JP3594385B2 - Seismic isolation structure of structure - Google Patents

Seismic isolation structure of structure Download PDF

Info

Publication number
JP3594385B2
JP3594385B2 JP32260795A JP32260795A JP3594385B2 JP 3594385 B2 JP3594385 B2 JP 3594385B2 JP 32260795 A JP32260795 A JP 32260795A JP 32260795 A JP32260795 A JP 32260795A JP 3594385 B2 JP3594385 B2 JP 3594385B2
Authority
JP
Japan
Prior art keywords
foundation
pile
bag
bag body
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32260795A
Other languages
Japanese (ja)
Other versions
JPH09158208A (en
Inventor
正博 井上
Original Assignee
株式会社ジオトップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジオトップ filed Critical 株式会社ジオトップ
Priority to JP32260795A priority Critical patent/JP3594385B2/en
Publication of JPH09158208A publication Critical patent/JPH09158208A/en
Application granted granted Critical
Publication of JP3594385B2 publication Critical patent/JP3594385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、緩衝機能に加え、排水機能を備えた構造体の免震構造に関する。
【0002】
【従来の技術】
従来、この種の免震構造としては、地盤中に設置される基礎杭と、前記基礎杭の上方に構築される構造体の基礎部と、前記基礎杭と前記基礎部との間に位置する多数の砂利とを備えたものが知られている(特公平1−44852号公報)。
【0003】
【発明が解決しようとする課題】
前記の場合では、構造体は砂利を介して杭に対して非連続状態であるので、地震の際に、構造体に水平方向の力が発生しても、介在する個々には独立の砂利がその水平力を杭に伝達しない。従って引張応力や剪断応力が杭に作用することがない。
【0004】
しかし、免震構造を築造してから年月が経過する間に、周囲から加わる種々の振動や、微弱な地震や、地下水の影響等により、緩衝層が変動したり、局部的に空洞ができる等して、大きな地震の時に当初の設計どおりの作用を奏し難いこともある。
【0005】
【課題を解決するための手段】
前記の課題を解決するために、通常時に多量の個々の粒状体の相対的な位置関係を、概略、当初状態に維持すべきことを想到した。
本発明は、上記した目的を達成するためのものである。
請求項1記載の発明は、地盤中に設置される基礎杭と、前記基礎杭の上方に構築される構造体の基礎部と、前記基礎杭と前記基礎部との間に、多数の粒状体を収容する、透水機能を有しフレキシブルな袋体が重畳されてなる緩衝層とを備えている。
【0006】
ここで、構造体の基礎部は、例えば建築物自体の基礎部、或いは必要に応じて建築物を支持するために設けられたフーチング等から構成されている。
基礎杭には、例えばRC杭、PC杭、PHC杭、丸杭、節杭、木杭、鋼管杭、鋼管コンクリート複合杭等の既製杭、或いは場所打ち杭等を用いることができる。
【0007】
緩衝層は、基礎杭の上部と構造体の基礎部との間に位置して、地震等の衝撃を緩衝するためのもので、多数の粒状体を袋体内に収容し、更に袋体を重畳して層状に形成されている。
粒状体は、その滑り、摩擦を伴う移動、転がり、変形破壊等により、地震力を吸収し、圧縮力に強く且つ表面の摩擦力が大きな材料で、砂利程度の粒径のものが好ましい。粒径は、必ずしも均一である必要はなく、ばらつきがあっても差し支えない。その形状が扁平な粒状体は、粒状体同士の摩擦が大きく、粒状体の摩擦により地震力を吸収し易い。具体的な粒状体としては、例えばいわゆる天然の砂利、人工砕石、硬質の廃プラスチック等を利用することができる。
【0008】
袋体は、耐食性があってフレキシブルで且つ透水機能を有し、粒状体を収容した状態で、通常のハンドリングで破けない強度を有するもが好ましい。
透水機能は、材料自体が透水性のもの、網目が粒状体の粒径より小さな網状に形成されたもの、粒状体の粒径より小さな小孔が多数あけられたもの等、要するに地下水が袋体の内外に容易に通過することをいう。仕切材の簡便な材料としては、プラスチック、織布、不織布などが挙げられる。
【0009】
袋体は、各袋体を積層状に重ね合わせ易いように、袋体内に粒状体を収容した状態で、袋体全体が扁平となるような形状とすることが好ましい。
なお、袋体を複数段に重畳しても良いし、或いは一段だけでも良い。
【0010】
【発明の実施の形態】
図1は、構造体の免震構造の縦断面図、図2は一部を切り欠いて内部を示した袋体60の斜視図をそれぞれ示す。
図1中、構造体の免震構造10は、地盤20中に設置される基礎杭30と、基礎杭30の上部に構築される構造体の基礎部40と、基礎杭30と構造体の基礎部40との間に、多数の粒状体51を収容する、透水機能を有しフレキシブルな袋体60が重畳されてなる緩衝層50とを備えている。
【0011】
基礎杭30は、地盤20中に、所定間隔で略鉛直方向に設置して構造体の重量を支えるためのもので、この場合には外周面に複数の節部31を設けた節杭から構成されている。
また、基礎杭30の周囲には、砂利等からなるドレーン層(図示しない)を設けることが好ましい。これにより、地盤20中の間隙水圧が地震により上昇した場合であっても、この余剰間隙水は、ドレーン材層の隙間内を通って上昇し、緩衝層50内に移動することができる。このため、地震等による液状化現象を防止することが可能となる。
【0012】
構造体の基礎部40は、建築物自体の基礎部分をそのまま地盤20中に施工しても良いが、必要に応じて建築物を支持するためのフーチングを設けて、このフーチングを緩衝層50の上部に施工しても良い。
袋体60は、図2に示すように、耐食性があってフレキシブルで且つ透水機能を有し、粒状体51を収容した状態で、通常のハンドリングで破けない強度を有し、例えば合成樹脂製のシート等に、粒状体51の粒径よりも小さい多数の小孔(図示しない)を形成し、このシートを袋状に縫製して形成している。
【0013】
袋体60内に粒状体51を収容するには、例えば、袋体60の一辺を開いて開口部を設けた状態で袋体60を施工現場へ搬送し、この開口部から袋体60内に粒状体51である砂利等を充填した後、開口部を閉じて袋体60内に粒状体51を封入する。また工場など別の場所で予め粒状体51を袋体60に収容して、それを施工場所へ搬送してもよい。状況に応じて適宜に行う。
【0014】
袋体60内に収容される粒状体51の分量は、袋体60内で粒状体51が動いて地震等の応力を吸収できるような分量であることが必要であり、袋体60の大きさに基づいて、適宜な分量の粒状体51が袋体60内に詰め込まれる。
そして、図1に示すように、粒状体51を収容した複数の袋体60を略水平方向に密に並べて緩衝層50の第1段目を形成し、その上方に少し砂利をばらまき、次に形成する第2段目との間に隙間を作らないようにする。その後、砂利をばらまいた第1段目の上方に、第1段目と同様に、第2段目の袋体60を密に、更に第3層目と、順次袋体60を積層状に重ね合わせて緩衝層50を形成する。このとき、各層の袋体60が水平方向にずれ動かないように、上下に重ね合わせた各袋体60の境界をずらして並べることが好ましい。また、袋体60は密に並べ、隣接した袋体60の間に隙間を作らないようにするとともに、生じた隙間や各段の間などには砂利を充填することで、全体として隙間を作らないようにする。
【0015】
なお、袋体60の大きさ、袋体60を重ね合わせる段数は、施工する緩衝層50の面積や厚さに応じて適宜変更することができる。
つぎに、上記した構成を備えた免震構造10の施工方法について説明する。
まず、構造体の基礎部40を施工する地盤20の下方に、所定間隔で基礎杭30を設置する。
【0016】
そして、基礎杭30を設置する前に、或いは基礎杭30を設置した後に、基礎杭30の頭部付近から構造体の基礎部40の底面までの深さで、且つ基礎部40の底面の面積よりも大きくなるように、地盤20中の土砂を取り除いて緩衝層50を施工するための空間部を形成する、いわゆる根切り作業を行う。
つぎに、根切り作業により形成した空間部内に、袋体60を積層状に重ね合わせて並べ、緩衝層50を形成する。
【0017】
緩衝層50が形成された後、緩衝層50の上面に、構造体の基礎部40を施工する。
上記施工作業において、粒状体51が袋体60の内部に収容されていることで、地表における袋体60の運搬は機械及び人力いずれの場合においても容易にすることができる。また、袋体60を地表から根切り作業により形成した空間部内へ投入する作業も、袋体60単位で容易に行うことができる。
【0018】
さらに、粒状体51は袋体60内部に収容されているため、現場作業において、風等に吹かれて粒状体51から発生する塵や埃を外部に発散することを抑えることができる。これにより、現場施工周辺の作業環境を良好に維持することができる。
【0019】
【発明の効果】
本発明は、以上のように構成されているので、以下に記載されるような効果を奏する。
本発明は、比較的に簡明な構成で以て、地震の際に、構造体に水平方向の大きな力が発生しても、緩衝層の粒状体のずれによって、その水平力を杭に伝達しないので、引張応力や剪断応力が杭に作用することがなく、杭の設計施工が簡便化し経済性を高めることができ、更に粒状体が袋体内に収容されて区かくされるので、永年に亘り周囲の種々の振動、弱い地震、地下水などの影響で緩衝層の状況が当初の設定状態から変動したり、局部的に空洞などが生ずることが防止される。また地震の際に地盤に深部からの上昇水を緩衝層の透水機能の袋体及び袋体内の粒状体の隙間を通して地表方向へ円滑に逸散させるので、液状化現象が防止される。これに加えて、粒状体を袋体内に収容しているので、粒状体の運搬や投入作業等の取り扱いを容易にして、現場施工を容易にすることができるとともに、現場施工周辺の環境も良好に維持することができる。
【図面の簡単な説明】
【図1】免震構造の縦断面図である。
【図2】一部を切り欠いて内部を示した袋体の斜視図である。
【符号の説明】
10 免震構造 20 地盤
30 基礎杭 31 節部
40 構造体の基礎部 50 緩衝層
51 粒状体 60 袋体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seismic isolation structure for a structure having a drainage function in addition to a buffer function.
[0002]
[Prior art]
Conventionally, as a seismic isolation structure of this kind, a foundation pile installed in the ground, a foundation part of a structure constructed above the foundation pile, and a foundation pile and the foundation part are located between the foundation pile and the foundation part. A thing provided with a large number of gravel is known (Japanese Patent Publication No. 1-44852).
[0003]
[Problems to be solved by the invention]
In the above case, since the structure is discontinuous to the pile via the gravel, even if a horizontal force is applied to the structure during an earthquake, the interposed individual gravel is not interposed. It does not transmit the horizontal force to the pile. Therefore, no tensile stress or shear stress acts on the pile.
[0004]
However, during the years since the seismic isolation structure was built, the buffer layer fluctuated and local cavities were formed due to various vibrations applied from the surroundings, weak earthquakes, and the effects of groundwater. In some cases, it may be difficult to perform the operation as originally designed during a large earthquake.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present inventors have conceived that the relative positional relationship between a large number of individual granular materials should be generally maintained in the initial state.
The present invention has been made to achieve the above object.
The invention according to claim 1 provides a foundation pile installed in the ground, a foundation portion of a structure constructed above the foundation pile, and a large number of granular bodies between the foundation pile and the foundation portion. And a buffer layer in which flexible bags having a water-permeable function are superimposed.
[0006]
Here, the foundation of the structure is composed of, for example, a foundation of the building itself or a footing provided to support the building as necessary.
As the foundation pile, for example, a ready-made pile such as an RC pile, a PC pile, a PHC pile, a round pile, a node pile, a wooden pile, a steel pipe pile, a steel pipe concrete composite pile, or a cast-in-place pile can be used.
[0007]
The buffer layer is located between the upper part of the foundation pile and the foundation part of the structure, and is used to buffer the impact of an earthquake or the like. It is formed in layers.
The granular material absorbs seismic force due to sliding, frictional movement, rolling, deformation, and the like, and is strong in compressive force and large in surface frictional force. The particle size does not necessarily need to be uniform, and may vary. The flat granular material has a large friction between the granular materials and easily absorbs the seismic force due to the friction between the granular materials. As specific granules, for example, so-called natural gravel, artificial crushed stone, hard waste plastic, and the like can be used.
[0008]
It is preferable that the bag has corrosion resistance, is flexible and has a water-permeable function, and has a strength that does not break with ordinary handling in a state in which the granular material is stored.
The function of water permeability is that the groundwater is a bag, such as a material that is permeable to water itself, a mesh formed in a mesh smaller than the particle size of the granular material, a material with many small holes smaller than the particle size of the granular material, etc. Means passing easily inside and outside As a simple material of the partition material, a plastic, a woven fabric, a nonwoven fabric and the like can be mentioned.
[0009]
The bag preferably has a shape such that the entire bag is flat with the granular body accommodated in the bag so that the bags can be easily stacked in a stacked manner.
The bags may be superimposed in a plurality of stages, or may be arranged in a single stage.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a longitudinal sectional view of the seismic isolation structure of the structure, and FIG. 2 is a perspective view of a bag body 60 partially cut away to show the inside.
In FIG. 1, a seismic isolation structure 10 of a structure includes a foundation pile 30 installed in the ground 20, a foundation 40 of a structure constructed on top of the foundation pile 30, and a foundation pile 30 and a foundation of the structure. A buffer layer 50, in which a flexible bag body 60 having a water-permeable function and containing a large number of granular bodies 51, is superposed between the bag section 50 and the portion 40.
[0011]
The foundation pile 30 is installed in the ground 20 at a predetermined interval in a substantially vertical direction to support the weight of the structure. In this case, the foundation pile 30 includes a plurality of knots 31 provided on the outer peripheral surface. Have been.
Further, it is preferable to provide a drain layer (not shown) made of gravel or the like around the foundation pile 30. Thereby, even if the pore water pressure in the ground 20 rises due to the earthquake, the excess pore water rises through the gap between the drain material layers and can move into the buffer layer 50. Therefore, it is possible to prevent a liquefaction phenomenon caused by an earthquake or the like.
[0012]
The foundation 40 of the structure may be constructed by directly installing the foundation of the building itself in the ground 20, but if necessary, a footing for supporting the building is provided. It may be installed on the upper part.
As shown in FIG. 2, the bag body 60 has corrosion resistance, is flexible and has a water-permeable function, and has a strength that is not broken by ordinary handling in a state in which the granular body 51 is housed. A number of small holes (not shown) smaller than the particle size of the granular material 51 are formed in a sheet or the like, and the sheet is formed by sewing in a bag shape.
[0013]
In order to accommodate the granular material 51 in the bag body 60, for example, the bag body 60 is transported to a construction site in a state where one side of the bag body 60 is opened and an opening is provided, and the bag body 60 is inserted into the bag body 60 from the opening. After the gravel or the like as the granular material 51 is filled, the opening is closed and the granular material 51 is sealed in the bag body 60. Alternatively, the granular material 51 may be stored in the bag body 60 in advance in another place such as a factory, and may be transported to the construction place. Perform as appropriate depending on the situation.
[0014]
It is necessary that the amount of the granular material 51 accommodated in the bag body 60 is such that the granular material 51 moves in the bag body 60 and absorbs stress such as an earthquake. , An appropriate amount of the granular material 51 is packed in the bag body 60.
Then, as shown in FIG. 1, a plurality of bags 60 accommodating the granules 51 are densely arranged in a substantially horizontal direction to form the first stage of the buffer layer 50, and a small amount of gravel is sprinkled over the first stage. A gap is not formed between the second step and the second step. After that, similarly to the first stage, the second stage bag 60 is densely stacked, and the third layer and the bag 60 are sequentially stacked on the first stage where the gravel is dispersed. Together, a buffer layer 50 is formed. At this time, it is preferable that the boundaries of the vertically stacked bags 60 are shifted so that the bags 60 of the respective layers do not shift in the horizontal direction. In addition, the bag bodies 60 are arranged closely, so as not to form a gap between the adjacent bag bodies 60, and a gap is formed as a whole by filling the generated gaps and between the steps with gravel. Not to be.
[0015]
In addition, the size of the bag body 60 and the number of steps for stacking the bag bodies 60 can be appropriately changed according to the area and thickness of the buffer layer 50 to be constructed.
Next, a method of constructing the seismic isolation structure 10 having the above configuration will be described.
First, the foundation piles 30 are installed at predetermined intervals below the ground 20 on which the foundation 40 of the structure is to be constructed.
[0016]
And before installing the foundation pile 30, or after installing the foundation pile 30, it is the depth from the vicinity of the head of the foundation pile 30 to the bottom of the foundation 40 of the structure, and the area of the bottom of the foundation 40. A so-called root cutting operation is performed to remove the earth and sand in the ground 20 to form a space for constructing the buffer layer 50 so as to make the space larger.
Next, in the space formed by the root cutting operation, the bag bodies 60 are stacked and arranged in a stacked manner to form the buffer layer 50.
[0017]
After the buffer layer 50 is formed, the foundation 40 of the structure is installed on the upper surface of the buffer layer 50.
In the above construction work, the granular body 51 is housed inside the bag body 60, so that the bag body 60 on the ground surface can be easily transported by any of a machine and human power. In addition, the operation of putting the bag body 60 into the space formed by the root cutting operation from the ground surface can be easily performed in units of the bag body 60.
[0018]
Furthermore, since the granular material 51 is housed inside the bag body 60, it is possible to suppress the dust and the dust generated from the granular material 51 from being blown out by wind or the like in the field work, to be scattered to the outside. This makes it possible to maintain a good working environment around the site construction.
[0019]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
The present invention has a relatively simple structure, and does not transmit the horizontal force to the pile due to the displacement of the granular material of the buffer layer even if a large horizontal force is generated in the structure during an earthquake during an earthquake. Therefore, tensile stress and shear stress do not act on the pile, the design and construction of the pile can be simplified and the economic efficiency can be improved, and the granular material is stored in the bag body and separated, so that the surroundings can be It is possible to prevent the situation of the buffer layer from being changed from the initially set state, and to prevent the occurrence of a local cavity or the like due to various vibrations, weak earthquakes, groundwater and the like. In addition, the liquefaction phenomenon is prevented because the rising water from the deep portion is smoothly dissipated toward the surface of the ground through the gap between the bag having the water permeability function of the buffer layer and the granular material in the bag during the earthquake. In addition, since the granular material is stored in the bag, handling of the granular material and handling such as loading work can be facilitated, and on-site construction can be facilitated, and the environment around the on-site construction is favorable. Can be maintained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a seismic isolation structure.
FIG. 2 is a perspective view of a bag body partially cut away to show the inside.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Seismic isolation structure 20 Ground 30 Foundation pile 31 Knot part 40 Structural foundation 50 Buffer layer 51 Granular body 60 Bag

Claims (1)

地盤中に設置される基礎杭と、前記基礎杭の上方に構築される構造体の基礎部と、前記基礎杭と前記基礎部との間に、多数の粒状体を収容する、透水機能を有しフレキシブルな袋体が重畳されてなる緩衝層とを備えたことを特徴とする構造体の免震構造。A foundation pile installed in the ground, a foundation portion of a structure constructed above the foundation pile, and a plurality of granular materials accommodated between the foundation pile and the foundation portion, having a water permeable function. A seismic isolation structure for a structure, comprising: a buffer layer formed by overlapping flexible bags.
JP32260795A 1995-12-12 1995-12-12 Seismic isolation structure of structure Expired - Fee Related JP3594385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32260795A JP3594385B2 (en) 1995-12-12 1995-12-12 Seismic isolation structure of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32260795A JP3594385B2 (en) 1995-12-12 1995-12-12 Seismic isolation structure of structure

Publications (2)

Publication Number Publication Date
JPH09158208A JPH09158208A (en) 1997-06-17
JP3594385B2 true JP3594385B2 (en) 2004-11-24

Family

ID=18145608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32260795A Expired - Fee Related JP3594385B2 (en) 1995-12-12 1995-12-12 Seismic isolation structure of structure

Country Status (1)

Country Link
JP (1) JP3594385B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248523A (en) * 2004-03-03 2005-09-15 Shimizu Corp Structure of pile head joint section
JP2005307594A (en) * 2004-04-22 2005-11-04 Shimizu Corp Basic structure of construction
JP5261837B2 (en) * 2010-11-02 2013-08-14 飛島建設株式会社 Placing a wooden pile
JP5896351B2 (en) * 2011-12-20 2016-03-30 株式会社グレイプ Foundation structure and foundation construction method
JP5984085B2 (en) * 2012-01-16 2016-09-06 株式会社グレイプ Foundation structure and foundation construction method
JP5984083B2 (en) * 2012-04-16 2016-09-06 株式会社グレイプ Foundation structure and foundation construction method
JP6048954B2 (en) * 2012-10-12 2016-12-21 株式会社グレイプ Foundation structure and foundation construction method
JP2014141785A (en) * 2013-01-22 2014-08-07 Grape Co Ltd Foundation structure
JP6119039B2 (en) * 2013-02-04 2017-04-26 株式会社グレイプ Foundation structure
CA2979223A1 (en) 2015-03-12 2016-09-15 David J. White Soil improvement foundation isolation and load spreading systems and methods
JP6614454B2 (en) * 2016-10-20 2019-12-04 公益財団法人鉄道総合技術研究所 Support structure of structure
JP7100434B2 (en) * 2017-08-22 2022-07-13 公益財団法人鉄道総合技術研究所 Foundation structure of structure and foundation construction method of structure

Also Published As

Publication number Publication date
JPH09158208A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
JP3594385B2 (en) Seismic isolation structure of structure
JP5921857B2 (en) Slope protection structure in which honeycomb-shaped three-dimensional solid cell structures are stacked vertically
JP5984085B2 (en) Foundation structure and foundation construction method
JPH0699975B2 (en) How to form a concrete floor to support a building
JP5984083B2 (en) Foundation structure and foundation construction method
Olarte et al. Effects of drainage control on densification as a liquefaction mitigation technique
JP2000154550A (en) Vibration control footing structure in building and construction method therefor
JP3627771B2 (en) Base isolation structure
JP7115817B2 (en) Reinforced soil wall using large sandbags and retaining method using large sandbags
JP5532325B2 (en) Construction method of underground wall
JP3627772B2 (en) Base isolation structure
JP2006200198A (en) Soil-pressure resisting structure backing method and soil-pressure resisting structure backing construction
JP2000080637A (en) Ground reinforcing structure and ground reinforcing construction
JP2000160559A (en) Landslide protection wall and construction method therefor
JP5863915B1 (en) Liquefaction countermeasure structure on site
JP2001040719A (en) Water storage tank and water storage method
JP2005171505A (en) Partition bulkhead
JPH09158206A (en) Base isolating structure for structure
JPS60250122A (en) Foundation pile structure for preventing liquefaction of ground
JPH1046619A (en) Foundation structure of construction in sand-layer ground
JPH01226921A (en) Earthquake-proof reinforced revetment construction
JP2014077307A (en) Foundation structure and foundation construction method
JP2974628B2 (en) How to use natural stone holding unit, wall, natural stone holding unit
JPH0771038A (en) Civil engineering earth retaining unit and construction method using unit concerned
JPS60144412A (en) Liquefaction preventive foundation structure for ground

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees