが突出していないときには常閉だったチューブ2aの変形が回復する。これにより、図8に示すように、チューブ2aは常開になる。
このような3ポートバルブ100を図9に示すように密閉容器200に対して接続すると、フィードバック制御を行うことなく、密閉容器200内の圧力制御が可能にある。即ち、図9に示す密閉容器200においては、図示しない空気供給源からの空気が、常開のチューブ2aによって、密閉容器200に常時供給されている。ただし、この場合でも、チューブ2bは常閉である。
この状態においては、密閉容器200内の圧力は、以下のようにして、制御部300によって算出可能である。なお、体積Vは、厳密には密閉容器200内の体積、及び密閉容器200とチューブ2a,2bの流路が閉じられる部位との間の体積の和になるが、後者の体積は通常密閉容器200内の体積よりも通常は十分に小さい。そのため、体積Vを考慮するにあたって、後者の体積を考慮しなくても通常は十分な精度が得られる。
チューブ2aを通じて3ポートバルブ100内部に供給される空気の流量をGin、チューブ2bを通じて3ポートバルブ100外部に排出される空気の流量をGout、密閉容器200に供給される空気の流量をGとすると、以下の式(1)が満たされる。
Figure 0005904639
さらに、密閉容器200内の圧力をP、密閉容器200内の体積(内容積)をV、密閉容器200内の空気の物質量をn、気体定数をR、温度をTとすると、以下の式(2)が満たされる。なお、定常状態において、給気側のチューブ2aは開状態、排気側のチューブ2bは閉状態であるため、密閉容器200内の圧力Pは、給気される空気の圧力Pと等しくなる。即ち、密閉容器200内の定常状態における圧力PはPになる。
Figure 0005904639
密閉容器200に供給される空気の温度T、及び、密閉容器200の内容積Vは変化しないと考えると、式(2)における圧力Pを時間tで微分することにより、以下の式(3)が得られる。
Figure 0005904639
イモネジ10aをケース5内に突出させた場合、前記のように、給気側のチューブ2aは常開となっている。一方で、排気側のチューブ2bは常閉である。即ち、Gout=0になっている。そして、揺動子9aが駆動してチューブ2bの閉状態が解かれると、チューブ2bを通じて外部へ空気が排気され始める。即ち、Goutが増加し始める。このとき、式(1)に基づいて、G<0となる。
G<0になると、(3)に基づいて、P’<0になる。その結果、密閉容器200内の圧力が、定常状態の圧力Pから低下することになる。すると、供給される空気の圧力Pと密閉容器200内の圧力とに差圧が生じ、Ginが増加する。Ginの増加量は、チューブ2bの開度と圧力との関係(ISO 6358、JIS B 8390等)に基づいて決定される。そして、決定された増加量分でGinが増加するとともに、Goutも、Ginと等しくなるように変化する。
inとGoutとが等しくなると、G=0、P’=0となり、密閉容器200内の圧力がある値でバランスする。この値は、Gin及びGoutを与えるときのチューブ2bの開度、即ち、揺動子9aの変位によって一意に決定される。これは、本発明者らの検討によれば、一次遅れ系であると考えられる。そして、このような揺動子9aの位置制御によって、密閉容器200内の圧力を制御することができる。
そして、このように制御することにより、圧力制御を行うにあたってフィードバック制御を行う必要がない。そのため、制御部における演算負荷を低減することができる。また、制御部による演算が容易になる。
なお、前記の例ではチューブ2aを常開として説明したが、イモネジ10bを用いてチューブ2bを常開とする場合でも同様に制御可能である。
具体的には、イモネジ10bをケース5内に突出させた場合、排気側のチューブ2bは常開になる。一方で、給気側のチューブ2aは常閉である(Gin=0)。そして、揺動子9aが駆動してチューブ2aの閉状態が解かれると、チューブ2aを通じて外部から空気が給気され始める。即ち、Ginが増加し始める。このとき、式(1)に基づいて、G>0となる。
G>0になると、(3)に基づいて、P’>0になる。その結果、密閉容器200内の圧力が、定常状態の圧力Pから上昇することになる。すると、排気側の大気圧と密閉容器200内の圧力とに生じている差圧が大きくなり、Goutが増加する。Goutの増加量は、チューブ2aの開度と圧力との関係(ISO 6358、JIS B 8390等)に基づいて決定される。そして、決定された増加量分でGoutが増加するとともに、Ginも、Goutと等しくなるように変化する。そして、その後は、前記の場合と同様にして、密閉容器200内の圧力が制御可能である。
