JP5896351B2 - Foundation structure and foundation construction method - Google Patents

Foundation structure and foundation construction method Download PDF

Info

Publication number
JP5896351B2
JP5896351B2 JP2011277855A JP2011277855A JP5896351B2 JP 5896351 B2 JP5896351 B2 JP 5896351B2 JP 2011277855 A JP2011277855 A JP 2011277855A JP 2011277855 A JP2011277855 A JP 2011277855A JP 5896351 B2 JP5896351 B2 JP 5896351B2
Authority
JP
Japan
Prior art keywords
foundation
permeable layer
water permeable
wall
underground wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011277855A
Other languages
Japanese (ja)
Other versions
JP2013129956A (en
Inventor
雄一 真崎
雄一 真崎
Original Assignee
株式会社グレイプ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グレイプ filed Critical 株式会社グレイプ
Priority to JP2011277855A priority Critical patent/JP5896351B2/en
Publication of JP2013129956A publication Critical patent/JP2013129956A/en
Application granted granted Critical
Publication of JP5896351B2 publication Critical patent/JP5896351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、基礎構造及び基礎の構築方法に係り、特に、建物の上部構造と連結される基礎本体と、該基礎本体から下方の地盤内に延びて設けられる地中壁と、を備えた基礎構造、その基礎構造に係る基礎の構築方法に関するものである。   The present invention relates to a foundation structure and a foundation construction method, and in particular, a foundation provided with a foundation main body connected to an upper structure of a building, and an underground wall provided to extend from the foundation main body into a lower ground. The present invention relates to a structure and a foundation construction method related to the foundation structure.

従来、建物として比較的小規模な戸建住宅の基礎としては、べた基礎や布基礎、独立基礎など、地盤上に直接載置される直接基礎が一般的であった。このような直接基礎の場合、その載置される地盤が軟弱地盤であったり地震時に液状化を起こす可能性がある地盤であったりすると、地盤そのものが支持力を失い、基礎及び建物が傾斜してしまうことがある。このように基礎を含めた建物全体が傾斜してしまうと、その補修が大掛かりになって補修費用も多大となるため、軟弱地盤や液状化地盤にも対応可能な基礎構造が提案されている(例えば、特許文献1、2参照)。   Conventionally, as a foundation of a relatively small detached house as a building, a direct foundation placed directly on the ground such as a solid foundation, a cloth foundation, and an independent foundation has been generally used. In the case of such a direct foundation, if the ground on which it is placed is a soft ground or a ground that may cause liquefaction in the event of an earthquake, the ground itself loses its supporting force, and the foundation and the building are inclined. May end up. If the entire building including the foundation inclines in this way, the repair becomes large and the repair cost becomes large, so a foundation structure that can handle soft ground and liquefied ground has been proposed ( For example, see Patent Documents 1 and 2).

特許文献1に記載の基礎構造は、建物(構造物)の底版から地盤中に貫入させた支持体(杭部)と、この支持体に設けられた浮力体と、支持体に連結されて支持層に設けられたアンカー体と、を備える。この基礎構造は、地盤が液状化して支持力が低下し、過剰間隙水圧により地下水が上昇した場合でも、この地下水による浮力を浮力体に作用させて支持力を得るとともに、アンカー体によって建物の傾きを防止しようとする技術である。   The foundation structure described in Patent Document 1 is supported by being connected to a support body (pile part) that penetrates into the ground from the bottom plate of a building (structure), a buoyancy body provided on the support body, and the support body. An anchor body provided in the layer. In this foundation structure, even if the ground is liquefied and the bearing capacity is reduced, and groundwater rises due to excessive pore water pressure, the buoyancy due to this groundwater acts on the buoyant body to obtain the bearing capacity, and the anchor body tilts the building. It is a technology that tries to prevent.

特許文献2に記載の基礎構造は、建物を支持する基礎と、この基礎の側面を囲んで地盤に貫入された矢板と、基礎の下側かつ矢板で囲まれた領域に設けられる軽量材と、を備える。この基礎構造は、地盤が液状化して支持力が低下した場合に、基礎と矢板を一体的に挙動させることで、基礎及び建物の傾きを抑制し、地下水が上昇した場合にも、軽量材を介して地下水の浮力を基礎に作用させることで、支持力を確保しようとする技術である。   The foundation structure described in Patent Document 2 includes a foundation that supports a building, a sheet pile that surrounds the side of the foundation and penetrates into the ground, and a lightweight material that is provided in an area surrounded by the sheet pile below the foundation, Is provided. In this foundation structure, when the ground is liquefied and the bearing capacity is reduced, the foundation and the sheet pile are made to behave in an integrated manner, thereby suppressing the inclination of the foundation and the building. It is a technology that tries to secure the supporting force by acting on the foundation of the buoyancy of groundwater.

特開平6−240694号公報JP-A-6-240694 特開2008−101379号公報JP 2008-101379 A

しかしながら、特許文献1に記載された基礎構造のように、地盤中に浮力体とアンカー体とを構築するためには、その施工が非常に大掛かりになってしまい、コスト増加が避けられず、比較的小規模な戸建住宅への適用が困難である。また、特許文献2に記載された基礎構造のように、基礎を矢板で囲むとともに、その囲まれた領域に軽量材を設けると、地下水が常に滞留することとなって、滞留した地下水が腐敗あるいは劣化することがある。また、地盤が液状化した際の地下水の浮力や、地下水と砂質土とが混濁した流動体の浮力は、力学的に安定したものではないため、浮力体や基礎底面に作用する浮力が一定せず、かつ建物の平面的な位置によっても浮力が異なるために、建物全体の傾きを効果的に抑制することが困難である。   However, as in the foundation structure described in Patent Document 1, in order to construct a buoyancy body and an anchor body in the ground, the construction becomes very large, and an increase in cost is inevitable. It is difficult to apply to small-scale detached houses. Moreover, like the foundation structure described in patent document 2, when a foundation is enclosed with a sheet pile and a lightweight material is provided in the enclosed area, groundwater will always stay, and the retained groundwater will rot or May deteriorate. In addition, the buoyancy of the groundwater when the ground is liquefied and the buoyancy of the fluid in which the groundwater and sandy soil are turbid are not mechanically stable. In addition, since the buoyancy varies depending on the planar position of the building, it is difficult to effectively suppress the inclination of the entire building.

したがって、本発明は、地盤が液状化した場合であっても建物全体の傾きを抑制することができる基礎構造及び基礎の構築方法を提供することを目的とする。   Therefore, an object of this invention is to provide the foundation construction method and foundation construction method which can suppress the inclination of the whole building, even when the ground is liquefied.

上記目的を達成するために請求項1に記載の基礎構造は、建物の上部構造と連結される基礎本体と、該基礎本体から下方の地盤内に延びて設けられる地中壁と、を備えた基礎構造であって、前記基礎本体は、前記上部構造の外周に沿って設けられる基礎立上りと、該基礎立上りの下端部と一体に連結される基礎底版と、を有し、該基礎本体と地盤との間に透水層が設けられ、前記地中壁は、鉄筋コンクリート壁か又はソイルセメント壁からなり、互いに直交する水平二方向のうち第一方向に沿った第一壁部と、第二方向に沿った第二壁部と、を有し、該第一及び第二の壁部で形成される水平断面が一体的に連続した十字形の開断面とされ、かつ、該第一及び第二の壁部の上部が前記基礎底版に連結され、該地中壁と前記基礎本体とが一体化され、前記透水層は、前記基礎底版の下面に沿って設けられる第一透水層と、前記基礎立上りの外側面に沿って設けられる第二透水層と、を有し、該第一及び第二の透水層がそれぞれ複数の土嚢材を積層して構成され、前記土嚢材は、透水性を有した所定寸法の袋に粒状物を詰めて構成されていることを特徴とする。 In order to achieve the above object, the foundation structure according to claim 1 includes a foundation body connected to the upper structure of the building, and an underground wall provided to extend from the foundation body into the ground below. A foundation structure, wherein the foundation body includes a foundation rise provided along an outer periphery of the upper structure, and a foundation bottom plate integrally connected to a lower end portion of the foundation rise, the foundation body and the ground The underground wall is made of reinforced concrete wall or soil cement wall, and the first wall portion along the first direction in two horizontal directions orthogonal to each other, and the second wall in the second direction. has a second wall portion along the horizontal cross section formed by said first and second wall portion is a cruciform opening cross-section integrally and continuously, and, said first and second The upper part of the wall is connected to the foundation bottom plate, and the underground wall and the foundation body are integrated. The aquifer comprises a first permeable layer is provided along the lower surface of the base bottom plate, anda second permeable layer provided along the outer surface of said base rising, said first and second Each of the water permeable layers is formed by laminating a plurality of sandbag materials, and the sandbag materials are configured by packing granular materials in bags of a predetermined size having water permeability.

請求項2に記載の基礎構造は、請求項1に記載された基礎構造において、前記地中壁は、前記基礎底版の第一方向に沿った全幅と略同一長さを有して前記第一壁部が形成され、前記基礎底版の第二方向に沿った全幅と略同一長さを有して前記第二壁部が形成されていることを特徴とする。 The foundation structure according to claim 2 is the foundation structure according to claim 1, wherein the underground wall has the same length as the entire width along the first direction of the foundation bottom slab. A wall portion is formed, and the second wall portion is formed to have substantially the same length as the entire width along the second direction of the foundation bottom plate .

請求項3に記載の基礎構造は、請求項1又は2に記載された基礎構造において、前記上部構造と、前記基礎本体と、前記地中壁と、の重量比が1:1:1.5〜2.0程度に設定されていることを特徴とする。   The foundation structure according to claim 3 is the foundation structure according to claim 1 or 2, wherein a weight ratio of the upper structure, the foundation body, and the underground wall is 1: 1: 1.5. It is characterized by being set to about 2.0.

請求項4に記載の基礎構造は、請求項1〜3のいずれか一項に記載された基礎構造において、前記透水層が前記地中壁の側面と地盤との間に設けられるとともに前記土嚢材を積層した第三透水層を有し、該第三透水層が前記第一透水層に接続されていることを特徴とする。   The foundation structure according to claim 4 is the foundation structure according to any one of claims 1 to 3, wherein the permeable layer is provided between a side surface of the underground wall and the ground, and the sandbag material. The third water permeable layer is connected to the first water permeable layer.

請求項5に記載の基礎の構築方法は、請求項1〜4のいずれか一項に記載の基礎構造に係る基礎の構築方法であって、前記地中壁の寸法に応じて地盤を掘削し、該地中壁を構築するとともに、該地中壁と前記基礎本体とを連結する連結材を設け、前記基礎本体の基礎底版が構築される領域の地盤上に前記複数の土嚢材を積層して前記第一透水層を形成し、前記第一透水層の上側に前記基礎底版を構築するとともに、該基礎底版と一体に前記基礎立上りを形成しかつ前記連結材を連結して前記基礎本体を構築し、前記基礎立上りの外側面に沿って前記複数の土嚢材を積層して前記第二透水層を形成することを特徴とする。   The foundation construction method according to claim 5 is a foundation construction method according to any one of claims 1 to 4, wherein the ground is excavated according to the dimensions of the underground wall. And constructing the underground wall, providing a connecting material for connecting the underground wall and the foundation body, and laminating the plurality of sandbag materials on the ground in the area where the foundation bottom plate of the foundation body is constructed. Forming the first water permeable layer, constructing the foundation bottom plate above the first water permeable layer, forming the foundation rising integrally with the foundation bottom plate, and connecting the connecting member to The second water-permeable layer is formed by stacking the plurality of sandbag materials along the outer surface of the foundation rising.

請求項6に記載の基礎の構築方法は、請求項5に記載の基礎の構築方法において、前記地中壁を構築した後に、該地中壁の側面と前記掘削した地盤との間に前記複数の土嚢材を積層して第三透水層を形成することを特徴とする。   The foundation construction method according to claim 6 is the foundation construction method according to claim 5, wherein after the underground wall is constructed, the plurality of foundations are provided between a side surface of the underground wall and the excavated ground. A third water-permeable layer is formed by laminating the sandbag materials.

請求項1に記載された発明によれば、基礎本体から地盤内に延びる地中壁を設けたことで、地震時に地盤が液状化した場合であって、地震力によって建物が揺れた場合でも、地震後に、地中壁の重量がカウンターウェイトとして作用することで、建物全体の傾きを抑制することができる。また、地中壁の水平断面が開断面に形成されていることで、地中壁と液状化した地盤とが一体的に挙動せず、即ち、流動化した地盤に対して地中壁が抵抗板(制動板)となり、建物の揺れを抑制する制震効果を期待することもできる。さらに、地中壁が開断面であることから、地下水が滞留することがなく、その腐敗や劣化を防止することができる。   According to the invention described in claim 1, by providing an underground wall extending from the foundation body into the ground, the ground is liquefied during an earthquake, and even when the building is shaken by the seismic force, After the earthquake, the weight of the underground wall acts as a counterweight, so that the inclination of the entire building can be suppressed. In addition, since the horizontal section of the underground wall is formed as an open section, the underground wall and the liquefied ground do not behave integrally, that is, the underground wall resists the fluidized ground. It becomes a plate (braking plate) and can be expected to have a vibration control effect that suppresses the shaking of the building. Furthermore, since the underground wall has an open cross section, the groundwater does not stay and can be prevented from decaying or deteriorating.

さらに、複数の土嚢材を積層して第一及び第二の透水層を構成したことで、地震時の地盤の液状化によって過剰間隙水圧が発生して地下水位が上昇した場合でも、この地下水を透水層から地上へ排水することができる。従って、地下水による過大な浮力が基礎底版に作用することを防止して、不均一な浮力による建物の傾きを抑制することができる。また、透水性を有した袋に粒状物を詰めて土嚢材が構成され、このような土嚢材を複数積層して第一及び第二の透水層が構成されているので、土嚢材同士の隙間が土砂で埋まったとしても、土嚢材の袋及び内部の粒状物による透水性が確保でき、地下水をより確実に排水することができる。なお、土嚢材としては、袋に詰める粒状物としては、土や砂、砕石等に限らず、ガラス片や樹脂片等であってもよく、化学変化や継時変化が少ない素材であって耐荷重性に優れたものが好ましい。   Furthermore, since the first and second permeable layers were constructed by laminating a plurality of sandbag materials, even when excess pore water pressure was generated due to liquefaction of the ground during an earthquake, the groundwater level was increased. It can be drained from the permeable layer to the ground. Therefore, it is possible to prevent excessive buoyancy due to groundwater from acting on the foundation bottom slab, and to suppress the inclination of the building due to uneven buoyancy. In addition, a sandbag material is configured by packing a granular material in a bag having water permeability, and the first and second water permeable layers are configured by stacking a plurality of such sandbag materials. Even if it is buried with earth and sand, water permeability can be ensured by the bag of sandbag material and the internal granular material, and the groundwater can be drained more reliably. Note that the sandbag material is not limited to soil, sand, crushed stone, etc., but may be glass pieces, resin pieces, etc. Those excellent in loadability are preferred.

また、地中壁が鉄筋コンクリート壁やソイルセメント壁から形成され、その水平断面が二つの鉛直面に対して面対称に形成されていることで、流動化した地盤に対する制動板として地中壁が作用する際に、その制動力を建物全体の平面方向にバランスよく発揮させることができる。ここで、水平二方向に沿った鉛直面に対して面対称に形成された地中壁の断面形状としては、十字形例示できる。また、例えば、卍字形のように、十字形に交差した第一及び第二の壁部の先端部や中間部から突出したリブ状の部分を有した形態であって、二つの鉛直面に対して完全に面対称ではない水平断面であっても、地中壁の主要部分である第一及び第二の壁部で構成される水平断面が面対称に形成されていればよい。 In addition , the underground wall is made of reinforced concrete wall or soil cement wall, and its horizontal section is symmetrical with respect to two vertical planes, so that the underground wall acts as a braking plate for fluidized ground. In doing so, the braking force can be exerted in a balanced manner in the plane direction of the entire building. Here, the sectional shape of the underground wall formed in plane symmetry with respect to the vertical plane along the horizontal two directions, cross can be exemplified. Also, for example, a shape having rib-like portions protruding from the tip and middle portions of the first and second wall portions intersecting in a cruciform shape, such as a square shape, with respect to two vertical surfaces Even if the horizontal cross section is not completely plane symmetric, the horizontal cross section constituted by the first and second wall portions, which are the main portions of the underground wall, may be formed plane symmetric.

請求項3に記載された発明によれば、上部構造と基礎本体と地中壁との重量比を1:1:1.5〜2.0程度に設定することで、建物全体を低重心化することができ、地震時における建物の揺れを低減させるとともに、建物全体の傾きをより効果的に抑制することができる。なお、重量比としては、多少の誤差を含んでいてもよいことは当然であり、前記比率の±20%の誤差は本発明の範囲内であり、該比率の±10%以内に設定されていることが好ましい。   According to the invention described in claim 3, the center of gravity of the entire building is lowered by setting the weight ratio of the superstructure, the foundation main body, and the underground wall to about 1: 1: 1.5 to 2.0. It is possible to reduce the shaking of the building at the time of an earthquake and to more effectively suppress the inclination of the entire building. As a matter of course, the weight ratio may include some errors, and an error of ± 20% of the ratio is within the scope of the present invention, and is set within ± 10% of the ratio. Preferably it is.

請求項4に記載された発明によれば、地中壁の側面と地盤との間に第三透水層を設け、この第三透水層を第一透水層に接続したことで、地中壁の側面位置における地下水を第三透水層、第一透水層及び第二透水層を通して地上へ確実に排水することができる。従って、基礎底版に過剰かつ不均一な浮力を作用させることなく、建物の傾きをよく確実に抑制することができる。   According to the invention described in claim 4, by providing the third permeable layer between the side surface of the underground wall and the ground, and connecting the third permeable layer to the first permeable layer, The groundwater at the side surface position can be reliably drained to the ground through the third permeable layer, the first permeable layer, and the second permeable layer. Therefore, the inclination of the building can be suppressed well and reliably without causing excessive and non-uniform buoyancy to act on the foundation bottom plate.

請求項5に記載された発明によれば、地中壁を構築してから第一透水層を形成し、その後に基礎底版及び基礎立上りを形成してから記第二透水層を形成することで、地中壁と基礎本体を連結材で確実に連結して一体化することができるとともに、第一及び第二の透水層における土嚢材の積層作業を容易かつ確実に実施することができ、施工性を向上させることができる。   According to the invention described in claim 5, the first permeable layer is formed after the underground wall is constructed, and then the second permeable layer is formed after the foundation bottom plate and the foundation rising are formed. In addition, the underground wall and the foundation body can be reliably connected and integrated with a connecting material, and the sandbag material can be easily and reliably stacked in the first and second permeable layers. Can be improved.

請求項6に記載された発明によれば、地中壁の構築後に第三透水層を形成する際に、地中壁の側面と掘削した地盤との間に地表から土嚢材を投入して積層するような施工手順を採用することができ、重機等を用いなくても第三透水層を容易に形成することができる。従って、地盤を広い範囲で掘削しなくても第三透水層が形成できるので、地中壁の周囲の限られた範囲を掘削すればよいことから、排土量が低減できて施工手間及び施工コストの削減を図ることができる。   According to the invention described in claim 6, when the third permeable layer is formed after the construction of the underground wall, the sandbag material is thrown from the ground surface between the side surface of the underground wall and the excavated ground and laminated. Such a construction procedure can be adopted, and the third water permeable layer can be easily formed without using heavy machinery or the like. Therefore, since the third permeable layer can be formed without excavating the ground over a wide area, it is only necessary to excavate a limited area around the underground wall, so the amount of soil discharged can be reduced, and the construction labor and construction can be reduced. Cost can be reduced.

本発明の一実施形態に係る建物の基礎構造を示す斜視図である。It is a perspective view which shows the foundation structure of the building which concerns on one Embodiment of this invention. 前記建物の下部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the lower part of the said building. 前記建物の基礎部分を下方から見上げた横断面図である。It is the cross-sectional view which looked up at the foundation part of the building from the lower part. 前記建物の基礎を構築する構築手順を示す斜視図である。It is a perspective view which shows the construction procedure which builds the foundation of the said building. 図4に続く前記基礎の構築手順を示す斜視図である。It is a perspective view which shows the construction procedure of the said foundation following FIG. 図5に続く前記基礎の構築手順を示す斜視図である。It is a perspective view which shows the construction procedure of the said foundation following FIG. 図6に続く前記基礎の構築手順を示す斜視図である。It is a perspective view which shows the construction procedure of the said foundation following FIG. 図7に続く前記基礎の構築手順を示す斜視図である。It is a perspective view which shows the construction procedure of the said foundation following FIG. 図8に続く前記基礎の構築手順を示す斜視図である。It is a perspective view which shows the construction procedure of the said foundation following FIG. 前記基礎構造の変形例を示す縦断面図である It is a longitudinal cross-sectional view which shows the modification of the said foundation structure .

以下、本発明の一実施形態にかかる基礎構造を、図1〜図3に基づいて説明する。本実施形態に係る基礎構造は、建物1の上部構造としての建物本体2を支持するものであって、建物1は、戸建住宅やアパート等に利用されるものである。建物本体2は、木造や軽量鉄骨造などの比較的小規模かつ軽量な2〜3階建てであって、図3に示すように、水平二方向であるX,Y方向に沿った矩形状かつ整形な平面形状を有している。ここで、図3に一点鎖線で示す矩形領域L1は、建物1を構築するための敷地内における施工エリアを示し、ニ点鎖線で示す矩形領域L2は、建物本体2の平面形状を示している。また、建物1は、地盤G上に構築され、この地盤Gを地表GLから鉛直方向であるZ方向下方に掘削して、後述する基礎本体3、地中壁4及び透水層5が構築される。   Hereinafter, the basic structure concerning one Embodiment of this invention is demonstrated based on FIGS. 1-3. The foundation structure according to the present embodiment supports a building body 2 as an upper structure of the building 1, and the building 1 is used for a detached house, an apartment, or the like. The building body 2 is a relatively small and light 2-3-story building such as a wooden structure or a lightweight steel structure, and has a rectangular shape along the X and Y directions which are two horizontal directions as shown in FIG. It has a well-shaped planar shape. Here, a rectangular area L1 indicated by a one-dot chain line in FIG. 3 indicates a construction area in the site for constructing the building 1, and a rectangular area L2 indicated by a two-dot chain line indicates a planar shape of the building body 2. . The building 1 is constructed on the ground G, and this ground G is excavated from the ground surface GL downward in the Z direction, which is the vertical direction, to construct a foundation body 3, an underground wall 4 and a permeable layer 5 described later. .

基礎本体3は、建物本体2の外周に沿って設けられる基礎立上り31と、この基礎立上り31の下端部と一体に連結されて水平面内に延びる基礎底版32と、この基礎底版32の上方に対向して基礎立上り31に連結される基礎スラブ33と、を有して構成されている。基礎底版32と基礎スラブ33との間には、設備配管等を配設するための基礎ピットが形成され、基礎ピット内の適宜な位置に基礎底版32と基礎スラブ33とを連結する基礎梁34が設けられている。このような基礎本体3の根入れ深さ、即ち地表GLから基礎底版32の下面までの距離は、例えば、800mm〜1m程度に設定されている。また、基礎立上り31及び基礎底版32の厚さ寸法は、例えば、200mm程度であり、基礎スラブ33の厚さ寸法は、例えば、120mm〜150mm程度に設定されている。基礎立上り31は、地表GLから上方に500mm〜800mm程度突出して設けられ、その上端に建物本体2の土台がアンカーボルト及び接合金物を介して連結されている。なお、基礎本体3の根入れ深さ(地表GLから基礎底版32の下面までの距離)は、液状化時に生じる地下水の水圧によって基礎底版32の下面に作用する浮力とともに、後述するように、建物本体2と基礎本体3と地中壁4との重量比を考慮し、浮力が大きくなることが予測される場合には、根入れ深さを浅くし、浮力が小さい場合には、根入れ深さを深くするなど、適宜に設定することが可能である。   The foundation body 3 includes a foundation rise 31 provided along the outer periphery of the building body 2, a foundation bottom plate 32 that is integrally connected to a lower end portion of the foundation rise 31 and extends in a horizontal plane, and faces above the foundation bottom plate 32. And a foundation slab 33 connected to the foundation rising 31. A foundation pit for arranging equipment piping and the like is formed between the foundation bottom slab 32 and the foundation slab 33, and a foundation beam 34 for connecting the foundation bottom slab 32 and the foundation slab 33 to an appropriate position in the foundation pit. Is provided. The depth of penetration of the foundation main body 3, that is, the distance from the ground surface GL to the lower surface of the foundation bottom slab 32 is set to about 800 mm to 1 m, for example. Moreover, the thickness dimension of the foundation rising 31 and the foundation bottom slab 32 is about 200 mm, for example, and the thickness dimension of the foundation slab 33 is set to about 120 mm to 150 mm, for example. The foundation rising 31 protrudes upward from the ground surface GL by about 500 mm to 800 mm, and the base of the building body 2 is connected to the upper end of the foundation rising 31 via an anchor bolt and a joint hardware. The depth of penetration of the foundation body 3 (distance from the ground surface GL to the bottom surface of the foundation bottom slab 32) is, as will be described later, together with buoyancy acting on the bottom surface of the foundation bottom slab 32 due to groundwater pressure generated during liquefaction. Considering the weight ratio of the main body 2, the foundation main body 3, and the underground wall 4, if the buoyancy is predicted to be large, the depth of penetration is reduced, and if the buoyancy is small, the depth of penetration is It is possible to set appropriately such as deepening the depth.

地中壁4は、鉄筋コンクリート製の壁であり、基礎底版32の下面から下方の地盤G中に延びるとともに、基礎本体3に連結されている。具体的には、後述する連結材としての鉄筋R(図6参照)が地中壁4の内部から上方に延びて設けられ、この鉄筋Rが基礎底版32及び基礎梁34の内部に定着されている。なお、地中壁4は、鉄筋コンクリート製に限らず、オーガー等の掘削撹拌機を用いて地盤Gの土とセメントとを撹拌、混合して構築されるソイルセメント壁(SMW)であってもよい。地中壁4がSMWの場合にも、SMW内部と基礎本体3内部とに亘って鉄筋やアンカー等の連結材を設けることで、地中壁4と基礎本体3とが連結できる。この地中壁4は、X方向(第一方向)に沿った第一壁部41と、Y方向(第二方向)に沿った第二壁部42と、を有して平面略十字形に形成され、即ち、地中壁4の水平断面形状は、その側方の地盤Gに対して開放された開断面とされている。さらに、地中壁4は、水平二方向(X方向及びY方向)に沿った鉛直面であるX−Z平面及びY−Z平面の各々に対し、面対称の水平断面を有して形成されている。   The underground wall 4 is a reinforced concrete wall, extends from the lower surface of the foundation bottom slab 32 into the ground G below, and is connected to the foundation body 3. Specifically, a reinforcing bar R (see FIG. 6), which will be described later, is provided extending upward from the inside of the underground wall 4, and this reinforcing bar R is fixed inside the foundation bottom slab 32 and the foundation beam 34. Yes. The underground wall 4 is not limited to reinforced concrete, but may be a soil cement wall (SMW) constructed by stirring and mixing the soil and cement of the ground G using an excavating stirrer such as an auger. . Even when the underground wall 4 is an SMW, the underground wall 4 and the foundation main body 3 can be connected by providing a connecting material such as a reinforcing bar or an anchor between the inside of the SMW and the inside of the foundation main body 3. The underground wall 4 has a first wall portion 41 along the X direction (first direction) and a second wall portion 42 along the Y direction (second direction), and has a substantially cross-shaped plane. In other words, the horizontal cross-sectional shape of the underground wall 4 is an open cross-section opened to the ground G on the side. Further, the underground wall 4 is formed to have a horizontal section that is plane-symmetric with respect to each of the XZ plane and the YZ plane, which are vertical planes along two horizontal directions (X direction and Y direction). ing.

第一壁部41及び第二壁部42は、それぞれ200mm程度の壁厚と、基礎底版32から壁の下端縁まで4m〜8m深さ寸法とを有して形成されている。第一壁部41は、建物本体2のX方向長さと略同一の水平長さ寸法を有し、第二壁部42は、建物本体2のY方向長さと略同一の水平長さ寸法を有して形成されている。このような第一壁部41及び第二壁部42を含んだ地中壁4全体の重量は、建物本体2の重量の1.5倍〜2.0倍程度であり、かつ、基礎本体3の重量の1.5倍〜2.0倍程度に設定されている。即ち、上部構造である建物本体2と、基礎本体3と、地中壁4と、の重量比が1:1:1.5〜2.0程度となるように、地中壁4の壁厚、深さ寸法及び水平長さ寸法が設定されている。なお、地中壁4がソイルセメント壁の場合には、壁厚が400mm〜600mm程度となり、比重も鉄筋コンクリート製の壁とは異なることから、深さ寸法や水平長さ寸法を適宜に調整して重量を設定すればよい。   The first wall portion 41 and the second wall portion 42 are each formed with a wall thickness of about 200 mm and a depth of 4 to 8 m from the foundation bottom plate 32 to the lower edge of the wall. The first wall portion 41 has a horizontal length dimension substantially the same as the X-direction length of the building body 2, and the second wall portion 42 has a horizontal length dimension substantially the same as the Y-direction length of the building body 2. Is formed. The total weight of the underground wall 4 including the first wall portion 41 and the second wall portion 42 is about 1.5 to 2.0 times the weight of the building body 2, and the foundation body 3 The weight is set to about 1.5 to 2.0 times the weight. That is, the wall thickness of the underground wall 4 is set so that the weight ratio of the building body 2, the foundation body 3, and the underground wall 4 that is the upper structure is about 1: 1: 1.5 to 2.0. The depth dimension and the horizontal length dimension are set. In addition, when the underground wall 4 is a soil cement wall, the wall thickness is about 400 mm to 600 mm, and the specific gravity is different from that of the reinforced concrete wall. Therefore, the depth dimension and the horizontal length dimension are appropriately adjusted. What is necessary is just to set a weight.

透水層5は、複数の土嚢材5Aを積層して構成されるものであって、土嚢材5Aとしては、例えば、ポリエチレン製等の透水性を有した織布で構成された袋にガラス片やガラス粒等の粒状物を詰めたものが利用できる。このような土嚢材5Aとしては、その寸法が400mmx400mmx100mm程度であり、その重量が5kg〜10kg程度のものであれば、搬送や積層に係る作業性の面で好適である。また、土嚢材5Aは、袋及び粒状物の両方が水を通すことから土嚢材5A自体が透水性を有するとともに、積層した土嚢材5A同士に適度な隙間が形成されることから、この隙間によっても透水性が得られるようになっている。   The water permeable layer 5 is formed by laminating a plurality of sandbag materials 5A. As the sandbag material 5A, for example, a bag made of a woven cloth having water permeability such as polyethylene is used as a glass piece or Those filled with granular materials such as glass particles can be used. As such a sandbag material 5A, if the dimension is about 400 mm × 400 mm × 100 mm and the weight is about 5 kg to 10 kg, it is preferable in terms of workability related to conveyance and lamination. In addition, since the sandbag material 5A allows both the bag and the granular material to pass water, the sandbag material 5A itself has water permeability, and an appropriate gap is formed between the stacked sandbag materials 5A. The water permeability can be obtained.

このような透水層5は、基礎本体2と地盤Gとの間に設けられ、具体的には、基礎底版32の下面に沿って設けられる第一透水層51と、基礎立上り31の外側面に沿って設けられる第二透水層52と、を有して構成されている。第一透水層51は、建物本体2の平面形状に応じた矩形領域L2の範囲、又は地盤Gを掘削する施工エリアである矩形領域L1の範囲に設けられ、当該範囲のうち地中壁4を除いた部分に隙間なく並べるとともに積層した土嚢材5Aによって構成されている。第二透水層52は、矩形領域L1から矩形領域L2を除いた範囲、即ち基礎本体3の外周に沿った環状の範囲において、第一透水層51に連続する深さから地表GL近傍まで積層した土嚢材5Aによって構成されている。   Such a water permeable layer 5 is provided between the foundation main body 2 and the ground G. Specifically, the first water permeable layer 51 provided along the lower surface of the foundation bottom slab 32 and the outer surface of the foundation rising 31. And a second water permeable layer 52 provided along. The 1st water permeable layer 51 is provided in the range of the rectangular area L2 according to the planar shape of the building main body 2, or the range of the rectangular area L1 which is a construction area which excavates the ground G, The underground wall 4 is included in the said range. The sandbag material 5A is arranged and stacked in the removed portion without gaps. The second water permeable layer 52 was laminated from the depth continuous to the first water permeable layer 51 to the vicinity of the ground surface GL in a range excluding the rectangular region L2 from the rectangular region L1, that is, in an annular range along the outer periphery of the base body 3. It is comprised by the sandbag material 5A.

以上のような基礎構造の施工手順について図4〜図9も参照して説明する。先ず、図4に示すように、敷地内の施工エリアである矩形領域L1において、地中壁4の形状に応じて地盤Gを平面十字形に掘削し、掘削溝Dを形成する。この掘削は、例えば、小型のバックホー等の重機を用いて行い、場合によっては、人手によって掘削してもよい。次に、掘削溝D内部に、図5に示すように、型枠Kを建て込むとともに、型枠Kの内部に鉄筋を配筋してからコンクリートを打設する。このようにして構築した鉄筋コンクリート製の地中壁4は、図6に示すように、水平断面が十字形の一体構造を有した立体壁となる。また、地中壁4の上端には、連結材としての鉄筋Rを上方に突出させておき、この鉄筋Rを介して地中壁4と基礎本体3とが連結される。   The construction procedure of the foundation structure as described above will be described with reference to FIGS. First, as shown in FIG. 4, in a rectangular region L <b> 1 that is a construction area in the site, the ground G is excavated into a plane cross shape according to the shape of the underground wall 4 to form a excavation groove D. This excavation is performed, for example, using a heavy machine such as a small backhoe, and in some cases, the excavation may be performed manually. Next, as shown in FIG. 5, the formwork K is built in the excavation groove D, and concrete is placed after reinforcing bars are arranged inside the formwork K. The underground wall 4 made of reinforced concrete thus constructed is a three-dimensional wall having an integral structure with a horizontal cross section as shown in FIG. Further, a reinforcing bar R as a connecting member is projected upward at the upper end of the underground wall 4, and the underground wall 4 and the foundation main body 3 are connected via the reinforcing bar R.

次に、図7に示すように、矩形領域L1の範囲に土嚢材5Aを並べて積層し、第一透水層51を形成する。この積層作業は、人手によって行ってもよいし、適宜な装置あるいは重機を用いて行ってもよい。次に、図8に示すように、第一透水層51の上側に基礎本体2を構築する。この際、基礎底版32の構築方法としては、第一透水層51の上側に直接コンクリートを打設してもよいし、第一透水層51の上側に砕石や軽量骨材等を敷き並べた上にコンクリートを打設してもよい。また、地中壁4から突出させておいた鉄筋Rを基礎底版32及び基礎梁34のコンクリート内部に定着させることで、地中壁4と基礎本体3とを一体化する。次に、図9に示すように、矩形領域L1内部における基礎本体3の基礎立上り31の外側面に沿って、第一透水層51の上側に土嚢材5Aを積層して第二透水層52を形成する。以上のようにして基礎構造の構築が完了したら、基礎立上り31及び基礎梁34の上に建物本体2を構築して建物1を完成させる。   Next, as shown in FIG. 7, the sandbag material 5 </ b> A is arranged and stacked in the range of the rectangular region L <b> 1 to form the first water permeable layer 51. This stacking operation may be performed manually, or may be performed using an appropriate apparatus or heavy equipment. Next, as shown in FIG. 8, the foundation body 2 is constructed on the upper side of the first water permeable layer 51. At this time, as a method for constructing the foundation bottom plate 32, concrete may be directly placed on the upper side of the first permeable layer 51, or crushed stones, lightweight aggregates, and the like are laid on the upper side of the first permeable layer 51. Concrete may be placed on the wall. Moreover, the underground wall 4 and the foundation main body 3 are integrated by fixing the reinforcing bar R projected from the underground wall 4 to the concrete inside of the foundation bottom plate 32 and the foundation beam 34. Next, as shown in FIG. 9, the sandbag material 5 </ b> A is laminated on the upper side of the first permeable layer 51 along the outer surface of the foundation rising 31 of the foundation body 3 in the rectangular region L <b> 1 to form the second permeable layer 52. Form. When the construction of the foundation structure is completed as described above, the building body 2 is constructed on the foundation rising 31 and the foundation beam 34 to complete the building 1.

本実施形態によれば、基礎本体3と一体的に地中壁4が形成されているので、地震時に地盤Gが液状化して支持力が低下した場合であっても、地中壁4がカウンターウェイトとして作用するとともに、流動化した地盤Gに対して地中壁4が制動板として作用することから、建物1の揺れが抑制されるとともに、地震後に建物1が初期状態に復帰して全体の傾きが抑制できる。また、地中壁4が開断面に形成され、地中壁4によって地盤Gが囲まれていないので、建物1下方の地盤G中に地下水が滞留することがなく、地下水の腐敗や劣化を防止することができる。さらに、基礎本体3と地盤Gとの間に透水層5が設けられているので、液状化によって発生した地下水を透水層5から地上へ排水することができ、地下水による過大な浮力が基礎底版32に作用することを防止して、不均一な浮力による建物1の傾きを抑制することができる。また、透水性を有した袋に粒状物を詰めた土嚢材5Aを積層して透水層5が構成されているので、土嚢材5A同士の隙間及び土嚢材5A自体の透水性によって地下水をより確実に排水することができる。   According to the present embodiment, since the underground wall 4 is formed integrally with the foundation main body 3, even if the ground G is liquefied and the supporting force is reduced during an earthquake, the underground wall 4 is countered. Since the underground wall 4 acts as a braking plate for the fluidized ground G as well as acting as a weight, the shaking of the building 1 is suppressed, and the building 1 returns to the initial state after the earthquake and the entire Tilt can be suppressed. In addition, since the underground wall 4 is formed in an open cross section and the ground G is not surrounded by the underground wall 4, the ground water does not stay in the ground G below the building 1 and prevents corruption and deterioration of the ground water. can do. Furthermore, since the permeable layer 5 is provided between the foundation body 3 and the ground G, groundwater generated by liquefaction can be drained from the permeable layer 5 to the ground, and excessive buoyancy due to the groundwater is caused by the foundation bottom plate 32. It is possible to prevent the building 1 from tilting due to non-uniform buoyancy. Moreover, since the water permeable layer 5 is configured by laminating sandbag materials 5A packed with granular materials in a bag having water permeability, groundwater is more reliably secured by the gap between the sandbag materials 5A and the water permeability of the sandbag material 5A itself. Can be drained.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

例えば、前記実施形態では、透水層5が第一透水層51と第二透水層52とで構成されていたが、図10に示すように、第一透水層51及び第二透水層52に加えて透水層5が第三透水層53を備えていてもよい。この第三透水層53は、地中壁4の側面と地盤Gとの間に土嚢材5Aを積層して構成されるものであり、その上部が第一透水層51に接続されている。従って、地盤Gの深い位置で発生した地下水も第三透水層53から上方に透水され、第一透水層51及び第二透水層52を介して地上に排水することができる。このような第三透水層53は、前述したように地中壁4を構築した後に、この地中壁4に沿って地表GLから掘削溝D内部に土嚢材5Aを投入することによって形成される。なお、第三透水層53は、地中壁4の深さ方向全長に沿って設けられるものに限らず、第一透水層51から所定の深さまで設けられていてもよい。   For example, in the said embodiment, although the water permeable layer 5 was comprised by the 1st water permeable layer 51 and the 2nd water permeable layer 52, in addition to the 1st water permeable layer 51 and the 2nd water permeable layer 52, as shown in FIG. The water permeable layer 5 may include the third water permeable layer 53. The third water permeable layer 53 is configured by laminating a sandbag material 5 </ b> A between the side surface of the underground wall 4 and the ground G, and an upper portion thereof is connected to the first water permeable layer 51. Therefore, groundwater generated at a deep position in the ground G is also permeated upward from the third permeable layer 53 and can be drained to the ground via the first permeable layer 51 and the second permeable layer 52. The third water permeable layer 53 is formed by constructing the underground wall 4 as described above and then introducing the sandbag material 5A from the ground surface GL into the excavation groove D along the underground wall 4. . The third water permeable layer 53 is not limited to being provided along the entire length in the depth direction of the underground wall 4, and may be provided from the first water permeable layer 51 to a predetermined depth.

1 建物
2 建物本体(上部構造)
3 基礎本体
4 地中壁
5 透水層
5A 土嚢材
31 基礎立上り
32 基礎底版
41 第一壁部
42 第二壁部
51 第一透水層
52 第二透水層
53 第三透水層
1 Building 2 Building body (superstructure)
DESCRIPTION OF SYMBOLS 3 Base body 4 Underground wall 5 Water permeable layer 5A Sandbag material 31 Foundation rise 32 Foundation bottom plate 41 First wall part 42 Second wall part 51 First permeable layer 52 Second permeable layer 53 Third permeable layer

Claims (6)

建物の上部構造と連結される基礎本体と、該基礎本体から下方の地盤内に延びて設けられる地中壁と、を備えた基礎構造であって、
前記基礎本体は、前記上部構造の外周に沿って設けられる基礎立上りと、該基礎立上りの下端部と一体に連結される基礎底版と、を有し、該基礎本体と地盤との間に透水層が設けられ、
前記地中壁は、鉄筋コンクリート壁か又はソイルセメント壁からなり、互いに直交する水平二方向のうち第一方向に沿った第一壁部と、第二方向に沿った第二壁部と、を有し、該第一及び第二の壁部で形成される水平断面が一体的に連続した十字形の開断面とされ、かつ、該第一及び第二の壁部の上部が前記基礎底版に連結され、該地中壁と前記基礎本体とが一体化され、
前記透水層は、前記基礎底版の下面に沿って設けられる第一透水層と、前記基礎立上りの外側面に沿って設けられる第二透水層と、を有し、該第一及び第二の透水層がそれぞれ複数の土嚢材を積層して構成され、
前記土嚢材は、透水性を有した所定寸法の袋に粒状物を詰めて構成されていることを特徴とする基礎構造。
A foundation structure comprising a foundation body connected to the upper structure of the building, and an underground wall provided extending from the foundation body into the ground below,
The foundation main body has a foundation rising provided along the outer periphery of the upper structure, and a foundation bottom plate integrally connected to a lower end portion of the foundation rising, and a water permeable layer between the foundation main body and the ground. Is provided,
The underground wall is a reinforced concrete wall or a soil cement wall, and has a first wall portion along a first direction and a second wall portion along a second direction in two horizontal directions orthogonal to each other. And the horizontal cross section formed by the first and second wall portions is an integrally continuous cross-shaped open cross section, and the upper portions of the first and second wall portions are connected to the foundation bottom plate. And the underground wall and the foundation body are integrated,
The water permeable layer includes a first water permeable layer provided along a lower surface of the foundation bottom plate, and a second water permeable layer provided along an outer surface of the foundation rising, and the first and second water permeable layers. Each layer is composed of multiple sandbags,
The said sandbag material is a foundation structure characterized by packing granular material in the bag of the predetermined dimension which has water permeability.
前記地中壁は、前記基礎底版の第一方向に沿った全幅と略同一長さを有して前記第一壁部が形成され、前記基礎底版の第二方向に沿った全幅と略同一長さを有して前記第二壁部が形成されていることを特徴とする請求項1に記載の基礎構造。 The underground wall has substantially the same length as the entire width along the first direction of the foundation bottom slab, and the first wall portion is formed, and substantially the same length as the entire width along the second direction of the foundation bottom slab. The foundation structure according to claim 1, wherein the second wall portion is formed with a thickness . 前記上部構造と、前記基礎本体と、前記地中壁と、の重量比が1:1:1.5〜2.0程度に設定されていることを特徴とする請求項1又は2に記載の基礎構造。   The weight ratio of the upper structure, the base body, and the underground wall is set to about 1: 1: 1.5 to 2.0. Foundation structure. 前記透水層が前記地中壁の側面と地盤との間に設けられるとともに前記土嚢材を積層した第三透水層を有し、該第三透水層が前記第一透水層に接続されていることを特徴とする請求項1〜3のいずれか一項に記載の基礎構造。   The water permeable layer is provided between a side surface of the underground wall and the ground, and has a third water permeable layer in which the sandbag material is laminated, and the third water permeable layer is connected to the first water permeable layer. The foundation structure according to any one of claims 1 to 3. 請求項1〜4のいずれか一項に記載の基礎構造に係る基礎の構築方法であって、
前記地中壁の寸法に応じて地盤を掘削し、該地中壁を構築するとともに、該地中壁と前記基礎本体とを連結する連結材を設け、
前記基礎本体の基礎底版が構築される領域の地盤上に前記複数の土嚢材を積層して前記第一透水層を形成し、
前記第一透水層の上側に前記基礎底版を構築するとともに、該基礎底版と一体に前記基礎立上りを形成しかつ前記連結材を連結して前記基礎本体を構築し、
前記基礎立上りの外側面に沿って前記複数の土嚢材を積層して前記第二透水層を形成することを特徴とする基礎の構築方法。
It is the construction method of the foundation which concerns on the foundation structure as described in any one of Claims 1-4,
Excavating the ground according to the size of the underground wall, constructing the underground wall, and providing a connecting material for connecting the underground wall and the foundation body,
The first water permeable layer is formed by laminating the plurality of sandbag materials on the ground in the area where the foundation bottom plate of the foundation body is constructed,
Constructing the foundation bottom plate on the upper side of the first water permeable layer, forming the foundation rising integrally with the foundation bottom plate and connecting the connecting material to construct the foundation body;
A foundation construction method, wherein the second water permeable layer is formed by laminating the plurality of sandbag materials along the outer surface of the foundation rising.
前記地中壁を構築した後に、該地中壁の側面と前記掘削した地盤との間に前記複数の土嚢材を積層して第三透水層を形成することを特徴とする請求項5に記載の基礎の構築方法。   6. The third water permeable layer is formed by laminating the plurality of sandbag materials between a side surface of the underground wall and the excavated ground after the underground wall is constructed. How to build the foundation of
JP2011277855A 2011-12-20 2011-12-20 Foundation structure and foundation construction method Expired - Fee Related JP5896351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277855A JP5896351B2 (en) 2011-12-20 2011-12-20 Foundation structure and foundation construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277855A JP5896351B2 (en) 2011-12-20 2011-12-20 Foundation structure and foundation construction method

Publications (2)

Publication Number Publication Date
JP2013129956A JP2013129956A (en) 2013-07-04
JP5896351B2 true JP5896351B2 (en) 2016-03-30

Family

ID=48907730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277855A Expired - Fee Related JP5896351B2 (en) 2011-12-20 2011-12-20 Foundation structure and foundation construction method

Country Status (1)

Country Link
JP (1) JP5896351B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5468165B1 (en) * 2013-07-08 2014-04-09 有限会社ピーステージ Sand sand control method
JP2015161065A (en) * 2014-02-26 2015-09-07 積水ハウス株式会社 Liquefaction prevention structure for housing ground
JP7222949B2 (en) * 2020-06-03 2023-02-15 中村土木株式会社 Concrete structure construction method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536044Y2 (en) * 1986-10-08 1993-09-13
JP3594385B2 (en) * 1995-12-12 2004-11-24 株式会社ジオトップ Seismic isolation structure of structure
JPH09228391A (en) * 1996-02-28 1997-09-02 Taisei Corp Earthquake proof underground wall
JPH09316874A (en) * 1996-05-27 1997-12-09 Kubota Corp Support pile as measure against liquefaction
JP3773134B2 (en) * 1996-11-15 2006-05-10 株式会社フジタ Seismic isolation method for structures using micropile
JP4236361B2 (en) * 1999-12-24 2009-03-11 西松建設株式会社 Wall head reinforcement underground continuous wall, seismic building, and wall head reinforcement method for underground continuous wall
JP2005120615A (en) * 2003-10-15 2005-05-12 Yoshiro Nakamatsu Earthquake resisting construction

Also Published As

Publication number Publication date
JP2013129956A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
CN103958780B (en) The method for forming cementing retaining wall
JP5984085B2 (en) Foundation structure and foundation construction method
JP4809431B2 (en) Foundation structure of structure and retaining wall
JP3853099B2 (en) Lattice ground improvement body and construction method thereof
JP5984083B2 (en) Foundation structure and foundation construction method
JP5896351B2 (en) Foundation structure and foundation construction method
CN108999142A (en) The construction method of dome rectangular light-duty caisson and pile foundation combined type deep water breakwater
KR101666626B1 (en) Shore bank using frame and geotextile, and method for constructing this same
JP2016102313A (en) Retaining wall structure and construction method thereof
JP6240625B2 (en) Retaining wall, creation site and creation method of creation site
KR20110046209A (en) Method Of Construction For Scour Prevension And Reinforcement Of Bridge Pier, And Structure Of The Same
KR20210047482A (en) Core wall structure of independent cassion for offshore runway
JP2015161065A (en) Liquefaction prevention structure for housing ground
US9243380B2 (en) Reinforced arch with floating footer and method of constructing same
JP2006348531A (en) Building foundation construction method and building foundation structure
JP3196470U (en) Seismic isolation structure
JP2013124511A (en) Building foundation structure, and building foundation construction method
JP4483396B2 (en) Basic structure of building and its construction method
JP5801599B2 (en) Building
JP2017082440A (en) Dam construction method
KR20210047481A (en) Core wall structure of composite cassion for offshore runway
JP2004132124A (en) Pneumatic caisson and pneumatic caisson constructing method
JP2014077307A (en) Foundation structure and foundation construction method
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
JP5244576B2 (en) Foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5896351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees