CN101135655B - 锥束ct对大物体成像的分块扫描重建和空间拼装方法 - Google Patents

锥束ct对大物体成像的分块扫描重建和空间拼装方法 Download PDF

Info

Publication number
CN101135655B
CN101135655B CN200710012485A CN200710012485A CN101135655B CN 101135655 B CN101135655 B CN 101135655B CN 200710012485 A CN200710012485 A CN 200710012485A CN 200710012485 A CN200710012485 A CN 200710012485A CN 101135655 B CN101135655 B CN 101135655B
Authority
CN
China
Prior art keywords
cone
image
piecemeal
carried out
rebuilding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710012485A
Other languages
English (en)
Other versions
CN101135655A (zh
Inventor
陈自宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN200710012485A priority Critical patent/CN101135655B/zh
Publication of CN101135655A publication Critical patent/CN101135655A/zh
Application granted granted Critical
Publication of CN101135655B publication Critical patent/CN101135655B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

锥束CT对大物体成像的分块扫描重建和空间拼装方法,该方法采用对大物体的分块扫描,对横向截断投影图像进行边界外延填补后进行局部体积重建,再对重建的图像块进行拼装得到大物体的三维断层体积图像。本发明的优点是利用现有设备就可实现对大物体的CT扫描,成本低,简单易操作。

Description

锥束CT对大物体成像的分块扫描重建和空间拼装方法
技术领域
本发明属于医疗仪器技术领域,特别涉及一种锥束CT对大物体成像的分块扫描重建和空间拼装方法。
背景技术
目前,以锥形射线束扫描的CT正在从科研走向产品开发阶段。美国Varian医学系统公司专门为锥束CT生产平面板探测器,目前在市场上畅销的平板探测器板为Paxscan4030CB。美国有多所大学和公司正在研究锥束CT系统,如美国罗切斯特大学,加州大学戴维斯分校,杜克大学,克利夫兰飞利浦医学系统公司等。他们的研发重点在算法和系统开发,及用PI-线重建理论对锥束螺旋扫描的局部体积重建,并没有涉及用锥束CT对大物体的断层成像。锥束CT扫描的视场很小,通常为10x10x10立方厘米,因而限制了其应用范围,只适合于对小物体进行三维体积成像。锥束CT常用的三维体积重建算法是美国三位科学家早在1984年在美国光学学会刊物上发表的FDK算法(详见L.A.Feldkamp,L.C.Davis,and J.W.Kress,“Practical cone-beam algorithm,”J.Opt.Soc.Amer.A,Optical Image Sci.,Vol.1,No.6,pp612-619,1984)。这种算法的本质是倾斜的扇束重建算法,表现为对探测器行数据的一维滤波和三维的背投影操作。卷积运算可以解释为相关运算,即为滑动窗口平均运算(详见A.C.Kak and M.Slaney,Principles of computerized tomographic imaging,New York:IEEE Press,1988)。国内已出现CT图像局部重建报道,采用改进的滤波器来实现局部重建。如徐茂林等人在2004年《计算物理》发表的《用一种新滤波函数作CT图像局部重建》的论文,报道了从横向截断投影图像进行CT局部重建的可能性,并研究了重建滤波器对局部重建的影响。目前国内外在锥束CT的研发和应用中,尚未发现对超过其扫描视场空间的大物体成像技术的应用。
发明内容
针对现有技术存在的不足,本发明提供一种锥束CT对大物体成像的分块扫描重建和空间拼装方法。本发明采用对大物体的分块扫描,对横向截断投影图像进行边界外延填补后进行局部体积重建,再对重建的图像块进行拼装得到大物体的三维断层体积图像。这一方法得到的结果是,在一些要求不高的情况下,解决了用锥束CT对大物体进行体积成像的现实问题。
本发明所依赖的硬件装置是一台锥束CT系统,其中包括X射线源,准直器,探测器,和转台。X射线源发出空间锥束射线,经准直器缩束后,穿过被扫描物体,最后被探测器接收。所用的探测器是平面板探测器,准直器是由金属片构成的快门矩形窗口,起限制射出锥束的空间范围。X射线源、准直器的中心点、所选扫描物的扫描区域中心点、平面板探测器的中心点共在同一直线上。
在锥束CT扫描系统中,从点X射线源发出的空间锥束经过准直器的限制,向被扫描物体投影,射线穿过物体后被二维的平面板探测器接收。如果X射线源以圆形轨道运动,这些旋转的空间锥束投影在旋转中心划出一个共同的扫描区域,叫做锥束扫描视场。由于受探测器板面尺寸的限制,锥束扫描视场很小,因而目前的锥束CT只能适用于小物体或小动物的三维体积成像。例如,目前常采用的平面板探测器是PaxScan4030CB,其接收面尺寸为40x30平方厘米,所形成的三维扫描视场大约为10x10x10立方厘米。在原理上,如果被扫描物体不能完全放入扫描视场,就不能用雷当变换实现对物体的三维重建。因为雷当变换是全局的,需要用到所有的投影图像,并且要求投影图像在空间是无截断的,即投影图像的边界完全在探测器接收范围之内,边界值为零,边界之外一致保持为零。
投影数据的截断表现为边界值不为零,在重建过程中的卷积运算后会引起强烈的吉布斯效应,表现为重建图像边缘处很亮的振荡的带。为减小吉布斯效应,需要对截断区域进行填补。填补的原则是对截断边界外的区域进行插值,保持边界的连续性和光滑性。如果截断重建核宽度为L,填补的宽度要求是截断重建核宽度的一半,即L/2。横向投影截断有两种情况,一种情况是探测器面积太小,由射线点源发出的扫描锥很大,不能完全覆盖物体。另一种情况是扫描对象限制在物体内部的一部份(如体内肿瘤区),通过射线准直器来缩小射线的扫描锥角,所得到的锥束投影是横向截断的。其特征是,接收的投影图像的边界为非零值。对严重截断的部分采用边界外延法进行数据填补,外延填补范围为截断重建核的半宽度。对轻微截断的情况,采用边界平滑下降法,即使边界值在保持连续光滑的条件下下降到零,填补宽度仍然为重建核的半宽度。本发明采用的重建滤波器为传统的滤波器,在以下文献中可查到,“A.C.Kak and M.Slaney,Principles of computerized tomographic imaging,New York:IEEE Press,1988”;本发明采用余弦函数作为光滑连续下降的外延函数。
下面说明一维情况的横向截断填补公式:
令T(x)表示探测器输出的投影图像的横向分布,M表示探测器宽度。那么,T(-M/2)≠0且T(-M/2-L/2)=0表示轻微左横向截断,T(M/2)≠0且T(M/2+L/2)=0表示轻微右横向截断,T(-M/2-L/2)≠0表示严重左横向截断,T(M/2+L/2)≠0表示严重右横向截断。令T*(x)表示填补后的投影图像,那么,严重截断下的边界外延填补法表示为
T * ( x ) = T ( - M 2 ) , - M + L 2 < x < - M 2 T ( x ) , - M 2 &le; x &le; M 2 T ( M 2 ) , M 2 < x < M + L 2 - - - ( 1 )
其中表示左边界外L/2的宽度范围用左边界值重复填补,右边界外L/2范围内用右边界值填补。
轻微截断情况下,用余弦函数使截断的边界值连续下降到零,依以下公式表示:
T * ( x ) = T ( - M 2 ) cos n [ &pi; L ( x + M 2 ) ] , - M + L 2 < x < - M 2 T ( x ) , - M 2 &le; x &le; M 2 T ( M 2 ) cos n [ &pi; L ( x - M 2 ) ] , M 2 < x < M + L 2 - - - ( 2 )
表示左边界外L/2范围内,左边界值以余弦函数的方式下降到零,右边界外L/2范围内,右边界值以余弦函数的方式下降到零,其中n=1,2,3,…;n越大,外插曲线下降越快。
在实际情况下,一个分块的投影图像可以是在一边是严重截断的,另一边是轻微截断的,或两边都是严重截断的,或两边都是轻微截断的。这些情况可以根据物的大小和扫描时分块的位置及重建核的宽度来决定。
本发明对大物体成像的分块扫描重建和空间拼装方法包括以下几个步骤:
步骤1:对大物体进行空间分块。对于长而宽的物体,若其宽度超过锥束CT的扫描视场范围,可采用横向二分法或三分法进行分块,其纵向截断用纵向步进的方式解决。对圆形大物体,采用三种分块方案:即四分法,五分法和九分法。
步骤2、把大物体的每个分块区域置于锥束CT的扫描视场区,即转台的旋转中心区域。采用空间平移的方法依次将各个分块区域安放在锥束CT的扫描视场区。
步骤3、对每个大物体的分区进行锥束扫描,获取锥束投影图像。
步骤4、对投影图像的截断区进行填补。
依照公式(1)、(2)对对投影图像的截断区进行填补,填补后的投影图像进行负对数变换。
步骤5、采用FDK算法或卷积背投法进行三维体积重建。
在截断的投影图像被填补后,可以用FDK算法进行三维的体积重建。其中的滤波操作可以用空域中的卷积方法,也可用频域中的乘积方法。原则上,对于截断重建核宽度L小于100的点列使用空域卷积算法,大于100点列的使用频域乘积方法,这样可以提高重建速度。
步骤6、对每个分块区域进行三维体积重建。根据分块方法不同,采用相应的空间拼装方法。当分块方法是对于长形物体采用的横向二分法和三分法分块方法,对圆形大物体,采用的四分法、九分法时,将各个分块区域的三维体积按照原分块方案进行拼装,由此组成一个完整的三维体积,即实现大物体的三维体积成像。对五分法的物体分块方案,其拼装方案有三种:一种是采用从五个分区重建的五个子方块进行拼装,一种是用上下分块条加上左中右三个子方块进行拼装,另一种是用左右分块条加上上中下三个子方块进行拼装。
本发明的优点是利用现有设备就可实现对大物体的CT扫描,成本低,简单易操作。
附图说明
图1为二维情况横向截断投影示意图;
(a)为探测器面积太小时的二维情况横向截断投影示意图;
(b)射线束受限时的二维情况横向截断投影示意图;
图2为截断投影的边界外延填补示意图;
图3为长物体在横向截断的情况下的扫描分块方法;
(a)横向二分法;
(b)横向三分法;
图4为大物体的分块方法;
(a)四分法;
(b)五分法;
(c)九分法;
图5为五分法情况下拼装方案;
图6为五分法请况下Shepp-Logan模具的分块局部重建;
图7为由图5重建的分块进行空间拼装的结果;
(a)四分法的拼装方案;
(b)五分法的拼装方案;
(c)九分法的拼装方案;
图8(a)乳房磨具无横向截断时的锥束投影图像;
(b)通过调整射线准直器引起的横向截断投影图像;
(c)边界外延填补后的横向截断后的投影图像;
图9为乳房模具的局部重建图像;
(a)显示横向截断投影无填补情况下的局部重建图像的x=0的断面图像;
(b)显示横向截断投影无填补情况下的局部重建图像的y=0的断面图像;
(c)显示横向截断投影无填补情况下的局部重建图像的z=0的断面图像;
(d)显示对(a)进行填补后的局部重建图像的x=0的断面图像;
(e)显示对(b)进行填补后的局部重建图像的y=0的断面图像;
(f)显示对(c)进行填补后的局部重建图像的z=0的断面图像;
图10本发明对大物体成像的分块扫描重建和空间拼装方法流程图;
图中:1-X射线源,2——平板探测器,3——扫描视场,4——准直器。
具体实施方式
下面结合附图及具体实施例对本发明作进一步说明;
本发明所依赖的硬件装置是一台锥束CT系统,主要包括X射线源1,准直器4,和平板探测器2。X射线源1发出空间锥束,所用的探测器是平面板探测器2,准直器4是金属片围成的一个矩形缩束窗口,X射线源、准直器的中心点、扫描视场3中心点、平面板探测器的中心点在同一直线上。
投影数据的截断表现为边界值不为零,在重建过程中的卷积运算后会引起强烈的吉布斯效应,表现为重建图像边缘处很亮的带。为减小吉布斯效应,需要对截断区域进行填补。填补的原则是对截断边界外的区域进行插值,保持边界的连续性和光滑性。填补的宽度要求是截断重建核宽度的一半,即L/2,如图2所示。横向投影截断有两种情况,一种情况是探测器面积太小,由射线点源发出的扫描锥很大,不能完全覆盖物体。另一种情况是扫描对象限制在物体内部的一部份(如体内肿瘤区),通过射线准直器来缩小射线的扫描锥角,所得到的锥束投影是横向截断的。其特征是,投影图像的边界为非零值。对严重截断的部分采用边界外延法进行数据填补,外延填补范围为截断重建核的半宽度。对轻微截断的情况,采用边界平滑下降法,即使边界值在保持连续光滑的条件下下降到零,填补宽度仍然为重建核的半宽度。采用余弦函数作为光滑连续下降的外延函数。
图3为长物体在横向截断的情况下的扫描分块方法;横向二分法,物体横向分成{1,2}两块;横向和三分法,物体横向分成{1,0,2}三块;一个锥束CT的扫描视场区是由平板探测器的尺寸和射线源到平板的投影几何确定的。被扫描物体的分块方案由扫描视场大小和物体的大小决定的。若物体宽度大于扫描视场宽度而又小于两倍的扫描视场宽度,采用图3(a)中的二分法。若物体宽度大于两倍的扫描视场宽度而又小于三倍的扫描视场宽度,采用图3(b)中的三分法。
对图3(a)的二分法分块扫描的物体填补算法:
块1的左边界是严重截断的,采用左边界数据外延L/2范围进行数据填补。
块2的右边界是严重截断的,采用右边界数据外延L/2范围进行数据填补。
对图3(b)的三分法分块扫描的物体填补算法:
块1的左边界是严重截断的,采用左边界数据外延L/2范围进行数据填补。
块2的右边界是严重截断的,采用右边界数据外延L/2范围进行数据填补。
块0的左右边界都是严重截断的,分别对左右边界数据各外延L/2范围进行数据填补。
对圆形大物体,采用图4给出三种分块方案:即四分法,五分法和九分法。其中五分法和九分法周边的分块的外边界可以是轻微截断的或无截断的。中心的区域是严重截断的。利用上述填补的方法,对中心区域用简单的边界外延法进行插值,对周边的轻微截断区域用连续下降函数进行插值。对填补后的图像用FDK算法进行三维体积重建。把独立重建的三维体积块按原来的分块方案拼装起来,既实现从局部到全局的大物体的体积重建。
对图4(a)的四分法,块1的下边界和左边界是严重截断的,块2的上边界和左边界是严重截断的,块3的右边界和上边界是严重截断的,块4的小边界和右边界是严重截断的。
对图4(b)的五分法,块1的左边界是严重截断的,上边界和小边界是轻微截断的;块2的上边界是严重截断的,左右边界是轻微截断的;块3的左边界是严重截断的,上下边界是轻微截断的;块4的下边界是严重截断的,左右边界是轻微截断的;块0的四周边界都是严重截断的。对轻微截断的边界,采用余弦函数使边界平滑的下降到零。
对图4(c)的九分法,块1的左边界是严重截断的,上边界和下边界是轻微截断的;块2的上边界和左边界是轻微截断的;块3的上边界是严重截断的,左右两边界是轻微截断的;块4的上右两边界是轻微截断的;块5的上下两边界是轻微截断的,左边界是严重截断的;块6的下右两边界是轻微截断的;块7的左右两边界是轻微截断的,下边界是严重截断的;块8的左下两两边界是轻微截断的;块0的四周边界都是严重截断的。
图5给出三种五分法的拼装方案。图5(a)是用图4(b)对应的五个分块进行的空间拼装示意图。图5(b)是用上分块条和下分块条加上左中右分块进行覆盖。图5(c)是用左分块条和右分块条加上上中下分块进行覆盖。由于五分法有空缺的部分,可以用重建图像的连续部分进行覆盖,由此可以减少扫描块的数目,从而减少扫描时间,扫描辐射剂量和重建时间。
具体实施例1:Shepp-Logan模具的分块局部重建,如图10所示:
步骤1、对Shepp-Logan模具进行空间分块,分成5块,如图5所示;
步骤2、把Shepp-Logan模具的每个分块区域置于锥束C T的扫描视场区,即转台的旋转中
心区域,采用空间平移的方法依次将各个分块区域安放在锥束CT的扫描视场区;
步骤3、对每个Shepp-Logan模具的分区进行锥束扫描,获取锥束投影图像。全围扫描获取大约300幅投影图像。半围扫描获取大约160幅图像。
步骤4、对投影图像的截断区进行填补,如图2所示;
步骤5、采用FDK方法或卷积背投法进行三维体积重建,此实施例中采用卷积背投影的方法
实现分块区域的局部三维体积重建,结果如图6所示,其中的虚线框表示锥束CT的扫描视场区域;
步骤6、对重建的五块区域进行空间拼装,实现Shepp-Logan模具的全局的三维体积成像,如图7所示,其中7(a)(b)(c)分别对应5(a)(b)(c)的拼装方案的结果。
具体实施例2:对乳房模具的投影截断图像的数据填补;
图8(a)乳房模具无横向截断时的锥束投影图像;图8(b)通过调整射线准直器引起的横向截断投影图像;图8(c)边界外延填补后的横向截断后的投影图像。
图9为乳房模具的局部重建图像;第一行显示横向截断投影无填补情况下(见图8(b))的局部重建,可以看到因为边界截断引起的吉布斯效应,即表现为重建图象中很亮的边缘;第二行显示对横向截断投影进行填补后(见图8(c))的局部重建,其中的吉布斯效应得到减小,在边界附近区域的重建性能得到改善。

