JP2014136357A - Case for electronic equipment and manufacturing method of the same - Google Patents

Case for electronic equipment and manufacturing method of the same Download PDF

Info

Publication number
JP2014136357A
JP2014136357A JP2013005638A JP2013005638A JP2014136357A JP 2014136357 A JP2014136357 A JP 2014136357A JP 2013005638 A JP2013005638 A JP 2013005638A JP 2013005638 A JP2013005638 A JP 2013005638A JP 2014136357 A JP2014136357 A JP 2014136357A
Authority
JP
Japan
Prior art keywords
thin plate
prepreg thin
prepreg
continuous fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013005638A
Other languages
Japanese (ja)
Inventor
Masanobu Ishizuka
賢伸 石塚
Tomoyuki Abe
知行 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013005638A priority Critical patent/JP2014136357A/en
Publication of JP2014136357A publication Critical patent/JP2014136357A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a case for electronic equipment capable of firmly integrating and improving appearance when a resin material is injection molded to an FRP plate consisting a thermoplastic resin as a parent material.SOLUTION: There is provided a case for electronic equipment 15 formed by making a prepreg thin plate 10 by coating a continuous fiber 11 with a thermoplastic resin 12, compression working the prepreg thin plate 10 with a press mold having convexoconcave on at least a part of surface to deform the continuous fiber 11 in the prepreg thin plate 10 to a rugged shape, removing the thermoplastic resin 12 by cutting work to expose the continuous fiber 11 positioning in a surface layer part of the deformed prepreg thin plate 10 to the surface layer part of the prepreg thin plate 10 with convex or concave, and laminating a resin material 14 containing a reinforced fiber 13 so that the continuous fiber 11 covers a surface of the exposed prepreg thin plate 10 with convex or concave.

Description

本出願は電子機器の筐体及び該筐体の製造方法に関する。   The present application relates to a casing of an electronic device and a method for manufacturing the casing.

近年、携帯電話やスマートフォン、個人情報機器(PDA)、ノート型コンピュータ、カーナビゲーション装置等の小型電子機器が薄肉小型化されるにつれ、これらの電子機器の筐体にも肉厚が薄く軽量で、かつ高い剛性を持つ筐体部品が求められている。   In recent years, as small electronic devices such as mobile phones, smartphones, personal information devices (PDAs), notebook computers, car navigation devices have become thinner and smaller, the casings of these electronic devices are also thinner and lighter, In addition, a housing component having high rigidity is required.

一般に、薄肉高強度の筐体部品を製造する方法として以の方法が知られている。
(1)ガラス繊維や炭素繊維を充填した繊維強化熱可塑性樹脂を射出成形する方法
(2)アルミニウム合金やマグネシウム合金の圧延板をプレス加工する方法
(3)アルミニウム合金やマグネシウム合金を射出成形(ダイカスト法、チクソモールド法など)する方法
(4)金属板や繊維強化樹脂(以後FRPという)の板とをインサート成形により一体成形する方法
In general, the following methods are known as methods for producing thin-walled and high-strength casing parts.
(1) Method of injection molding a fiber reinforced thermoplastic resin filled with glass fiber or carbon fiber (2) Method of pressing a rolled plate of aluminum alloy or magnesium alloy (3) Injection molding (die casting of aluminum alloy or magnesium alloy (4) Method of integrally forming a metal plate or a fiber reinforced resin (hereinafter referred to as FRP) plate by insert molding

このうち、FRPの板をインサート成形する場合、通常FRPは熱硬化性樹脂のマトリクス(母材)を持つため、熱可塑性樹脂とは強固に接着しなかった。このため、FRPを熱可塑性樹脂と一体化するために、以下のような方法が行われていた。
(A)図1(a)に示すようにFRP製の部品2を熱可塑性樹脂製の薄板基材1にネジ3で接合する。
(B)図1(b)に示すようにFRP製の部品2を熱可塑性樹脂製の薄板基材1に接着剤4を用いて接合する。
(C)図1(c)に示すように、熱可塑性樹脂製の薄板基材1に貫通孔5を設け、成形時にモールド樹脂14が貫通孔5を通じて薄板基材1の裏面に回り込むようなマクロな嵌合構造を設けて接合する。この方法に使用するモールド樹脂14は熱硬化性FRPであり、固まると熱が加わっても溶けない性質を持つ。
Among these, when FRP plates are insert-molded, the FRP usually has a thermosetting resin matrix (base material), and thus it was not firmly bonded to the thermoplastic resin. For this reason, in order to integrate FRP with a thermoplastic resin, the following method has been performed.
(A) As shown in FIG. 1A, an FRP component 2 is joined to a thin plate substrate 1 made of a thermoplastic resin with a screw 3.
(B) As shown in FIG. 1B, the FRP component 2 is joined to the thin plate substrate 1 made of a thermoplastic resin using an adhesive 4.
(C) As shown in FIG. 1C, a macro in which a through hole 5 is provided in a thin plate base material 1 made of thermoplastic resin, and a molding resin 14 wraps around the back surface of the thin plate base material 1 through the through hole 5 during molding. A simple fitting structure is provided for joining. The mold resin 14 used in this method is a thermosetting FRP, and when it is hardened, it does not melt even when heat is applied.

このため、せっかくの薄型製品の外観に図1(c)に示すような段形状が発生したり、図1(a)に示すようにネジ3が熱可塑性樹脂製の薄板基材1の表面に露出して外観が損なわれるなどの弊害があった。   For this reason, a stepped shape as shown in FIG. 1 (c) occurs in the appearance of a precious thin product, or as shown in FIG. 1 (a), the screw 3 is formed on the surface of the thin plate substrate 1 made of thermoplastic resin. There were adverse effects such as exposure and damage to the appearance.

これを解決する方法として、特許文献1及び特許文献2に開示の技術が知られている。これらはいずれもFRP基材の表面に接着剤となる低融点のポリアミド樹脂をコーティングすることにより、より高融点のモールド樹脂と接着して一体化する技術である。これらの技術を使用すれば、段差の無いよりスマートな製品外観が得られたり、より強固な接着が得られる利点がある。   As a method for solving this, the techniques disclosed in Patent Document 1 and Patent Document 2 are known. Each of these is a technique in which a low melting point polyamide resin serving as an adhesive is coated on the surface of the FRP base material so as to adhere and integrate with a higher melting point mold resin. By using these technologies, there is an advantage that a smarter product appearance without a step can be obtained and a stronger adhesion can be obtained.

特開2004−269878号公報JP 2004-269878 A

特開2009−214371号公報JP 2009-214371 A

ところが、特許文献1及び特許文献2に開示の技術では、モールド樹脂に使用する樹脂材料の相溶性の問題から、ポリアミド樹脂以外のモールド樹脂が使用できない制限があり、耐熱性に優れた樹脂が使用できなかった。また、ポリアミド樹脂は吸水によって基材剛性が低下するなどの課題があった。   However, in the techniques disclosed in Patent Document 1 and Patent Document 2, there is a limitation that a mold resin other than a polyamide resin cannot be used due to the compatibility problem of the resin material used for the mold resin, and a resin having excellent heat resistance is used. could not. Further, the polyamide resin has problems such as a decrease in substrate rigidity due to water absorption.

1つの側面では、本出願は、熱可塑性樹脂をマトリクスとするプリプレグの薄板に、様々な樹脂材料を射出して強固に一体成形でき、外観性の向上、薄肉軽量及び高信頼性を実現可能な電子機器の筐体及び該筐体の製造方法を提供することを目的とする。   In one aspect, the present application is capable of injecting various resin materials onto a prepreg thin plate made of a thermoplastic resin as a matrix and integrally forming it, thereby realizing improved appearance, thin-walled weight and high reliability. It is an object of the present invention to provide a casing of an electronic device and a method for manufacturing the casing.

実施形態の一観点によれば、連続繊維を熱可塑性樹脂でコーティングしたプリプレグ薄板を備え、プリプレグ薄板の少なくとも一方の面に、連続繊維が凸状または凹状の形態で露出しており、連続繊維が凸状または凹状の形態で露出しているプリプレグ薄板の表面を覆うように、強化繊維を含む樹脂材料が積層されて形成されたことを特徴とする電子機器の筐体が提供される。   According to one aspect of the embodiment, a prepreg thin plate in which continuous fibers are coated with a thermoplastic resin is provided, and the continuous fibers are exposed in a convex or concave form on at least one surface of the prepreg thin plate, There is provided a casing for an electronic device characterized in that a resin material containing reinforcing fibers is laminated so as to cover the surface of a prepreg thin plate exposed in a convex or concave form.