なお、給気側のチューブ2a及び排気側のチューブ2bのどちらを常開にするかは、圧力制御の条件に基づいて適宜決定すればよい。
<変更例>
以上、本実施形態を説明したが、本発明は前記の実施形態に何ら限定されるものではない。即ち、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施可能である。
例えば、3ポートバルブ100に適用可能な気体は空気に限定されず、任意の気体を適宜使用することができる。また、3ポートバルブ100に適用可能な流体は気体に限定されず、液体等の任意の流体が適用可能である。特に、液体の通流を制御するバルブは、気体の通流を制御するバルブよりも密閉性がとりわけ要求される。そのため、漏出が発生しない本実施形態の3ポートバルブは、液体の通流を制御するバルブとしても好適である。
また、例えば、3ポートバルブ100においては、チューブ2aの端部を給気口とし、チューブ2bの端部を排気口としているが、逆であってもよい。即ち、チューブ2aの端部を排気口とし、チューブ2bの端部を給気口としてもよい。
チューブ2a,2bを通流する気体の通流を制御する第1通流制御手段(固定子6aと可動子7aと押しばね8a)、第2通流制御手段(固定子6bと可動子7bと押しばね8b)及び揺動子9cは、図示の例に何ら限定されない。従って、例えば、揺動子9cを円筒状に構成し、円筒状揺動子9cの両端面を可動子7a,7bに付きあててこれらを移動させることもできる。
また、固定子6aと可動子7aとを設けず、押しばね8a,8bとこれに接続固定された制御部材(図示しない)等によって、チューブ2a,2bを常閉とすることができる。即ち、当該制御部材によってチューブ2a,2bを押し付けることにより、チューブ2a,2bを常閉とすることができる。そして、揺動子9aによって当該制御部材を移動させて常閉状態を解除することにより、チューブ2a,2bの通流を制御することができる。
図8の例では、イモネジ10a,10bによって固定子6a,6bが移動可能になっているが、例えば押しばね8a,8bを用いない場合等においては、可動子7a,7bを移動させてもよい。
また、図5を参照しながら説明したフローにおいては、チューブ2a,2bを単に開閉させることのみを説明したが、例えば密閉容器200内の圧力に応じて、チューブ2a,2bの開度を制御するようにしてもよい。即ち、密閉容器200内の圧力と外部の圧力との圧力差によっては、密閉容器200への給気速度と密閉容器200からの排気速度が異なる場合がある。そこで、例えば給気速度が速い場合には、安定した制御を行う観点から、チューブ2aの開度を小さくし、ゆっくりと給気を行うようにしてもよい。逆に、例えば給気速度が遅い場合には、迅速な制御を行う観点から、チューブ2aの開度を大きくし、素早く給気を行うようにしてもよい。このように開度を調整することにより、給排気の速度を調整することができる。
さらに、例えば、図8においてはチューブ2aを常開としたが、チューブ2bを常開としてもよい。また、チューブ2a,2bの両方を常開としてもよい。これらは、給気流量と排気流量とのバランスを異なるものにしたい場合に適宜調整すればよい。例えば、前記のように、給気速度と排気速度とが異なる場合がある。具体的には、例えば、空気供給源から供給される空気の圧力が0.5MPa、外部の圧力が0.1MPa(大気圧)の場合に、密閉容器の圧力を0.4MPa近傍で制御する場合等が挙げられる。
この場合、密閉容器内の圧力が、空気供給源から供給される空気の圧力に近くなっている。従って、密閉容器内の圧力と外部の圧力との差圧が、密閉容器内の圧力と空気供給源からの空気圧力との差圧よりも大きいため、排気速度は、給気速度よりも速くなることがある。そこで、このような場合には、イモネジ10aを突出させ、給気側のチューブ2aを常開にすればよい。
また、例えば、図示の例では、チューブ2a,2bは紙面垂直に延在しているが、紙面に対して平衡に延在させてもよい。そして、これに対応させて、流量を制御する各手段を設ければよい。
2a チューブ(第1弾性管)
2a1 給気口(供給口、供給排出口、第1ポート)
2b チューブ(第2弾性管)
2b1 排気口(排出口、供給排出口、第2ポート)
3c 密閉容器接続口(供給排出口、第3ポート)
7a 可動子(第1流量制御手段)
7b 可動子(第2流量制御手段)
8a 押しばね(第1流量制御手段)
8b 押しばね(第2流量制御手段)
9a 固定子(第1流量制御手段)
9b 固定子(第2流量制御手段)
9c 揺動子
100 3ポートバルブ
200 密閉容器(制御対象物)

Claims (4)

  1. 流体が通流する第1弾性管と、
    前記第1弾性管における供給排出口である第1ポートと、
    流体が通流する第2弾性管と、
    前記第2弾性管における供給排出口である第2ポートと、
    前記第1ポート及び前記第2ポートと連通する第3ポートと、
    第1弾性部材と、前記第1弾性管が貫通する第1可動子とを備え、前記第1弾性部材の弾性方向において外側方向に前記第1弾性部材の弾性力に抗して前記第1可動子を移動させることにより前記第1弾性管を変形させて、前記第1弾性管内を通流する流体の通流を制御する第1通流制御手段と、
    第2弾性部材と、前記第2弾性管が貫通する第2可動子とを備え、前記第2弾性部材の弾性方向において外側方向に前記第2弾性部材の弾性力に抗して前記第2可動子を移動させることにより前記第2弾性管を変形させて、前記第2弾性管内を通流する流体の通流を制御する第2通流制御手段と、
    前記第1通流制御手段及び前記第2通流制御手段を駆動させる揺動子と、
    前記第1弾性部材の弾性方向において前記揺動子の方向に前記第1弾性部材の弾性力に抗して移動されることにより、前記揺動子の駆動から独立して、前記第1可動子を貫通する前記第1弾性管を変形させて流量を調節する第1調節部材と、
    前記第2弾性部材の弾性方向において前記揺動子の方向に前記第2弾性部材の弾性力に抗して移動されることにより、前記揺動子の駆動から独立して、前記第2可動子を貫通する前記第2弾性管を変形させて流量を調節する第2調節部材と、を備え、
    前記第1弾性管及び前記第1通流制御手段と、前記第2弾性管及び前記第2通流制御手段とは、前記揺動子を中心として対称に設けられている
    ことを特徴とする、3ポートバルブ。
  2. 前記揺動子は回転可能に設けられ、
    前記揺動子が回転して前記第1通流制御手段及び前記第2通流制御手段を駆動させる
    ことを特徴とする、請求項1に記載の3ポートバルブ。
  3. 前記第1弾性管及び前記第2弾性管は常閉である
    ことを特徴とする、請求項1又は2に記載の3ポートバルブ。
  4. 前記第1ポートは供給口であり、
    前記第2ポートは排出口であり、
    前記第3ポートは制御対象物が接続される供給排出口である
    ことを特徴とする、請求項1〜の何れか1項に記載の3ポートバルブ。
JP2012104142A 2012-04-27 2012-04-27 3ポートバルブ Expired - Fee Related JP5904639B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012104142A JP5904639B2 (ja) 2012-04-27 2012-04-27 3ポートバルブ
US14/397,247 US9279507B2 (en) 2012-04-27 2013-02-19 Three-port valve
PCT/JP2013/053929 WO2013161357A1 (ja) 2012-04-27 2013-02-19 3ポートバルブ
EP13780674.1A EP2843275B1 (en) 2012-04-27 2013-02-19 Three-port valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104142A JP5904639B2 (ja) 2012-04-27 2012-04-27 3ポートバルブ

Publications (2)

Publication Number Publication Date
JP2013231482A JP2013231482A (ja) 2013-11-14
JP5904639B2 true JP5904639B2 (ja) 2016-04-13

Family

ID=49482699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104142A Expired - Fee Related JP5904639B2 (ja) 2012-04-27 2012-04-27 3ポートバルブ

Country Status (4)

Country Link
US (1) US9279507B2 (ja)
EP (1) EP2843275B1 (ja)
JP (1) JP5904639B2 (ja)
WO (1) WO2013161357A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220279A1 (de) * 2013-10-08 2015-04-23 Deere & Company Hydraulisches Wegeventil
JP6564450B2 (ja) * 2014-08-14 2019-08-21 エスエフシー フルーイディクス、インコーポレイテッド 二重ラッチング・マイクロバルブ
CN104989849A (zh) * 2015-06-11 2015-10-21 芜湖美的厨卫电器制造有限公司 混水阀、热水器、水系统及水温调节方法
JPWO2017090649A1 (ja) * 2015-11-24 2018-09-06 国立大学法人東京工業大学 ピンチ型バルブおよびこれを備えたマニフォールド
CN108391443B (zh) * 2015-12-18 2021-10-12 高准公司 紧凑的流量计和相关方法
US10161533B2 (en) * 2016-05-09 2018-12-25 Picobrew, Inc. Bi-stable electrically actuated valve
US11543037B2 (en) * 2018-08-30 2023-01-03 SFC Fluidics, Inc. Metastable state of dual latching valves
US11408416B2 (en) * 2020-09-02 2022-08-09 Smith & Nephew, Inc. Pump system with pinch valve for fluid management in surgical procedures and method of operation thereof
CN113648531A (zh) * 2021-09-10 2021-11-16 南京伯纳德医疗设备有限公司 一种双通道旋转压管阀

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313550A (en) * 1941-01-08 1943-03-09 Cleaver Brooks Co Valve structure
US2985192A (en) * 1959-07-24 1961-05-23 American Cyanamid Co Double pinch valve
DK118675A (da) * 1975-03-20 1976-09-21 Goof Sven Karl Lennart Ventil til fjernstyret eller inddirekte regulering eller afsperring af et gennemstromningsmedium
AU521043B2 (en) * 1977-08-08 1982-03-11 Asahi Malleable Iron Co. Ltd Closed container
JPS5920067U (ja) * 1982-07-28 1984-02-07 東京理化学器械株式会社 チユ−ブ用ピンチバルブ
US4518145A (en) * 1982-09-28 1985-05-21 Empire Abrasive Equipment Corporation Valve for regulating the pressurized flow of abrasives, in particular blast media
DE3302214A1 (de) * 1983-01-24 1984-07-26 Siemens AG, 1000 Berlin und 8000 München Anordnung zur durchflussregulierung von fluessigkeit
US4484599A (en) * 1983-09-23 1984-11-27 Organon Teknika Corporation Pinch-type pressure- or flow-regulating valve
NO171427C (no) * 1990-05-25 1993-03-10 Trallfa Robot Abb As Regulerbar styreventil for stroemningsregulering av gass eller vaeske samt anvendelse av saadan ventil
US5542336A (en) * 1995-04-17 1996-08-06 Martin Marietta Corporation Positioning apparatus and method utilizing PWM control of a double-acting hydraulic cylinder
US5901745A (en) * 1997-06-19 1999-05-11 The Hoover Company Multi-solution dispensing valve
US7651010B2 (en) * 2005-09-23 2010-01-26 Nestec S.A. Food dispenser with pump for dispensing from a plurality of sources
US8839711B2 (en) * 2006-12-12 2014-09-23 Jura Elektroapparate Ag Beverage preparation machine with a pinch valve
JP4931636B2 (ja) * 2007-02-24 2012-05-16 株式会社セイコーアイ・インフォテック ピンチバルブ、機器
JP4963446B2 (ja) 2007-07-11 2012-06-27 住友重機械工業株式会社 サーボ弁及びこれを用いたエアアクチュエータ
JP5144301B2 (ja) * 2007-08-23 2013-02-13 株式会社セイコーアイ・インフォテック ピンチバルブ、該ピンチバルブを具備する機器

Also Published As

Publication number Publication date
WO2013161357A1 (ja) 2013-10-31
JP2013231482A (ja) 2013-11-14
EP2843275A4 (en) 2015-12-02
US20150114496A1 (en) 2015-04-30
US9279507B2 (en) 2016-03-08
EP2843275A1 (en) 2015-03-04
EP2843275B1 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP5904639B2 (ja) 3ポートバルブ
TWI580880B (zh) 閘閥
JP5256545B2 (ja) 減圧切換弁
JP5150009B2 (ja) 流体制御装置
JP2008128178A (ja) 薬液供給システム及び薬液供給制御装置
Napp et al. Simple passive valves for addressable pneumatic actuation
TWI682120B (zh) 在真空室之室壁上關閉一室開口之門
JP2007016996A (ja) 真空バルブ
JP5779324B2 (ja) 薬液供給システム
WO2007008233A3 (en) Valve with bellow
JP5973197B2 (ja) ピストン式作動流体圧アクチュエータ、および制御弁
JP2006200429A (ja) ベローズポンプ
ITMI970989A1 (it) Attuatore idraulico rotante
JP2013256970A (ja) リリーフ弁装置
US7946215B2 (en) Actuator controller
JP4389226B2 (ja) 搾乳器
JP2006194298A (ja) ダイアフラム弁
JP2014238092A (ja) 薬液供給システム
JP5989881B2 (ja) 薬液供給システム
JP5296743B2 (ja) 空気圧式作動機構、及び空気圧式作動弁
JP7021085B2 (ja) スライドガイド式駆動部を備える真空アングル弁
JP2006057644A (ja) 小型電磁弁
JP5995595B2 (ja) 制御弁および制御弁の組立方法
JP6796291B2 (ja) エアシリンダ
WO2021025646A1 (en) Cam control valve for microfluidic systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160311

R150 Certificate of patent or registration of utility model

Ref document number: 5904639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees