JP5899208B2 - 偏心フラットパネル検出器による、コーンビーム・コンピュータ断層撮影画像形成のための改善された再構成 - Google Patents

偏心フラットパネル検出器による、コーンビーム・コンピュータ断層撮影画像形成のための改善された再構成 Download PDF

Info

Publication number
JP5899208B2
JP5899208B2 JP2013511755A JP2013511755A JP5899208B2 JP 5899208 B2 JP5899208 B2 JP 5899208B2 JP 2013511755 A JP2013511755 A JP 2013511755A JP 2013511755 A JP2013511755 A JP 2013511755A JP 5899208 B2 JP5899208 B2 JP 5899208B2
Authority
JP
Japan
Prior art keywords
reconstruction
projection data
data set
volume
cone beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013511755A
Other languages
English (en)
Other versions
JP2013526953A (ja
Inventor
エス ハンシス,エベルハルト
エス ハンシス,エベルハルト
シェーファー,ディルク
グラス,ミヒャエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2013526953A publication Critical patent/JP2013526953A/ja
Application granted granted Critical
Publication of JP5899208B2 publication Critical patent/JP5899208B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/432Truncation

Description

本発明は、コンピュータ断層撮影(CT)画像形成の分野、画像再構成及び関連する分野に関する。
トランスミッションコンピュータ断層撮影(CT)画像形成における投影体積(ボリューム)を最大にするため、X線のコーンビームを放出するX線源を用いることが知られている。コーンビームの再構成は、複雑な円錐形状のために困難な課題となっている。コーンビームCT画像再構成には、フィルタ補正逆投影(Filtered BackProjection)及び繰返し(反復)再構成を含むアプローチが用いられる。
従来のコーンビームCTジオメトリ(幾何学配置)では、2次元の検出器は、コーンビームにそれぞれ対称的に配置される。これに応じて、コーンビームは問題となる幾何学的な複雑さを導入するが、この複雑さは、画像再構成アルゴリズムが利用することができる実質的な対称性を少なくとも有する。
幾つかのコーンビームCT画像形成システムでは、検出器が「偏心(off-center)」されて配置され、すなわち、検出器は、CT画像形成システムのアイソセンターを通過するコーンビームの中心の放射線(レイ)に関してファン方向において非対称的に位置される。コーンビームX線源は、コーンビームが偏心検出器を満たすように任意に変更される。この偏心のコーンビームジオメトリの効果は、ガントリの回転が考慮されるとき、従来の対称的なジオメトリにおけるコーンビームX線源検出器のアセンブリについて得られるものの2倍に近い、効果的な投影ファンを提供することである。2次元検出器は、フラットとすることができ、これは構造を簡単にする。
偏心コーンビームジオメトリは、例えばオブジェクトの中央の近くのX線の投影を断ち切ることにおいて、従来の対称コーンビームジオメトリについて開発された再構成アルゴリズムが以前に利用してきた幾つかの条件に違反する。それにもかかわらず、対称的なコーンビームジオメトリについて利用された繰返し再構成、フィルタリング再構成等のような技術が、偏心コーンビームジオメトリの再構成のタスクにも典型的に適用されているこのことは、再構成された画像におけるアーチファクト又は他の欠点に繋がる可能性がある。
以下、本明細書で開示される新たな改善された装置及び方法を提供する。
1つの開示された態様によれば、コンピュータ断層撮影(CT)再構成方法は、軸方向の軸の周りの回転面におけるX線源の回転の間に取得された、測定されたコーンビームX線投影データセットから、軸方向に拡大された再構成画像を再構成するステップであって、軸方向に沿って拡大された測定されたコーンビームX線データセットの再構成可能な体積(ボリューム)を含む拡大された体積について実行される再構成するステップと、軸方向に拡大された再構成画像の選択された軸方向のトランケーションにより再構成画像を生成するステップ、を含む。
別の開示された態様によれば、CT再構成方法は、軸方向の軸の周りの回転面におけるX線源の回転の間に取得された、測定されたコーンビームX線投影データセットを再構成することで、再構成画像を生成するステップを含み、再構成は、(0)最初の再構成画像を初期化するステップと、(1)最初の繰返しが最初の再構成画像を処理する、1つの繰返し更新のタイプを用いる1以上の繰返しを含む繰返しの再構成であって、再構成画像の予測を生成する繰返し再構成を実行するステップと、(2)最初の繰返しが再構成画像の予測を処理する、異なるタイプの繰返しの更新を用いる1以上の繰返しを含む繰返しの再構成を実行するステップと、を含む。
別の開示された態様によれば、CT再構成方法は、軸方向の軸の周りの回転面におけるX線源の回転の間に取得された、測定されたコーンビームX線投影データセットを再構成することで、再構成画像を生成するステップであって、前記再構成が、測定されたコーンビームX線投影データセットを、隣接する投影ビューの投影間の有限の差を含む新たなジオメトリに変換する、ステップ、及び、隣接する投影ビューの投影間の有限の差を含む新たなジオメトリに変換された、測定されたコーンビームX線投影データセットに投影フィルタリング(BPF)を実行するステップを含む。BPF再構成の実行は、複数の異なる方向に沿ってヒルベルトフィルタリングを使用して投影フィルタリングを実行して、対応する複数の中間再構成画像を生成するステップと、複数の中間再構成画像を平均して、再構成画像を生成するステップとを含む。
別の開示された態様によれば、3つの直前のパラグラフの何れか1つで述べたCT再構成を実行するために構成されるプロセッサが開示される。別の開示される態様によれば、直前のパラグラフのうちの何れか1つで述べたCT再構成方法を実行するためにデジタルプロセッサで実行可能な命令を記憶する記録媒体が開示される。
1つの利点は、低下された又は除去されたアーチファクト、良好な一様性、又は低減されたノイズのような1以上の改善をもつ再構成画像を生成するように、コーンビームX線投影データセットを再構成することにある。
別の利点は、低減された又は除去されたアーチファクト、良好な一様性、又は低減されたノイズのような1以上の改善をもつ再構成画像を生成するように、偏心ジオメトリを有するコーンビームX線投影データセットを再構成することにある。
更なる利点は、以下の詳細な記載を読んで理解することに応じて、当業者にとって明らかとなるであろう。
CT画像形成システムが例示的な偏心ジオメトリを有する、本明細書で述べた再構成エンジンを含む例示的なコンピュータ断層撮影(CT)画像形成システムを示す図である。 図1の軸方向体積拡大モジュールの動作を示す図である。 図1の軸方向体積拡大モジュールの動作を示す図である。 図1の軸方向体積拡大モジュールの動作を示す図である。 図1の体積領域冗長重み付けモジュールの動作を示す図である。 図1の軸方向体積拡大モジュール及び体積領域冗長重み付けモジュールの使用を含めて、図1の繰返し再構成モジュールの動作を示す図である。 図1の軸方向体積拡大モジュールの任意の使用を含めて、図1の投影フィルタリング(BPF)再構成モジュールの動作を示す図である。 図1の投影フィルタリング(BPF)再構成モジュールの動作の本明細書で述べた数学的な説明で使用される表記を示す図である。
図1を参照して、コンピュータ断層撮影(CT)画像形成システム10は、図の側面ビュー及び軸方向ビューにおける動作成分を示すことで、図1において示される。例示されるCT画像形成システム10は、軸方向ビューで最良に見られるように、偏心の配置(ジオメトリ)で配置されるX線源12及び二次元検出器14を含む。偏心ジオメトリは、以下の参照に関して記載される。x線源12及び検出器14がこの軸の周りで回転する軸方向の軸(アキシャル軸)z,x線源12及び検出器14が回転する回転面P,アキシャル軸zが(側面ビューでのみラベル付け、軸方向ビューでは、ラベル付けされた軸zは、アイソセンターを本質的に含む点で現れる)回転面Pと交差するアイソセンターISO、及びアキシャル軸zからの半径R。回転面Pは、回転するX線源12及び検出器14が追従する円により、軸方向ビューにおいて示される。
例示的な実施の形態では、回転面Pは、アキシャル軸zに垂直に(すなわち直角に)向けられるが、傾斜されたガントリの配置も予期され、回転面は、アキシャル軸に対して数度(例えば5°又は10°等)だけ傾斜される。
半径Rは、x線吸収構造が期待されるアキシャル軸zから最も長い半径方向の距離を示す。換言すれば、x線源12により放出され検出器14により測定されるx線は、アキシャル軸zと一致するその軸を有し且つ半径Rを有する円筒により含まれる体積内でのみ吸収(可能な場合)を受けることが期待される。幾つかの実施の形態では、半径Rは、CT画像形成システム10の物理的な「ボア‘bore’」により強制され、ボアは、半径R内に留まるように撮像対象を物理的に制約する内径Rの円筒形の開口又は通路である。
x線源12及び検出器14は、回転面Pにある間、アキシャル軸zの周り(及びより詳細にはアイソセンターISOの周り)を回転する。x線源12及び検出器14は、x線源12により生成された(及びクロスハッチングにより図1において示される)x線コーンビームCBが回転において任意の点で2次元検出器14により検出されるように、この回転の間に反対の位置に配置されたままである。図1は、x線源12が回転において「最も高い」ポイントに位置され、検出器14が回転においてその「最も低い」ポイントで位置される、回転におけるポイントを示す。回転を可視化することにおいて更に支援するため、180°の回転後のそれらの位置でのx線源及び検出器の位置は、コンポーネントのラベリングなしに、擬似的に図1に示される。擬似的なビューでは、検出器は、回転におけるその「最も高い」ポイントで位置され、x線検出器は、回転におけるその「最も低い」ポイントにある。
図1のCT画像形成システム10の表現の軸方向ビューで最良に見られるように、偏心ジオメトリは、アイソセンターISOを通過する中央のx線に関して、回転方向(すなわちファン方向)で非対称に位置されている2次元検出器14を伴う。x線源12は、検出器14の領域の外側へのx線の“漏れ”が殆ど又は全くなしに、2次元検出器14の領域を効果的に照射するように、任意に変更される。例示的な検出器14は、平面パネル検出器であるが、x線源に焦点が合わされた検出器の配置、アイソセンターに焦点に合わされた検出器の配置、又は別の検出器の配置を採用することも想定される。
当該技術分野で知られているように、偏心ジオメトリは、(回転及び180°の反対の投影の相補的な性質が考慮されるとき)回転又はファン方向における所与の検出器のサイズについて、回転又はファン方向において比較的大きい実効ビーム幅を提供することを含む利点を有する。例示のために、偏心ジオメトリは、例示の偏心ジオメトリを有するCTx線源及び検出器により提供されるインテグラルトランスミッション・CT画像形成機能を有するガンマカメラのようなハイブリッド画像形成システムにおける使用に良好に適している。係るシステムは、単電子放出型コンピュータ断層撮影(SPECT)/CTシステムとしても知られる。
開示される再構成の技術は、図1に例示される偏心ジオメトリを使用して取得されたコーンビームCT画像形成データ(又は偏心ジオメトリを有する測定されたコーンビームCT画像形成データセット)に適切に適用される。しかし、開示される再構成技術は、アイソセンターを通過する中央のX線に関して回転方向(すなわちファン方向)において2次元検出器が対称的に位置される、対称的なジオメトリを有するコーンビームCT画像形成システムにより取得されるCT画像形成データの再構成における使用に適している。さらに、開示される再構成技術は、CTコンポーネントが偏心ジオメトリ又は対称ジオメトリを用いる結合された陽電子放出型断層撮影/CTスキャナ(PET/CTスキャナ)により取得されるCT画像形成データの再構成における使用にも一般的に適している。
図1を続けて参照して、CT画像形成システム10は、アキシャル軸の周りの回転面におけるx線源の1以上の360°回転の間に取得される、コーンビームx線投影データを取得する(又は測定する)。(少なくとも)360°の回転に及ぶ測定されたコーンビームx線投影データセットは、再構成可能な体積(ボリューム)内で画像を再構成するために十分なデータを提供し、(例示を通して、電子的な記録媒体、磁気記録媒体、光記録媒体等のうちの1以上を含む)投影データストレージ20において記憶される。測定されたコーンビームのx線投影データセットは、再構成画像ストレージ24に記憶される再構成画像を生成するため、再構成エンジン22により再構成される。例示的な実施の形態では、再構成エンジン22は、デジタルプロセッサ(図示せず)を含む適切にプログラムされたコンピュータ26により実施され、より一般的には、再構成エンジン22は、コンピュータ、ネットワークサーバ、専用デジタル処理装置、又はリードオンリメモリ(ROM)、プログラマブルリードオンリメモリ(PROM)等に記憶されるソフトウェア又はファームウェアによる画像再構成を実行するために適切に構成されるデジタルプロセッサを含むもの等のようなデジタル処理装置により実施される。「プロセッサ」又は「デジタルプロセッサ」は、複数のコア(例えばデュアルコアプロセッサ、クアッドコアプロセッサ等)及び/又は(例えばスーパーコンピュータにおけるような)プロセッサの並列の構成を含む。さらに、再構成エンジン22について、所定の再構成処理動作を実現するために設計されるアナログ処理回路を任意に含む特定用途向け集積回路(ASIC)を含むことが想定される。
再構成画像は、ストレージ24に記憶され、コンピュータ26のディスプレイ27(又は幾つかの他のディスプレイデバイス)で表示され、インターネット又は別のデジタルデータネットワークを介して表示又は他の使用のために遠隔地に伝達され、プリンタにより印刷される等といった、様々なやり方で適切に使用される。また、例示的なコンピュータ26は、ユーザが再構成のために測定されたコーンビームx線投影データセットを識別し、再構成パラメータを入力し、又はその他にて再構成エンジン22と相互作用するキーボード28(又は他のユーザ入力装置)を含む。インタフェースコンポーネント27,28は、例えば軸方向のデータ取得を設定及び実行するといった、コーンビームCT画像形成システム10を制御するためにユーザにより任意に使用される。代替的に、異なるユーザインタフェース装置(図示せず)が提供される場合がある。
また、再構成エンジン22は、(例示的なコンピュータ26のプロセッサのような)デジタルプロセッサにより実行されたとき、本明細書で開示される再構成技術に従って画像の再構成を実行する命令(例えばソフトウェア又はファームウェア或いはその組み合わせ)を記憶する記録媒体として物理的に実施することができる。記録媒体は、例示のため、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、プログラマブルリードオンリメモリ(PROM)、フラッシュメモリ、又は別の電子的な記録媒体、ハードディスク又は他の磁気記録媒体、光ディスク或いは他の光記録媒体等、のうちの1以上を含む場合がある。
当該技術分野で知られているように、測定されたコーンビームx線投影データセットの正確な再構成は、複雑なコーンビームジオメトリのために困難であり、従来適用される再構成技術では、様々な要素が画像の品質の低下に繋がる可能性がある。その偏心ジオメトリをもつ図1のコーンビームCT画像形成システム10により生成されるx線投影データセットの偏心ジオメトリは、従って更なる画像の品質の低下を招く更なるジオメトリの複雑さを導入する。係る画像の品質の低下は、例示のため、画像のアーチファクト及び/又は画像の全域での非一様性を含む。再構成エンジン22は、係る品質の低下を低減又は除去する本明細書で開示される様々な改善及び態様を含む。本明細書で開示されるように、様々な実現及び態様は、改善された再構成画像を提供するために様々な組み合わせで使用される場合がある。
図1を続けて参照して、再構成エンジン22は、再構成可能な体積を再構成する。再構成可能な体積とは、その中で、各ボクセルが、完全な180°の角度範囲にわたる測定されたコーンビームx線投影データセットの投影により調(プローブ)される体積である。再構成可能な体積の近くであるが再構成可能な体積の外側にある幾かの体積も幾かのx線投影により調査されるが、完全な180°の投影の範囲により調査されるものではない。本明細書で開示され、図2〜図4を参照して詳細に記載されるように、再構成エンジン22は、再構成されボリュームを拡大し、測定されたコーンビームx線データセットの投影が吸収を受けるアキシャル軸zの半径方向距離R内のボリュームに交差する更なる投影を含む更なる投影データを外挿又は拡大することで、測定されたコーンビームx線投影データセットを数学的に増加又は拡大する軸方向体積拡大モジュール30を任意に含む。軸方向に拡大された体積について、この増加又は拡大されたデータセットを再構成することで、再構成可能な体積内の再構成が正確に行われ、従って再構成可能な体積の外側にある測定された投影の吸収による画像の品質の低下を低減又は除去することができる。
図1を続けて参照して、再構成エンジン22は、投影の冗長の重み付けを採用する。係る重み付けは、例えば180°離れている相補的な対向する投影の重み付けされた組み合わせを可能にすることで、再構成画像の品質を改善するために知られる。しかし、係る重み付けは、取得のジオメトリにおける小さな誤差に感度が高い。これは、小さな誤差でさえ、非一様な重みの組み合わせ及び結果として生じる画像の品質の低下となる可能性があるからである。係る影響は、オフセット検出器144の「欠けている半分“missing half”」を補償するために相補的な投影を結合することに依存する(図1のCT画像形成システム10のような)偏心ジオメトリにおいて問題となる。本明細書で開示され、図5を参照して詳細に記載されるように、再構成エンジン22は、体積領域においてボクセル毎に重み付けを実行する体積領域冗長重み付けモジュール32を任意に含む。
図1を続けて参照して、再構成エンジン22は、(1)繰返し(反復)再構成モジュール34及び(2)投影フィルタリング(BPF)モジュール36といった、2つの再構成モジュールを含む。再構成エンジン22は、繰返し再構成モジュール34又はBPFモジュール36の何れかを使用して画像の再構成を実行する。様々な実施の形態では、再構成エンジン22は、繰返し再構成モジュール34のみを含むか、BPFモジュール36のみを含むか、又は繰返し再構成モジュール34及びBPFモジュール36の両者を含む。後者の場合、ユーザは、ユーザインタフェースコンポーネント27,28を介して選択オプションを適切に提供され、それにより、ユーザは、(モジュール34により実現される)繰返し再構成アルゴリズム又は(モジュール36により実現される)非繰返しBPF再構成アルゴリズムの何れかを使用して、測定されたコーンビームX線投影データセットの再構成を実行することを選択する。
繰返し再構成の収束は、初期画像の最終画像への近さに感度が高いことが知られている。従来、繰返し再構成により次いで改善される「近い」初期画像を生成するため、フィルタ補正逆投影のような非繰り返し型の再構成技法を採用することが知られている。しかし、フィルタ補正逆投影は、その後繰返し再構成により効果的に除去されない所定のアーチファクトを導入することが認識される。この問題を克服するため、図6を参照して詳細に記載される開示される繰返し再構成モジュール34は、フィルタ補正逆投影により生成されることが知られるアーチファクトのタイプを導入しないやり方で初期の再構成された画像を初期化する。例示のため、繰返し再構成モジュール34は、初期の再構成画像の全てのボクセルを一定の値に適切に初期化する。初期化に続いて、代数の繰返し更新のような、1つの、好ましくは高速収束繰返し更新の1以上の繰返しが行われる。これは、事実上、最終画像に近い「初期画像」を生成するが、これは有利なことに、フィルタ補正逆投影に通常付随する像アーチファクトのタイプを含まない。最後に、1以上の最初の繰り返し続いて、最大尤度繰返し更新のような、(より低いノイズで再構成を生成するような、より良好な再構成の特性をもつ)別の、おそらく低速収束繰返し更新の1以上の繰返しが行われる。
BPFモジュール36は、非繰返し型の再構成技術である投影フィルタリングの再構成を実行する。しかし、BPFモジュール36は、測定されたコーンビームx線投影データセットを、隣接する投影ビューの投影間の有限の差を含む新たなジオメトリに変換し、変換されたデータセットにBPF再構成を実行するような、所定の改善を実現する。付加的に又は代替的に、BPFモジュール36は、複数の異なる方向に沿ったヒルベルトフィルタリングを使用してBPFを実行し、対応する複数の中間再構成画像を生成して、複数の中間再構成画像を平均して最終的な再構成画像を生成する。本明細書で開示されたこれらの改善は、単独で又は組み合わせて適用され、補間の使用及び/又はヒルベルトフィルタリングの平均を通して、非繰返しコーンビーム投影再構成技術に従来付随したタイプの画像アーチファクトを低減する。
図1を続けて参照し、図2〜図4を更に参照して、任意の軸方向体積拡大モジュール30の動作が更に詳細に記載される。図2及び図3は、図1のCT画像形成システム10の側面ビューを示す。図2〜図4は、図1に示される側面図を参照して先に記載されたのと同じ可視化及びラベリングを使用する。図2において更に見られるように、x線源12及び検出器14は、アキシャル軸zの周りで回転面Pにおけるx線源12の回転の間に取得される測定されたコーンビームx線投影データセットを取得する。図2及び図3において、測定されたコーンビームx線投影データセットPmは、1方はx線源12が最上部にあり、他方はx線源が擬似的に示される対向(及び相補的な)180°角度の位置にある、2つのx線源の位置を示すことで図示される。
再構成可能な体積又は視野rFOVは、図2〜図4で示される。再構成可能な体積又は視野rFOVは、その中のそれぞれのボクセルが少なくとも180°(+ファン角)の角度の範囲にわたり測定されたコーンビームx線投影データセットPmの投影により調査される体積である。図4は、アキシャル軸z上にある先端を有する対称に位置される円錐部分をもつシリンダーであることを示す、再構成可能な体積rFOVの透視図を示す。これらの円錐部分は、広がっていくコーンビームが、アキシャル軸zに近いボクセルについてアイソセンターISOから更に離れたところでサンプリングするために生じる。
再構成可能な体積の近くであるが外側にあるボクセルは、幾かのx線投影により調査されるが、完全な投影の180°の範囲によるものではない。図2では、この部分的に探索される体積は、「吸収」体積又は視野αFOVでラベル付けされ、測定されたコーンビームx線のデータセットPmが吸収を受けるアキシャル軸zの半径方向距離R内の体積を示す。図2において容易に見られないが、吸収の視野は、その先端がアキシャル軸z上にある内側の円錐凹部を有する。画像の被写体が再構成可能な体積rFOVを超えて軸方向に延びる場合、再構成可能な体積rFOV内にあるように、再構成が軸方向に切り捨てられる。再構成処理は、再構成可能な体積rFOVを横断するそれぞれのx線に沿って、測定されたコーンビームx線データセットPmにより表される測定された吸収を、シミュレートされた吸収と整合させることを狙いとする。しかし、測定されたコーンビームx線データセットPmは、再構成可能な体積rFOVに含まれない大きな吸収体積αFOVで生じる吸収を含む。吸収の体積αFOVで生じるが、再構成可能な体積rFOVの外側にある吸収は、再構成可能な体積rFOVの内側のみで再構成することで、考慮することができない。
再構成可能な体積rFOVの外側で生じる吸収を考慮するため、再構成され体積rFOVを軸方向に沿って拡大し、測定されたコーンビームx線データセットPmの全ての投影の全ての測定されたx線がeFOV内にあるように十分に大きい拡大された体積又は視野eFOV(図3における側面図及び図4における透視図)を形成することが開示される。さらに、測定されたコーンビームx線データセットPmは、例えば最初/最後の検出器の行の繰返しにより、軸方向に沿って拡大され、図3に示される更なる投影データセット(Pe)が形成される。これを行うことにより、推定された再構成は、再構成可能な体積rFOVの外側にある、拡大された体積eFOVにおいて実行され、全ての測定されたx線は、再構成により完全にカバーされる。そして、最終的再構成画像は、例えば、切り捨て後に、再構成可能な体積rFOVと一致する再構成画像の部分のみを保持するように、拡大された体積eFOVの内部であって再構成可能な体積rFOVの外部にある再構成画像の部分を除くといった、軸方向に拡大された再構成画像の選択された軸方向の切り捨て(トランケーション)により得られる。
図2〜図4を続けて参照して、図1の軸方向体積拡大モジュール30の動作が更に記載される。軸方向に拡大された再構成画像は、アキシャル軸zの周り回転面Pにおけるx線源12の回転の間に取得される、測定されたコーンビームx線投影データセットPmから再構成される。再構成は、軸方向zに沿って拡大された測定されたコーンビームx線データセットPmの再構成可能な体積rFOVを有する拡大された体積eFOVについて実行される。再構成可能な体積rFOVは、アキシャル軸zを中心とし、アキシャル軸からの半径方向距離Rにより境界が付けられる(これは、半径方向の距離Rがx線吸収材料により占有することができる最も遠い可能性のある半径方向の範囲を定義するためである)。同様に、拡大された体積eFOVは、アキシャル軸zを中心とし、アキシャル軸から半径方向距離Rにより境界が付けられる。拡大された体積eFOVは、コーンビームx線データセットPmが吸収を受けたアキシャル軸zの半径方向距離R内の少なくとも体積αFOVを含む。任意に、選択された体積が撮像対象を包含するに十分に大きいことを知っている場合、記載された再構成体積よりも小さく(又は大きく)且つ異なる形状の体積を選択することができる。例えば、撮像対象を包含し、回転軸を中心とせず、且つRとは異なる境界を有する小さな体積を選択することができる。
軸方向に拡大された再構成画像は、測定されたコーンビームx線投影データセットPm、測定されたコーンビームx線投影データセットPmになく且つ測定されたコーンビームx線データセットPmが吸収を受けるアキシャル軸zの半径方向距離R内の総体積αFOVと交差する全ての投影を含む更なる投影データセットPeと、を含む拡大された投影データセットから再構成される。拡大されたデータセットPm,Peの再構成のために拡大された体積eFOVは、拡大された投影データセットの再構成可能な体積を適切に有する。
換言すれば、拡大された体積eFOVは、測定されたコーンビームx線データセットPmが吸収を受けた、アキシャル軸zの半径方向距離R内の総体積αFOVに交差する全ての投影を含む拡大された投影データセットPm,Peの再構成可能な体積を適切に含む。拡大された投影データセットPm,Peは、例えば更なる投影データセットPeを形成するため、回転面Pに対して最も大きい角度を有する測定されたコーンビームx線データセットPmの投影の値を繰り返すことで、測定されたコーンビームx線データセットPmを拡大することで適切に形成される。
図1〜図4の例示される実施の形態では、測定されたコーンビームx線データセットPmは、偏心ジオメトリを有するコーンビームCT画像形成システム10により取得された、偏心ジオメトリで測定されたコーンビームx線データセットを含む。しかし、特に図2〜図4を参照して、軸方向の拡大は、軸方向の位置の関数であり、偏心ジオメトリに依存しないことが観察される。さらに、図2〜図4を参照して記載されたように動作する図1の軸方向体積拡大モジュール30は、2次元検出器がアイソセンターを通過する中央のx線に関して回転方向(すなわちファン方向)において対称的に位置される、対称ジオメトリを有するコーンビームCT画像形成システムにより取得されるCT画像形成データの再構成において使用するのに適している。
図1を続けて参照しつつ、図5を更に参照して、任意の体積領域冗長重み付けモジュール32の動作が更に詳細に記載される。図5は、z軸方向を見る見方を除いて(すなわちベクトルzは、図5ではページから外あるが、図1ではページの中である)、図1におけるCT画像形成システム10の軸方向のビューを示す。偏心ジオメトリにおいて、それぞれコーンビームの投影は、180°だけ回転される相補的なコーンビームの投影により画像形成される小さな中央のオーバラップ領域Roverlapにより、視野の半分よりも僅かに多くをカバーする。この変化する体積のカバレッジは、再構成において考慮されることが好ましい。知られているFeldkamp型のアルゴリズムは、全ての重み付け関数投影により一様な画像が得られるように、投影データに重みを適用する。
しかし、この重み付け関数は取得ジオメトリにおける小さな誤差に感度が高いことが認識される。正しい位置に関して重み付け関数を僅かにシフトすることは、再構成における非一様な重み付け及びアーチファクトにつながる。偏心の検出器14の「欠けている半分」を補償するため、相補的な投影を結合することに頼る再構成を採用する偏心ジオメトリの場合、適切な重み付け関数を導入することなしに、偏心ジオメトリの「半分」の投影から再構成することは、トランケーションの近くの投影された画像の補正における強い勾配により生じる反復的な再構成におけるアーチファクトに繋がる可能性がある。
体積領域冗長重み付けモジュール32を用いて、体積領域(ボリュームドメイン)において冗長重み付けを実行することが開示される。体積領域において重み付けを実行することで、体積全体を通して一様なカバレッジ又は重み付けが保証され、画像の補正における強い勾配が回避される。このため、反対の投影の対は、同時に投影される。2つの投影の寄与は、図5に示される検出器14にわたり回転又はファン方向において変動する適切な重み付け関数Wにより重み付けされる。再構成され体積に関する補正全体が、重みの総和に対して正規化され、重み付け関数の配置におけるエラーに係らず、体積全体を通して総補正重みが一定に保持される換言すれば、測定されたコーンビームx線投影データセットPmは、拡大された体積を通して総補正重みが一定であるように、重み付けの正規化により体積領域において重み付けされる。
開示された体積領域冗長重み付けは、偏心ジオメトリの場合において特に有効であるが、2次元検出器がアイソセンターを通過する中央のx線に関して回転(すなわちファン)方向において対称的に位置される対称ジオメトリを有するコーンビームCT画像形成システムにより取得されたCT画像形成データの再構成において適切に適用される。
図1を続けて参照しつつ、図6を更に参照して、任意の繰返し再構成モジュール34の動作が更に詳細に説明される。図6は、軸方向体積拡大モジュール30及び体積領域冗長重み付けモジュール32の使用を含む繰返し再構成モジュール34の動作を示す。反復的な再構成は、投影データストレージ20に記憶されている測定されたコーンビームx線投影データセットPmを処理する。任意の動作40では、軸方向体積拡大モジュール30は、図2〜図4を参照して、軸方向に沿って、軸方向の体積を拡大し、投影データを拡大するために援用される。動作42では、(拡大された)画像体積は、一様な(すなわち一定)の強度に初期化される。
繰返し再構成は、以下の通りである。繰返し更新は、処理44で選択され、選択された繰返し更新は、処理46において適用され、処理50は、停止の基準に一致するまで選択処理44に処理フローを伝達する。繰返し更新の動作46は、重み付け処理48を含んでおり、体積領域冗長重み付けモジュール32は、図5を参照して記載されるように体積領域において重み付けを実行するように起動される。代替的に、全ての重み付け関数の投影により一様な画像が得られるように、例えば投影データに対して重み付けを適用するFeldcamp型のアルゴリズムに従って、投影領域における重み付けが用いられる場合がある。再構成の体積が処理40毎に軸方向に拡大されたと仮定すると、繰返し再構成により計算される最終的に再構成された画像、処理52において所望の再構成範囲へと軸方向に切り捨てられ、最終的再構成画像が生成され、この最終的再構成画像が、再構成画像ストレージ24に記憶される。(処理40が省略された場合、処理52も省略され、繰返し再構成の出力、再構成画像ストレージ24に適切に記憶される。)
図6の繰返し再構成方法の実行において、繰返し更新選択処理44が用いられ、1種類の繰返し更新を用いる1以上の繰返しを含む繰り返し再構成が実行され、好ましくは、例示的な代数の繰返し更新IAのような比較的に高速に収束する繰返し更新に続いて、例示的な統計的な最大尤度(ML)繰返し更新IMLのような低速で収束するが良好な再構成特性を示す異なる繰返し更新を用いる1以上の繰返しが後続する。例えば、統計的なMLの繰返し更新IMLは、例示的な代数繰返し更新IAよりも比較的低速であるが、統計的なML繰返し更新MLは、代数的な繰返し更新IAと比較して低い再構成ノイズを提供する。従って、代数の繰返し更新IAを用いる1以上の第一の繰り返しは、最終的再構成画像に「近い」初期画像を迅速に生成するため、初期化動作42により生成される最初の一様又は一定の体積を処理する。次いで、この初期画像は、投影的なML繰返し更新IMLを採用する1以上のその後の繰返しについて初期画像としての役割を果たす。
このアプローチは、本明細書で行われた以下の観察により動機付けされる。繰返し再構成は、再構成前の画像体積の初期化が「正しい」(又は最終的な)再構成の結果に近いときに、迅速に収束する。統計的な最大尤度の再構成のアプローチは、比較的低速な収束を有し、最初の再構成体積について良好な初期値を有することで容易にされる。しかし、最大尤度アプローチは有利なことに、より低い再構成雑音を伝達することができる。所望の「近い」初期画像体積を提供するため、フィルタ補正逆投影再構成を採用して、初期画像を提供することが知られている。しかし、この初期化のアプローチは、まさに、フィルタ補正逆投影再構成の代わりに繰返し再構成の選択を動機付けさせる、画像アーチファクトのタイプを、体積の初期化において導入する。言い換えれば、当業者がフィルタ補正逆投影再構成ではなく繰返し再構成を選択する通常の理由は、フィルタ補正逆投影により導入され得る画像アーチファクのタイプを回避することである。しかし、フィルタ補正逆投影再構成が初期画像として使用される場合、その後の繰返し再構成は、例えば統計的な最大尤度のような繰返し更新を使用するときでさえ、フィルタ補正逆投影により導入されるこれら望まれない画像アーチファクトを除くことにおいて効果がない。
対照的に、一定又は一様な画像への初期化と、それに後続するおそらく比較的高速の収束の繰返し更新(この例では代数の繰返し更新IA)である1つの種類の繰返し更新を用いた1以上の繰返しと、それに後続するおそらく比較的低速の収束の繰返し更新(この例では統計的なML繰返し更新IML)である異なる繰り返しの更新を採用した1以上の繰返しとの、開示される組み合わせは、フィルタ補正逆投影により典型的に生成されるタイプのアーチファクトを導入することなしに、高解像及び低雑音の最終的再構成画像への効率的な収束を提供する。従って、開示されるアプローチの1実施の形態は、「ハイブリッド」再構成であり、一定の値(例えばゼロ)に体積を初期化した後、第一の画像の予測を生成するために、代数技法のような高速の収束を提供するために選択された第一の繰返しアルゴリズムの1又は数の繰返しが使用される。次いで、統計的な最大尤度アルゴリズムのような、異なる(第二の)アルゴリズムで更なる繰り返しが実行される。このように、初期化において画像アーチファクトを導入することを回避しながら、良好な体積の初期化が得られ、これが、低い雑音又はその他の目的に合わせて最適化された、その後の異なるアルゴリズムの使用によって続かれる。例示的な実施の形態では、少なくとも部分的にその高速収束性のために第一の繰返しアルゴリズムが選択されるが、ロバスト性のような他の基準を用いることができる。
選択処理44が代数の繰返し更新IAから統計的なML更新IMLに切り替わるポイントは、様々なやり方で選択される。1つのアプローチでは、固定された繰返し回数、比較的低速の収束の更新への切り替えの前に、比較的高速の収束の繰返し更新を使用して実行される。別のアプローチでは、繰返し間の性能指数、比較的低速の収束の更新に何時切り替えるべきかを判定するため、選択処理44によりモニタされる。例えば、選択処理44は、測定された(及び任意の拡大された)投影データのセットに応じて誤差基準をモニタし、この誤差基準における繰返し間の変化が選択された閾値以下であるときに切り替えを行う。
図6の繰返し再構成は、偏心ジオメトリを参照して開示される。しかし、図6の繰返し再構成は、2次元の検出器がアイソセンターを通過する中央のx線に関して回転方向(すなわちファン方向)に対称的に配置される、対称ジオメトリを有するコーンビームCT画像形成システムにより取得されるCT画像形成データを再構成することに適切に適用される。
図1を続けて参照し、且つ図7及び図8を更に参照して、任意の投影フィルタリング(BPF)再構成モジュール36の動作、更に詳細に記載される。図7は、任意の軸方向体積拡大モジュール30の始動を含むBPF再構成モジュール36の処理を示す。再構成は、投影データストレージ20に記憶される測定されたコーンビームx線投影データセットPmを処理する。図6を参照して既に記載された任意の処理40にて、任意の軸方向体積拡大モジュール30が、図2〜図4を参照して記載されるように、軸方向の体積を拡大し、軸方向に沿って投影データを拡大する。次に、BPF再構成アルゴリズム、(拡大された)再構成画像を生成するため、処理60,62,64,66,70,72,74により実現される。再構成の体積が処理40毎に軸方向に拡大されたと仮定すると、BPF再構成により計算される最終的に再構成された画像は、(図6を参照して既に記載されたように)処理52において切り捨てられ、再構成画像ストレージ24に記憶され最終的な再構成画像が生成される。(処理40が省略される場合、処理52も省略され、BPF再構成処理60,62,64,66,70,72,74の出力、再構成画像ストレージ24で適切に記憶される。)
処理60,62,64,66,70,72,74により実行されるBPFは、以下の通りである。処理60では、Katsevichタイプの微分が行われ、測定された投影間の仮想的な投影をもつ新たなジオメトリを生成するため、隣接する投影間で有限差分が計算される。例えば3つの投影を含む高次の微分も使用され、潜在的に、新たなジオメトリを古いジオメトリの位置のままにする。これは、冗長重み付けを実行する処理62により後続される。図7の実施の形態では、フィルタ補正逆投影の例において行われたように、冗長重み付け処理62は、投影領域で実行される。代替的に、処理62は、任意の体積領域冗長重み付けモジュール32を開始することで実行される体積領域の冗長重み付けにより置き換えられる。次いで、投影のフィルタリング、処理64,66,70,72,74により実行される。開示されるアプローチでは、ヒルベルトフィルタリングについて複数の異なる方向を通した平均、再構成され体積におけるヒルベルトフィルタのラインに沿って縞(ストリーク状)のアーチファクト(streak artifact)を軽減するために採用される。係る縞のアーチファクとは、これまで巡回型BPFアルゴリズムにより生成された画像に一般的に存在していた。投影フィルタリングは、体積を満たし且つ選択されたフィルタ方向を有するヒルベルトフィルタリングについて平行なラインのセットを定義する処理64、平行なライン方向と相対的な方向に対応して、投影構成を+1又は−1で重み付けする処理66、体積を満たす平行なラインのセットへの投影を実行する処理70、体積におけるラインに有限ヒルベルト逆フィルタリングを実行する処理72、ヒルベルトフィルタリングの複数の異なる方向についてステップ処理64,66,70,72を繰り返して、最終的な再構成画像を生成するために平均化される複数の「中間」画像を生成する処理74、を含む。
従って、BPF再構成モジュール36は、測定されたコーンビームx線投影データセットPmを、(処理60毎に)1以上の隣接する投影ビューの投影間の有限差分を含む新たなジオメトリに変換し、新たなジオメトリに変換された測定された(及び任意に軸方向に拡大された)コーンビームx線投影データセットに投影フィルタリング再構成を実行する。縞のアーチファクトの抑圧が望まれる場合、繰返し処理74が実行され、ヒルベルトフィルタリングの複数の異なる方向を通しての平均化は、再構成され体積におけるヒルベルトフィルタのラインに沿っ縞のアーチファクトを軽減する。一般性を失うことなしに、N回の繰返しを実行するため、任意の繰返し処理74が仮定される。N回の繰返しについてのN個の異なる方向は、縞の抑圧を最大化するように選択され、角度方向において規則的に配置されるか又は不規則に配置される。1つの適切な実施の形態では、Nは3と5との間であり、N個の異なる方向は、5°のステップで角度的に離れて配置される。幾つかの実施の形態では、Nは6に等しいか又は6未満であり、N個の異なる方向は、30°以下の角度の差を有する。
図7の再構成は、偏心ジオメトリを参照して開示される。しかし、図7の再構成は、2次元検出器がアイソセンターを通過する中央のx線に関して回転方向(すなわちファン方向)において対称的に位置される、対称ジオメトリを有するコーンビームCT画像形成システムにより取得されるCT画像形成データを再構成することにも適切に適用される。
図7を参照し、且つ図8を更に参照して、更に詳細な実施の形態は、図8で述べた表記を使用して記載される偏心ジオメトリを特に参照して記載される。プレーナ検出器14及びx線源12は、y軸の周りで回転される。x線源12と検出器14との間の距離は、Dとして示される。x線源12から回転軸への距離は、(図1の半径Rから区別されるべきである)Rで示され、Iは、(図1のアイソセンターISOに対応する)画像形成システムのアイソセンターを示す。円軌道は、経路長λ∈Λ=[0,2πR)によりパラメータ化される。検出器での投影されたアイソセンターは、D(λ)位置され、検出器システムの原点を定義する。検出器の軸は、回転軸に平行である。しかし、軸は、 min maxによる軌道のタンジェントベクトルに平行である。X(,,λ)で示されたコーンビーム投影データは、以下により与えられる。
Figure 0005899208
Figure 0005899208
は、x線源の位置S(λ)から検出器エレメントE(,,λ)への単位ベクトルである。対応する長さは、
Figure 0005899208
により示される。フラット検出器は、偏心ジオメトリにおいて位置合わせされる。オーバラップ領域
Figure 0005899208
は、測定された投影値X(,,λ)をもつD(λ)の周りの対称的な領域として定義される。オーバラップ領域O(λ)は、図5のオーバラップ領域Roverlapに対応する。オーバラップO(λ)の幅は、Δ +0 -0である。この例示的な実施の形態における差分処理60は、以下により定義されるKatsevich型の導関数を採用する。
Figure 0005899208
この例示的な実施の形態では、冗長度の重み付け処理62は、以下の重み付け関数を採用する。
Figure 0005899208
フィルタ判定選択処理64は、
Figure 0005899208
で示されるフィルタリング方向を適切に選択し、
Figure 0005899208
は、t∈(−∞,∞)として、ポイントsを通る線上の点のパラメータ化である。次いで、方向性の重み付け処理66は、以下のように適切に実現される。
Figure 0005899208
Figure 0005899208
の平行線のセット
Figure 0005899208
へのKatsevich型の微分された投影XKDに適用される微分された投影処理70は、以下により与えられる。
Figure 0005899208
ヒルベルトフィルタリング処理72は、以下のようにこの例示的な実施の形態で実現される。切り捨てられていないフルスキャン又は最小のデータスキームの微分された投影は、ラインのセット
Figure 0005899208
に沿ってオブジェクト関数のヒルベルト変換
Figure 0005899208
に等価である。
Figure 0005899208
微分された投影bKDは、以下の条件が満たされるように、fのサポートΩよりも僅かに大きい間隔[tL2,tU2]内でライン
Figure 0005899208
に沿って知られる。
Figure 0005899208
次いで、オブジェクトfは、有限ヒルベルト逆変換
Figure 0005899208
Figure 0005899208
Figure 0005899208
繰返し/平均処理52が省略された場合、結果として得られる再構成は、鋭い強度の遷移の領域におけるフィルタラインの方向に沿ったかなりの縞のアーチファクトに苦しむ場合がある。
異なるフィルタ方向
Figure 0005899208
に沿って同じオブジェクトをN回再構成し、結果を平均する繰返し/平均処理52を含むことで、ストリークアーチファクトが大幅に抑圧されるか又は除去される。繰り返し/平均処理52は、以下のようにこの例では数学的に表される。
Figure 0005899208
オブジェクト関数は、最終的な再構成された画像を生成するため、トライリニア補間を使用して最終的なグリッド位置で適切にリサンプリングされる。
本出願は、1以上の好適な実施の形態を記載した。修正及び変更は、先の詳細な記載を読んで理解することで思いつく場合がある。本出願は、特許請求の範囲又は本発明の等価な概念に含まれる限りにおいて、全ての係る変更及び修正を含むように解釈されることを理解されたい。

