JP5894016B2 - 重合体組成物の製造方法及び重合体組成物 - Google Patents

重合体組成物の製造方法及び重合体組成物 Download PDF

Info

Publication number
JP5894016B2
JP5894016B2 JP2012137175A JP2012137175A JP5894016B2 JP 5894016 B2 JP5894016 B2 JP 5894016B2 JP 2012137175 A JP2012137175 A JP 2012137175A JP 2012137175 A JP2012137175 A JP 2012137175A JP 5894016 B2 JP5894016 B2 JP 5894016B2
Authority
JP
Japan
Prior art keywords
group
polymer
silica
compound
polymer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012137175A
Other languages
English (en)
Other versions
JP2014001311A (ja
Inventor
純子 松下
純子 松下
会田 昭二郎
昭二郎 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012137175A priority Critical patent/JP5894016B2/ja
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to EP13779014.3A priority patent/EP2840095B1/en
Priority to CN201380020322.6A priority patent/CN104245749B/zh
Priority to KR1020147029172A priority patent/KR101622067B1/ko
Priority to PCT/JP2013/002637 priority patent/WO2013157272A1/ja
Priority to US14/394,428 priority patent/US9284384B2/en
Priority to SG11201406362PA priority patent/SG11201406362PA/en
Publication of JP2014001311A publication Critical patent/JP2014001311A/ja
Application granted granted Critical
Publication of JP5894016B2 publication Critical patent/JP5894016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、重合体組成物の製造方法、及び重合体組成物に関する。
なお、本明細書において、「重合体」とは、「ポリマー」のみならず、「オリゴマー」も含む概念である。
近年、環境問題への関心の高まりに伴う世界的な二酸化炭素排出の規制の動きに関連して、自動車の低燃費化に関する要求が高まりつつある。このような要求に対応するため、タイヤには転がり抵抗の低減が求められている。タイヤの転がり抵抗を低減する手法として、低発熱性のゴム組成物をタイヤに適用する手法が挙げられる。
従来知られている手法としては、カーボンブラック及びシリカとの親和性を高めた重合体を使用する方法(例えば、特許文献1)が挙げられる。特許文献1によれば、充填剤とゴム成分との親和性を高めることにより、ゴム組成物の発熱性を低くすることができる。これにより、ヒステリシスロスの低いタイヤを得ることができる。しかしながら、自動車の低燃費化が一層進むにつれて、タイヤにも低発熱性のさらなる改良が望まれていた。
また、他の手法では混練時間を長くするなどの方法が知られているが、発熱性の低減には限界があった。
特開2003−514079号公報
本発明の目的は、低発熱性が良好な重合体組成物を得ることができる重合体組成物の製造方法を提供することにある。また、本発明の他の目的は低発熱性が良好な重合体組成物を提供することにある。
本発明の重合体組成物の製造方法は、希土類元素含有化合物であり、下記一般式(I):
Figure 0005894016
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp R は、それぞれ独立して無置換もしくは置換インデニルを示し、R a 〜R f は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(II):
Figure 0005894016
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp R は、それぞれ独立して無置換もしくは置換インデニルを示し、X´は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体より選択される少なくとも1種類の錯体を含む第1要素と、
下記一般式(X)で表される化合物を含む第2要素と、
シリカを含む第3要素について、
前記第2要素と前記第3要素とを混合熟成した後、前記第1要素を添加して反応させ、且つ、イオン性化合物は配合しないで得られた重合触媒組成物の存在下で、
共役ジエン化合物及び非共役オレフィンの少なくとも一種を重合させ重合体成分を形成させる工程を含み、
前記第3要素の含水率が、0.1重量%以上であることを特徴とする。
AlR 1 2 3 ・・・ (Xa)
(式中、R1及びR2は、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R1、R2及びR3は、同一又は異なっていてもよい)
上記触媒組成物を用いて重合体を合成することで、従来の方法よりも分子レベルでシリカを重合体中に分散させることができ、重合体中にシリカが高度に分散した、低発熱性に優れた重合体を得ることが可能となる。また、混練により重合体/シリカ複合体を製造する方法と比して、本発明の製造方法で製造されるシリカ含有重合体を用いることにより、重合体組成物の耐摩耗性も良好となることが明らかとなった。
また、当該含水率を有するシリカは、焼成、乾燥等の工程を経ることなく使用可能であるため、簡便に使用可能である。また、含まれる水分により、重合反応がより促進される、という効果も有する。

