JP3627771B2 - Base isolation structure - Google Patents

Base isolation structure Download PDF

Info

Publication number
JP3627771B2
JP3627771B2 JP35102095A JP35102095A JP3627771B2 JP 3627771 B2 JP3627771 B2 JP 3627771B2 JP 35102095 A JP35102095 A JP 35102095A JP 35102095 A JP35102095 A JP 35102095A JP 3627771 B2 JP3627771 B2 JP 3627771B2
Authority
JP
Japan
Prior art keywords
pile
granular material
shelf
buffer layer
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35102095A
Other languages
Japanese (ja)
Other versions
JPH09177094A (en
Inventor
隆司 堀口
Original Assignee
株式会社ジオトップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジオトップ filed Critical 株式会社ジオトップ
Priority to JP35102095A priority Critical patent/JP3627771B2/en
Publication of JPH09177094A publication Critical patent/JPH09177094A/en
Application granted granted Critical
Publication of JP3627771B2 publication Critical patent/JP3627771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、免震基礎構造に関し、さらに詳細には、地震時の衝撃を緩和し、杭の破損を防止した免震基礎構造に関する。
【0002】
【従来の技術】
構造物の基礎の1つである杭基礎においては、フーチング等構造物の下部と杭頭とが鉄筋を介して連結されているのが通常の構造である。このため、構造物に地震等により横力が作用した場合、構造物と連結された杭の頭部に水平力、回転力が作用し、杭体が曲げモーメントによる引張力、剪断力により破損する恐れがある。その対策として、従来、杭頭と構造物下部とを非連結状態とし、両者間に砂利を敷設する方法が、この出願の出願人によって提案されている(特公平1−44852号公報)。
【0003】
この既提案の方法によれば、杭は砂利層を介して伝達される構造物の鉛直荷重のみを負担するものとして機能する。すなわち、構造物に地震等により横力が作用しても、砂利粒子間に滑り作用が生じ、それに伴う摩擦力以外には杭には水平力、回転力が伝達されない。したがって、杭には大きな引張応力や剪断応力が発生しない。
【0004】
一方、砂利粒子の滑り作用は、地震の衝撃を緩和し、その際に発生する砂利粒子間の摩擦力によりエネルギを吸収して減衰させる機能をもつが、地盤の状況等によっては緩衝作用をさらに向上し、砂利の相互運動を速やかに収束させる方が好ましいことがある。
【0005】
【発明が解決しようとする課題】
この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
【0006】
この発明の目的は、構造物の鉛直荷重を杭に確実に伝達し、地震による水平方向の力を杭に伝達しないで、その衝撃に対する緩衝作用の向上を図った免震基礎構造を提供することにある。
【0007】
【課題を解決するための手段】
この発明は上記課題を達成するために、次のような手段を採用している。
【0008】
すなわちこの発明は、杭の頭部と構造物下部との間に、剛性を有する粒状材と、該剛性粒状材よりも小さな細粒であって、該剛性粒状材間に形成される間隙に納まる程度の大きさの弾性を有する粒状材とを混合した混合粒状材からなる緩衝層を介在させたことを特徴とする免震基礎構造にある。
【0009】
またこの発明は、前記混合粒状材が透水機能を有する複数の袋体に収容され、これらの袋体が重畳されていることを特徴とする免震基礎構造にある。
【0010】
さらにこの発明は、前記緩衝層の内部に透水機能を有する棚状体が略水平方向に敷設されていることを特徴とする免震基礎構造にある。
【0011】
さらに又この発明は、前記棚状体の端部がアンカーに固定されていることを特徴とする免震基礎構造にある。
【0012】
この発明において、構造物とは、建築物、必要に応じてこれを支持するために設けられたフーチングなど杭によって直接または間接に支持されるものをいう。
【0013】
剛性を有する粒状材は、構造物の鉛直荷重に対する耐圧縮性があり、その鉛直荷重を杭に伝達する機能を担うものであり、その大きさは砂利程度の小さなものが好ましいが、必ずしも均一な大きさでなくとも差し支えなく、形状は非偏平なもの、球ないしやや長円球のものが好ましい。端部が角ばっていても、全体が非偏平で丸ければよい。具体的には丸味を帯びた砂利、人工砕石、硬質の廃プラスチックの粒形物などが挙げられる。
【0014】
弾性を有する粒状材は、地震等により構造物に横力が作用した場合、伸縮して衝撃を吸収・減衰させる機能を担うものであり、例えば耐食性の硬質ゴムが用いられる。弾性粒状材の大きさは剛性粒状材よりも小さな細粒、具体的には剛性粒状材間に形成される間隙に納まる程度の大きさとすることが好ましい。そのようにすることにより、剛性粒状材どうしが密接して構造物の荷重を杭に確実に伝達し、弾性粒状材に起因する施工後の沈下及び経年変形による沈下が生じない。混合粒状材の敷設広さは、構造物の底面よりも大きくするが、その厚さは構造物の荷重等を勘案して適宜設定される。
【0015】
液状化しやすい地盤においては、剛性粒状材を構造物及び杭間のみならず、杭周囲にも配置すると好適である。そのようにすることにより、地震時に圧力上昇した間隙水が杭周囲及び緩衝層を経て逸散することになる。
【0016】
袋体としては、耐食性があってフレキシブルな材料で作られたものが用いられ、混合粒状材を収容した状態で通常のハンドリングで破けない強度を有する袋状に形成される。透水機能は材料自体が透水性もの、網状に形成されたもの、小孔が多数開けられたもの等により得られ、要するに地下水が袋体の内外に容易に通過可能であればよい。
【0017】
棚状体としては、フレキシブルで且つ耐引張力が大きい材料からなる網状物、帯状物、シート状物等が用いられ、実質的に面状に張設された状態で実質的に透水機能を有している必要がある。透水機能は材料自体が透水性のもの、網状物や帯状物が間隔をもって張設されて、それらの隙間が透水通路をなすもの、帯状物やシート状物に小孔が多数あけられているもの等により得られ、要するに棚状体の一方の側から他方の側へ地下水が容易に通過可能であればよい。棚状体の簡便な材料としては、プラスチック、織布、不織布などが挙げられる。
【0018】
アンカーとしては、これに棚状体が張設可能なものであって、鉄鋼材料など剛性の大きな材料からなる棒状体、板状体等が用いられる。
【0019】
なお、杭は既製杭、場所打ち杭いずれであってもよい。
【0020】
【発明の実施の形態】
この発明の実施の形態を図面を参照して以下に説明する。図1はこの発明の実施の形態を示す断面図である。杭基礎の場合、フーチング等を含む構造物1は地盤2に設置された杭3により支持される。この発明においては、構造物1の下部と杭3の頭部との間に、緩衝層4が介在されている。
【0021】
緩衝層4は、図2にその一部を拡大して示すように、剛性粒状材5と、硬質ゴム等の弾性粒状材6とを混合したものからなっている。剛性粒状材5として非偏平の丸味を帯びた砂利が用いられ、弾性粒状材6として剛性粒状材5の間隙に適合する大きさと量の硬質ゴムの小さな粒体が用いられる。
【0022】
緩衝層4を形成するにあたっては、まず杭3を通常の工法、既製杭であれば打ち込み工法、埋込み工法、場所打ち杭であれば各種場所打ち杭工法により施工する。杭3の施工後、地盤2を所定深さまで掘削し、杭3の杭頭処理を行う。剛性粒状材5および弾性粒状材6は、あらかじめ混合され、この混合粒状材5、6を杭3の頭部上に敷設する。その際、転圧等の手段により締め固められる。緩衝層4を形成したら、その上に型枠を配置して構造物1のコンクリートを打設し、その硬化後脱型し、掘削部分の埋め戻しを行う。
【0023】
上記基礎構造によれば、構造物1の鉛直荷重は緩衝層4の剛性粒状材5を介して杭3に確実に伝達されるので、不等な変位を生ずることない。一方、地震等により構造物1に横力が作用しても、混合粒状材5、6間に滑り作用が生じ、杭3には大きな水平力や回転力が伝達されないので、大きな引張応力や剪断応力が発生しない。しかも、その際、弾性粒状材6は水平力を受けて伸縮し、エネルギを速やかに吸収・減衰させることができる。さらに、地震による液状化が生じやすい地盤においては、圧力が上昇した地下間隙水が、混合粒状材5、6の間隙を経て逸散するので(ドレーン効果)、液状化現象の発生を防止できる。
【0024】
図3はこの発明の別の実施の形態を示す断面図である。この実施の形態では、混合粒状材5、6が図4に示すように、袋体7に収容され、この袋体7を多数重畳することにより、緩衝層4が形成されている。
【0025】
混合粒状材5、6は、適当な単位で、耐食性のプラスチックの網袋である袋体7に可動状態にやや緩めに収容されている。袋体7は、混合粒状材5、6が収容されたときに、全体的に偏平になるものが好ましい。袋体7は偏平な方向を水平方向にして順次重畳されるのであるが、上段の袋体7が下段の隣接する袋体7、7間に配置されるようにするとよい。このようにすることにより、緩衝層4全体を密にすることができる。
【0026】
この実施の形態によれば、混合粒状材5、6が袋体7により拘束され、長期に亘る地盤変動等種々の要因による、緩衝層4の分離、空洞の発生等の変状を防止できる。また、袋体7は緩衝層4において、その剪断破壊強度を増大させる補強材として機能し、構造物1の不等沈下を防止できる。さらに、袋体7は透水機能をもつので、液状化地盤における間隙水の逸散を妨げることがない。
【0027】
図5はこの発明のさらに別の実施の形態を示す断面図である。この実施の形態は、緩衝層4の内部に棚状体8を配置したものである。棚状体8としては、例えば耐食性を有し、かつ引張強度が大きいプラスチック製のネットあるいはグリッドが用いられる。このようなネットあるいはグリッドは、盛土補強土工法等においてジオテキスタイルとして知られている。
【0028】
棚状体8として、帯状物例えばポリエステル芯材の周囲にポリエチレン外周材が設けられているプラスチック帯状物を用いる場合、透水機能を確保するために適宜間隔をあけて水平方向に適宜枚数敷設される。このような帯状物からなる棚状体8を複数段設置する場合、一段毎に水平方向に90度異なる方向に張設されることが好ましい。棚状体8の段数および間隔は、構造物1、杭3などの状況に応じて決定される。場合により、棚状体8が1段のみのこともありうる。
【0029】
棚状体8によって、緩衝層4が区画されるので、永年に亘り周囲の種々の振動、弱い地震、地下水などの影響で緩衝層4の状況が当初の設定状態から変動したり、局部的に空洞などが生じることが防止される。
【0030】
さらに緩衝層4の形成にあたっては、その幅方向両側あるいは全周に所要間隔で鋼棒からなるアンカー9、9を打ち込む。そして、対向するアンカー9、9間に棚状体8を敷設し、その両端をアンカー9、9に適宜手段により固定する。棚状体8は混合粒状材5、6と交互に下段から順次敷設される。
【0031】
棚状体8のアンカー9への固定態様は、特に制限はなく、棚状体8の材料、形態などに応じて適当なものでよく、棚状体8に引張応力が作用したときに、固定部分で棚状体8がずれたりせずに、強固に固着していればよい。
【0032】
この実施の形態によれば、混合粒状材5、6が棚状体8により拘束される作用効果がさらに向上し、緩衝層4の変状を防止できる。また、棚状体8は緩衝層4において、その剪断破壊強度を増大させる補強材として機能し、構造物1の不等沈下の恐れもなくなり、構造物1の荷重も周辺地盤に分散されるので、支持力が杭のみの場合に比して大きくなる。さらに、棚状体8は透水機能をもつので、液状化地盤における間隙水の逸散を妨げることがない。
【0033】
【発明の効果】
以上のようにこの発明によれば、構造物の鉛直荷重は緩衝層を介して杭に確実に伝達される一方、地震等により構造物に横力が作用しても、混合粒状材間に滑り作用が生じ、杭には大きな水平力や回転力が伝達されないので、大きな引張応力や剪断応力が発生しない。しかも、その際、弾性粒状材は水平力を受けて伸縮し、エネルギを迅速に吸収・減衰させることができる。
【図面の簡単な説明】
【図1】図1はこの発明の実施の形態を示す断面図である。
【図2】図2緩衝層の一部を拡大して示す断面図である。
【図3】図3は別の実施の形態を示す断面図である。
【図4】図4は袋体を拡大して示す断面図である。
【図5】図5はさらに別の実施の形態を示す断面図である。
【符号の説明】
1…構造物
2…地盤
3…杭
4…緩衝層
5…剛性粒状材
6…弾性粒状材
7…袋体
8…棚状体
9…アンカー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a base-isolated base structure, and more particularly to a base-isolated base structure that reduces shock during earthquakes and prevents damage to piles.
[0002]
[Prior art]
In a pile foundation which is one of the foundations of a structure, the lower part of the structure such as a footing and the pile head are connected via a reinforcing bar. For this reason, when a lateral force acts on the structure due to an earthquake or the like, a horizontal force or a rotational force acts on the head of the pile connected to the structure, and the pile body is damaged by a tensile force or a shearing force due to a bending moment. There is a fear. As a countermeasure, a method of placing gravel between the pile head and the lower part of the structure and laying gravel between them has been proposed by the applicant of this application (Japanese Patent Publication No. 1-44482).
[0003]
According to the proposed method, the pile functions as a load bearing only the vertical load of the structure transmitted through the gravel layer. That is, even if a lateral force acts on the structure due to an earthquake or the like, a sliding action occurs between the gravel particles, and a horizontal force and a rotational force are not transmitted to the pile other than the frictional force associated therewith. Therefore, a large tensile stress or shear stress is not generated in the pile.
[0004]
On the other hand, the sliding action of gravel particles has the function of reducing the impact of an earthquake and absorbing and attenuating energy by the frictional force between the gravel particles generated at that time. It may be preferable to improve and quickly converge the gravel interaction.
[0005]
[Problems to be solved by the invention]
The present invention has been made based on the technical background as described above, and achieves the following object.
[0006]
An object of the present invention is to provide a base-isolated foundation structure that reliably transmits a vertical load of a structure to a pile, and does not transmit a horizontal force due to an earthquake to the pile, and has improved buffering action against the impact. It is in.
[0007]
[Means for Solving the Problems]
The present invention employs the following means in order to achieve the above object.
[0008]
That is, according to the present invention, between the head of the pile and the lower part of the structure, there is a granular material having rigidity, and fine particles smaller than the rigid granular material, and fits in a gap formed between the rigid granular materials. The base isolation structure is characterized by interposing a buffer layer made of a mixed granular material mixed with a granular material having a certain degree of elasticity.
[0009]
Moreover, this invention exists in the base isolation structure characterized by the said mixed granular material being accommodated in the several bag body which has a water-permeable function, and these bag bodies are superimposed.
[0010]
Furthermore, the present invention lies in a base-isolated base structure in which a shelf-like body having a water permeability function is laid in a substantially horizontal direction inside the buffer layer.
[0011]
Furthermore, the present invention resides in a base-isolated base structure in which an end of the shelf-like body is fixed to an anchor.
[0012]
In this invention, a structure means what is supported directly or indirectly by piles, such as a building and the footing provided in order to support this as needed.
[0013]
The granular material having rigidity is resistant to compression against the vertical load of the structure and has a function of transmitting the vertical load to the pile. The size is preferably small such as gravel, but is not necessarily uniform. It does not matter if it is not large, and the shape is preferably non-flat, spherical or slightly elliptical. Even if the end is rounded, it is sufficient that the whole is non-flat and round. Specific examples include round gravel, artificial crushed stone, and hard waste plastic particles.
[0014]
The elastic granular material bears a function of expanding and contracting to absorb and attenuate an impact when a lateral force acts on the structure due to an earthquake or the like, and for example, a corrosion-resistant hard rubber is used. It is preferable that the size of the elastic granular material is smaller than that of the rigid granular material, specifically, a size that fits into a gap formed between the rigid granular materials. By doing so, the rigid granular materials are in close contact with each other, and the load of the structure is reliably transmitted to the pile, so that settlement after construction and settlement due to secular deformation due to the elastic granular material do not occur. The laying area of the mixed granular material is larger than the bottom surface of the structure, but the thickness is appropriately set in consideration of the load of the structure.
[0015]
In the ground which is liable to be liquefied, it is preferable to arrange the rigid granular material not only between the structure and the pile but also around the pile. By doing so, the pore water whose pressure has increased during the earthquake is dissipated through the piles and the buffer layer.
[0016]
The bag body is made of a corrosion-resistant and flexible material, and is formed into a bag shape having a strength that cannot be broken by normal handling in a state where the mixed granular material is accommodated. The water permeation function is obtained when the material itself is water permeable, formed in a net shape, or formed with a large number of small holes, etc. In short, it is sufficient that the ground water can easily pass into and out of the bag body.
[0017]
As the shelf-like body, a net-like material, a belt-like material, a sheet-like material, etc. made of a flexible material having a high tensile strength is used, and has a substantially water-permeable function in a state of being stretched in a substantially planar shape. Need to be. The water permeability function is that the material itself is water permeable, the nets and strips are stretched at intervals, and the gaps form water passages, and the strips and sheets have many small holes. In short, it is only necessary that the groundwater can easily pass from one side of the shelf to the other side. Examples of a simple material for the shelf include plastic, woven fabric, and non-woven fabric.
[0018]
As the anchor, a shelf-like body can be stretched, and a rod-like body, a plate-like body or the like made of a material having high rigidity such as a steel material is used.
[0019]
The pile may be either a ready-made pile or a cast-in-place pile.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention. In the case of a pile foundation, the structure 1 including a footing and the like is supported by a pile 3 installed on the ground 2. In this invention, the buffer layer 4 is interposed between the lower part of the structure 1 and the head of the pile 3.
[0021]
The buffer layer 4 is composed of a mixture of a rigid granular material 5 and an elastic granular material 6 such as hard rubber, as shown partially in FIG. Non-flat rounded gravel is used as the rigid granular material 5, and small particles of hard rubber having a size and amount suitable for the gap between the rigid granular materials 5 are used as the elastic granular material 6.
[0022]
In forming the buffer layer 4, first, the pile 3 is constructed by a normal construction method, if it is a ready-made pile, a driving method, an embedding method, or a cast-in-place pile by various cast-in-place pile methods. After the construction of the pile 3, the ground 2 is excavated to a predetermined depth, and the pile head processing of the pile 3 is performed. The rigid granular material 5 and the elastic granular material 6 are mixed in advance, and the mixed granular materials 5 and 6 are laid on the head of the pile 3. At that time, it is compacted by means such as rolling. When the buffer layer 4 is formed, a formwork is placed thereon, the concrete of the structure 1 is placed thereon, the mold is removed after hardening, and the excavated portion is backfilled.
[0023]
According to the foundation structure, the vertical load of the structure 1 is reliably transmitted to the pile 3 via the rigid granular material 5 of the buffer layer 4, so that unequal displacement does not occur. On the other hand, even if a lateral force is applied to the structure 1 due to an earthquake or the like, a sliding action occurs between the mixed granular materials 5 and 6, and a large horizontal force or rotational force is not transmitted to the pile 3. No stress is generated. In addition, at that time, the elastic granular material 6 expands and contracts by receiving a horizontal force and can quickly absorb and attenuate energy. Furthermore, in the ground where liquefaction is likely to occur due to an earthquake, the underground pore water whose pressure has increased is dissipated through the gap between the mixed granular materials 5 and 6 (drain effect), so that the occurrence of the liquefaction phenomenon can be prevented.
[0024]
FIG. 3 is a sectional view showing another embodiment of the present invention. In this embodiment, as shown in FIG. 4, the mixed granular materials 5 and 6 are accommodated in a bag body 7, and the buffer layer 4 is formed by overlapping a large number of the bag bodies 7.
[0025]
The mixed granular materials 5 and 6 are accommodated in an appropriate unit in a loosely movable state in a bag body 7 which is a net bag of corrosion-resistant plastic. The bag body 7 is preferably flat when the mixed granular materials 5 and 6 are accommodated. The bag bodies 7 are sequentially superimposed with the flat direction set as the horizontal direction, but the upper bag body 7 may be disposed between the adjacent lower bag bodies 7 and 7. By doing so, the entire buffer layer 4 can be made dense.
[0026]
According to this embodiment, the mixed granular materials 5 and 6 are restrained by the bag body 7, and it is possible to prevent deformation such as separation of the buffer layer 4 and generation of cavities due to various factors such as ground fluctuation over a long period of time. Moreover, the bag body 7 functions as a reinforcing material for increasing the shear fracture strength in the buffer layer 4, and can prevent the structure 1 from being unevenly settled. Furthermore, since the bag body 7 has a water permeability function, it does not hinder the escape of pore water in the liquefied ground.
[0027]
FIG. 5 is a sectional view showing still another embodiment of the present invention. In this embodiment, a shelf-like body 8 is arranged inside the buffer layer 4. As the shelf-like body 8, for example, a plastic net or grid having corrosion resistance and high tensile strength is used. Such nets or grids are known as geotextiles in the embankment reinforcement earth method.
[0028]
In the case of using a strip-like material, for example, a plastic belt-like material in which a polyethylene outer peripheral material is provided around a polyester core material as the shelf-like body 8, an appropriate number of pieces are laid in the horizontal direction at appropriate intervals in order to ensure a water-permeable function. . When the shelf-like body 8 made of such a belt-like object is installed in a plurality of stages, it is preferable that each stage is stretched in a direction different by 90 degrees in the horizontal direction. The number of steps and the interval of the shelf-like bodies 8 are determined according to the situation of the structure 1, the pile 3, and the like. In some cases, there may be only one shelf 8.
[0029]
Since the buffer layer 4 is partitioned by the shelf-like body 8, the situation of the buffer layer 4 fluctuates from the initial setting state due to various vibrations, weak earthquakes, groundwater, etc. for many years, or locally. The formation of cavities and the like is prevented.
[0030]
Further, when the buffer layer 4 is formed, anchors 9 and 9 made of steel rods are driven at both sides of the width direction or the entire circumference at a required interval. And the shelf-like body 8 is laid between the opposing anchors 9 and 9, and both ends thereof are fixed to the anchors 9 and 9 by appropriate means. The shelf-like body 8 is laid in order from the lower stage alternately with the mixed granular materials 5 and 6.
[0031]
The manner in which the shelf-like body 8 is fixed to the anchor 9 is not particularly limited, and may be appropriate depending on the material, form, etc. of the shelf-like body 8, and is fixed when a tensile stress acts on the shelf-like body 8. It is sufficient that the shelf-like body 8 is firmly fixed without being displaced at the portion.
[0032]
According to this embodiment, the effect of the mixed granular materials 5 and 6 being restrained by the shelf-like body 8 is further improved, and deformation of the buffer layer 4 can be prevented. In addition, the shelf-like body 8 functions as a reinforcing material that increases the shear fracture strength in the buffer layer 4, and there is no risk of uneven settlement of the structure 1, and the load of the structure 1 is also distributed to the surrounding ground. The bearing capacity is larger than that of the pile only. Furthermore, since the shelf-like body 8 has a water permeability function, it does not hinder the escape of pore water in the liquefied ground.
[0033]
【The invention's effect】
As described above, according to the present invention, the vertical load of the structure is reliably transmitted to the pile via the buffer layer, but even if a lateral force acts on the structure due to an earthquake or the like, the vertical load of the structure slips between the mixed granular materials. Since the action occurs and no large horizontal force or rotational force is transmitted to the pile, no large tensile stress or shear stress is generated. Moreover, at that time, the elastic granular material expands and contracts by receiving a horizontal force, and can absorb and attenuate energy quickly.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view illustrating a part of the buffer layer.
FIG. 3 is a cross-sectional view showing another embodiment.
FIG. 4 is an enlarged cross-sectional view of a bag body.
FIG. 5 is a cross-sectional view showing still another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Structure 2 ... Ground 3 ... Pile 4 ... Buffer layer 5 ... Rigid granular material 6 ... Elastic granular material 7 ... Bag body 8 ... Shelf 9 ... Anchor

