JP5880082B2 - Multilayer substrate manufacturing method and multilayer substrate manufacturing apparatus - Google Patents

Multilayer substrate manufacturing method and multilayer substrate manufacturing apparatus Download PDF

Info

Publication number
JP5880082B2
JP5880082B2 JP2012015767A JP2012015767A JP5880082B2 JP 5880082 B2 JP5880082 B2 JP 5880082B2 JP 2012015767 A JP2012015767 A JP 2012015767A JP 2012015767 A JP2012015767 A JP 2012015767A JP 5880082 B2 JP5880082 B2 JP 5880082B2
Authority
JP
Japan
Prior art keywords
plate
laminated
substrate
manufacturing
laminated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012015767A
Other languages
Japanese (ja)
Other versions
JP2013154510A (en
Inventor
石田 秀樹
秀樹 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012015767A priority Critical patent/JP5880082B2/en
Publication of JP2013154510A publication Critical patent/JP2013154510A/en
Application granted granted Critical
Publication of JP5880082B2 publication Critical patent/JP5880082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本願の開示する技術は、積層基板製造方法及び積層基板製造装置に関する。   The technology disclosed in the present application relates to a multilayer substrate manufacturing method and a multilayer substrate manufacturing apparatus.

複数の基板構成体(たとえば回路基板など)を積層して積層基板を製造する方法では、回路板やプリプレグを挟む成形プレートとして、端部が上方へ付勢されている形状としたものを用いる方法が知られている。このような形状の成形プレートを用いることで、熱盤間で加熱・加圧成形するときに、成形プレートの端部の垂れ下がりが抑制されるため、プリプレグの端部が圧縮されることも抑制されている。そして、プリプレグの端部から樹脂が流出することを抑え、積層板の周端部の板厚が薄くなることを防いで均一な厚みに成形できるようになっている。   In a method of manufacturing a laminated substrate by laminating a plurality of substrate structures (for example, a circuit substrate), a method of using a molded plate sandwiching a circuit board or a prepreg and having a shape in which an end is urged upward is used. It has been known. By using a molding plate with such a shape, when heating and pressure molding between hot plates, the end of the molding plate is prevented from sagging, so that the end of the prepreg is also prevented from being compressed. ing. And it suppresses that resin flows out from the edge part of a prepreg, and it can shape | mold to uniform thickness by preventing that the board | plate thickness of the peripheral edge part of a laminated board becomes thin.

特開2008−137294号公報JP 2008-137294 A

しかしながら、このように湾曲した形状の成形プレートを使用する場合には、製造される積層基板の形状が成形プレートの形状に影響を受けるため、成形プレートの形状(たとえば湾曲の程度)に高い精度が要求される。その結果、積層基板の製造コストも高くなる。   However, when using a curved shaped plate, the shape of the laminated substrate to be manufactured is affected by the shape of the molded plate, so that the shape of the molded plate (for example, the degree of curvature) is highly accurate. Required. As a result, the manufacturing cost of the laminated substrate also increases.

本願の開示技術は、製造コストの上昇を抑制しつつ、製造される積層基板の厚みの均一化を図ることが可能な積層基板製造方法及び積層基板製造装置を提供することが目的である。   An object of the disclosed technique of the present application is to provide a multilayer substrate manufacturing method and a multilayer substrate manufacturing apparatus capable of making the thickness of the multilayer substrate manufactured uniform while suppressing an increase in manufacturing cost.

本願の開示する積層基板製造方法は、積層基板を構成する複数の基板構成体と、これらの基板構成体を接着するための接着部材とを積層して構成された積層体に対し、積層体の積層方向の少なくとも一方の側に、積層体との対向面と前記対向面の反対面とが板厚方向の中心線に対し対称の凸形状とされた介在板を配置する。そして、積層体と介在板とを積層方向に加圧して接着部材により前記基板構成体を接着する。 The method for manufacturing a laminated substrate disclosed in the present application is based on a laminated body constituted by laminating a plurality of substrate constituents constituting the laminated substrate and an adhesive member for bonding these substrate constituents. On at least one side in the stacking direction, an intervening plate in which the facing surface to the stacked body and the opposite surface of the facing surface are symmetrical with respect to the center line in the plate thickness direction is disposed. And a laminated body and an interposition board are pressurized in the lamination direction, and the said board | substrate structure body is adhere | attached with an adhesive member.

本願の開示する積層基板製造装置は、積層基板を構成する複数の基板構成体と、これら基板構成体を接着する接着部材とが積層された積層体が保持部材で保持され、さらに、積層体の積層方向の少なくとも一方の側に、積層体との対向面と前記対向面の反対面とが板厚方向の中心線に対し対称の凸形状とされた介在板が配置される。そして、積層体と介在板とを、加圧部材によって積層方向に加圧し、接着部材により基板構成体を接着する。 In the laminated substrate manufacturing apparatus disclosed in the present application, a laminated body in which a plurality of substrate constituents constituting the laminated substrate and an adhesive member that bonds these substrate constituents are laminated is held by a holding member. On at least one side in the laminating direction, an intervening plate in which the opposing surface to the laminate and the opposite surface of the opposing surface are symmetrical with respect to the center line in the thickness direction is disposed. And a laminated body and an interposition board are pressurized to a lamination direction with a pressurization member, and a board | substrate structure body is adhere | attached with an adhesive member.

本願の開示する積層基板製造方法及び積層基板製造装置によれば、製造コストの上昇を抑制しつつ、製造される積層基板の厚みの均一化を図ることが可能となる。   According to the multilayer substrate manufacturing method and the multilayer substrate manufacturing apparatus disclosed in the present application, it is possible to make the thickness of the manufactured multilayer substrate uniform while suppressing an increase in manufacturing cost.

第1実施形態の積層基板製造装置の構成を一部は断面化して示す概略正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic front view showing a part of a configuration of a multilayer substrate manufacturing apparatus according to a first embodiment. 第1実施形態の積層基板製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the laminated substrate manufacturing method of 1st Embodiment. 第1実施形態の積層基板製造方法によって製造された積層基板を示す断面図である。It is sectional drawing which shows the multilayer substrate manufactured by the multilayer substrate manufacturing method of 1st Embodiment. 比較例の積層基板製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the laminated substrate manufacturing method of a comparative example. (A)〜(C)はいずれも積層基板製造方法及び積層基板製造装置に適用可能な介在板の例を示す断面図である。(A)-(C) are all sectional drawings which show the example of the interposition board applicable to a laminated substrate manufacturing method and a laminated substrate manufacturing apparatus. 第1実施形態の積層基板製造方法及び積層基板製造装置に適用される介在板を製造する工程を示す断面図である。It is sectional drawing which shows the process of manufacturing the interposition board applied to the laminated substrate manufacturing method and laminated substrate manufacturing apparatus of 1st Embodiment. 第1実施形態の積層基板製造方法及び積層基板製造装置に適用される介在板を製造した状態を示す断面図である。It is sectional drawing which shows the state which manufactured the interposition board applied to the laminated substrate manufacturing method and laminated substrate manufacturing apparatus of 1st Embodiment. 第1実施形態の積層基板製造方法及び積層基板製造装置に適用される介在板を製造する工程を示す断面図である。It is sectional drawing which shows the process of manufacturing the interposition board applied to the laminated substrate manufacturing method and laminated substrate manufacturing apparatus of 1st Embodiment. 実施例において積層基板製造方法における10サイクル目までの板厚差(最大値−最小値)の変化を示すグラフである。It is a graph which shows the change of the board thickness difference (maximum value-minimum value) to the 10th cycle in a laminated substrate manufacturing method in an Example.

以下に、本願の開示する積層基板製造方法及び積層基板製造装置の実施形態を図面に基づいて詳細に説明する。   Embodiments of a multilayer substrate manufacturing method and a multilayer substrate manufacturing apparatus disclosed in the present application will be described below in detail with reference to the drawings.

図1に示すように、本実施形態の積層基板製造装置12は、一対の積層型14A、14Bを備えた加圧部材16を有している。本実施形態の積層型14A、14Bは、いずれも金属等によって平坦な板状に形成されており、加圧機構18によって平行な状態で保持されている。加圧機構18が駆動されると、積層型14A、14Bは互いに接近する。加圧機構18は制御装置20で制御されるようになっている。制御装置20には、操作部材22が接続されており、作業者が操作部材22を用いて操作することで、加圧機構18を駆動及び駆動停止することができる。   As shown in FIG. 1, the laminated substrate manufacturing apparatus 12 of this embodiment has a pressure member 16 having a pair of laminated dies 14A and 14B. The laminated molds 14A and 14B of the present embodiment are both formed in a flat plate shape with metal or the like, and are held in a parallel state by the pressurizing mechanism 18. When the pressurizing mechanism 18 is driven, the stacked dies 14A and 14B approach each other. The pressurizing mechanism 18 is controlled by the control device 20. An operation member 22 is connected to the control device 20, and the pressurizing mechanism 18 can be driven and stopped by an operator operating the operation member 22.

積層型14A、14Bとしては、たとえば、1〜10mm程度の板厚を有するステンレス等の金属製のプレートを挙げることができるが、この構造に限定されない。以下、積層型14A、14Bを特に区別しないときは、積層型14として説明する。   Examples of the stacked molds 14A and 14B include metal plates such as stainless steel having a plate thickness of about 1 to 10 mm, but are not limited to this structure. Hereinafter, when the stacked molds 14A and 14B are not particularly distinguished, the stacked mold 14 will be described.

図2に示すように、本実施形態の積層基板製造方法では、1枚又は複数枚(図2の例では1枚)のコア基板24を用いる。図3に示すように、コア基板24は、本実施形態の積層基板製造方法により製造された積層基板40において、内部に配置されて所望の回路等の少なくとも一部を成す。コア基板24としては、たとえば、ガラスエポキシ等の基材の表面あるいは内部に銅等の金属によって所望の回路が形成された回路形成基板(回路形成済み銅張積層板)を挙げることができる。   As shown in FIG. 2, in the laminated substrate manufacturing method of the present embodiment, one or a plurality of core substrates 24 (one in the example of FIG. 2) are used. As shown in FIG. 3, the core substrate 24 is arranged inside and forms at least a part of a desired circuit or the like in the multilayer substrate 40 manufactured by the multilayer substrate manufacturing method of the present embodiment. Examples of the core substrate 24 include a circuit-formed substrate (circuit-formed copper-clad laminate) in which a desired circuit is formed of a metal such as copper on the surface or inside of a base material such as glass epoxy.

コア基板24は、基板構成体の例である。基板構成体としては、コア基板24に限らず、たとえば、表面や内部に回路が構成されていない絶縁性の板状の部材や、導電材を有する材料(金属)のみで成形された板状の部材(一例としてブスバー)等であってもよい。   The core substrate 24 is an example of a substrate structure. The substrate structure is not limited to the core substrate 24. For example, an insulating plate-like member whose circuit is not formed on the surface or inside, or a plate-like member formed only of a material (metal) having a conductive material is used. It may be a member (a bus bar as an example).

このコア基板24の上下には表面層材26が配置される。表面層材26も、基板構成体の一例である。図3に示すように、表面層材26は、本実施形態の積層基板製造方法により製造された積層基板40において、表面層を構成する。表面層材26としては、たとえば、銅箔や、ガラスエポキシ等の基材の表面に一様に銅箔が施された銅張積層板を挙げることができる。   A surface layer material 26 is disposed above and below the core substrate 24. The surface layer material 26 is also an example of a substrate structure. As shown in FIG. 3, the surface layer material 26 constitutes a surface layer in the multilayer substrate 40 manufactured by the multilayer substrate manufacturing method of the present embodiment. As the surface layer material 26, for example, a copper clad laminate in which a copper foil is uniformly applied to the surface of a base material such as copper foil or glass epoxy can be cited.

コア基板24と表面層材26との間には(コア基板24を複数用いる場合には、コア基板24の間にも)、接着シート28が配置される。本実施形態の接着シート28は、熱硬化性樹脂を半硬化状態(完全に硬化することなく中間段階まで硬化させた状態)とし、シート状に形成したものである。この接着シート28を挟んでコア基板24と表面層材26とを積層し、積層方向に加圧することで(場合によっては加熱を併用してもよい、以下、「加熱・加圧」と言う)、接着シート28を介して、コア基板24と表面層材26とを接着することができる。接着後は、接着シート28は硬化するため、不用意にコア基板24と表面層材26とが剥がれることはない。   An adhesive sheet 28 is disposed between the core substrate 24 and the surface layer material 26 (and between the core substrates 24 when a plurality of core substrates 24 are used). The adhesive sheet 28 of the present embodiment is a sheet that is formed in a semi-cured state (a state where the thermosetting resin is cured to an intermediate stage without being completely cured). By laminating the core substrate 24 and the surface layer material 26 with the adhesive sheet 28 interposed therebetween and pressurizing in the laminating direction (in some cases, heating may be used together, hereinafter referred to as “heating / pressing”). The core substrate 24 and the surface layer material 26 can be bonded via the adhesive sheet 28. After the bonding, the adhesive sheet 28 is cured, so that the core substrate 24 and the surface layer material 26 are not inadvertently peeled off.

このようにコア基板24、接着シート28及び表面層材26が積層されることで、全体として積層体30を成している。ただし、上記したように、接着シート28が硬化するとそれ自体で積層基板40の表面層を構成することも可能である。   Thus, the laminated body 30 is comprised as a whole by laminating | stacking the core board | substrate 24, the adhesive sheet 28, and the surface layer material 26. FIG. However, as described above, when the adhesive sheet 28 is cured, it is possible to constitute the surface layer of the laminated substrate 40 by itself.

なお、図2及び図3では、これらコア基板24、接着シート28及び表面層材26の積層方向(矢印PU方向)を上下方向としているが、本実施形態の積層基板製造方法において、積層方向は特に限定されない。また、図2に示した例では、コア基板24、接着シート28及び中間板34は、同程度の幅(図2において横方向に現れている)及び長さ(図3において奥行き方向に現れている)を有する形状を例示している。ただし、コア基板24、接着シート28及び中間板34の幅や長さは、製造する積層基板40(図4参照)の構造や物性等に応じて適切に決められる。   2 and 3, the stacking direction (arrow PU direction) of the core substrate 24, the adhesive sheet 28 and the surface layer material 26 is the vertical direction. However, in the stacked substrate manufacturing method of the present embodiment, the stacking direction is There is no particular limitation. In the example shown in FIG. 2, the core substrate 24, the adhesive sheet 28, and the intermediate plate 34 have the same width (appears in the horizontal direction in FIG. 2) and length (appears in the depth direction in FIG. 3). A shape having However, the width and length of the core substrate 24, the adhesive sheet 28, and the intermediate plate 34 are appropriately determined according to the structure and physical properties of the laminated substrate 40 (see FIG. 4) to be manufactured.

図1に示すように、積層基板製造装置12は、積層体30を保持する保持部材32を有している。保持部材32によって積層体30が保持されるため、コア基板24、接着シート28及び表面層材26が積層された状態が維持される。なお、保持部材32としては、このように積層体30を保持できればよい。したがって、保持部材32は単なる台であってもよいし、積層体30を積層方向の両側(図1では上下)から挟持する構造のものであってもよい。   As shown in FIG. 1, the laminated substrate manufacturing apparatus 12 includes a holding member 32 that holds the laminated body 30. Since the laminated body 30 is held by the holding member 32, the state where the core substrate 24, the adhesive sheet 28, and the surface layer material 26 are laminated is maintained. In addition, as the holding member 32, the laminated body 30 should just be hold | maintained in this way. Therefore, the holding member 32 may be a simple base, or may have a structure in which the stacked body 30 is sandwiched from both sides in the stacking direction (up and down in FIG. 1).

積層体30の積層方向の両側には、中間板34が配置される。中間板34は、金属(たとえばSUS等のステンレス鋼)によって構成され、表面の平坦性(鏡面性)が確保された薄板状の部材である。   Intermediate plates 34 are disposed on both sides of the stacked body 30 in the stacking direction. The intermediate plate 34 is made of a metal (for example, stainless steel such as SUS), and is a thin plate-like member in which surface flatness (mirror surface property) is ensured.

さらに、中間板34よりも積層方向の両端部側には、介在板36が配置される。図2の例では、この介在板36は、中間板34よりも幅及び長さが長く形成されている。そして、図2に示す断面における中央部36Cの板厚が厚く、周縁部36Eにむかうにしたがって板厚が漸減する形状とされている。なお、図面上は、このような介在板36の形状を明確にすべく、中央部分の板厚を実際よりも誇張して表現している。   In addition, intervening plates 36 are arranged on both end sides in the stacking direction with respect to the intermediate plate 34. In the example of FIG. 2, the interposed plate 36 is formed to have a longer width and length than the intermediate plate 34. And the plate | board thickness of 36 C of center parts in the cross section shown in FIG. 2 is thick, and it is set as the shape where plate | board thickness reduces gradually as it goes to the peripheral part 36E. In the drawing, in order to clarify the shape of the interposition plate 36, the thickness of the central portion is exaggerated from the actual one.

介在板36において、積層体30との対向面(図3の例では、中間板34を間において積層体30と対向している)は、介在板36の中央部36Cが積層体30に対し凸となっている。特に、本実施形態では、対向面38Aは局所的に形状が急変する(たとえば断面で見て対向面38Aが屈曲している)ことなく、なだらかに湾曲した凸形状とされている。   In the intervening plate 36, the surface facing the laminated body 30 (in the example of FIG. 3, the intermediate plate 34 is opposed to the laminated body 30), the central portion 36 </ b> C of the intervening plate 36 is convex with respect to the laminated body 30. It has become. In particular, in the present embodiment, the facing surface 38A has a gently curved convex shape without locally abruptly changing shape (for example, the facing surface 38A is bent when viewed in cross section).

本実施形態の介在板36は、図2に示す断面で見たときの板厚方向の中心線CL(厳密には面)に対し対称の形状(鏡像)とされている。対向面38Aの反対側の面である反対面38B(積層型14と対向する面)は、積層体30と反対方向に凸となる湾曲形状になっている。換言すれば、介在板36は、特に両面を区別することなく、中間板34(積層体30)と積層型14との間に配置できる。そして、介在板36をこのように配置した結果として、中間板34(積層体30)と対向する面が対向面38Aとなり、その反対側の面が反対面38Bとなる。   The intervening plate 36 of this embodiment has a symmetrical shape (mirror image) with respect to a center line CL (strictly, a surface) in the thickness direction when viewed in the cross section shown in FIG. The opposite surface 38B (the surface facing the stacked mold 14), which is the surface opposite to the facing surface 38A, has a curved shape that is convex in the direction opposite to the stacked body 30. In other words, the interposition plate 36 can be disposed between the intermediate plate 34 (laminated body 30) and the laminated mold 14 without particularly distinguishing both surfaces. And as a result of arranging the interposition board 36 in this way, the surface which opposes the intermediate | middle board 34 (laminated body 30) becomes the opposing surface 38A, and the surface on the opposite side turns into the opposing surface 38B.

なお、対向面38A及び反対面38Bは双方とも、図2における左右にも対称の形状とされている。   Note that both the opposing surface 38A and the opposite surface 38B have symmetrical shapes on the left and right in FIG.

上記説明から分かるように、本実施形態の積層基板製造方法では、まず、図2に示すように、コア基板24と表面層材26とを、接着シート28を介して積層し積層体30を構成する。そして、積層体30を積層基板製造装置12の保持部材32(図1参照)に保持させる。   As can be seen from the above description, in the multilayer substrate manufacturing method of the present embodiment, first, as shown in FIG. 2, the core substrate 24 and the surface layer material 26 are laminated via the adhesive sheet 28 to form the laminate 30. To do. And the laminated body 30 is hold | maintained on the holding member 32 (refer FIG. 1) of the laminated substrate manufacturing apparatus 12. FIG.

次いで、積層体30の積層方向の両側に中間板34を配置し、さらに、中間板34よりも積層体30の積層方向の両側に介在板36を配置する。なお、あらかじめ中間板34及び介在板36を積層基板製造装置12の所定位置にセットしておき、2枚の中間板34の間に積層体30を配置する手順でもよい。   Next, the intermediate plate 34 is disposed on both sides of the stacked body 30 in the stacking direction, and the intervening plates 36 are further disposed on both sides of the stacked body 30 in the stacking direction than the intermediate plate 34. Alternatively, the intermediate plate 34 and the intervening plate 36 may be set in advance in a predetermined position of the laminated substrate manufacturing apparatus 12 and the laminated body 30 may be disposed between the two intermediate plates 34.

この状態で、積層型14により、積層体30、中間板34及び介在板36を矢印PR方向に加圧・加熱する。積層体30には、介在板36及び中間板34を介して密着する方向に力が加えられるため、接着シート28によってコア基板24と表面層材26とが接着される。コア基板24を複数配置した例では、コア基板24どうしも接着される。図2では、この場合に介在板36から中間板34を介して積層体30に作用する力を矢印FPで示している。特に、矢印FPの太さが力の大きさに対応するように表現している。   In this state, the laminate 30, the intermediate plate 34 and the interposition plate 36 are pressurized and heated in the direction of the arrow PR by the laminate mold 14. Since force is applied to the laminated body 30 in a direction in which the laminated body 30 is in close contact via the interposition plate 36 and the intermediate plate 34, the core substrate 24 and the surface layer material 26 are bonded by the adhesive sheet 28. In an example in which a plurality of core substrates 24 are arranged, the core substrates 24 are bonded together. In FIG. 2, the force acting on the laminate 30 from the interposition plate 36 through the intermediate plate 34 in this case is indicated by an arrow FP. In particular, the thickness of the arrow FP is expressed so as to correspond to the magnitude of the force.

図4には、比較例の積層基板製造方法により積層基板を製造する工程の一部が示されている。比較例の積層基板製造方法では、上記実施形態の積層基板製造方法と比較して、介在板36を用いていない点が異なっている。比較例においても、介在板36から中間板34を介して積層体30に作用する力を矢印FPで示している。   FIG. 4 shows a part of a process of manufacturing a multilayer substrate by the multilayer substrate manufacturing method of the comparative example. The laminated substrate manufacturing method of the comparative example is different from the laminated substrate manufacturing method of the above embodiment in that the intervening plate 36 is not used. Also in the comparative example, the force acting on the laminate 30 from the interposition plate 36 via the intermediate plate 34 is indicated by an arrow FP.

比較例の積層基板製造方法では、中間板34から積層体30に対し、略均等に(ただし、完全に均等でなく、その必要もない)作用している。ここで、接着シート28は、加圧・加熱により溶融し、その後、徐々に硬化していくことで表面層材26とコア基板24とを接着する物性を有している。接着シート28が溶融した際の流動量は、積層体30を矢印PR方向に見たときの中央部30Cよりも周縁部30Eのほうが大きくなる。このため、接着後の積層基板の厚みは、中央部で厚く、周縁部では薄くなることがある。すなわち、最終的に得られる積層基板として、板厚が不均一な積層基板となる可能性がある。   In the laminated substrate manufacturing method of the comparative example, the intermediate plate 34 acts on the laminated body 30 substantially evenly (however, it is not completely uniform and is not necessary). Here, the adhesive sheet 28 has physical properties for adhering the surface layer material 26 and the core substrate 24 by melting by pressurization and heating and then gradually curing. The amount of flow when the adhesive sheet 28 is melted is larger in the peripheral portion 30E than in the central portion 30C when the laminated body 30 is viewed in the arrow PR direction. For this reason, the thickness of the laminated substrate after bonding may be thick at the central portion and thin at the peripheral portion. That is, there is a possibility that the finally obtained multilayer substrate is a multilayer substrate having a non-uniform thickness.

これに対し、本実施形態の積層基板製造方法では、図1及び図2から分かるように、介在板36を用いて積層基板40を成形している。介在板36の対向面36Aは、積層体30に向かって凸形状とされているため、積層方向に作用する圧力が、積層体30の中央部30Cから周縁部30Eに向かって漸減する。したがって、溶融状態の接着シート28に対し、流動が鈍い中央部(積層体30の中央部30C参照)には相対的に大きい圧力が作用し、接着シート28が流れやすい周縁部(積層体30の周縁部30E参照)には相対的に小さい圧力が作用する。また、積層体30の周縁部30Eからは、接着シート28を構成する樹脂のうち余分な部分を外部に逃がすことができる。そして、積層体30内での接着シート28の流れの不均一が抑制され、その結果、図3に示すように、接着後の積層基板40として、比較例よりも厚みの均一化が図られた積層基板40が得られる。   On the other hand, in the laminated substrate manufacturing method of the present embodiment, as can be seen from FIGS. 1 and 2, the laminated substrate 40 is formed using the interposed plate 36. Since the facing surface 36A of the interposition plate 36 has a convex shape toward the stacked body 30, the pressure acting in the stacking direction gradually decreases from the central portion 30C of the stacked body 30 toward the peripheral portion 30E. Accordingly, a relatively large pressure acts on the center portion (see the center portion 30C of the laminated body 30) where the flow is slow with respect to the molten adhesive sheet 28, and the peripheral portion (the laminated body 30 of the laminated body 30) easily flows. A relatively small pressure acts on the peripheral portion 30E). Further, an extra portion of the resin constituting the adhesive sheet 28 can escape from the peripheral edge portion 30E of the laminate 30 to the outside. And the non-uniform | heterogenous flow of the adhesive sheet 28 in the laminated body 30 was suppressed, As a result, as shown in FIG. 3, as the laminated board | substrate 40 after adhesion | attachment, thickness uniformity was achieved rather than the comparative example. A laminated substrate 40 is obtained.

なお、積層基板40に対して、必要に応じて貫通孔の形成や、表面層回路の形成等を行って、最終的な積層基板が得られる。   Note that a final laminated substrate can be obtained by forming through holes, forming surface layer circuits, or the like on the laminated substrate 40 as necessary.

本実施形態の積層基板製造方法では、中間板34と積層型14との間に介在板36を介在させるだけでよく、積層基板製造方法における製造プロセスや製造条件を、従来から大きく変更させる必要がない。特に、従来のような湾曲した成形プレート(金属プレート)を使用すると、成形プレート自体を製造し、さらに成形プレートの形状を高精度で維持する必要が生じるが、本実施形態の積層基板製造方法では、その必要がない。したがって、積層基板を製造する際の製造コストの上昇を抑制しつつ、製造される積層基板40の厚みの均一化を図ることが可能である。   In the multilayer substrate manufacturing method of the present embodiment, it is only necessary to interpose the intervening plate 36 between the intermediate plate 34 and the multilayer mold 14, and it is necessary to greatly change the manufacturing process and manufacturing conditions in the multilayer substrate manufacturing method. Absent. In particular, when a conventional curved forming plate (metal plate) is used, it is necessary to manufacture the forming plate itself and to maintain the shape of the forming plate with high accuracy. That is not necessary. Therefore, it is possible to make the thickness of the manufactured laminated substrate 40 uniform while suppressing an increase in manufacturing cost when manufacturing the laminated substrate.

さらに、積層基板40の平坦性が高いので、たとえば、貫通孔を形成したときの貫通孔周辺に発生するバリが減少する。また、積層基板40の表面層回路を形成する際には表面にレジスト(薄膜状の部材)を貼着するが、このレジストの貼着性が高くなるため、表面層回路の形成も容易となり、形成された表面層回路の品質も安定する。これらにより、最終的に得られる積層基板の製造の歩留まりを向上させることが可能となる。   Furthermore, since the flatness of the multilayer substrate 40 is high, for example, burrs generated around the through hole when the through hole is formed are reduced. In addition, when forming the surface layer circuit of the laminated substrate 40, a resist (thin film-like member) is attached to the surface, but since the adhesive property of the resist is increased, the formation of the surface layer circuit is facilitated, The quality of the formed surface layer circuit is also stabilized. By these, it becomes possible to improve the production yield of the finally obtained multilayer substrate.

上記実施形態では、介在板36を積層型14と中間板34との間に配置する例を挙げているが、介在板36の位置はこれに限定されず、たとえば、中間板34と積層体30との間であってもよい。また、実際に積層基板を製造する場合には、積層型14よりもさらに積層方法外側に板状の部材(たとえばキャリアプレートなど)が配置されることがある。この場合には、キャリアプレート等の板状の部材と積層型14との間に介在板36を配置してもよい。   In the above embodiment, an example in which the interposition plate 36 is disposed between the laminated mold 14 and the intermediate plate 34 is described. However, the position of the interposition plate 36 is not limited to this, and for example, the intermediate plate 34 and the laminated body 30. It may be between. Moreover, when actually manufacturing a laminated substrate, a plate-like member (for example, a carrier plate) may be arranged further outside the lamination method than the laminated mold 14. In this case, the interposition plate 36 may be disposed between a plate-like member such as a carrier plate and the laminated mold 14.

また、上記実施形態では、2枚の介在板36を用いて、積層体30の積層方向の両側にそれぞれ介在板36を配置した例を挙げているが、1枚の介在板36を使用し、積層体30の積層方向の一方の側にのみ介在板36を配置してもよい。ただし、上記実施形態のように、2枚の介在板36を積層体30の積層方向の両側に配置すると、中央部30Cから周縁部30Eに漸減する圧力を複数の接着シート28のそれぞれに対し、作用させることができる。このため、製造される積層基板40(積層基板)の厚みの均一化を図る観点からは、2枚の介在板36を積層体30の積層方向の両側に配置することが好ましい。   Moreover, in the said embodiment, although the example which has arrange | positioned the interposition board 36 on both sides of the lamination direction of the laminated body 30 using the two interposition boards 36 is given, the single interposition board 36 is used, The interposition plate 36 may be disposed only on one side in the stacking direction of the stacked body 30. However, when the two interposition plates 36 are arranged on both sides in the stacking direction of the stacked body 30 as in the above embodiment, the pressure gradually decreasing from the central portion 30C to the peripheral portion 30E is applied to each of the plurality of adhesive sheets 28. Can act. For this reason, it is preferable to arrange the two interposition plates 36 on both sides in the stacking direction of the stacked body 30 from the viewpoint of making the thickness of the manufactured stacked substrate 40 (laminated substrate) uniform.

上記実施形態では、介在板36として、対向面38A(及び反対面38B)がなだらかに湾曲した凸形状とされているものを挙げているが、要するに対向面38Aが凸形状になっていればよい。たとえば図5(A)に示すように、中央部36Cから周縁部36Eに向かって断面で直線状になっている形状や、図5(B)及び図5(C)に示すように、対向面38A(及び反対面38B)に湾曲部分と平面部分の双方が存在する形状でもよい。ただし、対向面38Aが凸形状でなだらかに湾曲していると、中央部30Cから周縁部30Eに向かってなだらかに圧力を漸減させることができる。すなわち、製造される積層基板40(積層基板)の厚みの均一化を図る観点からは湾曲した凸形状の対向面とされていることが好ましい。   In the above embodiment, as the interposition plate 36, the facing surface 38A (and the opposite surface 38B) has a gently curved convex shape, but in short, the facing surface 38A only needs to be convex. . For example, as shown in FIG. 5 (A), a shape that is linear in cross section from the central portion 36C to the peripheral portion 36E, or as shown in FIGS. 5 (B) and 5 (C) 38 A (and the opposite surface 38B) may have a shape in which both a curved portion and a flat portion are present. However, if the facing surface 38A is convex and gently curved, the pressure can be gradually reduced from the central portion 30C toward the peripheral portion 30E. That is, from the viewpoint of achieving uniform thickness of the laminated substrate 40 (laminated substrate) to be manufactured, it is preferable that the opposing surface has a curved convex shape.

また、コア基板24等の基板構成体の構造によっては、積層体40の厚みが不均一な場合もある。この場合には、積層体40(基板構成体)の厚みにあわせて、対向面38Aの表面形状にわずかな凹凸を設けてもよい。   Further, depending on the structure of the substrate structure such as the core substrate 24, the thickness of the stacked body 40 may be non-uniform. In this case, slight irregularities may be provided on the surface shape of the facing surface 38A in accordance with the thickness of the stacked body 40 (substrate structure).

このように対向面38Aに凹凸がある形状、あるいは図5(A)〜(C)に示した形状の介在板36を使用する場合は、対向面38Aが積層体30と直接的に接触しない位置に配置すれば、対向面38Aの形状が積層型14に転写されることを抑制できる。たとえば、積層体30と中間板34との間ではなく、中間板34と積層型14との間等に介在板36を配置すればよい。   Thus, when using the interposition board 36 of the shape with unevenness | corrugation in 38 A of opposing surfaces, or the shape shown to FIG. 5 (A)-(C), the position where 38 A of opposing surfaces do not contact the laminated body 30 directly. If it arrange | positions to, it can suppress that the shape of 38 A of opposing surfaces is transcribe | transferred to the lamination | stacking type | mold 14. For example, the interposition plate 36 may be disposed not between the laminate 30 and the intermediate plate 34 but between the intermediate plate 34 and the laminated mold 14.

上記実施形態では、介在板36として、積層体30との対向面38Aだけでなく、その反対面38Bも凸形状とされた形状のものを挙げているが、少なくとも対向面38Aが凸形状とされていれば、製造される積層基板40の厚みの均一化を図ることは可能である。ただし、上記実施形態のように、厚み方向の中心線CLに対し対称とされた形状の介在板36では、凸形状に湾曲した2面を特に区別することなく使用できる。そして、介在板36を所定位置(上記の例では中間板34と積層型14との間)に配置することで、積層体30側の面が対向面38A、その反対側の面が反対面38Bとなる。   In the above embodiment, as the interposition plate 36, not only the facing surface 38 </ b> A to the laminated body 30 but also the opposite surface 38 </ b> B has a convex shape, but at least the facing surface 38 </ b> A has a convex shape. If so, it is possible to make the thickness of the laminated substrate 40 to be manufactured uniform. However, as in the above-described embodiment, the intervening plate 36 having a shape that is symmetric with respect to the center line CL in the thickness direction can be used without particularly distinguishing two surfaces curved in a convex shape. And by arrange | positioning the interposition board 36 in a predetermined position (between the intermediate | middle board 34 and the lamination | stacking type | mold 14 in the said example), the surface by the side of the laminated body 30 is 38 A of opposing surfaces, and the surface of the other side is opposite surface 38B. It becomes.

介在板36の材料としては、ステンレス、銅、鉄、アルミニウム等の金属を排除するものではない。ただし、これらの金属材料を介在板36として使用すると、積層体30を積層方向に加圧する場合に、寸法挙動性が積層体30と異なるため、寸法挙動に差が生じるおそれがある。また、金属製の介在板36では、繰り返し使用等により変形や傷、圧痕等が生じやすい。これに対し、介在板36を樹脂製とすれば、繰り返し使用による変形や傷等が金属製の介在板と比較して生じにくい。また、金属と比較して、樹脂を用いた介在板36では、廃却や再利用も容易である。   The material of the interposition plate 36 does not exclude metals such as stainless steel, copper, iron, and aluminum. However, when these metal materials are used as the interposition plate 36, when the laminated body 30 is pressed in the laminating direction, the dimensional behavior is different from that of the laminated body 30, so there is a possibility that a difference in dimensional behavior may occur. Further, the metal interposition plate 36 is likely to be deformed, scratched, indented or the like due to repeated use. On the other hand, if the interposed plate 36 is made of resin, deformation, scratches, and the like due to repeated use are less likely to occur compared to a metallic interposed plate. Further, compared to metal, the interposer plate 36 using resin is easy to dispose and reuse.

この場合の樹脂としては、熱硬化性樹脂であっても熱可塑性樹脂であってもよいが、少なくとも、介在板36として使用する場合には、積層基板40の成形性に影響がない程度の剛性(形状安定性)を有していればよい。具体的には、たとえば耐熱性エポキシ樹脂を挙げることができる。特に、積層体30(接着シート28)と同一材料の樹脂製とすれば、寸法挙動が同じになるため、積層体30を加圧したときの伸縮性に及ぼす影響が小さくなる。   The resin in this case may be a thermosetting resin or a thermoplastic resin, but at least when used as the interposition plate 36, it has a rigidity that does not affect the moldability of the laminated substrate 40. (Shape stability) may be sufficient. Specifically, a heat resistant epoxy resin can be mentioned, for example. In particular, if the laminate 30 (adhesive sheet 28) is made of the same material as the resin, the dimensional behavior is the same, so the influence on the stretchability when the laminate 30 is pressurized is reduced.

なお、このように積層体30(接着シート28)と同一の材料(樹脂)を用いた介在板36を製造するには、図6に示すように、あらかじめ湾曲した金型(以下、湾曲金型44という)を用いることができる。この湾曲金型44としては、積層体(本実施形態に係る積層体30であってもよいし、本実施形態とは異なる積層体であってもよい)を積層方向に加圧する際に積層型として使用し、反りが復元しなくなった金属板を用いることができる。このように反りが復元しない金属板(湾曲金型44)は、積層体30を積層方向に加圧して積層基板を成形する目的で再度使用するには好ましくない。しかし、介在板36を製造する場合には使用可能であり、換言すれば、湾曲してしまった金型の有効利用を図っていることになる。   In order to manufacture the intervening plate 36 using the same material (resin) as the laminated body 30 (adhesive sheet 28) in this way, as shown in FIG. 44). The curved mold 44 may be a laminated mold when a laminated body (the laminated body 30 according to the present embodiment or a laminated body different from the present embodiment) may be pressed in the laminating direction. It is possible to use a metal plate that has been used as Thus, the metal plate (curved metal mold | die 44) from which curvature does not restore | restore is unpreferable to use again in order to pressurize the laminated body 30 in the lamination direction, and shape | mold a laminated substrate. However, it can be used when the interposition plate 36 is manufactured. In other words, the curved mold is effectively used.

そして、一対の湾曲金型44の間に、複数枚の半硬化状態の接着シート28を積層すると共に、積層方向の両側には表面層材26を配置し(表面層材26で接着シート28を積層方向に挟み込み)する。この状態で湾曲金型44によって積層体30を積層方向に加圧・加熱することで、介在板36を成形できる。   A plurality of semi-cured adhesive sheets 28 are laminated between a pair of curved molds 44, and a surface layer material 26 is disposed on both sides in the laminating direction (the adhesive sheet 28 is attached by the surface layer material 26). Sandwiched in the stacking direction). In this state, the interposed plate 36 can be formed by pressurizing and heating the laminated body 30 in the laminating direction with the curved mold 44.

このような湾曲金型44を用いて介在板36を成形すると、介在板36の対向面38A及び反対面38Bに湾曲金型44の反りが反映され、成形時には、図7に示すように、2つの面が凸形状となった介在板36を成形できる。   When the interposed plate 36 is molded using such a curved mold 44, the warp of the curved mold 44 is reflected on the opposing surface 38A and the opposite surface 38B of the interposed plate 36. At the time of molding, as shown in FIG. The intervening plate 36 having two convex surfaces can be formed.

これに対し、図8に示すように、平坦な金型(平坦金型46)を用いてもよい。すなわち、平坦金型46を用いた場合でも、接着シート28を構成している樹脂材料は周縁部から流れ出るため、図2に示すような、2つの面が凸形状となった介在板36を成形できる。   On the other hand, as shown in FIG. 8, a flat mold (flat mold 46) may be used. That is, even when the flat mold 46 is used, the resin material constituting the adhesive sheet 28 flows out from the peripheral portion, so that the interposer plate 36 having two convex surfaces as shown in FIG. 2 is formed. it can.

以上、本願の開示する技術の一実施形態について説明したが、本願の開示する技術は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。   As mentioned above, although one embodiment of the technique disclosed in the present application has been described, the technique disclosed in the present application is not limited to the above, and various modifications may be made without departing from the spirit of the present invention. Of course, it is possible.

以下に、本願の開示する積層基板製造方法を、実施例によってさらに詳細に説明する。ただし、本願の開示する積層基板製造方法は、この実施例の内容に限定されるものではない。   Hereinafter, the laminated substrate manufacturing method disclosed in the present application will be described in more detail with reference to examples. However, the laminated substrate manufacturing method disclosed in the present application is not limited to the contents of this embodiment.

本実施例では、図6及び図7に示す湾曲金型44を用いて、2枚の介在板36を形成した。そして、これら介在板36を用いて、図2に示すように、積層体30を積層方向に加圧・加熱した。積層体30を構成する接着シート28は耐熱性ガラスエポキシ樹脂であり、介在板36も、同様に耐熱性ガラスエポキシ樹脂を用いて成形した。   In this example, two intervening plates 36 were formed using the curved mold 44 shown in FIGS. Then, using these intervening plates 36, the laminate 30 was pressed and heated in the laminating direction as shown in FIG. The adhesive sheet 28 constituting the laminate 30 is a heat-resistant glass epoxy resin, and the intervening plate 36 is similarly molded using the heat-resistant glass epoxy resin.

具体的には、暑さが0.10mmの接着シート28を介在板1枚あたり20枚づつ用意して積層すると共に、積層方向の両端側に、表面層材26として厚さが35μmの銅箔を配置した。このように積層された接着シート28を、図6に示すように湾曲金型44を用いて加圧・加熱し、介在板36を成形した。成形後の介在板36では、最も厚い部分と最も薄い部分との板厚差は、1枚が0.62mm、他の1枚が0.65mmであった。   Specifically, 20 sheets of adhesive sheet 28 having a heat of 0.10 mm are prepared and laminated for each intervening plate, and a copper foil having a thickness of 35 μm is formed as a surface layer material 26 on both ends in the laminating direction. Arranged. The adhesive sheet 28 thus laminated was pressed and heated using a curved mold 44 as shown in FIG. In the interposer plate 36 after molding, the plate thickness difference between the thickest portion and the thinnest portion was 0.62 mm for one sheet and 0.65 mm for the other sheet.

次に、5つの積層体30を構成すると共に、これら積層体30の積層方向の両端部側のそれぞれに、図2に示すように中間板34を挟み込んだ。さらに、上側の中間板34と積層型14Aとの間、及び下側の中間板34と積層型14Bとの間に介在板36を配置した。そして、積層型14により、積層体30を加圧・加熱した。成形後の5枚の積層基板40のそれぞれについて、板厚差(最も厚い部分と最も薄い部分との板厚の差)を測定した(実施例1〜5)。   Next, the five laminated bodies 30 were configured, and an intermediate plate 34 was sandwiched between the both ends of the laminated bodies 30 in the stacking direction as shown in FIG. Further, intervening plates 36 are arranged between the upper intermediate plate 34 and the laminated die 14A and between the lower intermediate plate 34 and the laminated die 14B. Then, the laminate 30 was pressurized and heated by the laminate mold 14. About each of the five laminated substrates 40 after shaping | molding, the plate | board thickness difference (The difference of the plate | board thickness of the thickest part and the thinnest part) was measured (Examples 1-5).

また、積層体30の積層方向の両端部側に中間板34を配置するが、上記した介在板36は配置することなく、同様の工程によって、積層体30を加圧・加熱した(図4参照)。そして、成形後の積層基板40のそれぞれについて、実施例1〜5と同様に、板厚差(最も厚い部分と最も薄い部分との板厚の差)を測定した(比較例1〜5)。結果を表1に示す。   Moreover, although the intermediate | middle board 34 is arrange | positioned at the both ends part of the lamination direction of the laminated body 30, the above-mentioned interposition board 36 was arrange | positioned, and the laminated body 30 was pressurized and heated by the same process (refer FIG. 4). ). And about each of the laminated substrate 40 after shaping | molding, the board thickness difference (Difference in board thickness of the thickest part and the thinnest part) was measured similarly to Examples 1-5 (comparative examples 1-5). The results are shown in Table 1.



表1から、実施例の積層基板40では、比較例の積層基板よりも、板厚差の平均値、最大値及び最小値のいずれにおいても、高い平坦性が得られていることが分かる。特に板厚差の平均値では、実施例は比較例よりも0.05mmも平坦性が高くなっている。


From Table 1, it can be seen that in the laminated substrate 40 of the example, higher flatness is obtained at any of the average value, the maximum value, and the minimum value of the plate thickness difference than the laminated substrate of the comparative example. In particular, the flatness of the example is 0.05 mm higher than that of the comparative example at the average value of the plate thickness difference.

また、実施例1〜5の積層基板40の表面状態についても、凹凸、うねり、反り等は確認されなかった。さらに、寸法精度や成形品質についても、特に問題となる異常は認められなかった。   Moreover, the unevenness | corrugation, the wave | undulation, curvature, etc. were not confirmed about the surface state of the laminated substrate 40 of Examples 1-5. Furthermore, no abnormalities that are particularly problematic were observed in terms of dimensional accuracy and molding quality.

次に、介在板36を繰り返し使用することによる介在板36自体の劣化、及び成形された積層基板40への影響について確認した。   Next, the deterioration of the intervening plate 36 itself due to repeated use of the intervening plate 36 and the influence on the molded laminated substrate 40 were confirmed.

具体的には、介在板36を用いて積層体30を加熱・加圧する工程を10サイクル繰り返し、特定サイクル目(1、3、5、8、10サイクル目)において成形後の積層基板40の板厚差を測定した。結果を表2及び図9に示す。   Specifically, the process of heating and pressurizing the laminate 30 using the intervening plate 36 is repeated 10 cycles, and the plate of the laminated substrate 40 after molding in the specific cycle (1, 3, 5, 8, 10th cycle). The thickness difference was measured. The results are shown in Table 2 and FIG.



表2及び図9から、実施例に係る介在板36を使用した場合には、10サイクル目であっても、成形された積層基板40において、表1に示した比較例よりも平坦性が確保されていることが分かる。これは、10サイクル目であっても、介在板36の変形が抑制されていることに起因すると考えられる。


From Table 2 and FIG. 9, when the intervening plate 36 according to the example is used, even in the 10th cycle, the molded laminated substrate 40 is more flat than the comparative example shown in Table 1. You can see that. This is considered to be due to the fact that the deformation of the interposed plate 36 is suppressed even at the 10th cycle.

特に、本実施例では、介在板36を、積層体30を構成している接着シート28と同一の材料を用いているために、介在板36の寸法挙動が積層体30の寸法挙動と近くなる。そして、積層体30の加圧・加熱時に介在板36が積層体30と同様の伸縮をし、繰り返し使用による形状変化が生じにくいためであると考えられる。   In particular, in this embodiment, since the intervening plate 36 is made of the same material as the adhesive sheet 28 constituting the laminated body 30, the dimensional behavior of the intervening plate 36 is close to the dimensional behavior of the laminated body 30. . And it is considered that the interposition plate 36 expands and contracts in the same manner as the laminated body 30 when the laminated body 30 is pressed and heated, and the shape change due to repeated use hardly occurs.

12 積層基板製造装置
14 積層型
16 加圧部材
18 加圧機構
20 制御装置
22 操作部材
24 コア基板(基板構成体の一例)
26 表面層材(基板構成体の一例)
28 接着シート(接着部材の一例)
30 積層体
30C 中央部
30E 周縁部
32 保持部材
34 中間板
36 介在板
36A 対向面
38B 反対面
36C 中央部
36E 周縁部
40 積層基板
44 湾曲金型
46 平坦金型
DESCRIPTION OF SYMBOLS 12 Laminated substrate manufacturing apparatus 14 Laminated mold 16 Pressurization member 18 Pressurization mechanism 20 Control apparatus 22 Operation member 24 Core board (an example of board | substrate structure)
26 Surface layer material (example of substrate structure)
28 Adhesive sheet (an example of an adhesive member)
30 Laminated body 30C Central portion 30E Peripheral portion 32 Holding member 34 Intermediate plate 36 Intermediary plate 36A Opposing surface 38B Opposite surface 36C Central portion 36E Peripheral portion 40 Laminated substrate 44 Curved mold 46 Flat mold

Claims (5)

積層基板を構成する複数の基板構成体と該基板構成体を接着するための接着部材とを積層して積層体を構成し、
前記積層体の積層方向の少なくとも一方の側に、積層体との対向面と前記対向面の反対面とが板厚方向の中心線に対し対称の凸形状とされた介在板を配置し、
前記積層体と前記介在板とを前記積層方向に加圧して前記接着部材により前記基板構成体を接着する、
積層基板製造方法。
A laminated body is formed by laminating a plurality of substrate constituents constituting a laminated substrate and an adhesive member for bonding the substrate constituents,
On at least one side in the stacking direction of the stacked body, an intervening plate in which a facing surface to the stacked body and a surface opposite to the facing surface are symmetrical with respect to the center line in the plate thickness direction is disposed,
Pressurizing the laminated body and the interposition plate in the laminating direction to bond the substrate structure by the adhesive member;
Multilayer substrate manufacturing method.
前記介在板として、前記対向面が前記凸形状に湾曲した介在板を使用する請求項1に記載の積層基板製造方法。   The laminated substrate manufacturing method according to claim 1, wherein an intervening plate having the opposing surface curved into the convex shape is used as the intervening plate. 前記介在板として、前記接着部材と同材質の材料を硬化させた介在板を使用する請求項1又は請求項2に記載の積層基板製造方法。   The method for manufacturing a laminated substrate according to claim 1, wherein an intermediate plate in which a material of the same material as the adhesive member is cured is used as the intermediate plate. 前記介在板を、前記積層体の前記積層方向の両方の側に配置する請求項1〜請求項3のいずれか1項に記載の積層基板製造方法。 The laminated substrate manufacturing method according to any one of claims 1 to 3 , wherein the interposed plate is disposed on both sides of the laminated body in the lamination direction. 積層基板を構成する複数の基板構成体と該基板構成体を接着する接着部材とが積層された積層体を保持する保持部材と、
前記積層体の積層方向の少なくとも一方の側に配置され、積層体との対向面と前記対向面の反対面とが板厚方向の中心線に対し対称の凸形状とされた介在板と、
前記積層体と前記介在板とを前記積層方向に加圧して前記接着部材により前記基板構成体を接着する加圧部材と、
を有する積層基板製造装置。
A holding member for holding a laminated body in which a plurality of substrate constituting bodies constituting the laminated substrate and an adhesive member for bonding the substrate constituting bodies are laminated;
An interposed plate that is disposed on at least one side in the stacking direction of the stacked body, and the opposing surface of the stacked body and the opposite surface of the facing surface have a symmetrical convex shape with respect to the center line in the thickness direction ;
A pressure member that pressurizes the laminated body and the interposition plate in the laminating direction and adheres the substrate structure by the adhesive member;
An apparatus for manufacturing a multilayer substrate.
JP2012015767A 2012-01-27 2012-01-27 Multilayer substrate manufacturing method and multilayer substrate manufacturing apparatus Active JP5880082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015767A JP5880082B2 (en) 2012-01-27 2012-01-27 Multilayer substrate manufacturing method and multilayer substrate manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015767A JP5880082B2 (en) 2012-01-27 2012-01-27 Multilayer substrate manufacturing method and multilayer substrate manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013154510A JP2013154510A (en) 2013-08-15
JP5880082B2 true JP5880082B2 (en) 2016-03-08

Family

ID=49050198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015767A Active JP5880082B2 (en) 2012-01-27 2012-01-27 Multilayer substrate manufacturing method and multilayer substrate manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5880082B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155995A (en) * 1984-08-27 1986-03-20 富士通株式会社 Method of producing multilayer circuit board
JPH0414406A (en) * 1990-05-08 1992-01-20 Fujitsu Ltd Press for laminating printed circuit board
JP4162321B2 (en) * 1999-03-18 2008-10-08 株式会社クラレ Method for producing metal foil laminate

Also Published As

Publication number Publication date
JP2013154510A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5320502B2 (en) Metal foil with carrier
JP7178634B2 (en) Method for manufacturing metal-clad laminate, method for manufacturing electronic circuit board
JP2005059596A (en) Method for forming stepped laminate
JP5880082B2 (en) Multilayer substrate manufacturing method and multilayer substrate manufacturing apparatus
JP2014136357A (en) Case for electronic equipment and manufacturing method of the same
JP5194951B2 (en) Circuit board manufacturing method
JP4973202B2 (en) Multilayer circuit board manufacturing method
JP4548210B2 (en) Multilayer circuit board manufacturing method
JP5001868B2 (en) Multilayer board manufacturing method
JP5050505B2 (en) Multilayer printed wiring board manufacturing method and printed wiring board
JP5574145B2 (en) Multilayer wiring board manufacturing method and pressure adjusting jig
JP2012243829A (en) Multilayered printed wiring board and method of manufacturing the same
JPWO2008069018A1 (en) Concave and convex pattern forming method
JP5287075B2 (en) Circuit board manufacturing method
JP2019121774A (en) Wiring board with metal piece and manufacturing method of the same
JP5353027B2 (en) Circuit board manufacturing method
JP5066718B2 (en) Manufacturing method of flexible printed wiring board
JP4835265B2 (en) Multilayer laminate manufacturing method
JP2000216543A (en) Manufacture of multilayered printed wiring board
JP2008137294A (en) Manufacturing method of laminated plate
JP5287074B2 (en) Peeling trigger forming apparatus and peeling trigger forming method using the same
JP2013211388A (en) Manufacturing method of multilayer wiring board and jig for pressure regulation
JPH04168793A (en) Manufacture of multilayer copper-clad board
JPH069315B2 (en) Multilayer printed circuit board and manufacturing method thereof
JP2000196238A (en) Manufacture of multilayer metal foil laminate board with inner circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5880082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250