前記第3要素の配合量は、好適には、後に添加する重合体成分を構成する単量体100重量部に対して、無水物重量に換算して0重量部超100重量部以下である。第3要素の配合量を上記の範囲内とすることで、触媒として有効に機能すること、及び重合体中に効率的にシリカを分散させることができる、という効果を奏する。
適には、前記希土類元素含有化合物又は希土類元素化合物とルイス塩基の反応物は、希土類元素と炭素との結合を有さないものとする。該希土類元素化合物及び希土類元素化合物とルイス塩基との反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい、という利点がある。
記のいずれかの重合体組成物の製造方法によって製造される重合体組成物は、上述のように、重合体中にシリカが高度に分散しており、低発熱性に優れる。
本発明の重合体組成物の製造方法によれば、低発熱性が良好な重合体組成物を得ることが可能となる。また、本発明の重合体組成物は、低発熱性が良好なものである。
以下、本発明の重合体組成物の製造方法について説明する。
(シリカ含有重合体)
本発明の重合体組成物の製造方法に係る重合体組成物を構成するシリカ含有重合体は、その重合体部分が共役ジエン化合物のみ、または、共役ジエン化合物及び非共役オレフィンの重合体である。即ち、共役ジエン重合体または共役ジエン化合物と非共役オレフィンの共重合体であり、これらをまとめて共役ジエン系重合体とも称する。
単量体として用いる共役ジエン化合物は、炭素数が4〜8であることが好ましい。該共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン等が挙げられ、これらの中でも、1,3-ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
一方、単量体として用いる非共役オレフィンは、共役ジエン化合物以外のオレフィンであり、非環状オレフィンであることが好ましい。また、該非共役オレフィンの炭素数は2〜8であることが好ましい。従って、上記非共役オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィンが好適に挙げられ、エチレン、プロピレン及び1−ブテンがより好ましく、エチレンが特に好ましい。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。
重合体が共重合体である場合、該共重合体は、交互共重合体、周期的共重合体、ランダム共重合体、ブロック共重合体、グラフト共重合体、テーパー共重合体等のいずれでもよく、特に制限されるものではないが、ブロック共重合体、テーパー共重合体が好ましい。
前記重合体の数平均分子量(Mn)は、特に制限はなく、目的に応じて適宜選択することができるが、10万〜40万が好ましく、15万〜30万がより好ましい。前記数平均分子量(Mn)が、15万以上であると、耐久性(耐破壊特性及び耐摩耗性)が向上した架橋重合体組成物を得ることができる。また、前記数平均分子量(Mn)が、30万以下であると、加工性が低下するのを防止することができる。一方、前記数平均分子量(Mn)が、前記より好ましい範囲内であると、耐久性及び加工性の両立の点でさらに有利である。
ここで、前記数平均分子量(Mn)は、測定温度を40℃とし、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質としたポリスチレン換算平均分子量として求める。
また、前記重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)としては、特に制限はなく、目的に応じて適宜選択することができ、4.0以下が好ましく、3.0以下がより好ましい。前記分子量分布(Mw/Mn)が4.0以下であると、物性を均質にすることができる。一方、前記より好ましい範囲内であると低発熱性の点でも有利である。ここで、分子量分布(Mw/Mn)は、測定温度を40℃とし、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質としたポリスチレン換算平均分子量として、重量平均分子量(Mw)と数平均分子量(Mn)とを求め、求めた重量平均分子量(Mw)及び数平均分子量(Mn)から算出する。
前記重合体中におけるゲル分率としては、特に制限はなく、目的に応じて適宜選択することができるが、40%以下が好ましく、20%以下がより好ましい。
前記重合体中におけるゲル分率が40%以下であると、耐久性(耐破壊特性及び耐摩耗性)が向上した架橋重合体組成物を得ることができる。
なお、重合体中におけるゲル分率が40%以下の重合体は、例えば、後述する第一、第二、若しくは第三の重合触媒組成物を用いて、低温(−50℃〜100℃)で、所定時間(30分間〜2日間)重合することによって、得ることができる。
<共役ジエン化合物由来部分のミクロ構造>
−シス−1,4結合量−
前記重合体の共役ジエン化合物由来部分のシス−1,4結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、90%以上が好ましく、95%以上がより好ましく、98%以上が特に好ましい。
前記シス−1,4結合量が、90%以上であると、十分な伸長結晶性を発現することができる。
一方、前記シス−1,4結合量が、前記より好ましい範囲内、又は、前記特に好ましい範囲内であると、伸張結晶性による耐久性の向上の点でさらに有利である。
−トランス−1,4結合量−
前記重合体の共役ジエン化合物由来部分のトランス−1,4結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、10%以下が好ましく、5%以下がより好ましい。
前記トランス−1,4結合量が、10%以下であると、十分な伸長結晶性を発現できる。
一方、前記トランス−1,4結合量が、前記より好ましい範囲内であると、伸張結晶性による耐久性の向上の点でさらに有利である。
−3,4−ビニル結合量−
前記重合体の共役ジエン化合物由来部分の3,4−ビニル結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、5%以下が好ましく、2%以下がより好ましい。
前記3,4−ビニル結合量が、5%以下であると、十分な伸長結晶性を発現できる。
一方、前記3,4−ビニル結合量が、前記より好ましい範囲内であると、伸張結晶性による耐久性の向上の点でさらに有利である。
(共役ジエン系重合体の製造方法)
次に、前記共役ジエン系重合体を製造することができる製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。前記共役ジエン系重合体は、重合触媒組成物の存在下、共役ジエン化合物及び/または非共役オレフィンを重合させることにより製造することができる。
<重合触媒組成物>
上記の共役ジエン系重合体の製造方法において使用される重合触媒組成物は、下記第1要素、第2要素及び第3要素を組み合わせることで得られる。
<<第1要素>>
上記重合触媒組成物を構成する第1要素は、希土類元素含有化合物である。また、第1要素は、希土類元素含有化合物として、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物を含む。ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さないのが好ましい。該希土類元素化合物及び希土類元素化合物とルイス塩基との反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。第1要素は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
希土類元素含有化合物としては、下記の希土類元素含有化合物を好適に使用することができる。
<<<希土類元素含有化合物>>>
上記希土類元素含有化合物は、下記の構造を有するものとすることができる。希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素含有化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、好適には、下記一般式(i)又は(ii):
Figure 0005894016
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Xは、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基、リン化合物残基、無置換若しくは置換のシクロペンタジエニル、または無置換若しくは置換のインデニルを示し、Lは、ルイス塩基を示し、wは、0〜3を示す)を含むことができる。
上記希土類元素含有化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2'−ヒドロキシアセトフェノン、2'−ヒドロキシブチロフェノン、2'−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基;ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
上記第1要素において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(I)及び(II)においては、wが2又は3である場合)、ルイス塩基Lは、同一であっても異なっていてもよい。
<<<好適な希土類元素含有化合物>>>
上記希土類元素含有化合物としては、下記一般式(I):
Figure 0005894016
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(II):
Figure 0005894016
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、X'は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体より選択される少なくとも1種類の錯体を含むことが好ましい。
ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
なお、重合反応系において、重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/Lの範囲であることが好ましい。
上記一般式(I)及び式(II)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-XX又はC911-XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(I)及び式(II)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
一般式(I)及び式(II)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、Ra〜Rfのうち少なくとも一つが水素原子であることが好ましい。Ra〜Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、Ra〜Rcのうち少なくとも一つが水素原子であり、Rd〜Rfのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。
一般式(II)で表されるメタロセン錯体は、シリル配位子[−SiX'3]を含む。シリル配位子[−SiX'3]に含まれるX'は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
上記一般式(I)及び式(II)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記一般式(I)及び式(II)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(I)で表されるメタロセン錯体を得るための反応例を示す。
Figure 0005894016
(式中、X''はハライドを示す。)
上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(II)で表されるメタロセン錯体を得るための反応例を示す。
Figure 0005894016
(式中、X''はハライドを示す。)
一般式(I)及び式(II)で表されるメタロセン錯体の構造は、X線構造解析により決定することが好ましい。
<<<他の好適な希土類元素含有化合物>>>
また、上記希土類元素含有化合物は、下記一般式(A):

Figure 0005894016
(式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である)で表されるメタロセン系化合物としてもよい(第3の希土類元素含有化合物)。
上記メタロセン系化合物の好適例においては、下記一般式(XV):
Figure 0005894016
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該R及びRは、M及びAlにμ配位しており、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示す)で表されるメタロセン系化合物が挙げられる。
以下に、上記メタロセン系化合物を詳細に説明する。上記一般式(A)で表されるメタロセン系化合物は、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
上記メタロセン系化合物において、上記式(A)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。
上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
上記式(A)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(A)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記式(XV)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(XV)において、Cpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7−X又はC11−Xで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(XV)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
上記式(XV)において、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該R及びRは、M及Aにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(XV)において、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
なお、上記式(XV)で表されるメタロセン系化合物は、例えば、溶媒中で、下記式(XVI):
Figure 0005894016
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R〜Rは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を、AlRで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系化合物の構造は、H−NMRやX線構造解析により決定することが好ましい。
上記式(XVI)で表されるメタロセン錯体において、Cpは、無置換インデニル又は置換インデニルであり、上記式(XV)中のCpと同義である。また、上記式(XVI)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XV)中の金属Mと同義である。
上記式(XVI)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR]を含む。シリルアミド配位子に含まれるR基(R〜R基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、R〜Rのうち少なくとも一つが水素原子であることが好ましい。R〜Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
上記式(XVI)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記式(XVI)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
一方、上記メタロセン系化合物の生成に用いる有機アルミニウム化合物は、AlRで表され、ここで、R及びRは、それぞれ独立して炭素数1〜20の1価の炭化水素基又は水素原子で、Rは炭素数1〜20の1価の炭化水素基であり、但し、Rは上記R又はRと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系化合物の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
<<第2要素>>
上記の重合触媒組成物を構成する第2要素は、下記一般式(X)

Figure 0005894016
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは、炭素数1〜10の炭化水素基又は水素原子で、Rは炭素数1〜10の炭化水素基であり、但し、R、R及びRは、同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される有機金属化合物を含む。
また、前記第2要素は、下記一般式(Xa):

Figure 0005894016
(式中、R及びRは、炭素数1〜10の炭化水素基又は水素原子で、Rは炭素数1〜10の炭化水素基であり、但し、R、R及びRは、同一又は異なっていてもよい)で表される有機アルミニウム化合物であることが好ましい。一般式(Xa)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた第2要素としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、重合触媒組成物における第2要素の配合量は、前記第1要素に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
<<第3要素>>
本発明にかかる重合触媒組成物を構成する第3要素は、シリカを含み、当該「シリカ」の用語は、具体的には、狭義の二酸化珪素(一般式でSiOで示される)のみを示すものではなく、ケイ酸系充填材を意味し、具体的には、無水ケイ酸の他に、含水ケイ酸、ケイ酸カルシウム、ケイ酸アルミニウム等のケイ酸塩を含む。なお、シリカの凝集状態も問わず、沈殿法シリカ、ゲル法シリカ、乾燥シリカ、コロイダルシリカなども含まれる。また、いずれの製法で製造されたシリカも含み、湿式法、乾式法いずれも含む。中でも耐摩耗性の優れた湿式シリカが好ましい。シリカのBETも特に限定されず、例えば、10〜1000m/gの範囲のシリカを含む。このようなシリカとしては、東ソーシリカ株式会社製「ニップシールAQ」、BET205m/gが挙げられる。
なお、非特許文献3において触媒組成物として使用されるシリカは、焼成して無水化したものであるが、本発明においては、シリカの焼成は要しない。
重合触媒組成物における第3要素の配合量は、後に添加するシリカ含有重合体を構成する単量体100重量部に対して0重量部を超え100重量部以下であることが好ましく、2〜80重量部であることが特に好ましく、5〜60重量部であることがさらに好ましい。第3要素の配合量を上記の範囲内とすることで、触媒として有効に機能すること、及び重合体に効率的にシリカを分散させることができる、という効果を奏する。
<<重合触媒組成物の調製工程>>
上記の重合触媒組成物は、第2要素と第3要素とを混合熟成させた後、第1要素を添加して反応させてなる。本発明において「混合熟成」とは、第2要素と第3要素とを混合し、反応させることを意味する。熟成時間、熟成温度は特に限定されないが、熟成時間は5秒〜10時間、熟成温度は−100〜100℃で行うことが望ましい。
まず、溶媒中で第2要素と第3要素とを混合熟成させることにより、第2要素と第3要素の水分とが反応して、陰電荷を有する複合体(アニオン複合体)が形成される。この反応は、例えばアルキルアルミニウムと水との反応により、メチルアルミノキサンが生成されることが、S.Pasynkiewiczによりポリヘドロン、第9巻、第429〜453頁(1990年)に詳細に解説されていることから裏付けられる。その結果、第3要素のシリカ近傍に第2要素を含むアニオン複合体が被膜を形成するかのごとく存在することになると想定される。
この状況下において、第1要素である希土類元素含有化合物を添加して反応させることにより、第1要素由来の希土類元素カチオン性化合物と第2要素、及び第2要素と第3要素との反応由来のシリカ含有アニオン複合体が反応系内に生成することになる。
本発明に係る第1要素の希土類元素含有化合物の希土類元素は、通常3つの配位子が配位するが、条件によっては、アニオンの存在下で配位子の1つ以上を離してカチオン化する、という特性を有する。そのため、第2要素と第3要素を反応させてなるアニオン複合体と、第1要素とを反応させることで、第1要素がカチオン化し、次いで、前記アニオン複合体が生成されたカチオンと結合した状態となりやすい。
ここで、希土類元素カチオン性化合物を有する触媒組成物において、希土類元素にアルミニウム等の金属(ここではYとされる)が隣接する場合、触媒の活性中心は希土類元素ではなく、隣接する金属元素Y側に移行することが示されている(Y. Matsuura et al., “Polymerization via the Insertion of Ethylene into an Al−C Bond Catalyzed by Lanthanide(Gd, Sm) Metallocene Cations” 58th Symposium on Organomethallic Chemistry, Japan, Abstracts, The Kinki Chemical Society, Japan, 2011参照)。重合触媒組成物の場合、希土類元素ではなく、隣接する金属元素Yに重合反応の活性中心が移行し、Yにおいて目的物たる重合体が生成されることとなる。
上記の重合触媒組成物においては、希土類元素が、シリカ粒子上に被膜状で存在する金属元素Yと隣接した状態で存在することから、活性中心はシリカ粒子上に移行し得る。これにより、重合反応はシリカ粒子上の金属元素Yの位置で行われることとなり、シリカに非常に近接した重合体が生成されることとなる。一部の重合体は、シリカのポーラス上に入り込んた状態となり、シリカ粒子と一体化する可能性もある。
このように、上記の重合触媒組成物中では、第2要素由来の金属元素Yと、第3要素由来のシリカと重合体が、近接または一体化し、これにより、生成された重合体中にシリカが高度に分散した状態で存在し得る。
通常、希土類元素化合物を含む重合触媒組成物において、重合反応の効率を上げるためには、希土類元素化合物の配合量を増加させることがなされるが、希土類元素化合物は高価であるため、多量に使用するのは困難である、という問題があった。しかし、上記の重合触媒組成物を用いる場合、重合反応の効率は、希土類元素化合物ではなく、シリカ及び金属元素Yの配合量に依存する。これらの配合量を増加させることによる製造コストの増加は比較的低いといえる。
なお、第1要素は水の存在により失活しやすい、という問題があるが、第1要素は、上記アニオン複合体と共存させても失活しにくい。したがって、第3要素たるシリカは、焼成等で無水物化する必要はない。焼成等の工程を省略できることにより、製造コストを下げ、かつ製造工程の効率化を図ることが可能となる。むしろ、重合反応の促進のため、第3要素は一定量以上の水分を含んでいることが好ましく、好適な含水率は、0を超え〜50重量%、特に好適な含水率は0.1〜20重量%、さらに好適な含水率は0.5〜10重量%である。
(共役ジエン系重合体の製造工程)
共役ジエン系重合体の製造工程を説明するにあたり、以下、例示的にポリブタジエンの製造工程について述べる。上記重合触媒組成物を用いたポリブタジエンの製造は、少なくとも、重合工程を含み、さらに、必要に応じて適宜選択した、カップリング工程、洗浄工程、その他の工程を含む。
<重合工程>
前記重合工程は、ブタジエン単量体を重合する工程である。
前記重合工程においては、上記重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、単量体である1,3−ブタジエンを重合させることができる。
重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン、またそれらの混合物等が挙げられる。
前記重合工程は、予め調整した重合触媒組成物中に、重合させる単量体を添加することで構成される。
前記重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
前記重合工程において、1,3−ブタジエンの重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、−100〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。また、上記重合反応の圧力は、1,3−ブタジエンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限がなく、例えば、1秒〜10日の範囲が好ましいが、触媒の種類、重合温度等の条件によって適宜選択することができる。
<洗浄工程>
前記洗浄工程は、前記重合工程において得られたシリカ含有重合体を洗浄する工程である。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノールなどが挙げられる。また、これらの溶媒に対して酸(たとえば塩酸、硫酸、硝酸)を加えて使用してもよい。添加する酸の量は溶媒に対して15mol%以下が好ましい。これ以上では酸がシリカ含有重合体中に残存してしまうことで混練および加硫時の反応に悪影響を及ぼす可能性がある。
(重合体組成物)
本発明の重合体組成物は、少なくとも、上記の重合体成分を含み、さらに必要に応じて、その他の重合体成分、充填剤、架橋剤、その他の成分を含む。
<重合体>
前記重合体は、少なくとも、上記のシリカを含有する共役ジエン系重合体のいずれかを含み、さらに必要に応じて、その他の重合体を含む。その他の重合体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブタジエン(BR)、スチレンブタジエン(SBR)、アクリロニトリル−ブタジエン(NBR)、クロロプレンゴム、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−非共役ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などのゴム成分が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<充填剤>
前記充填剤としては、重合触媒組成物に含まれるシリカ以外には特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、無機充填剤、などを挙げることができ、カーボンブラック及び無機充填剤から選択される少なくとも一種が好ましい。ここで、前記重合体組成物には、カーボンブラックが含まれることがより好ましい。なお、前記充填剤は、補強性などを向上させるために重合体組成物に配合するものである。
重合反応後に添加する充填剤の配合量(含有量)としては、特に制限はなく、目的に応じて適宜選択することができるが、重合体100質量部に対し、10質量部〜100質量部が好ましく、20質量部〜80質量部がより好ましく、30質量部〜60質量部が特に好ましい。
前記充填剤の配合量が、10質量部以上であると、充填剤を入れる効果がみられ、100質量部以下であると、前記重合体に充填剤を十分混ぜ込むことができ、重合体組成物としての性能を向上させることができる。
一方、前記充填剤の配合量が、前記より好ましい範囲、又は、前記特に好ましい範囲内であると、加工性と低ロス性・耐久性のバランスの点でより有利である。
<<カーボンブラック>>
前記カーボンブラックとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、FEF、GPF、SRF、HAF、N339、IISAF、ISAF、SAF、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記カーボンブラックの窒素吸着比表面積(NSA、JIS K 6217−2:2001に準拠して測定する)としては、特に制限はなく、目的に応じて適宜選択することができるが、20m/g〜150m/gが好ましく、35m/g〜145m/gがより好ましい。
前記カーボンブラックの窒素吸着比表面積(NSA)が20m/g以上であると、得られた重合体組成物の耐久性が悪化するのを防止して、十分な耐亀裂成長性を得ることができ、100m/g以下であると、低ロス性を向上し、また、作業性を向上することができる。
前記重合体100質量部に対するカーボンブラックの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量部〜100質量部が好ましく、10質量部〜70質量部がより好ましく、20質量部〜60質量部が特に好ましい。
前記カーボンブラックの含有量が、10質量部以上であると、補強性が不十分で耐破壊性が悪化するのを防止することができ、100質量部以下であると、加工性および低ロス性が悪化するのを防止することができる。
一方、前記カーボンブラックの含有量が、前記より好ましい範囲内、又は、前記特に好ましい範囲内であると、各性能のバランスの点でより有利である。
<<無機充填剤>>
前記無機充填剤としては、重合触媒組成物に含まれるシリカ以外には特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、上記の無機充填剤を用いる時は適宜シランカップリング剤を使用してもよい。
<架橋剤>
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤、などが挙げられるが、これらの中でも硫黄系架橋剤がより好ましい。
前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、重合体100質量部に対し、0.1質量部〜20質量部が好ましい。前記架橋剤の含有量が、0.1質量部以上であると、架橋を進行させることができ、20質量部以下であると、一部の架橋剤により混練り中に架橋が進むのを防止したり、加硫物の物性が損なわれるのを防止することができる。
<<その他の成分>>
その他に加硫促進剤を併用することも可能であり、加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。
また必要に応じて、軟化剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
(架橋重合体組成物)
本発明の重合体組成物は、架橋して架橋重合体組成物として使用してもよい。
架橋重合体組成物は、本発明の重合体組成物を架橋して得られたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
前記架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120℃〜200℃、加温時間1分間〜900分間が好ましい。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1:シリカ含有重合体Aの製造方法)
窒素雰囲気下のグローブボックス中で、1L耐圧ガラス反応器にシリカ5.0g(商品名:ニップシールAQ、重量減少法により算出した含水率5.5重量%、東ソーシリカ株式会社製)、トルエン40.0g、トリメチルアルミニウム10.0mmol(東ソーファインケム株式会社製)及びトリイソブチルアルミニウム10.0mmol(東ソーファインケム株式会社製)を仕込み、室温で30分間混合熟成させた。次いで、ビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2-PhC)GdN(SiHMe)]68mg(100μmol)を仕込み室温で60分間熟成させた。その後、グローブボックスから反応器を取り出し、1,3−ブタジエン100.0g(1.85mol)を含むトルエン溶液530.0gを添加した後、50℃で180分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5重量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールでシリカ含有重合体を分離し、70℃で真空乾燥しシリカ含有重合体Aを得た。得られたシリカ含有重合体Aの収量は88.0gであった。
(実施例2:シリカ含有重合体Bの製造方法)
窒素雰囲気下のグローブボックス中で、1L耐圧ガラス反応器にシリカ5.0g(商品名:ニップシールAQ、重量減少法により算出した含水率5.5重量%、東ソーシリカ株式会社製)、ノルマルヘキサン55.0g、トリメチルアルミニウム12.0mmol(東ソーファインケム株式会社製)及びトリイソブチルアルミニウム20.0mmol(東ソーファインケム株式会社製)を仕込み、室温で30分間混合熟成させた。次いで、ビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2-PhC)GdN(SiHMe)]68mg(100μmol)を仕込み室温で60分間熟成させた。その後、グローブボックスから反応器を取り出し、1,3−ブタジエン80.0g(1.48mol)を含むノルマルヘキサン溶液350.0gを添加した後、65℃で180分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5重量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールでシリカ含有重合体を分離し、70℃で真空乾燥しシリカ含有重合体Bを得た。得られたシリカ含有重合体Bの収量は70.0gであった。
(実施例3:シリカ含有重合体Cの製造方法)