Claims (12)

  1. アキシャル軸の周りの回転面におけるx線源の回転の間に取得された、測定されたコーンビームx線投影データセットから、軸方向に拡大された再構成画像を再構成するステップであり、前記再構成は、前記軸方向に沿って拡大された、前記測定されたコーンビームx線投影データセットの再構成可能体有する拡大された体積について実行され、前記測定されたコーンビームx線投影データセットの前記再構成可能体積は、その中で各ボクセルが少なくとも180°の角度範囲にわたり前記測定されたコーンビームのx線投影データセットの投影により調査される体積であり、前記拡大された体積は、前記コーンビームx線投影データセットが吸収を受け総体積を少なくとも含む、ステップと
    前記軸方向に拡大された再構成画像の選択された軸方向切り捨てにより、再構成画像を生成するステップと、
    を含み、
    前記軸方向に拡大された再構成画像は、前記測定されたコーンビームx線投影データセットを含む拡大された投影データセットから再構成され、
    前記拡大された投影データセットは、前記測定されたコーンビームx線投影データセットの投影の値を外挿することで、前記測定されたコーンビームx線投影データセットを拡大することで形成される、
    コンピュータ断層撮影の再構成方法。
  2. 前記拡大された投影データセットは、前記測定されたコーンビームx線投影データセットと、前記外挿により形成された、前記測定されたコーンビームx線投影データセットが吸収を受け得る前記総体積に交差する投影を有する更なる投影データセットとを含む、
    請求項1記載のコンピュータ断層撮影の再構成方法。
  3. 前記拡大された体積は、前記拡大された投影データセットの再構成可能な体積を含む、
    請求項1又は2記載のコンピュータ断層撮影の再構成方法。
  4. 前記拡大された体積は、前記測定されたコーンビームx線投影データセットが吸収を受け得る総体積に交差する全ての投影を含む拡大された投影データセットの再構成可能な体積を含む、
    請求項1記載のコンピュータ断層撮影の再構成方法。
  5. 前記測定されたコーンビームx線投影データセットは、偏心ジオメトリで測定されたコーンビームx線投影データセットを含む、
    請求項1乃至の何れか記載のコンピュータ断層撮影の再構成方法。
  6. 前記再構成は、繰返し再構成を実行することを有し、前記繰返し再構成は、再構成の体積を通して総重みが一定であるように重み付けの正規化を用いて、繰返し更新ステップの間に投影データ体積領域にて重み付けすることを含む、
    請求項1乃至の何れか記載のコンピュータ断層撮影の再構成方法。
  7. 前記再構成は、第一の収束繰返し更新を用いる1以上の繰返しと、それに後続する、第一の収束繰返し更新とは異なる第二の収束繰返し更新を用いる1以上の繰返しと、を含む繰返し再構成を実行することを含む、
    請求項1乃至の何れか記載のコンピュータ断層撮影の再構成方法。
  8. 前記再構成は、投影フィルタリング(BPF)再構成を実行することを含む、
    請求項1乃至の何れか記載のコンピュータ断層撮影の再構成方法。
  9. 前記投影フィルタリング(BPF)再構成を実行することは、
    前記測定されたコーンビームx線投影データセットを、隣接する投影ビューの投影間の有限の差分を含む新たなジオメトリに変換することを含む、
    請求項記載のコンピュータ断層撮影の再構成方法。
  10. 前記再構成画像を表示するステップを更に含む、
    請求項1乃至の何れか記載のコンピュータ断層撮影の再構成方法。
  11. 請求項1乃至の何れか記載のコンピュータ断層撮影の再構成方法を実行するプロセッサ。
  12. 請求項1乃至の何れか記載のコンピュータ断層撮影の再構成方法をデジタルプロセッサに実行させる命令を記憶した記録媒体。
JP2013511755A 2010-05-27 2011-04-25 偏心フラットパネル検出器による、コーンビーム・コンピュータ断層撮影画像形成のための改善された再構成 Active JP5899208B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34875710P 2010-05-27 2010-05-27
US61/348,757 2010-05-27
PCT/IB2011/051793 WO2011148277A2 (en) 2010-05-27 2011-04-25 Improved reconstruction for cone-beam computed tomography imaging with off-center flat panel detector

Publications (2)

Publication Number Publication Date
JP2013526953A JP2013526953A (ja) 2013-06-27
JP5899208B2 true JP5899208B2 (ja) 2016-04-06

Family

ID=44453962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013511755A Active JP5899208B2 (ja) 2010-05-27 2011-04-25 偏心フラットパネル検出器による、コーンビーム・コンピュータ断層撮影画像形成のための改善された再構成

Country Status (5)

Country Link
US (1) US9087404B2 (ja)
EP (1) EP2577608B1 (ja)
JP (1) JP5899208B2 (ja)
CN (1) CN102918565B (ja)
WO (1) WO2011148277A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11972510B2 (en) 2018-06-11 2024-04-30 Samsung Electronics Co., Ltd. Method for generating tomographic image and X-ray imaging apparatus according to same

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362292A (zh) * 2009-03-26 2012-02-22 皇家飞利浦电子股份有限公司 用于计算机断层摄影图像重建的方法和设备
DE102010028446A1 (de) * 2010-04-30 2011-11-03 Siemens Aktiengesellschaft Verfahren zur Rekonstruktion eines aktuellen dreidimensionalen Bilddatensatzes eines Objekts während eines Überwachungsvorgangs und Röntgeneinrichtung
DE102011076348B4 (de) * 2011-05-24 2014-02-13 Siemens Aktiengesellschaft Verfahren und Computertomographiesystem zur Erzeugung tomographischer Bilddatensätze
DE102011076547A1 (de) * 2011-05-26 2012-11-29 Siemens Aktiengesellschaft Verfahren zum Gewinnen eines 3D-Bilddatensatzes zu einem Bildobjekt
JP5878009B2 (ja) * 2011-12-12 2016-03-08 株式会社根本杏林堂 医療用画像処理ネットワークシステム
JP6000539B2 (ja) * 2011-12-12 2016-09-28 株式会社根本杏林堂 医療用画像処理システム
JP6000538B2 (ja) * 2011-12-12 2016-09-28 株式会社根本杏林堂 医療用画像処理システム
US8995735B2 (en) * 2012-05-23 2015-03-31 General Electric Company System and method for wide cone helical image reconstruction using blending of two reconstructions
CA2955331C (en) * 2013-03-13 2020-09-01 Okinawa Institute Of Science And Technology School Corporation Extended field iterative reconstruction technique (efirt) for correlated noise removal
TWI517093B (zh) 2013-10-11 2016-01-11 Univ Nat Yang Ming Computer tomography reconstruction method
US9974525B2 (en) 2014-10-31 2018-05-22 Covidien Lp Computed tomography enhanced fluoroscopic system, device, and method of utilizing the same
CN104545976B (zh) * 2014-12-30 2017-04-19 上海优益基医疗器械有限公司 计算机体层摄影方法和装置
KR101662067B1 (ko) * 2015-07-03 2016-10-05 한국과학기술원 듀얼 검출기를 이용한 엑스선 단층촬영장치 및 방법
US10716525B2 (en) 2015-08-06 2020-07-21 Covidien Lp System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction
US10702226B2 (en) 2015-08-06 2020-07-07 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
US10674982B2 (en) 2015-08-06 2020-06-09 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
CN108882897B (zh) 2015-10-16 2022-01-25 瓦里安医疗系统公司 一种对患者进行成像的方法和系统
US11172895B2 (en) 2015-12-07 2021-11-16 Covidien Lp Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated
US11051886B2 (en) 2016-09-27 2021-07-06 Covidien Lp Systems and methods for performing a surgical navigation procedure
JP6858259B2 (ja) * 2016-12-21 2021-04-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ショートスキャン偏心検出器x線トモグラフィのための冗長重み付け
WO2018115160A1 (en) * 2016-12-21 2018-06-28 Koninklijke Philips N.V. Scaled radiography reconstruction
CN106773513B (zh) * 2016-12-30 2018-07-20 成都信息工程大学 数字x射线摄影系统的射线自动追踪成像的方法
US10699448B2 (en) 2017-06-29 2020-06-30 Covidien Lp System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data
WO2019036446A2 (en) * 2017-08-17 2019-02-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services HYBRID TOMODENSITOMETRY SYSTEM WITH ADDITIONAL DETECTORS IMMEDIATELY NEAR THE BODY
CN111163697B (zh) 2017-10-10 2023-10-03 柯惠有限合伙公司 用于在荧光三维重构中识别和标记目标的系统和方法
US10905498B2 (en) 2018-02-08 2021-02-02 Covidien Lp System and method for catheter detection in fluoroscopic images and updating displayed position of catheter
CN109523602B (zh) * 2018-10-22 2023-02-17 上海联影医疗科技股份有限公司 迭代重建优化方法、装置和计算机可读介质
EP3660790A1 (en) 2018-11-28 2020-06-03 Koninklijke Philips N.V. System for reconstructing an image of an object
DE112020002334T5 (de) * 2019-05-10 2022-02-17 Koninklijke Philips N.V. Kegelstrahlartefaktkorrektur für gesteuerte bildgebung
CN110428370B (zh) * 2019-07-01 2021-11-23 北京理工大学 一种利用偏心旋转提高锥形束spect成像分辨率的方法
US11763498B2 (en) 2019-11-12 2023-09-19 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image reconstruction
CN110853742B (zh) * 2019-11-12 2023-03-28 上海联影医疗科技股份有限公司 一种图像重建方法、系统、装置及存储介质
DE102020203741A1 (de) * 2020-03-24 2021-09-30 Siemens Healthcare Gmbh Verfahren und Vorrichtung zum Bereitstellen eines artefaktreduzierten Röntgenbilddatensatzes
CN111476854B (zh) * 2020-04-03 2023-07-11 上海联影医疗科技股份有限公司 图像重建方法、装置、终端及存储介质
EP4216166A1 (en) * 2022-01-21 2023-07-26 Ecential Robotics Method and system for reconstructing a 3d medical image

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909476A (en) 1997-09-22 1999-06-01 University Of Iowa Research Foundation Iterative process for reconstructing cone-beam tomographic images
US6771733B2 (en) * 2001-08-16 2004-08-03 University Of Central Florida Method of reconstructing images for spiral and non-spiral computer tomography
US7305061B2 (en) 2001-08-16 2007-12-04 Research Foundation Of The University Of Central Florida Efficient image reconstruction algorithm for the circle and arc cone beam computer tomography
JP4282302B2 (ja) * 2001-10-25 2009-06-17 株式会社東芝 X線ct装置
US6490333B1 (en) * 2001-12-28 2002-12-03 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for cone-tilted parallel sampling and reconstruction
US6862335B2 (en) 2003-06-27 2005-03-01 General Electric Company System and method for iterative reconstruction of cone beam tomographic images
US7050527B2 (en) 2004-02-09 2006-05-23 G.E. Medical Systems Global Technology Company, Llc Methods and apparatus for artifact reduction in cone beam CT image reconstruction
US7372937B2 (en) * 2004-07-16 2008-05-13 University Of Iowa Research Foundation Systems and methods of non-standard spiral cone-beam computed tomograpy (CT)
JP5038643B2 (ja) * 2005-04-06 2012-10-03 株式会社東芝 画像表示装置
US8373652B2 (en) * 2005-04-06 2013-02-12 Kabushiki Kaisha Toshiba Image display apparatus and image display method
US7573973B2 (en) 2005-05-17 2009-08-11 General Electric Company Methods and systems to facilitate reducing cone beam artifacts in images
JP2007151849A (ja) 2005-12-06 2007-06-21 Ge Medical Systems Global Technology Co Llc X線ct撮影方法およびx線ct装置
CN100565586C (zh) * 2006-03-10 2009-12-02 Ge医疗系统环球技术有限公司 图像重建方法和x射线ct设备
EP1986551A1 (en) * 2006-04-19 2008-11-05 Philips Intellectual Property & Standards GmbH Cone beam computed tomography with multiple partial scanning trajectories
US7409033B2 (en) 2006-05-31 2008-08-05 The Board Of Trustees Of The Leland Stanford Junior University Tomographic reconstruction for x-ray cone-beam scan data
DE102006041033B4 (de) * 2006-09-01 2017-01-19 Siemens Healthcare Gmbh Verfahren zur Rekonstruktion eines dreidimensionalen Bildvolumens
WO2008039056A1 (en) * 2006-09-25 2008-04-03 Röntgen Technische Dienst Arrangement and method for non destructive measurement of wall thickness and surface shapes of objects with inner surface
DE102008031530B4 (de) * 2007-07-09 2020-01-09 Siemens Healthcare Gmbh Verfahren zur Korrektur von Trunkierungsartefakten
CN101135655B (zh) 2007-08-17 2010-05-26 东北大学 锥束ct对大物体成像的分块扫描重建和空间拼装方法
US8462911B2 (en) 2007-11-06 2013-06-11 Koninklijke Philips Electronics N.V. Nuclear medicine SPECT-CT machine with integrated asymmetric flat panel cone-beam CT and SPECT system
CN102362292A (zh) 2009-03-26 2012-02-22 皇家飞利浦电子股份有限公司 用于计算机断层摄影图像重建的方法和设备
EP2462562B1 (en) * 2009-08-06 2019-06-19 Koninklijke Philips N.V. Method and apparatus for generating computed tomography images with offset detector geometries
US8824760B2 (en) * 2009-10-20 2014-09-02 University Of Utah Research Foundation Modification and elimination of back projection weight during the CT image reconstruction
DE102010022305A1 (de) * 2010-06-01 2011-12-01 Siemens Aktiengesellschaft Iterative Rekonstruktion von CT-Bilern ohne Regularisierungsterm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11972510B2 (en) 2018-06-11 2024-04-30 Samsung Electronics Co., Ltd. Method for generating tomographic image and X-ray imaging apparatus according to same

Also Published As

Publication number Publication date
US20130077847A1 (en) 2013-03-28
WO2011148277A2 (en) 2011-12-01
JP2013526953A (ja) 2013-06-27
EP2577608A2 (en) 2013-04-10
CN102918565B (zh) 2016-06-01
CN102918565A (zh) 2013-02-06
WO2011148277A3 (en) 2012-02-23
US9087404B2 (en) 2015-07-21
EP2577608B1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5899208B2 (ja) 偏心フラットパネル検出器による、コーンビーム・コンピュータ断層撮影画像形成のための改善された再構成
JP5198443B2 (ja) 画像の分解能を高めるシステム及び方法
JP5601748B2 (ja) 対象の断層撮影表示を再構成するための方法および断層撮影装置
US8284892B2 (en) System and method for image reconstruction
JP4576193B2 (ja) 動的ヘリカル・スキャンによる画像形成の方法及び装置
JP4644785B2 (ja) コーンビームct画像再構成におけるアーチファクトを低減するための方法及び装置
US8718343B2 (en) Iterative reconstruction of CT images without a regularization term
US8761484B2 (en) Radiation image processing apparatus and method thereof
JP5348855B2 (ja) 対象の画像再構成方法およびその方法を実施するための装置
US10722178B2 (en) Method and apparatus for motion correction in CT imaging
US20110044559A1 (en) Image artifact reduction
JP2007117736A5 (ja)
JP2000093422A (ja) 円錐状放射線ビ―ムを使用するコンピュ―タ断層撮影方法
JP2016152916A (ja) X線コンピュータ断層撮像装置及び医用画像処理装置
US7602879B2 (en) Method for increasing the resolution of a CT image during image reconstruction
JP4977007B2 (ja) 複数の焦点取得方法及び装置
JP2020531083A (ja) 撮像システム拡張視野
Sunnegårdh et al. Regularized iterative weighted filtered backprojection for helical cone‐beam CT
JP2010504160A (ja) ヘリカル・コーン・ビームデータの射線整合方式による再構成
JP2004535873A (ja) ボリューム画像のノイズ軽減方法
JP2004535873A5 (ja)
Shechter et al. The frequency split method for helical cone‐beam reconstruction
Wang et al. Physics‐based iterative reconstruction for dual‐source and flying focal spot computed tomography
JP2006527618A (ja) 余剰な測定値を使用するコンピュータ断層撮影法
Gilat et al. Three-dimensional reconstruction algorithm for a reverse geometry volumetric CT system with a large-array scanned source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5899208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250