Claims (4)

1.一种锥束CT对大物体成像的分块扫描重建和空间拼装方法,其特征在于采用对大物体的分块扫描,对横向截断投影图像进行边界外延填补后进行局部体积重建,再对重建的图像块进行拼装得到大物体的三维断层体积图像。
2.根据权利要求1所述的锥束CT对大物体成像的分块扫描重建和空间拼装方法,其特征在于所述对大物体进行分块扫描按以下步骤进行:
步骤1:对大物体进行空间分块;对于长而宽的物体,若其宽度超过锥束CT的扫描视场范围,可采用横向二分法或三分法进行分块,其纵向截断用纵向步进的方式解决;对圆形大物体,采用三种分块方案:即四分法,五分法和九分法;
步骤2、把大物体的每个分块区域置于锥束C T的扫描视场区,即转台的旋转中心区域,采用空间平移的方法依次将各个分块区域安放在锥束CT的扫描视场区;
步骤3、对每个大物体的分区进行锥束扫描,获取锥束投影图像。
3.根据权利要求1所述的锥束CT对大物体成像的分块扫描重建和空间拼装方法,其特征在于所述对截断投影图像进行边界外延填补依以下公式填补:
严重截断下的边界外延填补法表示为
T * ( x ) = T ( - M 2 ) , - M + L 2 < x < - M 2 T ( x ) , - M 2 &le; x &le; M 2 T ( M 2 ) , M 2 < x < M + L 2 - - - ( 1 )
轻微截断情况下,用余弦函数使截断的边界值连续下降到零,依以下公式表示:
T * ( x ) = T ( - M 2 ) cos n [ &pi; L ( x + M 2 ) ] , - M + L 2 < x < - M 2 T ( x ) , - M 2 &le; x &le; M 2 T ( M 2 ) cos n [ &pi; L ( x - M 2 ) ] , M 2 < x < M + L 2 - - - ( 2 )
T*(x)表示填补后的投影图像,T(x)表示探测器输出的投影图像的横向分布,M表示探测器宽度,n=1,2,3,…;那么,T(-M/2)≠0且T(-M/2-L/2)=0表示轻微左横向截断,T(M/2)≠0且T(M/2+L/2)=0表示轻微右横向截断,T(-M/2-L/2)≠0表示横向严重左截断,T(M/2+L/2)≠0表示严重右横向截断;n越大,外插曲线下降越快,L表示截断重建核宽度。
4.根据权利要求1所述的锥束CT对大物体成像的分块扫描重建和空间拼装方法,其特征在于所述对重建的图像块进行拼装的方法按以下步骤执行:
步骤1、采用FDK方法或卷积背投法进行三维体积重建;
在截断的投影图像被填补后,用FDK进行三维的体积重建;其中的滤波操作用空域中的卷积方法,或频域中的乘积方法;对于截断重建核宽度L小于100的点列使用空域卷积算法,大于100点列的使用频域乘积方法;
步骤2、对每个分块区域都进行扫描、对其截断投影图像的边界外延填补及三维体积重建后,根据分块方法不同,采用相应的拼装方法;对于长而宽的物体,采用横向二分法或三分法进行空间分块;对圆形大物体,采用四分法或九分法进行空间分块;在这时几种情况下,将各个分块区域的重建三维体积按照原分块方案进行拼装,由此组成一个完整的三维体积,即实现大物体的三维体积成像;对五分法的物体分块方案,其拼装方案有三种:一种是采用从五个分区重建的五个子方块进行拼装,一种是用上下两分块条加上左中右三个子方块进行拼装,另一种是用左右两分块条加上上中下三个子方块进行拼装。
CN200710012485A 2007-08-17 2007-08-17 锥束ct对大物体成像的分块扫描重建和空间拼装方法 Expired - Fee Related CN101135655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710012485A CN101135655B (zh) 2007-08-17 2007-08-17 锥束ct对大物体成像的分块扫描重建和空间拼装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710012485A CN101135655B (zh) 2007-08-17 2007-08-17 锥束ct对大物体成像的分块扫描重建和空间拼装方法

Publications (2)

Publication Number Publication Date
CN101135655A CN101135655A (zh) 2008-03-05
CN101135655B true CN101135655B (zh) 2010-05-26

Family

ID=39159855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710012485A Expired - Fee Related CN101135655B (zh) 2007-08-17 2007-08-17 锥束ct对大物体成像的分块扫描重建和空间拼装方法

Country Status (1)

Country Link
CN (1) CN101135655B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041196A1 (en) * 2008-10-10 2010-04-15 Koninklijke Philips Electronics N.V. High contrast imaging and fast imaging reconstruction
CN101634638B (zh) * 2009-08-18 2012-05-30 北京航空航天大学 一种探测器偏置的大视野锥束x射线倾斜扫描三维数字成像方法
JP5899208B2 (ja) * 2010-05-27 2016-04-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 偏心フラットパネル検出器による、コーンビーム・コンピュータ断層撮影画像形成のための改善された再構成
CN102509353B (zh) * 2011-11-22 2014-01-08 江阴广明信息技术有限公司 基于二维x射线图像序列滤波反投影的分块三维重建方法
CN105319225B (zh) * 2014-08-05 2019-06-07 中国科学院高能物理研究所 一种实现板状样品高分辨率大视野cl成像的扫描方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461651A (en) * 1993-11-17 1995-10-24 General Electric Company Reconstruction of images in cone beam scanning with rectangular detector elements
US6078638A (en) * 1998-09-30 2000-06-20 Siemens Corporate Research, Inc. Pixel grouping for filtering cone beam detector data during 3D image reconstruction
CN1286070A (zh) * 1999-08-16 2001-03-07 模拟技术公司 用于锥形束计算层析系统的过采样探测器阵列和再采样技术
CN1461409A (zh) * 2001-04-12 2003-12-10 清华大学 一种工业辐射成像中的图像分割识别方法
US7221733B1 (en) * 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461651A (en) * 1993-11-17 1995-10-24 General Electric Company Reconstruction of images in cone beam scanning with rectangular detector elements
US6078638A (en) * 1998-09-30 2000-06-20 Siemens Corporate Research, Inc. Pixel grouping for filtering cone beam detector data during 3D image reconstruction
CN1286070A (zh) * 1999-08-16 2001-03-07 模拟技术公司 用于锥形束计算层析系统的过采样探测器阵列和再采样技术
CN1461409A (zh) * 2001-04-12 2003-12-10 清华大学 一种工业辐射成像中的图像分割识别方法
US7221733B1 (en) * 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
唐杰等.圆轨道锥束重建中Radon空间数据缺失.清华大学学报(自然科学版)46 6.2006,46(6),809-812.
唐杰等.圆轨道锥束重建中Radon空间数据缺失.清华大学学报(自然科学版)46 6.2006,46(6),809-812. *
龚磊等.锥束射线RT扫描大视场三维CT成像方法研究.光学技术32 4.2006,32(4),567-570.
龚磊等.锥束射线RT扫描大视场三维CT成像方法研究.光学技术32 4.2006,32(4),567-570. *

Also Published As

Publication number Publication date
CN101135655A (zh) 2008-03-05

Similar Documents

Publication Publication Date Title
CN101135655B (zh) 锥束ct对大物体成像的分块扫描重建和空间拼装方法
Hsieh Computed tomography: principles, design, artifacts, and recent advances
US9775571B2 (en) Computed tomography (CT) image acquisition device and CT scan imaging system with G-shaped beam for two X-ray detector
CN100563569C (zh) 使用像素交错排列和焦点调节的计算机断层成像
EP0520778B1 (en) Tomographic image reconstruction using cross-plane rays
JP2005504571A (ja) 多機能コーンビーム結像装置とその方法
JP5763551B2 (ja) 物体を見るための装置および方法
US7873142B2 (en) Distortion correction method for linear scanning X-ray system
CN101005804A (zh) 用于评估旋转x射线投影的设备
DE102005023964A1 (de) Volumenvisualisierung mittels Texturverschiebung
JPH05258040A (ja) 画像補間方法及び装置
US20210287407A1 (en) Image reconstruction method for computed tomography
CN100415171C (zh) 使扫描图像中的模糊最小化的方法和设备
CN102946807A (zh) X射线ct装置及其控制方法
CN107822652A (zh) 用于重建光谱结果图像数据的方法
US20100202583A1 (en) Systems and Methods for Exact or Approximate Cardiac Computed Tomography
US6389097B1 (en) Multi-plate volumetric CT scanner gap compensation method and apparatus
JPH11235335A (ja) コンピュータ断層撮影システム
US20180286087A1 (en) Volume image reconstruction using projection decomposition
Agus et al. An interactive 3D medical visualization system based on a light field display
CN102376096B (zh) Pi线选取和采样方法和装置以及ct图像重建方法和装置
Lee et al. Artifacts associated with implementation of the Grangeat formula
CN104599316B (zh) 一种锥形束ct的断层方向可调整的三维图像重建方法及系统
US10966670B2 (en) Imaging system and method for dual-energy and computed tomography
KR101999678B1 (ko) X-선 단층촬영 시스템 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100526

Termination date: 20110817