Claims (4)

杭の頭部と構造物下部との間に、剛性を有する粒状材と、該剛性粒状材よりも小さな細粒であって、該剛性粒状材間に形成される間隙に納まる程度の大きさの弾性を有する粒状材とを混合した混合粒状材からなる緩衝層を介在させたことを特徴とする免震基礎構造。Between the head of the pile and the lower part of the structure, there is a granular material having rigidity, and fine particles smaller than the rigid granular material, which are large enough to fit in a gap formed between the rigid granular materials . A base-isolated foundation structure comprising a buffer layer made of a mixed granular material mixed with an elastic granular material. 前記混合粒状材が透水機能を有する複数の袋体に収容され、これらの袋体が重畳されていることを特徴とする請求項1記載の免震基礎構造。The base isolation structure according to claim 1, wherein the mixed granular material is accommodated in a plurality of bags having a water permeability function, and these bags are superimposed. 前記緩衝層の内部に透水機能を有する棚状体が略水平方向に敷設されていることを特徴とする請求項1記載の免震基礎構造。The base-isolated foundation structure according to claim 1, wherein a shelf-like body having a water permeability function is laid in a substantially horizontal direction inside the buffer layer. 前記棚状体の端部がアンカーに固定されていることを特徴とする請求項3記載の免震基礎構造。The base-isolated foundation structure according to claim 3, wherein an end of the shelf-like body is fixed to an anchor.
JP35102095A 1995-12-25 1995-12-25 Base isolation structure Expired - Fee Related JP3627771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35102095A JP3627771B2 (en) 1995-12-25 1995-12-25 Base isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35102095A JP3627771B2 (en) 1995-12-25 1995-12-25 Base isolation structure

Publications (2)

Publication Number Publication Date
JPH09177094A JPH09177094A (en) 1997-07-08
JP3627771B2 true JP3627771B2 (en) 2005-03-09

Family

ID=18414501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35102095A Expired - Fee Related JP3627771B2 (en) 1995-12-25 1995-12-25 Base isolation structure

Country Status (1)

Country Link
JP (1) JP3627771B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20010100168A (en) * 2001-03-29 2002-12-02 Συνεργατες Καρυδη Α.Ε. System for anti-seismic protection of constructions using elastic foundations
JP2007204994A (en) * 2006-01-31 2007-08-16 Shimizu Corp Pile head joint structure
JP5181290B2 (en) * 2008-12-08 2013-04-10 清水建設株式会社 Structure of new structure using existing pile and construction method of new structure using existing pile
JP5210202B2 (en) * 2009-02-25 2013-06-12 株式会社フジタ Support structure between concrete soil
JP5516975B2 (en) * 2009-07-31 2014-06-11 清水建設株式会社 Foundation structure
JP2011047196A (en) * 2009-08-27 2011-03-10 Shimizu Corp Structure for suppressing sinking of slab floor
JP5261837B2 (en) * 2010-11-02 2013-08-14 飛島建設株式会社 Placing a wooden pile
JP6119039B2 (en) * 2013-02-04 2017-04-26 株式会社グレイプ Foundation structure
JP6212147B2 (en) * 2016-02-26 2017-10-11 サムシングホールディングス株式会社 Crushed stone pile
JP6194055B1 (en) * 2016-05-24 2017-09-06 東光電気工事株式会社 Method for manufacturing photovoltaic power generation apparatus

Also Published As

Publication number Publication date
JPH09177094A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JP3627771B2 (en) Base isolation structure
JP5921857B2 (en) Slope protection structure in which honeycomb-shaped three-dimensional solid cell structures are stacked vertically
JP6944164B1 (en) Ground improvement method and improved ground structure
EP1252397B1 (en) Soil reinforcement method and apparatus
JP2980604B1 (en) Vibration isolation foundation structure of building and its construction method
JP2011047262A (en) Foundation structure
JP3765000B2 (en) Ground improvement foundation method for soft ground.
JP3627772B2 (en) Base isolation structure
JP3594385B2 (en) Seismic isolation structure of structure
JP2597116B2 (en) Embankment foundation and its construction method
JP4188811B2 (en) Reinforced soil protection retaining wall
JP3782770B2 (en) Method for reinforcing residential ground
JP3682667B2 (en) Ground formation structure
RU2783072C1 (en) Method for preparing the base of a cylindrical tank on soft soils
JPH09158206A (en) Base isolating structure for structure
JP4252060B2 (en) Reinforced earthwork method
CN218713214U (en) Seismic isolation and reduction device, limiting device and piled raft foundation device for foundation reinforcement
JP3678290B2 (en) High earthquake resistance foundation
JPH07252820A (en) Water filled load construction method
JP3431905B2 (en) Improved soil structure of sandy soil layer and improvement method
JP3628427B2 (en) Triaxial reinforced earth method
JP2003129422A (en) Protective bank
KR960013592B1 (en) Working method of toy top type concrete pile framings foundation
KR101858021B1 (en) Earthquake-proof type top-base pile, earthquake-proof type top-base foundation and construction method of the same
Shukla Shallow foundations

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees