JP5897013B2 - 高アスペクト比特徴部に金属を堆積させる方法 - Google Patents

高アスペクト比特徴部に金属を堆積させる方法 Download PDF

Info

Publication number
JP5897013B2
JP5897013B2 JP2013529193A JP2013529193A JP5897013B2 JP 5897013 B2 JP5897013 B2 JP 5897013B2 JP 2013529193 A JP2013529193 A JP 2013529193A JP 2013529193 A JP2013529193 A JP 2013529193A JP 5897013 B2 JP5897013 B2 JP 5897013B2
Authority
JP
Japan
Prior art keywords
substrate
opening
metal atoms
power
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013529193A
Other languages
English (en)
Japanese (ja)
Other versions
JP2013538295A (ja
JP2013538295A5 (enExample
Inventor
カール ブラウン
カール ブラウン
アラン リッチー
アラン リッチー
ジョン パイピトーン
ジョン パイピトーン
イン ルイ
イン ルイ
ダニエル ジェイ ホフマン
ダニエル ジェイ ホフマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2013538295A publication Critical patent/JP2013538295A/ja
Publication of JP2013538295A5 publication Critical patent/JP2013538295A5/ja
Application granted granted Critical
Publication of JP5897013B2 publication Critical patent/JP5897013B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
JP2013529193A 2010-09-17 2011-09-06 高アスペクト比特徴部に金属を堆積させる方法 Active JP5897013B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US38402810P 2010-09-17 2010-09-17
US61/384,028 2010-09-17
US13/223,788 2011-09-01
US13/223,788 US8563428B2 (en) 2010-09-17 2011-09-01 Methods for depositing metal in high aspect ratio features
PCT/US2011/050507 WO2012036936A2 (en) 2010-09-17 2011-09-06 Methods for depositing metal in high aspect ratio features

Publications (3)

Publication Number Publication Date
JP2013538295A JP2013538295A (ja) 2013-10-10
JP2013538295A5 JP2013538295A5 (enExample) 2014-10-30
JP5897013B2 true JP5897013B2 (ja) 2016-03-30

Family

ID=45832171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013529193A Active JP5897013B2 (ja) 2010-09-17 2011-09-06 高アスペクト比特徴部に金属を堆積させる方法

Country Status (6)

Country Link
US (1) US8563428B2 (enExample)
JP (1) JP5897013B2 (enExample)
KR (1) KR20140001203A (enExample)
CN (1) CN103180483B (enExample)
TW (1) TWI491748B (enExample)
WO (1) WO2012036936A2 (enExample)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9771648B2 (en) 2004-08-13 2017-09-26 Zond, Inc. Method of ionized physical vapor deposition sputter coating high aspect-ratio structures
JP6082165B2 (ja) * 2014-05-22 2017-02-15 キヤノンアネルバ株式会社 金属膜および金属膜の成膜方法
JP6329839B2 (ja) * 2014-07-29 2018-05-23 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US10927449B2 (en) * 2017-01-25 2021-02-23 Applied Materials, Inc. Extension of PVD chamber with multiple reaction gases, high bias power, and high power impulse source for deposition, implantation, and treatment
US10388533B2 (en) * 2017-06-16 2019-08-20 Applied Materials, Inc. Process integration method to tune resistivity of nickel silicide
WO2019060069A1 (en) * 2017-09-21 2019-03-28 Applied Materials, Inc. High aspect ratio deposition
US20200135464A1 (en) * 2018-10-30 2020-04-30 Applied Materials, Inc. Methods and apparatus for patterning substrates using asymmetric physical vapor deposition
US11361947B2 (en) * 2019-01-09 2022-06-14 Tokyo Electron Limited Apparatus for plasma processing and method of etching
CN111524782B (zh) * 2019-02-05 2023-07-25 东京毅力科创株式会社 等离子体处理装置
US11674216B2 (en) * 2019-12-24 2023-06-13 Applied Materials, Inc. Methods and apparatus for depositing aluminum by physical vapor deposition (PVD) with controlled cooling
JP7374826B2 (ja) * 2020-03-19 2023-11-07 キオクシア株式会社 テンプレートの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130832A (ja) * 1996-11-01 1998-05-19 Anelva Corp 低圧遠隔スパッタ装置
KR100365643B1 (ko) * 2000-10-09 2002-12-26 삼성전자 주식회사 반도체 장치의 다마신 배선 형성 방법 및 그에 의해형성된 다마신 배선 구조체
US6642146B1 (en) * 2001-03-13 2003-11-04 Novellus Systems, Inc. Method of depositing copper seed on semiconductor substrates
US20060014378A1 (en) 2004-07-14 2006-01-19 Sanjeev Aggarwal System and method to form improved seed layer
US7399943B2 (en) * 2004-10-05 2008-07-15 Applied Materials, Inc. Apparatus for metal plasma vapor deposition and re-sputter with source and bias power frequencies applied through the workpiece
JP4456027B2 (ja) * 2005-03-25 2010-04-28 Okiセミコンダクタ株式会社 貫通導電体の製造方法
US7682966B1 (en) * 2007-02-01 2010-03-23 Novellus Systems, Inc. Multistep method of depositing metal seed layers
US20080190760A1 (en) * 2007-02-08 2008-08-14 Applied Materials, Inc. Resputtered copper seed layer
US7629255B2 (en) 2007-06-04 2009-12-08 Lam Research Corporation Method for reducing microloading in etching high aspect ratio structures
US9856558B2 (en) * 2008-03-14 2018-01-02 Applied Materials, Inc. Physical vapor deposition method with a source of isotropic ion velocity distribution at the wafer surface
WO2010004890A1 (ja) * 2008-07-11 2010-01-14 キヤノンアネルバ株式会社 薄膜の成膜方法
US8070925B2 (en) * 2008-10-17 2011-12-06 Applied Materials, Inc. Physical vapor deposition reactor with circularly symmetric RF feed and DC feed to the sputter target
JP2010129952A (ja) * 2008-12-01 2010-06-10 Nippon Telegr & Teleph Corp <Ntt> 貫通電極配線の製造方法
US8846451B2 (en) 2010-07-30 2014-09-30 Applied Materials, Inc. Methods for depositing metal in high aspect ratio features

Also Published As

Publication number Publication date
TWI491748B (zh) 2015-07-11
JP2013538295A (ja) 2013-10-10
TW201226600A (en) 2012-07-01
US8563428B2 (en) 2013-10-22
WO2012036936A2 (en) 2012-03-22
CN103180483A (zh) 2013-06-26
CN103180483B (zh) 2015-09-23
US20120149192A1 (en) 2012-06-14
KR20140001203A (ko) 2014-01-06
WO2012036936A3 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5897013B2 (ja) 高アスペクト比特徴部に金属を堆積させる方法
JP5889894B2 (ja) 高アスペクト比の特徴要素に金属を堆積する方法
CN101124350B (zh) 具有可施加至靶材的射频电源的物理气相沉积等离子体反应器
US9633839B2 (en) Methods for depositing dielectric films via physical vapor deposition processes
US20080190760A1 (en) Resputtered copper seed layer
TW201220363A (en) Methods for forming layers on a substrate
KR101600995B1 (ko) 상호연결 구조물들을 형성하기 위한 방법들
JP7155388B2 (ja) ニッケルシリサイド材料を生成する方法
US8835308B2 (en) Methods for depositing materials in high aspect ratio features
US20140216922A1 (en) Rf delivery system with dual matching networks with capacitive tuning and power switching
US11670485B2 (en) Methods and apparatus for depositing aluminum by physical vapor deposition (PVD)
WO2006083929A2 (en) A physical vapor deposition plasma reactor with rf source power applied to the target
JP2023533627A (ja) 基板を処理するための方法および装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R150 Certificate of patent or registration of utility model

Ref document number: 5897013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250