実施形態の他の観点によれば、連続繊維を熱可塑性樹脂でコーティングしてプリプレグ薄板を作り、プレス面の少なくとも1箇所に微細凹凸を備えるプレス金型によりプリプレグ薄板を両面から圧縮し、圧縮時に、微細凹凸によってプリプレグ薄板を三次元形状に変形させると共に、プリプレグ薄板の内部にある連続繊維を凹凸形状に変形させ、プリプレグ薄板の変形部分の表層部分に位置する熱可塑性樹脂を切削加工によって除去して、連続繊維の少なくとも一部をプリプレグ薄板の表層部分に露出させ、連続繊維の露出部を含むプリプレグ薄板の表面に、強化繊維を含む樹脂材料を積層することによって電子機器の筐体を製造する方法が提供される。   According to another aspect of the embodiment, a continuous fiber is coated with a thermoplastic resin to make a prepreg thin plate, and the prepreg thin plate is compressed from both sides by a press die having fine irregularities at least at one place on the press surface. The prepreg thin plate is deformed into a three-dimensional shape by fine unevenness, and the continuous fibers inside the prepreg thin plate are deformed into an uneven shape, and the thermoplastic resin located in the surface layer portion of the deformed portion of the prepreg thin plate is removed by cutting. Then, at least a part of the continuous fiber is exposed on the surface layer portion of the prepreg thin plate, and a resin material containing reinforcing fiber is laminated on the surface of the prepreg thin plate including the exposed portion of the continuous fiber to manufacture a casing of the electronic device. A method is provided.

(a)はFRP製の部品が熱可塑性樹脂製の薄板基材にネジで接合された状態を示す断面図、(b)はFRP製の部品が熱可塑性樹脂製の薄板基材に接着剤を用いて接合された状態を示す断面図、(c)は薄板基材に貫通孔が設けられ、成形時にモールド樹脂が貫通孔を通じて薄板基材の裏面に回りこむようにされたマクロな嵌合構造を示す図である。(A) is a cross-sectional view showing a state in which an FRP component is joined to a thin plate base material made of a thermoplastic resin with a screw, and (b) is an FRP component made of an adhesive on a thin plate base material made of a thermoplastic resin. (C) is a macro mating structure in which a through hole is provided in a thin plate base material, and a mold resin wraps around the back surface of the thin plate base material through the through hole during molding. FIG. (a)は一層の連続繊維を熱可塑性樹脂でコーティングしたプリプレグ薄板の断面図、(b)は二層の連続繊維を熱可塑性樹脂でコーティングしたプリプレグ薄板の断面図、(c)は三層の連続繊維を熱可塑性樹脂でコーティングしたプリプレグ薄板の断面図である。(A) is a cross-sectional view of a prepreg thin plate in which one layer of continuous fibers is coated with a thermoplastic resin, (b) is a cross-sectional view of a prepreg thin plate in which two layers of continuous fibers are coated with a thermoplastic resin, and (c) is a three-layered view. It is sectional drawing of the prepreg thin plate which coated the continuous fiber with the thermoplastic resin. (a)は図2(a)に示したプリプレグ薄板をプレス金型に入れてプレスする工程を示す図、(b)は(a)に示したプレス金型が閉じられた時の、金型のB部近傍の部分拡大断面図、(c)は(b)の状態からプレス金型によってプレスが行われた時のプリプレグ薄板の状態を示す部分拡大断面図、(d)は(a)に示したプレス金型が閉じられた時の、金型のD部近傍の部分拡大断面図、(e)は(d)の状態からプレス金型によってプレスが行われた時のプリプレグ薄板の状態を示す部分拡大断面図、(f)は(a)に示したプレス金型が閉じられた時の、F部近傍の部分拡大断面図、(g)は(f)の状態からプレス金型によってプレスが行われた時のプリプレグ薄板の状態を示す部分拡大断面図である。(A) is a figure which shows the process of putting the prepreg thin plate shown in FIG. 2 (a) into a press die and pressing it, (b) is a die when the press die shown in (a) is closed. (C) is a partially enlarged cross-sectional view showing the state of the prepreg thin plate when pressed by a press die from the state of (b), and (d) is (a). The partial expanded sectional view of the D part vicinity of a metal mold | die when the press metal mold | die shown was closed, (e) is a state of the prepreg thin plate when a press mold is performed from the state of (d). (F) is a partially enlarged sectional view in the vicinity of the F portion when the press die shown in (a) is closed, and (g) is pressed by the press die from the state of (f). It is a partial expanded sectional view which shows the state of a prepreg thin plate when is performed. (a)は図2(b)に示したプリプレグ薄板をプレス金型に入れてプレスした時のプレス金型のB部によって形成される連続繊維の変形を示す部分拡大断面図、(b)は図2(b)に示したプリプレグ薄板をプレス金型に入れてプレスした時のプレス金型のF部によって形成される連続繊維の変形を示す部分拡大断面図、(c)は図2(b)に示したプリプレグ薄板をプレス金型に入れてプレスした時のプレス金型の別の部位によって形成される連続繊維の変形を示す部分拡大断面図、(d)は図2(b)に示したプリプレグ薄板をプレス金型に入れてバスタブ状にプレスした時に、スライド金型によって連続繊維の変形をプリプレグ薄板の外側の面に設けた例を示す部分拡大断面図、(e)は変形前の連続繊維の部分拡大断面図、(f)はプレスによって変形した後の連続繊維の部分拡大断面図である。(A) is a partially enlarged cross-sectional view showing the deformation of continuous fibers formed by part B of the press die when the prepreg thin plate shown in FIG. 2 (b) is put into a press die and pressed. FIG. 2B is a partially enlarged cross-sectional view showing the deformation of the continuous fiber formed by the F portion of the press die when the prepreg thin plate shown in FIG. 2B is put into the press die and pressed. 2) A partially enlarged cross-sectional view showing deformation of a continuous fiber formed by another part of the press mold when the prepreg thin plate shown in FIG. When the prepreg thin plate is put into a press die and pressed into a bathtub shape, a partial enlarged cross-sectional view showing an example in which the deformation of the continuous fiber is provided on the outer surface of the prepreg thin plate by a slide die, (e) is before deformation Partial enlarged sectional view of continuous fiber, (f) Is a partially enlarged cross-sectional view of the continuous fibers after deformation by less. (a)はプレス後のプリプレグ薄板の表面から熱可塑性樹脂を部分的に削除するレーザ切削の工程を示す斜視図、(b)から(d)は、図4(b)に示したプリプレグ薄板における連続繊維の変形部分をレーザ切削した時の切削例を示すプリプレグ薄板の部分拡大断面図である。(A) is a perspective view which shows the process of the laser cutting which deletes a thermoplastic resin partially from the surface of the prepreg thin plate after a press, (b) to (d) is in the prepreg thin plate shown in FIG.4 (b). It is a partial expanded sectional view of the prepreg thin board which shows the example of a cutting when the deformation | transformation part of a continuous fiber is laser-cut. (a)は表層樹脂が部分的に除去されたプリプレグ薄板をモールド金型内に設置してインサート成形によりプリプレグ薄板の一方の面に強化繊維を含む樹脂材料を積層する工程を示す説明図、(b)は表層樹脂が部分的に除去されたプリプレグ薄板に、モールド金型内で強化繊維を含む樹脂材料を射出した時のモールド金型内の強化繊維を含む樹脂材料の挙動を説明する部分拡大断面図、(c)は従来のプリプレグ薄板に、モールド金型内で強化繊維を含む樹脂材料を射出した時のモールド金型内の強化繊維を含む樹脂材料の挙動を説明する部分拡大断面図である。(A) is explanatory drawing which shows the process of laminating | stacking the resin material containing a reinforced fiber on one surface of a prepreg thin plate by insert molding by installing the prepreg thin plate from which surface layer resin was removed partially in a mold die, b) Partial enlargement explaining the behavior of the resin material containing reinforcing fibers in the mold when the resin material containing reinforcing fibers is injected into the mold dies on the prepreg thin plate from which the surface layer resin has been partially removed Sectional drawing, (c) is a partially enlarged sectional view for explaining the behavior of a resin material containing reinforcing fibers in a mold when a resin material containing reinforcing fibers is injected into a conventional prepreg thin plate. is there. 表層樹脂が部分的に除去されたプリプレグ薄板に、トランスファー成形によって強化繊維を含む樹脂材料を積層する工程を示す説明図である。It is explanatory drawing which shows the process of laminating | stacking the resin material containing a reinforced fiber by transfer molding to the prepreg thin plate from which surface layer resin was partially removed. 表層樹脂が部分的に除去されたプリプレグ薄板に、真空成形によって強化繊維を含む樹脂材料を積層する工程を示す説明図である。It is explanatory drawing which shows the process of laminating | stacking the resin material containing a reinforced fiber by vacuum forming on the prepreg thin plate from which surface layer resin was partially removed. 表層樹脂が部分的に除去されたプリプレグ薄板に、ブロー成形によって強化繊維を含む樹脂材料を積層する工程を示す説明図である。It is explanatory drawing which shows the process of laminating | stacking the resin material containing a reinforced fiber by blow molding on the prepreg thin board from which surface layer resin was partially removed. 表層樹脂が部分的に除去されたプリプレグ薄板に、強化繊維を含む樹脂材料が積層された造られた電子機器の筐体を示す斜視図である。It is a perspective view which shows the housing | casing of the electronic device made by laminating | stacking the resin material containing a reinforced fiber on the prepreg thin plate from which surface layer resin was partially removed. (a)は図10のX部の部分拡大断面図、(b)は図10のY部の部分拡大断面図、(c)は図10のZ部の部分拡大断面図である。(A) is the elements on larger scale of the X section of FIG. 10, (b) is the elements on larger scale of the Y section of FIG. 10, (c) is the elements on larger scale of the Z section of FIG.

以下、添付図面を用いて本出願の実施の形態を、具体的な実施例に基づいて詳細に説明する。   Hereinafter, embodiments of the present application will be described in detail based on specific examples with reference to the accompanying drawings.

図2(a)は、一層の連続繊維11を熱可塑性樹脂12でコーティングした繊維強化樹脂の薄板10の断面図である。このような繊維強化樹脂の薄板10は熱可塑性プリプレグと呼ばれる。熱可塑性樹脂12でコーティングする連続繊維11の層は一層に限定されるものではなく、繊維強化樹脂の薄板10に必要な強度に応じて層の数を増やすことができる。図2(b)は、二層の連続繊維11が熱可塑性樹脂12でコーティングされた繊維強化樹脂の薄板10を示すものであり、図2(c)は三層の連続繊維11が熱可塑性樹脂12でコーティングされた繊維強化樹脂の薄板10を示すものである。以後繊維強化樹脂の薄板10はプリプレグ薄板10と言う。   FIG. 2A is a cross-sectional view of a thin plate 10 of a fiber reinforced resin obtained by coating a single layer of continuous fiber 11 with a thermoplastic resin 12. Such a thin plate 10 of fiber reinforced resin is called a thermoplastic prepreg. The layer of the continuous fiber 11 to be coated with the thermoplastic resin 12 is not limited to one layer, and the number of layers can be increased according to the strength required for the thin plate 10 of fiber reinforced resin. FIG. 2 (b) shows a thin plate 10 of fiber reinforced resin in which two layers of continuous fibers 11 are coated with a thermoplastic resin 12, and FIG. 2 (c) shows three layers of continuous fibers 11 formed of a thermoplastic resin. 1 shows a thin plate 10 of fiber reinforced resin coated with 12. Hereinafter, the fiber-reinforced resin sheet 10 is referred to as a prepreg sheet 10.

本出願では、図2(a)〜(c)等に示されるプリプレグ薄板10に内蔵される連続繊維11を、プレス金型を用いて変形させる。この工程を、図2(a)に示した一層の連続繊維11を熱可塑性樹脂12でコーティングしたプリプレグ薄板10を用いた場合について図3により説明する。   In the present application, the continuous fiber 11 incorporated in the prepreg thin plate 10 shown in FIGS. 2A to 2C and the like is deformed using a press die. This process will be described with reference to FIG. 3 in the case of using the prepreg thin plate 10 in which the single-layer continuous fiber 11 shown in FIG. 2A is coated with the thermoplastic resin 12.

図3(a)は、図2(a)に示したプリプレグ薄板10を、プレス金型20に入れてプレスする工程を示すものである。プレス金型20は雄金型21と雌金型22を備えており、プリプレグ薄板10は雌金型22の凹部24の中に載置される。プレス金型20の雄金型21には凹部24内に挿入される凸部23が設けられている。そして、雄金型21の凸部23と雌金型22の凹部24のB部、D部及びF部には、プリプレグ薄板10にある連続繊維11を三次元形状に変形させるための凹部25,26,27が設けられている。   FIG. 3A shows a process of pressing the prepreg thin plate 10 shown in FIG. The press mold 20 includes a male mold 21 and a female mold 22, and the prepreg thin plate 10 is placed in a recess 24 of the female mold 22. The male die 21 of the press die 20 is provided with a convex portion 23 to be inserted into the concave portion 24. And the convex part 23 of the male die 21 and the B part, D part and F part of the concave part 24 of the female die 22 are concave parts 25 for deforming the continuous fibers 11 in the prepreg thin plate 10 into a three-dimensional shape. 26 and 27 are provided.

図3(b)は図3(a)に示したプレス金型20が閉じられた時の、プレス金型20のB部近傍を部分的に拡大して示すものである。図3(b)に示す状態では、プレス金型20の雄金型21と雌金型22との間に圧力は加わっていない。雄金型21と雌金型22との間に圧力を加えると、凹部25内に熱可塑性樹脂12が入り込み、熱可塑性樹脂12の移動により連続繊維11も凹部25内に入る。そして、凹部25の深さを大きくしておくと、連続繊維11は凹部25内に入る過程で破断し、図3(c)に示す状態になる。凹部の寸法及び深さと連続繊維がプレス時に破断するか否かのデータについては後述する。   FIG. 3B is a partially enlarged view of the vicinity of portion B of the press die 20 when the press die 20 shown in FIG. 3A is closed. In the state shown in FIG. 3B, no pressure is applied between the male die 21 and the female die 22 of the press die 20. When pressure is applied between the male mold 21 and the female mold 22, the thermoplastic resin 12 enters the recess 25, and the continuous fiber 11 also enters the recess 25 due to the movement of the thermoplastic resin 12. And if the depth of the recessed part 25 is enlarged, the continuous fiber 11 will fracture | rupture in the process which enters into the recessed part 25, and will be in the state shown in FIG.3 (c). Data on whether or not the dimensions and depth of the recesses and whether the continuous fiber breaks during pressing will be described later.

図3(d)は図3(a)に示したプレス金型20が閉じられた時の、プレス金型20のD部近傍を部分的に拡大して示すものである。図3(d)に示す状態では、プレス金型20の雄金型21と雌金型22との間に圧力は加わっていない。雄金型21と雌金型22との間に圧力を加えると、凹部26内に熱可塑性樹脂12が入り込み、熱可塑性樹脂12の移動により連続繊維11も凹部26内に入る。凹部26の深さはあまり大きくないので、連続繊維11は凹部26内に入る過程では破断せず、図3(e)に示すように、窪んだ状態(三次元形状に変形した状態)になる。   FIG. 3D shows a partially enlarged view of the vicinity of the D portion of the press die 20 when the press die 20 shown in FIG. 3A is closed. In the state shown in FIG. 3D, no pressure is applied between the male die 21 and the female die 22 of the press die 20. When pressure is applied between the male mold 21 and the female mold 22, the thermoplastic resin 12 enters the recess 26, and the continuous fiber 11 also enters the recess 26 due to the movement of the thermoplastic resin 12. Since the depth of the concave portion 26 is not so large, the continuous fiber 11 is not broken in the process of entering the concave portion 26 and is in a depressed state (a state deformed into a three-dimensional shape) as shown in FIG. .

図3(f)は図3(a)に示したプレス金型20が閉じられた時の、プレス金型20のF部近傍を部分的に拡大して示すものである。図3(f)に示す状態では、プレス金型20の雄金型21と雌金型22との間に圧力は加わっていない。雄金型21と雌金型22との間に圧力を加えると、凹部27内に熱可塑性樹脂12が入り込み、熱可塑性樹脂12の移動により連続繊維11も凹部27内に入る。凹部27の深さもあまり大きくないので、連続繊維11は凹部27内に入る過程では破断せず、図3(g)に示すように、窪んだ状態になる。   FIG. 3 (f) shows a partially enlarged view of the vicinity of the F portion of the press die 20 when the press die 20 shown in FIG. 3 (a) is closed. In the state shown in FIG. 3 (f), no pressure is applied between the male die 21 and the female die 22 of the press die 20. When pressure is applied between the male mold 21 and the female mold 22, the thermoplastic resin 12 enters the recess 27, and the continuous fiber 11 also enters the recess 27 due to the movement of the thermoplastic resin 12. Since the depth of the concave portion 27 is not so large, the continuous fiber 11 is not broken in the process of entering the concave portion 27 and is in a depressed state as shown in FIG.

図4(a)は、図2(b)に示したプリプレグ薄板10をプレス金型20に入れてプレスした後の、プレス金型20のB部に対応する部分のプリプレグ薄板10を示すものである。この実施例に示すプリプレグ薄板10は、一層目の連続繊維11が破断されて変形しているが、二層目の連続繊維11には変形が生じていない。プレス金型20に設ける凹部のサイズにより、一層目の連続繊維11だけをこのように変形させることが可能である。   FIG. 4A shows the prepreg thin plate 10 corresponding to the portion B of the press die 20 after the prepreg thin plate 10 shown in FIG. 2B is placed in the press die 20 and pressed. is there. In the prepreg thin plate 10 shown in this embodiment, the first-layer continuous fibers 11 are broken and deformed, but the second-layer continuous fibers 11 are not deformed. Only the first-layer continuous fibers 11 can be deformed in this way depending on the size of the recesses provided in the press die 20.

図4(b)は、図2(b)に示したプリプレグ薄板10をプレス金型20に入れてプレスした後の、プレス金型20のF部に対応する部分のプリプレグ薄板10を示すものである。この実施例に示すプリプレグ薄板10は、一層目の連続繊維11が上側に凸になるように変形しているが、二層目の連続繊維11には変形が生じていない。プレス金型20に設ける凹部のサイズにより、一層目の連続繊維11だけをこのように変形させることが可能である。   FIG. 4B shows the prepreg thin plate 10 at a portion corresponding to the F portion of the press die 20 after the prepreg thin plate 10 shown in FIG. 2B is put in the press die 20 and pressed. is there. Although the prepreg thin plate 10 shown in this embodiment is deformed so that the first-layer continuous fibers 11 are convex upward, the second-layer continuous fibers 11 are not deformed. Only the first-layer continuous fibers 11 can be deformed in this way depending on the size of the recesses provided in the press die 20.

図4(c)は、図2(b)に示したプリプレグ薄板10をプレス金型20に入れてプレスした後の、同じくプレス金型20のF部に対応する部分のプリプレグ薄板10を示すものである。この実施例に示すプリプレグ薄板10は、一層目の連続繊維11が上側に凸のドーム形状になるように変形しているが、二層目の連続繊維11には変形が生じていない。プレス金型20に設ける凹部のサイズにより、一層目の連続繊維11だけをドーム形状に変形させることが可能である。   FIG. 4C shows the prepreg thin plate 10 corresponding to the F portion of the press die 20 after the prepreg thin plate 10 shown in FIG. 2B is placed in the press die 20 and pressed. It is. The prepreg thin plate 10 shown in this embodiment is deformed so that the first-layer continuous fibers 11 have a convex dome shape on the upper side, but the second-layer continuous fibers 11 are not deformed. Depending on the size of the recess provided in the press die 20, only the first-layer continuous fiber 11 can be deformed into a dome shape.

図4(d)は図2(b)に示したプリプレグ薄板10を、プレス金型20の形状によりバスタブ状に成形すると共に、プレス金型20に設けたスライド金型(図示省略)により、プリプレグ薄板10の外側の面に連続繊維11の変形部を設けた実施例である。このように、プレス金型20によって連続繊維11を変形させる部分は、プリプレグ薄板10の上下どちらにも設けることができ、プリプレグ薄板10をバスタブ状に成形した場合にはプリプレグ薄板10の外側の面にも設けることが可能である。   4 (d) shows the prepreg thin plate 10 shown in FIG. 2 (b) formed into a bathtub shape by the shape of the press die 20 and a prepreg by a slide die (not shown) provided in the press die 20. This is an example in which a deformed portion of the continuous fiber 11 is provided on the outer surface of the thin plate 10. As described above, the portion where the continuous fiber 11 is deformed by the press mold 20 can be provided on either the upper or lower side of the prepreg thin plate 10. When the prepreg thin plate 10 is formed in a bathtub shape, the outer surface of the prepreg thin plate 10 is provided. Can also be provided.

図4(e)は、プリプレグ薄板10に内蔵される連続繊維11の変形前の状態を示すものである。連続繊維11には縦糸と横糸があり、連続繊維11は縦糸と横糸によって糸と糸の間の隙間が殆ど無い状態で編みこまれている。図4(f)はプレス金型20によって連続繊維11が変形した後の連続繊維11の縦糸と横糸の状態を示すものである。プレス金型20によって連続繊維11が変形すると、図4(f)に示すように、糸と糸の間に隙間Sができる。よって、連続繊維11が変形した部分の表層の熱可塑性樹脂12を除去して連続繊維11を露出させれば、この上に強化繊維を含む樹脂材料を積層すると、樹脂材料が連続繊維11の隙間に入り込むので、連続繊維11と強化繊維を含む樹脂材料の結合が強まる。   FIG. 4 (e) shows a state before deformation of the continuous fiber 11 incorporated in the prepreg thin plate 10. The continuous fiber 11 includes warp and weft. The continuous fiber 11 is knitted by the warp and weft so that there is almost no gap between the yarns. FIG. 4 (f) shows the warp and weft states of the continuous fiber 11 after the continuous fiber 11 is deformed by the press die 20. When the continuous fiber 11 is deformed by the press die 20, a gap S is formed between the yarns as shown in FIG. Therefore, if the thermoplastic resin 12 on the surface layer where the continuous fiber 11 is deformed is removed to expose the continuous fiber 11, a resin material containing reinforcing fibers is laminated thereon, and the resin material becomes a gap between the continuous fibers 11. Since it enters, the bond between the continuous fiber 11 and the resin material including the reinforcing fiber is strengthened.

以上のように、プリプレグ薄板10は予め筐体の外形形状に加工すると同時に、後にモールド樹脂を積層する部分の連続繊維11に微細な凹凸形状を付与しておく。これによりモールド樹脂と連続繊維11との接合部分の面積が増加するとともに、アンカー効果による結合力が向上する。   As described above, the prepreg thin plate 10 is processed into the outer shape of the casing in advance, and at the same time, a fine uneven shape is imparted to the continuous fibers 11 where the mold resin is laminated later. As a result, the area of the joint portion between the mold resin and the continuous fiber 11 is increased, and the bonding force due to the anchor effect is improved.

連続繊維11が変形した部分の表層の熱可塑性樹脂12を除去するには、グラインダ等で削る方法や、図5(a)に示すようにレーザ装置30からのレーザ光を用いたレーザ切削による方法がある。レーザ装置30は、プレス金型20に設けられた凹部の位置に合わせて移動させることができるので、連続繊維11が変形した部分の表層の熱可塑性樹脂12を正確に除去することが可能である。   In order to remove the thermoplastic resin 12 on the surface layer of the part where the continuous fiber 11 is deformed, a method of cutting with a grinder or the like, or a method of laser cutting using laser light from the laser device 30 as shown in FIG. There is. Since the laser device 30 can be moved according to the position of the concave portion provided in the press die 20, it is possible to accurately remove the thermoplastic resin 12 on the surface layer of the portion where the continuous fiber 11 is deformed. .

このレーザ装置30を使用すれば、連続繊維11が変形した部分の表層の熱可塑性樹脂12を色々な形状に削除することが可能である。図5(b)は図4(b)に示したプリプレグ薄板10における連続繊維11の凸状に変形した部分Tの上部に位置する熱可塑性樹脂12を全て除去した実施例を示している。また、図5(c)は図4(b)に示したプリプレグ薄板10における連続繊維11の凸状に変形した部分Tの上部に位置する熱可塑性樹脂12を、部分的に除去して所定のパターンを形成した実施例を示している。更に、図5(d)は図4(b)に示したプリプレグ薄板10における連続繊維11の凸状に変形した部分Tの頂面の上部に位置する熱可塑性樹脂12を部分的に除去して露出させると共に、露出部の周囲に壁部Wを形成した実施例を示している。   If this laser device 30 is used, it is possible to delete the thermoplastic resin 12 on the surface layer where the continuous fiber 11 is deformed into various shapes. FIG. 5B shows an embodiment in which all of the thermoplastic resin 12 located above the portion T of the prepreg thin plate 10 shown in FIG. 4B deformed into a convex shape of the continuous fiber 11 is removed. FIG. 5C shows a predetermined state by partially removing the thermoplastic resin 12 located above the portion T of the prepreg thin plate 10 shown in FIG. An example in which a pattern is formed is shown. Further, FIG. 5 (d) shows a partial removal of the thermoplastic resin 12 located at the top of the top surface of the convex portion T of the continuous fiber 11 in the prepreg thin plate 10 shown in FIG. 4 (b). An embodiment in which the wall portion W is formed around the exposed portion while being exposed is shown.

図6(a)は、連続繊維11の変形部分の表層にある熱可塑性樹脂12が部分的に除去されたプリプレグ薄板10をモールド金型40内に設置して、射出成形機50により強化繊維を含む樹脂材料を射出するインサート成形を説明するものである。モールド金型40には、雄金型41、雌金型42、樹脂流路45が設けられた凸部43、プリプレグ薄板10をセットする凹部44及びプリプレグ薄板10の内側に強化繊維を含む樹脂材料を積層するためのキャビティ46がある。キャビティ46はプリプレグ薄板10の内側に形成する平坦部やボス部及びリブ部に対応して設けられる。   FIG. 6A shows that the prepreg thin plate 10 from which the thermoplastic resin 12 on the surface layer of the deformed portion of the continuous fiber 11 is partially removed is placed in the mold 40 and the reinforced fiber is injected by the injection molding machine 50. The insert molding which injects the resin material containing is demonstrated. The mold die 40 includes a male die 41, a female die 42, a convex portion 43 provided with a resin flow path 45, a concave portion 44 for setting the prepreg thin plate 10, and a resin material containing reinforcing fibers inside the prepreg thin plate 10. There is a cavity 46 for laminating. The cavity 46 is provided corresponding to a flat part, a boss part, and a rib part formed inside the prepreg thin plate 10.

図6(b)は表層の熱可塑性樹脂12が部分的に除去されたプリプレグ薄板10に、モールド金型40内で強化繊維13を含むモールド樹脂14を射出した時のモールド金型40内の強化繊維13を含むモールド樹脂14の挙動を説明するものである。モールド金型40内のキャビティ46に流れ込んだ強化繊維13を含むモールド樹脂14は、連続繊維11の変形部分に達すると、前述のように連続繊維11の変形部分に絡みついて強固に結合する。   FIG. 6B shows the reinforcement in the mold 40 when the mold resin 14 containing the reinforcing fibers 13 is injected into the mold prep 40 to the prepreg thin plate 10 from which the thermoplastic resin 12 in the surface layer has been partially removed. The behavior of the mold resin 14 including the fibers 13 will be described. When the mold resin 14 including the reinforcing fiber 13 flowing into the cavity 46 in the mold 40 reaches the deformed portion of the continuous fiber 11, the mold resin 14 is entangled with the deformed portion of the continuous fiber 11 and firmly bonded as described above.

即ち、プリプレグ薄板10とモールド樹脂14とを接合する際には、モールド樹脂14が、表層樹脂(熱可塑性樹脂12)を除去した連続繊維11の隙間S(図4(f)参照)に含浸し、同時にモールド樹脂14中の強化繊維13が連続繊維11の隙間Sに入り込むことで強固な接着が得られる。プリプレグ薄板10のマトリクスに耐熱性が高い樹脂を使用すれば、一部をプリプレグ薄板10の表面に残存させることで、アンカー効果を付与することもできる。このため従来技術のようにプリプレグ薄板10とモールド樹脂14との組み合わせが制限されない。   That is, when the prepreg thin plate 10 and the mold resin 14 are joined, the mold resin 14 impregnates the gap S (see FIG. 4F) between the continuous fibers 11 from which the surface layer resin (thermoplastic resin 12) has been removed. At the same time, the reinforcing fibers 13 in the mold resin 14 enter the gaps S between the continuous fibers 11 to obtain strong adhesion. If a resin having high heat resistance is used for the matrix of the prepreg thin plate 10, an anchor effect can be imparted by allowing a part to remain on the surface of the prepreg thin plate 10. For this reason, the combination of the prepreg thin plate 10 and the mold resin 14 is not limited as in the prior art.

これに対して、図6(c)に示すように、熱可塑性樹脂12の一部を除去して連続繊維11を露出させただけのプリプレグ薄板10には、露出部分の連続繊維11に隙間Sがない。従って、モールド金型40内に強化繊維13を含むモールド樹脂14を射出した場合でも、強化繊維13を含むモールド樹脂14が連続繊維11に強固に結合しない。この結果、プリプレグ薄板10から強化繊維13を含むモールド樹脂14が剥れ易い。   On the other hand, as shown in FIG. 6C, the prepreg thin plate 10 in which the continuous fiber 11 is only exposed by removing a part of the thermoplastic resin 12 has a gap S between the exposed continuous fibers 11. There is no. Therefore, even when the mold resin 14 including the reinforcing fibers 13 is injected into the mold 40, the mold resin 14 including the reinforcing fibers 13 is not firmly bonded to the continuous fibers 11. As a result, the mold resin 14 including the reinforcing fibers 13 is easily peeled off from the prepreg thin plate 10.

連続繊維11の変形部分の表層にある熱可塑性樹脂12が部分的に除去されたプリプレグ薄板10に強化繊維13を含むモールド樹脂14を積層する方法は前述のインサート成形以外にもある。例えば、トランスファー成形、真空成形や、ブロー成形等を、インサート成形の代わりに行うことが可能である。   There is a method of laminating the mold resin 14 including the reinforcing fibers 13 on the prepreg thin plate 10 from which the thermoplastic resin 12 on the surface layer of the deformed portion of the continuous fiber 11 is partially removed, in addition to the above-described insert molding. For example, transfer molding, vacuum molding, blow molding, or the like can be performed instead of insert molding.

図7は、表層樹脂が部分的に除去されたプリプレグ薄板10に、トランスファー成形によって強化繊維を含む樹脂材料を積層する工程を示すものである。トランスファー成形は、射出成形と同様に繊維を露出したプリプレグ薄板10を雌金型52の凹部54に設置し、雄金型51を取り付けた状態で、溶融樹脂を樹脂流路55を通じて金型内のキャビティに56移送して硬化するものである。53は雄金型51の凸部である。トランスファー成形は、射出成形に比較して、バリ処理が必須のため手軽さはないが、熱硬化性樹脂による強化層や付加部品を成形できる。   FIG. 7 shows a step of laminating a resin material containing reinforcing fibers by transfer molding on the prepreg thin plate 10 from which the surface layer resin has been partially removed. In the transfer molding, the prepreg thin plate 10 with exposed fibers is placed in the concave portion 54 of the female mold 52 and the molten resin is put into the mold through the resin flow path 55 in the state where the male mold 51 is attached, as in the injection molding. 56 is transferred to the cavity and cured. Reference numeral 53 denotes a convex portion of the male mold 51. Compared to injection molding, transfer molding is not as easy as burr treatment is essential, but it can mold a reinforced layer or additional parts using a thermosetting resin.

また、図8は、表層樹脂が部分的に除去されたプリプレグ薄板10に、真空成形によって強化繊維を含む樹脂材料を積層する真空成形機60を示すものである。真空成形(圧空成形)では、排気通路61が設けられた成形台62にある凹部63に繊維を露出したプリプレグ薄板10がまず嵌めこまれる。その上に強化繊維を含む樹脂材料で作られた樹脂シート64が設置される。成形台62の上にカバー65が、成形台62に対して気密に取り付けられる。カバー65には内部空間66があり、この内部空間66にヒータ67がシート64に対向して設置されている。ヒータ67によって樹脂シート64が加熱されて樹脂シート64が軟化すると、排気通路61が図示しない減圧手段に接続され、空圧または吸引により樹脂シート64がプリプレグ薄板10に押し付けられて一体化される。主に筐体の内外面に被覆層を形成したり部分的に転写することで、装飾部および、より薄肉の付加部品を形成できる。   FIG. 8 shows a vacuum forming machine 60 for laminating a resin material containing reinforcing fibers by vacuum forming on the prepreg thin plate 10 from which the surface layer resin has been partially removed. In vacuum forming (pressure air forming), the prepreg thin plate 10 in which fibers are exposed is first fitted into a recess 63 in a forming table 62 provided with an exhaust passage 61. A resin sheet 64 made of a resin material containing reinforcing fibers is placed thereon. A cover 65 is airtightly attached to the molding table 62 on the molding table 62. The cover 65 has an internal space 66, and a heater 67 is installed in the internal space 66 so as to face the seat 64. When the resin sheet 64 is heated by the heater 67 and the resin sheet 64 is softened, the exhaust passage 61 is connected to decompression means (not shown), and the resin sheet 64 is pressed against and integrated with the prepreg thin plate 10 by air pressure or suction. A decorative part and a thinner additional part can be formed mainly by forming a coating layer on the inner and outer surfaces of the casing or by partially transferring the coating layer.

更に、図9は、表層樹脂が部分的に除去されたプリプレグ薄板10に、ブロー成形によって強化繊維を含む樹脂材料を積層するブロー成形機70を示すものである。ブロー成形機70には上金型71と下金型72があり、上金型71と下金型72の間の内部空間73に中空形状に仕上げられたプリプレグ薄板10が嵌め込まれる。そして、中空形状のプリプレグ薄板10の内部に樹脂シートがパリソン74として挿入され、吹き込み口75から高圧の熱風が吹き込まれてパリソン74がブローされる。ブローによってパリソン74が膨らみ、プリプレグ薄板10の内周面に押し付けられて一体化する。ブロー成形では、中空部品に継ぎ目のない被覆層が形成される。   Furthermore, FIG. 9 shows a blow molding machine 70 for laminating a resin material containing reinforcing fibers by blow molding on the prepreg thin plate 10 from which the surface layer resin has been partially removed. The blow molding machine 70 includes an upper mold 71 and a lower mold 72, and the prepreg thin plate 10 finished in a hollow shape is fitted into an internal space 73 between the upper mold 71 and the lower mold 72. Then, a resin sheet is inserted as a parison 74 into the hollow prepreg thin plate 10, and high-pressure hot air is blown from the blowing port 75 to blow the parison 74. By blowing, the parison 74 swells and is pressed against the inner peripheral surface of the prepreg thin plate 10 to be integrated. In blow molding, a seamless coating layer is formed on the hollow part.

図10は、表層樹脂が部分的に除去されたプリプレグ薄板10に、強化繊維を含む樹脂材料が積層された造られた電子機器の筐体15を示すものである。電子機器の筐体15はバスタブ状であり、内部にボス16やリブ17が形成されている。そして、図11(a)は図10のX部の部分拡大断面図、図10(b)は図10のY部の部分拡大断面図、図10(c)は図10のZ部の部分拡大断面図を示している。これらの図から、連続繊維11の変形部分に強化繊維13を含むモールド樹脂14が強固に結合していることが分かる。   FIG. 10 shows a casing 15 of an electronic device made by laminating a resin material containing reinforcing fibers on a prepreg thin plate 10 from which a surface layer resin has been partially removed. A casing 15 of the electronic device has a bathtub shape, and a boss 16 and a rib 17 are formed inside. 11A is a partially enlarged cross-sectional view of the X portion of FIG. 10, FIG. 10B is a partially enlarged cross-sectional view of the Y portion of FIG. 10, and FIG. 10C is a partially enlarged view of the Z portion of FIG. A cross-sectional view is shown. From these figures, it can be seen that the mold resin 14 including the reinforcing fiber 13 is firmly bonded to the deformed portion of the continuous fiber 11.

ここで、以上説明した実施例の具体的な実現例を説明する。連続繊維11には炭素繊維(CF)が使用でき、例えば、t=0.2mmの平織CFクロスを用いる。熱可塑性樹脂12にはt=0.25mmのポリエーテルイミド(PEI)フィルムをマトリクス樹脂として使用できる。そして、図2(b)に示す二層の連続繊維(炭素繊維シート)11を三層の熱可塑性樹脂12でコーティングしてプリプレグ薄板10を製作すると、70mm×100mm、t=0.6mmのサイズのプリプレグ薄板10となった。   Here, a specific implementation example of the embodiment described above will be described. Carbon fiber (CF) can be used for the continuous fiber 11, and for example, a plain woven CF cloth with t = 0.2 mm is used. As the thermoplastic resin 12, a polyetherimide (PEI) film with t = 0.25 mm can be used as a matrix resin. Then, when the two-layer continuous fiber (carbon fiber sheet) 11 shown in FIG. 2B is coated with the three-layer thermoplastic resin 12 to produce the prepreg thin plate 10, a size of 70 mm × 100 mm, t = 0.6 mm. Prepreg thin plate 10 was obtained.

プレス金型20としては小型プレス機を使用し、加工条件は、加熱温度280°C、ゲージ圧15MPaとした。また、図10に示したバスタブ形状の電子機器の筐体15は、50×90mmの底面を持ち、側壁の高さを5mmとした。そして、内部に設けたボス16は直径1mmで高さ1mmに形成でき、リブ17は幅1mm、長さ40mm、高さ2mmに形成することができた。   A small press machine was used as the press die 20, and the processing conditions were a heating temperature of 280 ° C. and a gauge pressure of 15 MPa. Further, the casing 15 of the bathtub-shaped electronic device shown in FIG. 10 has a bottom surface of 50 × 90 mm and the height of the side wall is 5 mm. The boss 16 provided inside was 1 mm in diameter and 1 mm in height, and the rib 17 was 1 mm in width, 40 mm in length and 2 mm in height.

プレス金型の雄金型または雌金型に加工した凹部の形状は、断面が円の円形穴または断面が長方形の角穴とした。そして、円形穴の直径と深さ、角穴の縦横の長さと深さを変えることにより、連続繊維を破断させずに変形させる、或いは破断させて変形させることができた。以下に円形穴と角穴の寸法と連続繊維の破断の有無のデータを示す。なお、プレス金型の雄金型または雌金型に設ける凹凸のサイズに制限は無いが、高低差が0.5mm〜1mm程度の凹凸であれば、連続繊維11が炭素繊維であってもガラス繊維であっても破断することはない。   The shape of the recess processed into the male mold or female mold of the press mold was a circular hole with a circular cross section or a square hole with a rectangular cross section. By changing the diameter and depth of the circular hole and the length and depth of the square hole, the continuous fiber could be deformed without breaking, or it could be broken and deformed. The data of the size of a circular hole and a square hole, and the presence or absence of the fracture | rupture of continuous fiber are shown below. There is no limitation on the size of the unevenness provided in the male die or female die of the press die, but if the unevenness is about 0.5 mm to 1 mm in height, glass is used even if the continuous fiber 11 is carbon fiber. Even fibers are not broken.

(1)円形穴
直径10mmで深さ0.5mm:連続繊維に破断なし
直径10mmで深さ1.0mm:連続繊維に破断なし
直径10mmで深さ1.5mm:連続繊維に破断あり
直径1mmで深さ0.5mm:連続繊維に破断なし
直径1mmで深さ1.0mm:連続繊維に破断あり
(2)角穴
2mm×5mmで深さ0.5mm:連続繊維に破断なし
2mm×5mmで深さ1.0mm:連続繊維に破断なし
2mm×5mmで深さ1.5mm:連続繊維に破断あり
0.5mm×5mmで深さ0.5mm:連続繊維に破断なし
0.5mm×5mmで深さ1.0mm:連続繊維に破断あり
(1) Circular hole 10 mm in diameter 0.5 mm in depth: no break in continuous fiber 10 mm in diameter 1.0 mm in depth: no break in continuous fiber 10 mm in diameter 1.5 mm in depth: with break in continuous fiber 1 mm in diameter Depth 0.5 mm: No break in continuous fiber Diameter 1 mm and depth 1.0 mm: Break in continuous fiber (2) Square hole 2 mm x 5 mm, depth 0.5 mm: No break in continuous fiber 2 mm x 5 mm deep Length 1.0 mm: No break in continuous fiber 2 mm x 5 mm and depth 1.5 mm: Break in continuous fiber 0.5 mm x 5 mm and depth 0.5 mm: No break in continuous fiber 0.5 mm x 5 mm and depth 1.0 mm: There is a break in continuous fibers

レーザ装置30としてはレーザー加工機を使用し、照射エネルギーを40Jとし、FRP板面に平行方向に走査を繰り返して熱可塑性樹脂を除去した。インサート成型は射出成形機にモールド樹脂としてポリフェニレンサルファイド(ガラス繊維30%)を使用し、樹脂温度280℃、金型温度130℃、射出速度20mm/sとした。   As the laser device 30, a laser processing machine was used, the irradiation energy was 40 J, and the thermoplastic resin was removed by repeating scanning in the direction parallel to the FRP plate surface. In insert molding, polyphenylene sulfide (glass fiber 30%) was used as a molding resin in an injection molding machine, a resin temperature was 280 ° C., a mold temperature was 130 ° C., and an injection speed was 20 mm / s.

以上のようにして製造した電子機器の筐体と従来構成の電子機器の筐体において、形成したボス部およびリブ部に対して引張試験を万能試験機を用いて行ったところ、下記の接着力を確認した。
(1)連続繊維を熱可塑性樹脂でコーティングしただけのプリプレグ薄板では、10kgf/cmであった。
(2)連続繊維を熱可塑性樹脂でコーティングし、プレス加工は行わずに表層にある熱可塑性樹脂を除去して連続繊維を除去したプリプレグ薄板では、70kgf/cmであった。
(3)連続繊維を熱可塑性樹脂でコーティングし、プレス加工を行って連続繊維に凹凸を形成し、微細凹凸の表層樹脂を除去したサンプルでは、120kgf/cm2であり、FRP板が破壊した。
When the tensile test was performed on the formed boss part and rib part using the universal testing machine in the casing of the electronic device manufactured as described above and the casing of the electronic device having the conventional configuration, the following adhesive strength was obtained. It was confirmed.
(1) In a prepreg thin plate in which continuous fibers were simply coated with a thermoplastic resin, it was 10 kgf / cm.
(2) In the prepreg thin plate in which the continuous fibers were removed by coating the continuous fibers with the thermoplastic resin and removing the thermoplastic resin on the surface layer without performing the pressing process, it was 70 kgf / cm.
(3) In the sample in which continuous fibers were coated with a thermoplastic resin, pressed to form irregularities on the continuous fibers, and the surface resin with fine irregularities was removed, the sample was 120 kgf / cm2, and the FRP plate was broken.

このように本出願によれば、プリプレグ薄板をプレス金型で圧縮した後、レーザー切削などの切削加工によりプレプリグ薄板の連続繊維が変形した部分の表層の熱可塑性樹脂を除去し、連続繊維層を露出させた状態でインサート成形して電子機器の筐体を製造する。この工程によって製造された電子機器の筐体は、プリプレグ薄板とモールド樹脂とが強固に一体化した軽量薄型で意匠性に優れた電子機器の筐体となる。   Thus, according to the present application, after compressing the prepreg thin plate with a press die, the thermoplastic resin on the surface layer where the continuous fibers of the prepreg thin plate are deformed by cutting such as laser cutting is removed, and the continuous fiber layer is removed. The housing of the electronic device is manufactured by insert molding in the exposed state. The casing of the electronic device manufactured by this process is a lightweight and thin casing of an electronic device excellent in design, in which the prepreg thin plate and the mold resin are firmly integrated.

以上、本出願を特にその好ましい実施の形態を参照して詳細に説明した。本出願の容易な理解のために、本出願の具体的な形態を以下に付記する。   The present application has been described in detail with particular reference to preferred embodiments thereof. For easy understanding of the present application, specific forms of the present application are appended below.

(付記1) 連続繊維を熱可塑性樹脂でコーティングしたプリプレグ薄板をマトリクスとし、
前記プリプレグ薄板の少なくとも一方の面に、前記連続繊維が凸状または凹状の形態で露出しており、
前記連続繊維が凸状または凹状の形態で露出している前記プリプレグ薄板の表面を覆うように、強化繊維を含む樹脂材料が積層されて形成されたことを特徴とする電子機器の筐体。
(付記2) 前記連続繊維の凸状の形態は、前記連続繊維が破断されて折れ曲がった形態であることを特徴とする付記1に記載の電子機器の筐体。
(付記3) 前記連続繊維の凸状の形態は、前記連続繊維が台形状に盛り上がった形態であることを特徴とする付記1に記載の電子機器の筐体。
(付記4) 前記連続繊維の凸状の形態は、前記連続繊維がドーム状に盛り上がった形態であることを特徴とする付記1に記載の電子機器の筐体。
(付記5) 前記プリプレグ薄板が複数層の連続繊維に対して前記熱可塑性樹脂がコーティングされて形成されたものであることを特徴とする付記1から4の何れかに記載の電子機器の筐体。
(Supplementary note 1) A prepreg thin plate with continuous fibers coated with a thermoplastic resin is used as a matrix
The continuous fiber is exposed in a convex or concave form on at least one surface of the prepreg thin plate,
A housing for an electronic device, wherein a resin material containing reinforcing fibers is laminated so as to cover a surface of the prepreg thin plate in which the continuous fibers are exposed in a convex or concave shape.
(Additional remark 2) The convex form of the said continuous fiber is a form where the said continuous fiber was fractured | ruptured and bent, The housing | casing of the electronic device of Additional remark 1 characterized by the above-mentioned.
(Additional remark 3) The convex form of the said continuous fiber is a form in which the said continuous fiber rose to the trapezoid shape, The housing | casing of the electronic device of Additional remark 1 characterized by the above-mentioned.
(Additional remark 4) The convex form of the said continuous fiber is a form which the said continuous fiber raised in the dome shape, The housing | casing of the electronic device of Additional remark 1 characterized by the above-mentioned.
(Supplementary note 5) The electronic device casing according to any one of Supplementary notes 1 to 4, wherein the prepreg thin plate is formed by coating the thermoplastic resin on a plurality of continuous fibers. .

(付記6) 連続繊維を熱可塑性樹脂でコーティングしてプリプレグ薄板を作り、
プレス面の少なくとも1箇所に微細凹凸を備えるプレス金型により前記プリプレグ薄板を両面から圧縮し、
前記圧縮時に、前記微細凹凸によって前記プリプレグ薄板を三次元形状に変形させると共に、前記プリプレグ薄板の内部にある前記連続繊維を凹凸形状に変形させ、
前記プリプレグ薄板の変形部分の表層部分に位置する前記熱可塑性樹脂を切削加工によって除去して、前記連続繊維の少なくとも一部を前記プリプレグ薄板の表層部分に露出させ、
前記連続繊維の露出部を含む前記プリプレグ薄板の表面に、強化繊維を含む樹脂材料を積層することによって電子機器の筐体を製造する方法。
(付記7) 前記連続繊維の凸状の形態は、前記連続繊維が破断されて折れ曲がった形態であることを特徴とする付記6に記載の電子機器の筐体の製造方法。
(付記8) 前記連続繊維の凸状の形態は、前記連続繊維が台形状に盛り上がった形態であることを特徴とする付記6に記載の電子機器の筐体の製造方法。
(付記9) 前記連続繊維の凸状の形態は、前記連続繊維がドーム状に盛り上がった形態であることを特徴とする付記6に記載の電子機器の筐体の製造方法。
(付記10) 前記切削加工により、前記凸状の前記連続繊維の上面に位置する前記熱可塑性樹脂を全て除去することを特徴とする付記8または9に記載の電子機器の筐体の製造方法。
(Appendix 6) A prepreg sheet is made by coating continuous fibers with a thermoplastic resin.
Compress the prepreg thin plate from both sides with a press die having fine irregularities at least at one place on the press surface,
During the compression, the prepreg thin plate is deformed into a three-dimensional shape by the fine unevenness, and the continuous fibers in the prepreg thin plate are deformed into an uneven shape,
Removing the thermoplastic resin located in the surface layer portion of the deformed portion of the prepreg thin plate by cutting, exposing at least a part of the continuous fiber to the surface layer portion of the prepreg thin plate,
A method of manufacturing a casing of an electronic device by laminating a resin material containing reinforcing fibers on the surface of the prepreg thin plate including the exposed portion of the continuous fibers.
(Additional remark 7) The convex form of the said continuous fiber is a form which the said continuous fiber was fractured | ruptured and bent, The manufacturing method of the housing | casing of the electronic device of Additional remark 6 characterized by the above-mentioned.
(Additional remark 8) The convex form of the said continuous fiber is a form in which the said continuous fiber rose in the trapezoid shape, The manufacturing method of the housing | casing of the electronic device of Claim 6 characterized by the above-mentioned.
(Additional remark 9) The convex form of the said continuous fiber is a form which the said continuous fiber raised in the dome shape, The manufacturing method of the housing | casing of the electronic device of Additional remark 6 characterized by the above-mentioned.
(Additional remark 10) The manufacturing method of the housing | casing of the electronic device of Additional remark 8 or 9 characterized by removing all the said thermoplastic resins located in the upper surface of the said convex continuous fiber by the said cutting process.

(付記11) 前記切削加工により、前記台形状に盛り上がった凸状の前記連続繊維の上面に位置する前記熱可塑性樹脂を部分的に除去して所定のパターンを形成することを特徴とする付記8に記載の電子機器の筐体の製造方法。
(付記12) 前記切削加工がレーザ切削であることを特徴とする付記6から11の何れかに記載の電子機器の筐体の製造方法。
(付記13) 前記強化繊維を含む樹脂材料を前記繊維強化樹脂の上に積層する工程が前記プリプレグ薄板を収容する金型と、射出成形機によって行われることを特徴とする付記6から11の何れかに記載の電子機器の筐体の製造方法。
(Additional remark 11) The said thermoplastic resin located on the upper surface of the convex-shaped continuous fiber which rose to the trapezoid shape by said cutting is partially removed, and a predetermined pattern is formed. The manufacturing method of the housing | casing of the electronic device of description.
(Additional remark 12) The said cutting is laser cutting, The manufacturing method of the housing | casing of the electronic device in any one of Additional remark 6-11 characterized by the above-mentioned.
(Supplementary note 13) Any one of Supplementary notes 6 to 11, wherein the step of laminating the resin material containing the reinforced fiber on the fiber reinforced resin is performed by a mold accommodating the prepreg thin plate and an injection molding machine. A method for manufacturing a casing of the electronic device according to claim 1.

10 繊維強化樹脂の薄板(プリプレグ薄板)
11 連続繊維
12 熱可塑性樹脂
13 強化繊維
14 樹脂材料(モールド樹脂)
20 プレス金型
25〜27 凹部
30 レーザ装置
40 モールド金型
50 射出成形機
10 Fiber reinforced resin sheet (prepreg sheet)
11 Continuous Fiber 12 Thermoplastic Resin 13 Reinforcing Fiber 14 Resin Material (Mold Resin)
20 Press Die 25-27 Recess 30 Laser Device 40 Mold Die 50 Injection Molding Machine

Claims (5)

連続繊維を熱可塑性樹脂でコーティングしたプリプレグ薄板をマトリクスとし、
前記プリプレグ薄板の少なくとも一方の面に、前記連続繊維が凸状または凹状の形態で露出しており、
前記連続繊維が凸状または凹状の形態で露出している前記プリプレグ薄板の表面を覆うように、強化繊維を含む樹脂材料が積層されて形成されたことを特徴とする電子機器の筐体。
A prepreg thin plate in which continuous fibers are coated with a thermoplastic resin is used as a matrix.
The continuous fiber is exposed in a convex or concave form on at least one surface of the prepreg thin plate,
A housing for an electronic device, wherein a resin material containing reinforcing fibers is laminated so as to cover a surface of the prepreg thin plate in which the continuous fibers are exposed in a convex or concave shape.
前記連続繊維の凸状の形態は、前記連続繊維が破断されて折れ曲がった形態であることを特徴とする請求項1に記載の電子機器の筐体。   The casing of the electronic device according to claim 1, wherein the convex form of the continuous fiber is a form in which the continuous fiber is broken and bent. 連続繊維を熱可塑性樹脂でコーティングしてプリプレグ薄板を作り、
プレス面の少なくとも1箇所に微細凹凸を備えるプレス金型により前記プリプレグ薄板を両面から圧縮し、
前記圧縮時に、前記微細凹凸によって前記プリプレグ薄板を三次元形状に変形させると共に、前記プリプレグ薄板の内部にある前記連続繊維を凹凸形状に変形させ、
前記プリプレグ薄板の変形部分の表層部分に位置する前記熱可塑性樹脂を切削加工によって除去して、前記連続繊維の少なくとも一部を前記プリプレグ薄板の表層部分に露出させ、
前記連続繊維の露出部を含む前記プリプレグ薄板の表面に、強化繊維を含む樹脂材料を積層することによって電子機器の筐体を製造する方法。
A continuous fiber is coated with a thermoplastic resin to make a prepreg sheet,
Compress the prepreg thin plate from both sides with a press die having fine irregularities in at least one place on the press surface,
During the compression, the prepreg thin plate is deformed into a three-dimensional shape by the fine unevenness, and the continuous fibers in the prepreg thin plate are deformed into an uneven shape,
Removing the thermoplastic resin located in the surface layer portion of the deformed portion of the prepreg thin plate by cutting, exposing at least a part of the continuous fiber to the surface layer portion of the prepreg thin plate,
A method of manufacturing a casing of an electronic device by laminating a resin material containing reinforcing fibers on the surface of the prepreg thin plate including the exposed portion of the continuous fibers.
前記切削加工がレーザ切削であることを特徴とする請求項3に記載の電子機器の筐体の製造方法。   The method for manufacturing a casing of an electronic device according to claim 3, wherein the cutting is laser cutting. 前記強化繊維を含む樹脂材料を前記プリプレグ薄板の上に積層する工程が、前記プリプレグ薄板を収容する金型と、射出成形機によって行われることを特徴とする請求項3または4に記載の電子機器の筐体の製造方法。   5. The electronic apparatus according to claim 3, wherein the step of laminating the resin material containing the reinforcing fiber on the prepreg thin plate is performed by a mold that accommodates the prepreg thin plate and an injection molding machine. Manufacturing method of the housing.
JP2013005638A 2013-01-16 2013-01-16 Case for electronic equipment and manufacturing method of the same Pending JP2014136357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013005638A JP2014136357A (en) 2013-01-16 2013-01-16 Case for electronic equipment and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013005638A JP2014136357A (en) 2013-01-16 2013-01-16 Case for electronic equipment and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2014136357A true JP2014136357A (en) 2014-07-28

Family

ID=51414155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005638A Pending JP2014136357A (en) 2013-01-16 2013-01-16 Case for electronic equipment and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2014136357A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051574A1 (en) * 2014-10-02 2016-04-07 富士通株式会社 Member, method for manufacturing member, electronic device, and method for manufacturing electronic device
JP2016083907A (en) * 2014-10-29 2016-05-19 トヨタ自動車株式会社 Method for producing fiber-reinforced resin-molded member, and method for connecting the member
JP2017202640A (en) * 2016-05-12 2017-11-16 トヨタ自動車株式会社 Method for producing fiber-reinforced thermoplastic resin structure
JP2020055252A (en) * 2018-10-03 2020-04-09 キヤノン株式会社 Resin component, method for manufacturing resin component, lens barrel component, and optical equipment
EP3644059A1 (en) 2014-07-01 2020-04-29 NIPPON STEEL Chemical & Material Co., Ltd. Marker, immunoassay method, immunoassay reagent, method for assaying analyte, analyte measurement kit, and lateral-flow chromatographic test strip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946082A (en) * 1995-05-19 1997-02-14 Toray Ind Inc Case for electric/electronic apparatus and its manufacture
JPH11320737A (en) * 1998-05-14 1999-11-24 Toyobo Co Ltd Fiber reinforced thermoplastic molding material and housing for electronic/electric equipment using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946082A (en) * 1995-05-19 1997-02-14 Toray Ind Inc Case for electric/electronic apparatus and its manufacture
JPH11320737A (en) * 1998-05-14 1999-11-24 Toyobo Co Ltd Fiber reinforced thermoplastic molding material and housing for electronic/electric equipment using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644059A1 (en) 2014-07-01 2020-04-29 NIPPON STEEL Chemical & Material Co., Ltd. Marker, immunoassay method, immunoassay reagent, method for assaying analyte, analyte measurement kit, and lateral-flow chromatographic test strip
WO2016051574A1 (en) * 2014-10-02 2016-04-07 富士通株式会社 Member, method for manufacturing member, electronic device, and method for manufacturing electronic device
JP2016083907A (en) * 2014-10-29 2016-05-19 トヨタ自動車株式会社 Method for producing fiber-reinforced resin-molded member, and method for connecting the member
JP2017202640A (en) * 2016-05-12 2017-11-16 トヨタ自動車株式会社 Method for producing fiber-reinforced thermoplastic resin structure
JP2020055252A (en) * 2018-10-03 2020-04-09 キヤノン株式会社 Resin component, method for manufacturing resin component, lens barrel component, and optical equipment
JP7134820B2 (en) 2018-10-03 2022-09-12 キヤノン株式会社 Resin part, method for manufacturing resin part, equipment, and optical equipment

Similar Documents

Publication Publication Date Title
JP2014136357A (en) Case for electronic equipment and manufacturing method of the same
US20110155452A1 (en) Device housing and method for making same
US20100143650A1 (en) Casing and method for manufacturing the same
TW201023715A (en) Fiber-reinforced polymeric casing and method of fabricating the same
CN103862618B (en) Method and jig for manufacturing light guide plate and related light guide plate
CN102958300A (en) Resin and fibre compound body and manufacturing method thereof
JP2012153069A (en) Composite, and apparatus and method for manufacturing the same
JP2014172241A5 (en) Method for producing fiber-reinforced thermoplastic resin molded body
JP4332016B2 (en) Manufacturing method of plastic laminate
JPWO2013099828A1 (en) Thermoplastic resin molded body having hollow portion and method for producing the same
CN104562023A (en) Method for preparing composition of resin and heterogeneous material
TW201639711A (en) Filming method and panel apparatus made thereof
WO2017068812A1 (en) Method for manufacturing fiber-reinforced resin structure, system for manufacturing fiber-reinforced resin structure, and fiber-reinforced resin structure
JP2018202771A (en) Fiber laminated sheet member and method for producing fiber molded article using the fiber laminated sheet member
TW201129277A (en) Housing for electronic device and method for making the same
TWI618625B (en) Method for making molded article with fiber composite material and article thereof
JP6569593B2 (en) Method for producing fiber reinforced thermoplastic resin structure
TWI398355B (en) Manufacturing method of composite workpiece for embedded metal parts
JP2015217567A (en) In-mold injection molding die and in-mold injection molding method
JP2015202669A (en) Injection molding method and production method of composite member
CN114683657B (en) Shell assembly, manufacturing method thereof and electronic equipment
JP2016221884A (en) Fiber-reinforced resin structure manufacturing process
TWI398978B (en) Method for manufacturing battery case
JP4965313B2 (en) Pushbutton switch member, plunger sheet and manufacturing method thereof
JP6794429B2 (en) FRP sheet press molding method and equipment, and FRP molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025