窒素雰囲気下のグローブボックス中で、1L耐圧ガラス反応器にシリカ3.0g(商品名:ニップシールAQ、重量減少法により算出した含水率5.5重量%、東ソーシリカ株式会社製)、ノルマルヘキサン25.0g、トリメチルアルミニウム12.8mmol(東ソーファインケム株式会社製)及びジイソブチルアルミニウムハイドライド3.2mmol(東ソーファインケム株式会社製)を仕込み、室温で30分間混合熟成させた。次いで、ビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2-PhC)GdN(SiHMe)]43mg(64μmol)を仕込み室温で60分間熟成させた。その後、グローブボックスから反応器を取り出し、1,3−ブタジエン80.0g(1.48mol)を含むノルマルヘキサン溶液400.0gを添加した後、65℃で300分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5重量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールでシリカ含有重合体を分離し、70℃で真空乾燥しシリカ含有重合体Cを得た。得られたシリカ含有重合体Cの収量は77.0gであった。
(実施例4:シリカ含有重合体Dの製造方法)
窒素雰囲気下のグローブボックス中で、1L耐圧ガラス反応器にシリカ5.0g(商品名:ニップシールAQ、重量減少法により算出した含水率5.5重量%、東ソーシリカ株式会社製)、ノルマルヘキサン60.0g、トリメチルアルミニウム16.0mmol(東ソーファインケム株式会社製)、トリイソブチルアルミニウム3.2mmol(東ソーファインケム株式会社製)を仕込み、室温で30分間混合熟成させた。次いで、ビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2-PhC)GdN(SiHMe)]22mg(32μmol)を仕込み室温で60分間熟成させた。その後、グローブボックスから反応器を取り出し、1,3−ブタジエン80.0g(1.48mol)を含むノルマルヘキサン溶液320.0gを添加した後、80℃で90分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5重量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールでシリカ含有重合体組成物を分離し、70℃で真空乾燥しシリカ含有重合体Dを得た。得られたシリカ含有重合体Dの収量は26.5gであった。
(実施例5:シリカ含有重合体Eの製造方法)
窒素雰囲気下のグローブボックス中で、1L耐圧ガラス反応器にシリカ8.0g(商品名:ニップシールAQ、重量減少法により算出した含水率:5.5重量%、東ソーシリカ株式会社製)、ノルマルヘキサン80.0g、トリメチルアルミニウム16.0mmol(東ソーファインケム株式会社製)、トリイソブチルアルミニウム16.0mmol(東ソーファインケム株式会社製)、を仕込み、室温で30分間混合熟成させた。次いで、ビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2-PhC)GdN(SiHMe)]22mg(32μmol)を仕込み室温で60分間熟成させた。その後、グローブボックスから反応器を取り出し、1,3−ブタジエン80.0g(1.48mol)を含むノルマルヘキサン溶液320.0gを添加した後、80℃で240分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5重量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールでシリカ含有重合体を分離し、70℃で真空乾燥しシリカ含有重合体Eを得た。得られたシリカ含有重合体Eの収量は78.5gであった。
(実施例6:シリカ含有重合体Fの製造方法)
実施例1において、空気中100℃で1時間加熱したシリカ(商品名:ニップシールAQ、重量減少法により算出した含水率0.1重量%、東ソーシリカ社製)を用いたこと以外は、実施例1と同様にして、シリカ含有重合体Fを得た。得られたシリカ含有重合体Fの収量は84.5gであった。
(比較例1)
実施例1においてシリカを用いないこと以外は同様の方法で重合を行ったところ、重合体は全く生成しなかった。
(比較例2:重合体G)
比較例2として、宇部興産株式会性のポリブタジエンラバー(UBEPOL BR 150、以下「150Lブタジエン」と表記)を使用した。
(比較例3:シリカ含有重合体Hの製造方法)
125gの150Lブタジエンをシクロヘキサン中に溶解させ、その中に5gのシリカ(商品名:ニップシールAQ、重量減少法により算出した含水率:5.5重量%、東ソーシリカ株式会社製)を添加し、50℃で1時間撹拌した。その後、大量のメタノールでシリカ含有重合体を分離し、70℃で真空乾燥しシリカ含有重合体H(150L wet処理ブタジエン)130gを得た。
上記のようにして調製した重合体A〜Hについて、ミクロ構造(シス−1,4結合量)、数平均分子量(Mn)、分子量分布(Mw/Mn)を下記の方法で測定・評価した。
<シリカ含有重合体A〜Gの分析方法>
(1)ミクロ構造(シス−1,4結合量)
重合体A〜Hのミクロ構造(シス−1,4結合量)を、フーリエ変換赤外分光法(FT−IR)の透過率スペクトルを測定することにより算出した。具体的には、同一セルの二硫化炭素のブランクとして、5mg/mLの濃度に調整した各シリカ含有重合体の二硫化炭素溶液のFT−IRによる透過率スペクトルを測定し、下記行列式(i):
Figure 0005894016
(式中、aは、フーリエ変換赤外分光法(FT−IR)による透過率スペクトルの1130cm−1付近の山ピーク値であり、bは、967cm−1付近の谷ピーク値であり、cは、911cm−1付近の谷ピーク値であり、dは、736cm−1付近の谷ピーク値である)から導かれるe,f,gの値を用い、下記式(ii)
(シス−1,4結合量の計算値=e/(e+f+g)×100 ・・・(ii)
にしたがって、シス1,4結合量の計算値を求めた。
(2)重合体A〜Hの数平均分子量(Mn)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8220GPC、カラム:東ソー製GMHXL−2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、合成ポリブタジエンのポリスチレン換算の数平均分子量(Mn)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。溶出溶媒としては、テトラヒドロフラン(THF)を用いた。
<重合体組成物の評価方法>
重合体A〜Hについて、表2に示す配合処方の重合体組成物を調製し、145℃、33分間の条件で加硫して得た加硫重合体組成物に対し、下記の方法に従って、(1)損失正接(tanδ)、(2)耐破壊性、(3)耐摩耗性を測定した。測定結果を表1に示す。
(1)損失正接(tanδ)
各加硫重合体組成物から試験片を作製して、東洋精機株式会社製の粘弾性スペクトロメーターを使用して、初期荷重160g、動的歪2%、周波数52Hzおよび温度25℃の条件でtanδを測定した。tanδの数値が小さいほど、低発熱性が良好であることを示す。
(2)耐破壊性(指数)
JIS K 6301−1995に準拠して室温で引張試験を行い、加硫した重合体組成物の引張り強さ(Tb)を測定し、比較例3の引張り強さを100とした場合の指数を表3に示す。指数値が大きい程、耐破壊性が良好であることを示す。
(3)耐摩耗性(指数)
ランボーン型摩耗試験機を用い、室温におけるスリップ率60%で摩耗量を測定し、比較例3の逆数を100とする指数で表示した。数値が大きいほど耐摩耗性が良好である。
Figure 0005894016
Figure 0005894016
※1:重合体A〜G
※2:東ソーシリカ株式会社:ニップシールAQ
※3:三共油化工業(株)製、商品名「A/O ミックス」(プロセスオイル)
※4:デグッサ社製、 商品名「Si75」
※5:N−(1,3−ジメチルブチル)−N’−p−フェニレンジアミン、大内新興化学(株)製、ノックラック6C
※6:大内新興化学工業株式会社:ノクセラーMZ
※7:大内新興化学工業株式会社:ノクセラーNS
表1の結果より、本発明の重合体組成物の製造方法において、高いシス−1,4結合率を有する重合体組成物を合成できることが確認された。また、耐摩耗性、耐破壊性に優れ、かつ低発熱性の重合体組成物を合成できることが確認された。
本発明の重合体組成物の製造方法、及び該製造方法で製造された重合体組成物は、シリカの添加を要するゴム製品、例えば、タイヤ部材(特に、タイヤのトレッド部材)の製造に好適に利用可能である。

Claims (4)

  1. 希土類元素含有化合物であり、下記一般式(I):
    Figure 0005894016
    (式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp R は、それぞれ独立して無置換もしくは置換インデニルを示し、R a 〜R f は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(II):
    Figure 0005894016
    (式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp R は、それぞれ独立して無置換もしくは置換インデニルを示し、X´は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体より選択される少なくとも1種類の錯体を含む第1要素と、
    下記一般式(Xa)で表される化合物を含む第2要素と、
    シリカを含む第3要素について、
    前記第2要素と前記第3要素とを混合熟成した後、前記第1要素を添加して反応させ、且つ、イオン性化合物は配合しないで得られた重合触媒組成物の存在下で、
    共役ジエン化合物及び非共役オレフィンの少なくとも一種を重合させ重合体成分を形成させる工程を含み、
    前記第3の要素の含水率が、0.1重量%以上であることを特徴とする重合体組成物の製造方法。
    AlR 1 2 3 ・・・ (Xa)
    (式中、R1及びR2は、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R1、R2及びR3は、同一又は異なっていてもよい)
  2. 前記第3要素を、前記重合体成分を形成する単量体100重量部に対して、無水物重量に換算して0重量部超100重量部以下となるように配合する、請求項1記載の重合体組成物の製造方法。
  3. 前記錯体は、ランタノイド元素、スカンジウム又はイットリウムと炭素との結合を有さない、請求項1に記載の重合体組成物の製造方法。
  4. 前記重合体成分の共役ジエン化合物由来部分のシス−1,4結合量が、90%以上である、請求項1〜3のいずれか1項に記載の重合体組成物の製造方法。
JP2012137175A 2012-04-18 2012-06-18 重合体組成物の製造方法及び重合体組成物 Active JP5894016B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012137175A JP5894016B2 (ja) 2012-06-18 2012-06-18 重合体組成物の製造方法及び重合体組成物
CN201380020322.6A CN104245749B (zh) 2012-04-18 2013-04-18 聚合催化剂组合物的制造方法、聚合催化剂组合物、聚合物组合物的制造方法和聚合物组合物
KR1020147029172A KR101622067B1 (ko) 2012-04-18 2013-04-18 중합 촉매 조성물의 제조 방법, 중합 촉매 조성물, 중합체 조성물의 제조 방법 및 중합체 조성물
PCT/JP2013/002637 WO2013157272A1 (ja) 2012-04-18 2013-04-18 重合触媒組成物の製造方法、重合触媒組成物、重合体組成物の製造方法、及び重合体組成物
EP13779014.3A EP2840095B1 (en) 2012-04-18 2013-04-18 Method for producing polymerization catalyst composition, polymerization catalyst composition, method for producing polymer composition, and polymer composition
US14/394,428 US9284384B2 (en) 2012-04-18 2013-04-18 Method for producing polymerization catalyst composition, polymerization catalyst composition, method for producing polymer composition, and polymer composition
SG11201406362PA SG11201406362PA (en) 2012-04-18 2013-04-18 Method for producing polymerization catalyst composition, polymerization catalyst composition, method for producing polymer composition, and polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137175A JP5894016B2 (ja) 2012-06-18 2012-06-18 重合体組成物の製造方法及び重合体組成物

Publications (2)

Publication Number Publication Date
JP2014001311A JP2014001311A (ja) 2014-01-09
JP5894016B2 true JP5894016B2 (ja) 2016-03-23

Family

ID=50034791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137175A Active JP5894016B2 (ja) 2012-04-18 2012-06-18 重合体組成物の製造方法及び重合体組成物

Country Status (1)

Country Link
JP (1) JP5894016B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156510A (ja) * 2013-02-14 2014-08-28 Bridgestone Corp 変性シリカの製造方法及び変性シリカ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179722A (ja) * 2000-12-18 2002-06-26 Idemitsu Petrochem Co Ltd ステレオブロックオレフィン重合体製造用触媒
FR2849654B1 (fr) * 2003-01-07 2006-12-15 Atofina Res Metallocenes pontes du groupe iii a base de ligands cyclopentadienyle-fluorenyle
EP2084193A2 (en) * 2006-09-20 2009-08-05 Albermarle Corporation Catalyst activators, processes for making same, and use thereof in catalysts and polymerization of olefins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156510A (ja) * 2013-02-14 2014-08-28 Bridgestone Corp 変性シリカの製造方法及び変性シリカ

Also Published As

Publication number Publication date
JP2014001311A (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
JP5918134B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、及びタイヤ
WO2019171679A1 (ja) 共重合体、共重合体の製造方法、ゴム組成物及びタイヤ
WO2012105258A1 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、タイヤトレッド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5899011B2 (ja) 重合体、前記重合体を含むゴム組成物、及び、前記ゴム組成物を有するタイヤ
KR20130115377A (ko) 공중합체, 고무 조성물, 타이어 사이드용 고무 조성물, 가교 고무 조성물 및 타이어
EP2824118B1 (en) Rubber composition and tire having rubber composition
JP5973735B2 (ja) タイヤ用ゴム組成物及び該タイヤ用ゴム組成物を具えたタイヤ
WO2013132848A1 (ja) 重合体及びその製造方法、前記重合体を含むゴム組成物、並びに、前記ゴム組成物を有するタイヤ
JP2006274219A (ja) 共役ジエン重合用触媒及びその製造方法、並びに共役ジエン重合体及びその製造方法。
KR101622067B1 (ko) 중합 촉매 조성물의 제조 방법, 중합 촉매 조성물, 중합체 조성물의 제조 방법 및 중합체 조성물
JP5894016B2 (ja) 重合体組成物の製造方法及び重合体組成物
JP2014024889A (ja) 重合体組成物の製造方法及び重合体組成物
JP2014024885A (ja) 重合体組成物の製造方法及び重合体組成物
JP2016113496A (ja) ゴム組成物、及び該ゴム組成物を用いたタイヤ
JP2016128552A (ja) ゴム組成物及びそれを用いたタイヤ
JP6353710B2 (ja) 分岐イソプレン重合体の製造方法
JP5973736B2 (ja) タイヤ用ゴム組成物、タイヤ用架橋ゴム組成物、及びタイヤ
JP6101021B2 (ja) 変性カーボンブラックの製造方法
JP2014034663A (ja) 重合体組成物の製造方法及び重合体組成物
JP6173021B2 (ja) 重合体組成物、ゴム組成物、架橋ゴム組成物、及びタイヤの製造方法
JP6325362B2 (ja) ゴム成分、ゴム成分が配合されたゴム組成物、及び該ゴム組成物を用いたタイヤ
JP2014001315A (ja) 重合体組成物の製造方法及び重合体組成物
JP5899073B2 (ja) スチレン−イソプレン共重合体及びその製造方法
CN110753706A (zh) 催化剂组合物、改性共轭二烯系聚合物的制造方法、改性共轭二烯系聚合物、橡胶组合物及轮胎
JP2014156510A (ja) 変性シリカの製造方法及び変性シリカ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160225

R150 Certificate of patent or registration of utility model

Ref document number: 5894016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250