JPH11320737A - Fiber reinforced thermoplastic molding material and housing for electronic/electric equipment using the same - Google Patents

Fiber reinforced thermoplastic molding material and housing for electronic/electric equipment using the same

Info

Publication number
JPH11320737A
JPH11320737A JP10131852A JP13185298A JPH11320737A JP H11320737 A JPH11320737 A JP H11320737A JP 10131852 A JP10131852 A JP 10131852A JP 13185298 A JP13185298 A JP 13185298A JP H11320737 A JPH11320737 A JP H11320737A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
molding
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10131852A
Other languages
Japanese (ja)
Other versions
JP3685295B2 (en
Inventor
Satoshi Nago
聡 名合
Masamutsu Yamane
正睦 山根
Osamu Ono
修 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP13185298A priority Critical patent/JP3685295B2/en
Publication of JPH11320737A publication Critical patent/JPH11320737A/en
Application granted granted Critical
Publication of JP3685295B2 publication Critical patent/JP3685295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a thin molding material which is high in strength and rigidity and excellent in electromagnetic wave shielding, appearance, and design by a method in which a reinforcing fiber fabric is impregnated with a thermoplastic resin in order to have specified values or above of flexural modulus of elasticity, flexural strength, and impact absorption energy. SOLUTION: In a fiber reinforced thermoplastic resin material, a reinforcing fiber fabric is impregnated with a thermoplastic resin. Its flexural modulus of elasticity is 15 GPa or above; flexural strength is 30 MPa or above; impact absorption energy is 15 J/mm. In addition, the reinforcing fiber volume ratio is 30-60%, and the warp and weft numbers of the fabric are 0.5-10/inch. In this way, the fiber reinforced thermoplastic resin molding material is excellent in strength, rigidity, and impact resistance as compared with an injection molded article, and can control surface defects such as pits and obtain a good appearance with a fold passed through.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化熱可塑性
樹脂成形用材料並びにパーソナルコンピュータ、ワード
プロセッサ等の各種携帯用電子機器や、携帯電話などの
携帯端末用として好適な筐体材料とその筐体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for molding a fiber-reinforced thermoplastic resin, a housing material suitable for various portable electronic devices such as a personal computer and a word processor, and a mobile terminal such as a mobile phone, and a housing thereof. About.

【0002】[0002]

【従来の技術】情報化の時代にあって、マルチメディア
ネットワーク時代の到来を受け、携帯情報・通信機器で
ある各種携帯用電子機器や、携帯端末は軽薄短小化が計
られ、携帯性を高めるために軽量化が至上命題となって
きている(日経メカニカル,1996,No.477,
p70〜83)。このような状況の下で、1mm程度の
肉厚でも内部部品を保護する剛性や耐衝撃性を実現で
き、薄肉に加工できること、またリサイクル可能なこと
が筐体用材料として求められている。このような状況の
下で、従来の技術としては下記のものが挙げられる。
2. Description of the Related Art In the age of information technology, with the advent of the multimedia network era, various portable electronic devices and portable terminals, which are portable information and communication devices, have been reduced in size and size to enhance portability. For this reason, weight reduction has become the most important proposition (Nikkei Mechanical, 1996, No. 477,
pp 70-83). Under such circumstances, there is a demand for a housing material that can realize rigidity and impact resistance to protect internal components even with a thickness of about 1 mm, can be processed to be thin, and can be recycled. Under such circumstances, the following are cited as conventional techniques.

【0003】例えば、特公平5−58371号公報に
は、繊維長が10〜100mmである炭素繊維が面内で
ランダムに配向する炭素繊維強化熱硬化性樹脂複合材料
(Carbon Fiber Reinforced Thermoset Composites;以
下、CFRTSと表す)からなるシート状プリプレグを
用いた成形品が示されている。この成形品は次のような
欠点を有する。
For example, Japanese Patent Publication No. 5-58371 discloses a carbon fiber reinforced thermosetting resin composite material in which carbon fibers having a fiber length of 10 to 100 mm are randomly oriented in a plane. , CFRTS) are shown. This molded article has the following disadvantages.

【0004】すなわち、上記成形品は熱硬化性樹脂を金
型内で流動、硬化させるため、硬化時間が3分以上と長
く、成形サイクルが長いため、製造コストが高くなる欠
点を有する。また、熱硬化性樹脂をマトリックスとする
ために、成形品のリサイクル使用が困難であることも問
題点として挙げられる。一部では、成形不良品や、端材
を回収して、400〜600℃に加熱し、例えば、フェ
ノール系樹脂のような熱硬化性樹脂と炭素繊維を分離
し、炭素繊維は再利用して、気化した熱硬化性樹脂は、
ガスか液体で回収し、燃やして毒性を無くした後、大気
に放出するなどの方策も採られている(日経メカニカ
ル,1996,No.477,p70〜83)。しかし
ながら、上記のようなリサイクル方法は炭素繊維と熱硬
化性樹脂の分離に多くのエネルギを必要とし、リサイク
ル効率が悪いという欠点を有する。
[0004] That is, the above-mentioned molded article has a drawback that the thermosetting resin flows and cures in the mold, so that the curing time is as long as 3 minutes or more and the molding cycle is long, so that the production cost is increased. Another problem is that it is difficult to recycle the molded product because the thermosetting resin is used as the matrix. In some cases, defective moldings and scraps are collected, heated to 400 to 600 ° C., for example, a thermosetting resin such as a phenolic resin is separated from carbon fibers, and the carbon fibers are reused. The vaporized thermosetting resin is
There is also a measure of collecting the gas or liquid, burning it to eliminate toxicity, and then releasing it to the atmosphere (Nikkei Mechanical, 1996, No. 477, pp. 70-83). However, such a recycling method as described above has a disadvantage that much energy is required for separating the carbon fiber and the thermosetting resin, and the recycling efficiency is poor.

【0005】そこで、まず製造コストを下げる方策とし
ては、成形が容易な、例えば、ポリカーボネートやAB
Sあるいはこれらのアロイなどの熱可塑性樹脂を炭素繊
維で強化した射出成形用材料(Short Carbon Fiber Rei
nforced Thermoplastic Composites;以下、SCFRT
Pと表す)が挙げられる。この場合は、射出成形を行う
際に、射出成型器のシリンダーやゲートを通過するとき
に炭素繊維が1mm以下の長さに切断されてしまった
り、繊維の含有率を上げることができないなどの理由に
より、その成形品は高価な炭素繊維を用いている割には
強化効率が悪く、また電磁シールド特性も低下するとい
う欠点を有する。
[0005] Therefore, as a measure for reducing the production cost, for example, polycarbonate or AB, which is easy to mold, is used.
Injection molding material (Short Carbon Fiber Rei) in which a thermoplastic resin such as S or these alloys is reinforced with carbon fiber.
nforced Thermoplastic Composites; SCFRT
P). In this case, when performing injection molding, the carbon fiber is cut into a length of 1 mm or less when passing through the cylinder or gate of the injection molding machine, or the content of the fiber cannot be increased. Therefore, the molded article has a drawback that the reinforcing efficiency is low in spite of using expensive carbon fiber, and the electromagnetic shielding property is also reduced.

【0006】さらに、強度や剛性の低下を補うため、成
形品に剛性を持たせるためのリブ立てが必要なため、薄
肉化も難しく、近年の軽薄短小化の要求を満たすことが
困難となってきている。そして、すでに成形品中の炭素
繊維の長さが1mm以下であるため、リサイクルに用い
る場合、メリットが少なく、焼却処分以外に処分方法が
ないのが現実である。
Further, in order to compensate for the decrease in strength and rigidity, it is necessary to provide ribs for imparting rigidity to the molded product, so that it is difficult to make the molded product thinner, and it has become difficult to satisfy the recent demand for lighter and thinner products. ing. And, since the length of the carbon fiber in the molded article is already 1 mm or less, there is little merit when used for recycling, and there is no disposal method other than incineration.

【0007】上記のCFRTSやSCFRTPなどの欠
点を克服するために、特開平8−244054号公報に
は、板面と平行な面内においてランダムな方向に配置さ
れた長さ3〜100mmの炭素繊維とポリフェニレンス
ルファイド(以下、PPSと略記する)を用いた炭素繊
維強加熱可塑性樹脂成形用材料(Carbon Mat Reinfoece
d Thermoplastic ;以下、CMTと表す)が提示されて
いる。
In order to overcome the above-mentioned drawbacks such as CFRTS and SCFRTP, Japanese Patent Application Laid-Open No. H8-24405 discloses that carbon fibers having a length of 3 to 100 mm arranged in random directions in a plane parallel to the plate surface. Material for carbon fiber strong heating thermoplastic resin using carbon and polyphenylene sulfide (hereinafter abbreviated as PPS) (Carbon Mat Reinfoece
d Thermoplastic; hereinafter referred to as CMT).

【0008】該成形用材料は余熱され,ある温度に保た
れた金型に投入され、加圧、冷却、固化して成形される
(スタンピング成形)ため、繊維の破断が起こり難いと
いう特徴を有する。この材料と成形方法によって成形さ
れた成形品は、長い強化繊維が樹脂に混入しているた
め、強度、剛性が高く、電磁波シールド特性に優れ、な
おかつ薄肉の成形品が得られるとしている。
[0008] The molding material is preheated, charged into a mold maintained at a certain temperature, pressed, cooled, and solidified to be molded (stamping molding), so that the fiber is hardly broken. . It is stated that a molded article molded by this material and molding method has high strength and rigidity, excellent electromagnetic wave shielding characteristics, and a thin molded article because long reinforcing fibers are mixed in the resin.

【0009】該成形用材料は強化繊維の解繊マットやチ
ョップドストランドマットなどに、PPSのフィルムを
重ね合わせ、これらを加熱、加圧して含浸を行ったり、
炭素繊維束にPPSをコーティングしたPPS被覆炭素
繊維を余熱した後に加圧ロールに通してテープ状に加工
し、そのテープを切断して金型中に散布し、圧縮成形す
ることによって製造できるとしている。しかしながら、
解繊マットや、チョップドストランドマットに、粘度の
高い熱可塑性樹脂であるPPSを含浸することは非常に
困難であり、強化繊維と強化繊維の間への樹脂の含浸が
不十分となることが多い。樹脂の含浸が不十分である
と、空洞などの欠陥を生じ、成形品表面にピンホール
や、あばたのような欠陥が生じ、筐体としての外観に耐
えないばかりか、強度の低下を招くことがある。
The molding material is obtained by superposing a PPS film on a defibrated mat of a reinforcing fiber or a chopped strand mat, and heating and pressurizing the PPS film to perform impregnation.
The PPS-coated carbon fiber obtained by coating the carbon fiber bundle with PPS is preheated, processed into a tape shape by passing through a pressure roll, cut into a tape, scattered in a mold, and compression molded. . However,
It is very difficult to impregnate defibrated mats and chopped strand mats with PPS, which is a thermoplastic resin having high viscosity, and often impregnation of the resin between the reinforcing fibers is insufficient. . Insufficient resin impregnation causes defects such as cavities, pinholes and pock-like defects on the surface of the molded product, which not only does not withstand the appearance of the housing, but also reduces the strength. There is.

【0010】さらに、上記のような製造方法では、成形
品の表面に強化繊維が浮くことによって、ファイバーパ
ターンが残ることがあり、成形品の外観を損ねるという
欠点を有する。このような表面性を損ねる欠点を隠すた
めに、成形品表面にウレタン塗装などを行う必要があ
り、コスト高となるばかりか、リサイクルを行うときに
塗料をはがす必要があり、リサイクルコストの上昇を招
くことになる。
[0010] Furthermore, the above-mentioned production method has a drawback that the fiber pattern may remain due to the reinforcing fibers floating on the surface of the molded article, which impairs the appearance of the molded article. In order to hide such defects that impair the surface properties, it is necessary to apply urethane coating on the molded product surface, which not only increases the cost but also requires the paint to be peeled off when recycling, which raises the recycling cost. Will be invited.

【0011】また近年では、構造材として用いることが
出来る最も軽量な金属であるマグネシウムを射出成形
(チクソモールディング)した筐体も見受けられる。こ
のような筐体は、軽量で、剛性が高く、電磁波シールド
性、リサイクル性が良好なばかりか、薄肉化も可能であ
り、生産性も高いという優れた特徴を有する。
In recent years, there has been seen a case in which magnesium, which is the lightest metal that can be used as a structural material, is injection molded (thixomolded). Such a case has excellent features that it is lightweight, has high rigidity, has good electromagnetic wave shielding properties and recyclability, can be thinned, and has high productivity.

【0012】しかしながら、マグネシウムを用いた筐体
は金属であるため、振動減衰率が低く、制振性に欠ける
という欠点を有する。パーソナルコンピュータは、回転
駆動するハードディスクなどを内蔵するため、筐体が制
振性に乏しいとこのような駆動部品の振動が不快な振動
となって、直接入力する人の手に伝わるなどの不具合を
生じる。
However, since the case using magnesium is made of metal, it has a drawback that the vibration damping rate is low and the vibration damping property is lacking. Personal computers have a built-in rotating hard disk, etc., so if the housing has poor damping properties, such vibrations of the driving parts will become unpleasant vibrations and will be transmitted to the hands of the person who inputs directly. Occurs.

【0013】また、樹脂部品と異なり、弾性率が高すぎ
るために、部品の結合にスナップオンなどの手法を用い
ることができず、ねじ止めを多用する必要がある。ねじ
止めの多用は組立工数の増加を招くばかりか、耐用年数
をすぎた機器を廃棄する際に分解を難しくし、結果とし
てリサイクルコストの上昇を招くという欠点を有する。
Further, unlike resin parts, since the elastic modulus is too high, a technique such as snap-on cannot be used for connecting parts, and it is necessary to use a lot of screws. Excessive use of screwing not only causes an increase in the number of assembly steps, but also has a disadvantage that it makes it difficult to disassemble a device whose service life has expired, thereby increasing the recycling cost.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、従来
の筐体の上述した問題点を解決し、薄肉で、強度や剛性
が高く、電磁波シールド性に優れ、しかも外観に優れた
意匠性を有する成形用材料及びそれを用いた筐体を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional housing, and to provide a thin, high-strength, high-rigidity, excellent electromagnetic-wave shielding property, and excellent design in appearance. And a housing using the same.

【0015】[0015]

【課題を解決するための手段】上記の目的を達成するた
めに、発明者らは、鋭意研究の結果、織布の形態をなす
強化繊維が用いられ、かつ一定レベル以上の物理的特性
を有する成形用材料が有用であることを見出し、本発明
に到達した。すなわち、本発明は、以下のような構成か
らなる。 (1)織布の形態をなす強化繊維に熱可塑性樹脂が含浸
されてなる繊維強化熱可塑性樹脂材料であって,曲げ弾
性率15GPa以上、曲げ強度30MPa以上、衝撃吸
収エネルギー15J/mm以上であることを特徴とする
繊維強化熱可塑性樹脂成形用材料。 (2)強化繊維の体積含有率が30〜60%である
(1)記載の繊維強化熱可塑性樹脂成形用材料。 (3)経糸および緯糸の打ち込み本数がいずれも0.5
〜10本/inchである(1)または(2)に記載の
繊維強化熱可塑性樹脂成形用材料。 (4)強化繊維束の扁平度が5以上である(1)〜
(3)のいずれかに記載の繊維強化熱可塑性樹脂成形用
材料。 (5)強化繊維のクリンプ率が0.2以下である(1)
〜(4)のいずれかに記載の繊維強化熱可塑性樹脂成形
用材料。 (6)三次元変角光度計を用いて測定した輝度分布が1
80°の周期を持って変化する(1)〜(5)のいずれ
かに記載の繊維強化熱可塑性樹脂成形用材料。 (7)輝度計を用いて測定した経糸もしくは緯糸の繊維
軸方向の輝度が0.1inch若しくは2inchの周
期を有するパルス上の波形となることを特徴とする
(1)〜(6)のいずれかに記載の繊維強化熱可塑性樹
脂成形用材料。 (8)1枚以上の強化繊維織物に熱可塑性樹脂が含浸さ
れてなる(1)〜(7)のいずれかに記載の繊維強化熱
可塑性樹脂成形用材料。 (9)熱可塑性樹脂と強化繊維の混繊糸を製織した布帛
を加熱、溶融、含浸、冷却および固化することによって
得られた(1)〜(7)のいずれかに記載の繊維強化熱
可塑性樹脂成形用材料。 (10)熱可塑性樹脂を含浸した強化繊維束を製織した
布帛を加熱、溶融、含浸、冷却および固化することによ
って得られた(1)〜(7)のいずれかに記載の繊維強
化熱可塑性樹脂成形用材料。 (11)(1)〜(10)のいずれかに記載の繊維強化
熱可塑性樹脂成形材料からなることを特徴とする筐体用
材料。(12)(11)記載の筐体用材料を一部若しく
は全体に用いられたことを特徴とする電子・電気機器用
筐体。
Means for Solving the Problems In order to achieve the above object, the present inventors have made intensive studies and found that reinforcing fibers in the form of a woven fabric are used and have a physical property of a certain level or more. The inventors have found that molding materials are useful, and have reached the present invention. That is, the present invention has the following configuration. (1) A fiber-reinforced thermoplastic resin material obtained by impregnating a reinforcing fiber in the form of a woven fabric with a thermoplastic resin, having a flexural modulus of 15 GPa or more, a flexural strength of 30 MPa or more, and a shock absorption energy of 15 J / mm or more. A material for molding a fiber-reinforced thermoplastic resin, characterized in that: (2) The material for molding a fiber-reinforced thermoplastic resin according to (1), wherein the volume content of the reinforcing fibers is 30 to 60%. (3) The number of driven warp yarns and weft yarns is 0.5
The material for molding a fiber-reinforced thermoplastic resin according to (1) or (2), wherein the number is 10 to 10 / inch. (4) The flatness of the reinforcing fiber bundle is 5 or more (1) to
The material for molding a fiber-reinforced thermoplastic resin according to any of (3). (5) The crimp rate of the reinforcing fiber is 0.2 or less (1)
The material for molding a fiber-reinforced thermoplastic resin according to any one of (1) to (4). (6) The luminance distribution measured using a three-dimensional variable angle photometer is 1
The material for molding a fiber-reinforced thermoplastic resin according to any one of (1) to (5), which changes at a cycle of 80 °. (7) Any one of (1) to (6), wherein the brightness in the fiber axis direction of the warp or weft measured using a brightness meter is a waveform on a pulse having a period of 0.1 inch or 2 inches. The material for molding a fiber-reinforced thermoplastic resin according to item 1. (8) The material for molding a fiber-reinforced thermoplastic resin according to any one of (1) to (7), wherein one or more reinforcing fiber fabrics are impregnated with a thermoplastic resin. (9) The fiber-reinforced thermoplastic according to any one of (1) to (7), obtained by heating, melting, impregnating, cooling and solidifying a fabric woven from a mixed yarn of a thermoplastic resin and a reinforcing fiber. Materials for resin molding. (10) The fiber-reinforced thermoplastic resin according to any one of (1) to (7), obtained by heating, melting, impregnating, cooling, and solidifying a fabric woven from a reinforcing fiber bundle impregnated with a thermoplastic resin. Molding materials. (11) A housing material comprising the fiber-reinforced thermoplastic resin molding material according to any one of (1) to (10). (12) A housing for electronic / electric equipment, wherein the housing material according to (11) is partially or entirely used.

【0016】[0016]

【発明の実施の形態】本発明の繊維強化熱可塑性樹脂成
形材料(以下、FRTPと表す)は、強化繊維の体積含
有率(以下、Vfと表す)が30〜60%であることが
好ましい。強化繊維のVfが30%未満であると、強
度、剛性が不足したり、衝撃力を受けた際にこれに抗す
る強化繊維が少ないため、耐衝撃性に劣るという結果を
招く。強化繊維のVfが60%を越えると樹脂の含浸が
不良となりやすくなり、含浸不足による強度低下を招く
おそれがある。なお、強化形態が織布であり、連続繊維
を用いていることから、強化繊維の強度,剛性を十分に
利用することが出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The fiber-reinforced thermoplastic resin molding material (hereinafter referred to as FRTP) of the present invention preferably has a volume content of reinforcing fibers (hereinafter referred to as Vf) of 30 to 60%. When the Vf of the reinforcing fibers is less than 30%, the strength and rigidity are insufficient, and when the impact force is applied, the amount of the reinforcing fibers against the impact strength is small, so that the impact resistance is poor. If the Vf of the reinforcing fiber exceeds 60%, impregnation of the resin tends to be poor, and there is a possibility that the strength is reduced due to insufficient impregnation. Since the reinforcing form is a woven fabric and continuous fibers are used, the strength and rigidity of the reinforcing fibers can be sufficiently utilized.

【0017】補強繊維として用いる織布の経糸及び緯糸
の打ち込み本数は、各0.5〜10本/inchにある
織布を用いることが好ましい。0.5本/inch未満
では事実上、強化繊維束の幅が広いため、製織が困難で
ある。一方、10本/inchより大きなものは、強化
繊維の直進性が劣り、織布の厚みが厚くなり、筐体に最
適な薄肉の厚みを得ることが困難となる。
It is preferable to use a woven fabric having a warp and a weft of 0.5 to 10 yarns / inch for each of the woven fabrics used as the reinforcing fibers. If it is less than 0.5 fibers / inch, weaving is difficult due to the wide width of the reinforcing fiber bundle. On the other hand, if it is larger than 10 / inch, the straightness of the reinforcing fiber is inferior, the thickness of the woven fabric is large, and it is difficult to obtain an optimal thin thickness for the housing.

【0018】FRTPにおける扁平度及びクリンプ率
は、FRTPから切り出した小片において、一片の長さ
が25.4mm以上あり、しかも経緯糸のいずれかの繊
維軸に対して垂直な断面を研磨し、これを50倍以上に
拡大して観察した結果に基づいて求めることが出来る。
該断面観察写真の例を図1に示す。
The flatness and the crimp rate in FRTP are as follows. A small piece cut out of FRTP has a length of 25.4 mm or more, and a cross section perpendicular to any fiber axis of the warp yarn is polished. Can be obtained on the basis of the result obtained by magnifying 50 times or more.
FIG. 1 shows an example of the cross-sectional observation photograph.

【0019】本発明における扁平度とは、上述の断面観
察写真を模式的に表した図2に示すような、織物を構成
する繊維束の繊維軸に垂直な断面における縦横比(長尺
(a)/短尺(b))で定義される値である。本発明に
おける扁平度は5以上であることが好ましい。強化繊維
束が5未満の場合は、繊維束間に熱可塑性樹脂のたまり
(樹脂リッチ部)ができやすくなり、これが欠陥となっ
て強度の低下を生じることがある。
The flatness in the present invention refers to the aspect ratio (long (a)) in a cross section perpendicular to the fiber axis of a fiber bundle constituting a woven fabric as schematically shown in FIG. ) / Short (b)). The flatness in the present invention is preferably 5 or more. If the number of reinforcing fiber bundles is less than 5, the accumulation of thermoplastic resin (resin-rich portion) between the fiber bundles is likely to occur, which may be a defect, resulting in a decrease in strength.

【0020】同様に、本発明におけるクリンプ率とは、
図2の模式図に示すような経糸もしくは緯糸が、緯糸も
しくは経糸を越える際の厚み(d)/ピッチ(c)の比
で定義された値である。本発明におけるクリンプ率は
0.2以下であることが好ましい。強化繊維束のクリン
プ率が0.2より大きいと、強化繊維束のうねりが大き
くなり直進性が低下するため、成形品中で強化繊維の遊
びが生じ、ひいては剛性低下を引き起こす。また同様の
理由で、衝撃力が加わった場合、繊維の強力の寄与率が
低下し、衝撃吸収エネルギーが低下することがある。
Similarly, the crimp ratio in the present invention is:
It is a value defined by the ratio of thickness (d) / pitch (c) when the warp or the weft as shown in the schematic diagram of FIG. 2 exceeds the weft or the warp. The crimp rate in the present invention is preferably 0.2 or less. If the crimp ratio of the reinforcing fiber bundle is larger than 0.2, the swelling of the reinforcing fiber bundle becomes large and the straightness is reduced, so that play of the reinforcing fiber occurs in the molded product, and the rigidity is reduced. For the same reason, when an impact force is applied, the contribution of the fiber strength is reduced, and the impact absorption energy may be reduced.

【0021】また特徴ある外観を発現するために、例え
ば三次元変角光度計(村上色彩研究所製GP−200)
で測定した輝度が周期的に変化することが好ましく、例
えば、パーソナル画像処理システム(株式会社ピアス
製、PIAS LA−500)などを用い、FRTPの
表面をCCDで撮影し、画像処理した画像における繊維
軸方向の輝度が繊維束間の距離と関係つけられる周期で
パルス状に変化することが好ましい。
In order to exhibit a characteristic appearance, for example, a three-dimensional variable angle photometer (GP-200 manufactured by Murakami Color Research Laboratory)
It is preferable that the luminance measured by the method described above is periodically changed. For example, using a personal image processing system (Pierce Co., Ltd., PIAS LA-500) or the like, the surface of the FRTP is photographed by a CCD, and the fiber in the image obtained by image processing is obtained. Preferably, the brightness in the axial direction changes in a pulsed manner at a period related to the distance between the fiber bundles.

【0022】さらに三次元変角高度計を用いて二次元反
射光分布測定により測定した輝度が、図3に示すような
180°の周期で変わることにより、図4(a)及び
(b)のようにみる方向により様々な様相を見せるよう
な特徴のある表面性を有することが出来る。このような
様相は、強化繊維の繊維軸方向と円周方向に存在する光
学異方性により発現するものと想像される。
Further, the luminance measured by two-dimensional reflected light distribution measurement using a three-dimensional variable-angle altimeter changes at a cycle of 180 ° as shown in FIG. Surface characteristics with various aspects depending on the viewing direction. It is supposed that such an aspect appears due to optical anisotropy existing in the fiber axis direction and the circumferential direction of the reinforcing fiber.

【0023】また、経糸もしくは緯糸の繊維軸方向の輝
度が図5に示すように一定の周期を持って変化すること
により、図6のような特徴のある外観を発現することが
出来る。このような外観は、強化繊維束を構成する強化
繊維一本一本(モノフィラメント)の直進性に優れ、繊
維同士の平行度が高いことで得られるものと考えられ、
これらに優れるほどパルスの立ち上がりが鋭くなり、上
下限のピーク差が大きくなるためと考えられる。
The characteristic appearance as shown in FIG. 6 can be obtained by changing the brightness of the warp or weft in the fiber axis direction at a constant period as shown in FIG. It is considered that such an appearance is obtained by excellent straightness of each reinforcing fiber (monofilament) constituting the reinforcing fiber bundle and high parallelism between the fibers,
It is considered that the higher these values, the sharper the rise of the pulse and the larger the difference between the upper and lower peaks.

【0024】本発明のFRTPを得るためには、少なく
とも1枚以上の強化繊維織物に熱可塑性樹脂を含浸する
か、熱可塑性樹脂と強化繊維の混繊糸を製織した布帛を
加熱、溶融、含浸、冷却、固化する、または熱可塑性樹
脂を含浸した強化繊維束を製織した布帛を用いることに
より得ることができる。
In order to obtain the FRTP of the present invention, at least one or more reinforced fiber woven fabrics are impregnated with a thermoplastic resin, or a woven fabric of a mixed yarn of the thermoplastic resin and the reinforced fibers is heated, melted and impregnated. It can be obtained by using a cloth which is cooled, solidified, or woven with a reinforcing fiber bundle impregnated with a thermoplastic resin.

【0025】本発明のFRTPにおいて、強化繊維とし
ては、例えば、ガラス繊維、炭素繊維,炭化珪素繊維,
アルミナ繊維、金属ワイヤーなどの無機繊維や、金属繊
維、アラミド繊維、高分子量ポリエチレン繊維、PBO
繊維などの有機繊維などを用いることができる。なかで
も、筐体として用いる場合は、電磁波シールド性の関係
から、炭素繊維や、金属繊維を用いることが望ましい。
さらに軽量化の観点、並びに上述の光学異方性を有する
観点から、炭素繊維を用いることがより好ましい。
In the FRTP of the present invention, the reinforcing fibers include, for example, glass fibers, carbon fibers, silicon carbide fibers,
Inorganic fiber such as alumina fiber and metal wire, metal fiber, aramid fiber, high molecular weight polyethylene fiber, PBO
Organic fibers such as fibers can be used. Among them, when used as a housing, it is desirable to use carbon fiber or metal fiber from the viewpoint of electromagnetic wave shielding properties.
Further, from the viewpoint of weight reduction and the viewpoint of having the above-described optical anisotropy, it is more preferable to use carbon fibers.

【0026】該強化繊維に組み合わせる樹脂としては、
熱硬化性樹脂や熱可塑性樹脂が挙げられる。リサイクル
の面から、熱可塑性樹脂が好ましく、さらにコストの面
から、ポリプロピレンなどのオレフィン樹脂、ナイロン
などのポリアミド樹脂が好ましい。難燃性が特に重要な
場合には、ポリフェニレンスルファイドなどの難燃性樹
脂,耐衝撃性が重要な場合にはポリカーボネートや、ポ
リメチルメタクリレートなどを用いることが好ましい。
そして、必要に応じて、これらの樹脂に耐候性の向上
や、耐紫外線劣化防止、難燃性の向上を目的として、添
加剤などが付与されていても何ら問題はない。
As the resin to be combined with the reinforcing fiber,
Thermosetting resins and thermoplastic resins are exemplified. From the viewpoint of recycling, a thermoplastic resin is preferable, and from the viewpoint of cost, an olefin resin such as polypropylene and a polyamide resin such as nylon are preferable. When flame retardancy is particularly important, it is preferable to use a flame-retardant resin such as polyphenylene sulfide, and when impact resistance is important, it is preferable to use polycarbonate or polymethyl methacrylate.
If necessary, there is no problem even if an additive or the like is added to these resins for the purpose of improving weather resistance, preventing deterioration due to ultraviolet rays, and improving flame retardancy.

【0027】また、上記の素材を用いて、上述のFRT
Pを得る手段としては、例えば、少なくとも1枚以上の
強化繊維織物とシート上の熱可塑性樹脂を金型内で加熱
・加圧・溶融、含浸し、冷却・固化して板状のFRTP
を得ることができる。この場合は、樹脂の融点よりも高
い温度を保持したまま金型を常温まで冷却し固化するこ
とによって得ることができる。
Further, using the above-mentioned material, the above-mentioned FRT
As a means for obtaining P, for example, at least one or more reinforcing fiber woven fabric and a thermoplastic resin on a sheet are heated, pressed, melted and impregnated in a mold, cooled and solidified to form a plate-like FRTP.
Can be obtained. In this case, it can be obtained by cooling and solidifying the mold to normal temperature while maintaining the temperature higher than the melting point of the resin.

【0028】さらに、熱可塑性樹脂繊維と強化繊維をあ
らかじめ混繊した混繊糸を製織した布帛を、熱可塑性樹
脂繊維の融点よりも高い温度に加熱された金型で2.5
〜5.0MPaの圧力をかけた状態のままで、加熱・加
圧・溶融、含浸、冷却、固化することにより得ることが
できる。さらに望ましくは、解じょ撚りが生じないよう
に解じょした後に、開繊した強化繊維を、圧力下で熱可
塑性樹脂が充満したダイ内に通し、引き取った熱可塑性
樹脂が含浸したテープ状の強化繊維束を作成し、これを
製織した布帛を熱可塑性樹脂の融点よりも高い温度に加
熱された金型内で、0.2〜2.5MPaの低い圧力を
保持した状態で、加熱・加圧・溶融、含浸し、冷却・固
化したものを用いることにより得ることができる。この
ようにして得られたFRTPは、特に強化繊維の直進性
に優れ、モノフィラメントの平行度に優れたものを得る
ことができる。
Further, a cloth woven from a blended yarn obtained by previously blending a thermoplastic resin fiber and a reinforcing fiber is placed in a mold heated to a temperature higher than the melting point of the thermoplastic resin fiber by 2.5 mm.
It can be obtained by heating, pressurizing, melting, impregnating, cooling, and solidifying while applying a pressure of up to 5.0 MPa. More desirably, after unwound so as not to cause untwisting, the opened reinforcing fiber is passed through a die filled with a thermoplastic resin under pressure, and a tape-like shape impregnated with the taken-out thermoplastic resin is used. A reinforcing fiber bundle is prepared, and the woven fabric is heated and heated in a mold heated to a temperature higher than the melting point of the thermoplastic resin while maintaining a low pressure of 0.2 to 2.5 MPa. It can be obtained by using a material that has been pressed, melted, impregnated, cooled and solidified. The FRTP thus obtained can be obtained, in particular, with excellent straightness of the reinforcing fiber and excellent parallelism of the monofilament.

【0029】なお、FRTPを得る手段として、金型を
用いる方式の他に、例えばダブルベルトプレスや、プレ
ス併用の間欠式ダブルベルトプレスなどを用いたとして
も何ら問題はない。さらに滑り止めを目的として、表面
に細かな凹凸や、シボ加工などが施されていることがよ
り好ましい。
As a means for obtaining the FRTP, there is no problem even if, for example, a double belt press or an intermittent double belt press using a press is used in addition to the method using a mold. Further, for the purpose of preventing slippage, it is more preferable that the surface is provided with fine irregularities, graining, or the like.

【0030】本発明のFRTPは、曲げ弾性率15GP
a以上、曲げ強度30MPa以上、衝撃吸収エネルギー
15J/mm以上であることを特徴としている。本発明
のFRTPは剛性があり、耐衝撃性に優れた筐体を得る
ことが出来る。曲げ弾性率が15GPa未満、曲げ強度
が300MPa未満、もしくは衝撃吸収エネルギーが1
5J/mm未満であると、剛性が低いために多くのリブ
を必要とし、薄肉化が困難であったり、筐体に圧迫荷重
がかかったときに変形が大きく、筐体に組み込まれた液
晶表示板を変形させ、これを破壊するおそれがある。そ
して、また机の角などにぶつけた場合、壊れやすく、内
部を保護することができない。
The FRTP of the present invention has a flexural modulus of 15 GP.
a, the bending strength is 30 MPa or more, and the impact absorption energy is 15 J / mm or more. The FRTP of the present invention has rigidity and can provide a housing excellent in impact resistance. Flexural modulus less than 15 GPa, flexural strength less than 300 MPa, or shock absorption energy of 1
If it is less than 5 J / mm, many ribs are required due to low rigidity, and it is difficult to reduce the thickness, and when a compressive load is applied to the housing, the deformation is large. The plate may be deformed and destroyed. And when it hits the corner of the desk again, it is fragile and cannot protect the inside.

【0031】上記のような特徴を有する本発明のFRT
Pは、電子・電気機器用筐体として用いることが特に有
用である。ここで、電子・電気機器とは、例えば、ディ
スクトップコンピュータや、ラップトップコンピュー
タ、ノートパソコン、サブノートパソコンを始め、ワー
ドプロセッサ、パーソナルデジタルアシスタント,携帯
電話、携帯用コンピュータ周辺機器(ハードディスク、
リムーバブルディスク、プリンター、液晶モニター)、
液晶テレビ、デジタルカメラ、デジタルビデオ、携帯用
カセットテープレコーダー、携帯用ミニディスクプレー
ヤー、携帯用コンパクトディスクプレーヤーなどが挙げ
られ、広く電子機器類全般を指すものである。
The FRT of the present invention having the above features
P is particularly useful for use as a housing for electronic and electrical equipment. Here, the electronic and electric devices include, for example, desktop computers, laptop computers, notebook computers, sub-notebook computers, word processors, personal digital assistants, mobile phones, portable computer peripheral devices (hard disk,
Removable disk, printer, LCD monitor),
Examples include a liquid crystal television, a digital camera, a digital video, a portable cassette tape recorder, a portable mini-disc player, a portable compact disc player, etc., and broadly refer to electronic devices in general.

【0032】[0032]

【実施例】以下、実施例により、本発明を詳細に説明す
る。なお、本発明は、実施例により特に制限されるもの
ではない。なお、実施例において、曲げ弾性率、曲げ強
度はJIS K 7055、衝撃吸収エネルギーは、A
STM D3029により、輝度分布は例えば、「最近
の光沢度測定方法」(沢路 雅夫,染色工業,Vol.
18,No.11,p46〜55)などに従い測定を行
った。
Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not particularly limited by the examples. In the examples, the flexural modulus and flexural strength are JIS K 7055, and the impact absorption energy is A
According to STM D3029, the luminance distribution can be determined, for example, by referring to “Recent glossiness measurement method” (Masao Sawaji, Senshou Kogyo, Vol.
18, No. 11, p46-55) and the like.

【0033】[実施例1]炭素繊維ロービングを開繊
し、220℃のポリプロピレンが充満されたダイ内に通
し、幅10mm、厚み0.1mm、繊維体積含有率50%
のテープ状の成形材料を得た。この成形材料を製織し、
この織物を3層積層し、220℃、10kgf/cm2
の加熱・加圧下で5分間加熱、冷却して繊維強化熱可塑
性樹脂平板(打ち込み本数2.25本/inch、偏平
度87.5、クリンプ率0.0085)を得た。この平
板の断面観察の結果を図7に、物性ならびに評価結果を
表1に示す。またこの材料を用いたコンピュータの筐体
の例を図8に示す。
Example 1 A carbon fiber roving was opened and passed through a die filled with polypropylene at 220 ° C., a width of 10 mm, a thickness of 0.1 mm, and a fiber volume content of 50%.
Was obtained. Weaving this molding material,
Three layers of this woven fabric are laminated, 220 ° C., 10 kgf / cm 2
The mixture was heated and cooled under heat and pressure for 5 minutes to obtain a fiber reinforced thermoplastic resin flat plate (implantation number: 2.25 lines / inch, flatness: 87.5, crimp rate: 0.0085). FIG. 7 shows the results of cross-sectional observation of this flat plate, and Table 1 shows the physical properties and evaluation results. FIG. 8 shows an example of a computer housing using this material.

【0034】[実施例2]炭素繊維とポリアミド6の混
繊糸織物を3層積層し、250℃、20kgf/cm2
の加熱・加圧下で10分間加熱し、冷却して繊維強化熱
可塑性樹脂平板(打ち込み本数10本/inch、偏平
度は5.4、クリンプ率は0.0595)を得た。物性
ならびに評価結果を同じく表1に示す。
Example 2 Three layers of a mixed fiber woven fabric of carbon fibers and polyamide 6 were laminated, and were heated at 250 ° C. and 20 kgf / cm 2.
The mixture was heated for 10 minutes under heating and pressurization, and cooled to obtain a fiber-reinforced thermoplastic resin flat plate (10 pieces / inch, flatness 5.4, crimp rate 0.0595). Table 1 also shows the physical properties and evaluation results.

【0035】[実施例3]ガラス繊維ロービングを22
0℃のポリプロピレンが充満されたダイ内に通し、幅1
0mm、厚み0.1mm、繊維体積含有率50%のテー
プ状の成形材料を得た。この成形材料を製織した織物を
2層積層し、220℃、10kgf/cm 2 の加熱・加
圧下で5分間加熱した後、冷却し繊維強化熱可塑性樹脂
複合材料平板(打ち込み本数2.25本/inch、扁
平度75、クリンプ率0.0104)を得た。物性なら
びに評価結果を表1に示す。
[Example 3] Glass fiber roving was added to 22
Pass through a die filled with 0 ° C polypropylene, width 1
0mm, 0.1mm thick, 50% fiber volume content
A molding material in the form of a loop was obtained. The woven fabric of this molding material
Two layers laminated, 220 ° C, 10kgf / cm TwoHeating and heating
After heating under pressure for 5 minutes, cool and heat fiber reinforced thermoplastic
Composite material flat plate (number of driving 2.25 lines / inch, flat
A flatness of 75 and a crimp rate of 0.0104 were obtained. If physical properties
Table 1 shows the evaluation results.

【0036】[比較例1]打ち込み本数40本/inc
hのガラス繊維織物(13層)とポリアミド6フィルム
を交互にスタッキングしたものを250℃、15kgf
/cm2 の加熱・加圧下で10分間加熱し、冷却して繊
維強化熱可塑性樹脂複合材料平板を得た。この平板の扁
平度は6.39、クリンプ率は0.24であった。この
平板の物性並びに評価結果を表1に示す。
[Comparative Example 1] 40 shots / inc
h and a stack of glass fiber fabric (13 layers) and polyamide 6 film alternately at 250 ° C. and 15 kgf
/ Cm 2 for 10 minutes under heating / pressurization and cooling to obtain a fiber-reinforced thermoplastic resin composite material flat plate. The flatness of this flat plate was 6.39, and the crimp ratio was 0.24. Table 1 shows the physical properties and evaluation results of this flat plate.

【0037】[比較例2]市販のスタンパブルシート
(ガラス繊維/ポリプロピレン、Vf19%)を220
℃、5kgf/cm2 の加熱・加圧下で1分間加熱し、
冷却して繊維強化熱可塑性樹脂複合材料平板を得た。結
果を表1に示す。
[Comparative Example 2] A commercially available stampable sheet (glass fiber / polypropylene, Vf 19%) was used for 220
℃ 5kgf / cm 2 under heating and pressure for 1 minute,
Upon cooling, a fiber reinforced thermoplastic resin composite plate was obtained. Table 1 shows the results.

【0038】[比較例3]市販の炭素繊維添加ポリアミ
ド6の射出成形用材料を射出成形し、繊維強化熱可塑性
樹脂複合材料平板を得た。評価結果を表1に示す。
Comparative Example 3 A commercially available injection molding material of carbon fiber-added polyamide 6 was injection molded to obtain a fiber-reinforced thermoplastic resin composite plate. Table 1 shows the evaluation results.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】上述したように、本発明の繊維強化熱可
塑性樹脂成形用材料は、射出成形品と比較して強度、剛
性に優れ、良好な耐衝撃性を有する。また、スタンパブ
ルシートや、シートモールディングコンパウンドで発生
する外観上見苦しいフローパターン(流動の痕跡)や、
ファイバーパターン(繊維の右記)、あばたのような表
面欠陥を押さえることができ、折り目の通った良好な外
観を得ることができる。さらに、このような良好な外観
が得られることにより、塗装の必要性が無く、リサイク
ルにおいても連続した強化繊維を用いた熱可塑性樹脂複
合材料であるため、そのままペレタイズを行い、射出成
形用材料として再利用することが可能であり、リサイク
ルコスト並びにエネルギーを押さえることが容易であ
る。
As described above, the fiber-reinforced thermoplastic resin molding material of the present invention is superior in strength and rigidity to injection molded articles, and has good impact resistance. In addition, unsightly flow patterns (traces of flow) generated by stampable sheets and sheet molding compounds,
It is possible to suppress surface defects such as a fiber pattern (right side of fiber) and pock, and to obtain a good appearance through a fold. Furthermore, since such a good appearance is obtained, there is no need for painting, and since it is a thermoplastic resin composite material using continuous reinforcing fibers in recycling, it is pelletized as it is, and as a material for injection molding It can be reused, and it is easy to reduce recycling costs and energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の繊維強化熱可塑性樹脂材料の一例に
おける断面観察者浸を示す図である。
FIG. 1 is a diagram showing a cross-section observer immersion in an example of the fiber-reinforced thermoplastic resin material of the present invention.

【図2】 本発明の繊維強化熱可塑性樹脂成形用材料の
一例における断面観察写真に関する模式図である。
FIG. 2 is a schematic diagram relating to a cross-sectional observation photograph of an example of the fiber-reinforced thermoplastic resin molding material of the present invention.

【図3】 本発明の繊維強化熱可塑性樹脂材料の一例に
関する180の周期で変動する輝度分布を示す図である。
FIG. 3 is a view showing a luminance distribution that changes in a cycle of 180 for an example of the fiber-reinforced thermoplastic resin material of the present invention.

【図4】 本発明の繊維強化熱可塑性樹脂成形材料の一
例に関する光の入射角により外観が変わることを示す図
である。
FIG. 4 is a view showing that the appearance of an example of the fiber-reinforced thermoplastic resin molding material of the present invention changes depending on the incident angle of light.

【図5】 本発明の繊維強化熱可塑性樹脂成形材料の一
例に関する繊維軸方向における輝度分布を示す図であ
る。
FIG. 5 is a diagram showing a brightness distribution in the fiber axis direction for an example of the fiber-reinforced thermoplastic resin molding material of the present invention.

【図6】 本発明の繊維強化熱可塑性樹脂成形用材料の
一例に関する表面観察者浸を示す図である。
FIG. 6 is a diagram showing surface observer immersion for an example of the fiber-reinforced thermoplastic resin molding material of the present invention.

【図7】 本発明の実施例1で得られた繊維強化熱可塑
性樹脂平板の断面観察写真を示す図である。
FIG. 7 is a view showing a cross-sectional observation photograph of the fiber-reinforced thermoplastic resin flat plate obtained in Example 1 of the present invention.

【図8】 本発明の実施例1で得られた熱可塑性樹脂平
板を用いたコンピュータ用筐体の観察写真を示す図であ
る。
FIG. 8 is a view showing an observation photograph of a computer housing using the thermoplastic resin flat plate obtained in Example 1 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B29K 101:12 105:08 B29L 31:34 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // B29K 101: 12 105: 08 B29L 31:34

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 織布の形態をなす強化繊維に熱可塑性樹
脂が含浸されてなる繊維強化熱可塑性樹脂材料であっ
て、曲げ弾性率15GPa以上、曲げ強度30MPa以
上、衝撃吸収エネルギー15J/mm以上であることを
特徴とする繊維強化熱可塑性樹脂成形用材料。
1. A fiber-reinforced thermoplastic resin material in which a thermoplastic resin is impregnated into a reinforcing fiber in the form of a woven fabric, and has a flexural modulus of 15 GPa or more, a flexural strength of 30 MPa or more, and a shock absorption energy of 15 J / mm or more. A material for molding a fiber-reinforced thermoplastic resin, characterized in that:
【請求項2】 強化繊維の体積含有率が30〜60%で
ある請求項1記載の繊維強化熱可塑性樹脂成形用材料。
2. The fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the volume content of the reinforcing fibers is 30 to 60%.
【請求項3】 経糸および緯糸の打ち込み本数がいずれ
も0.5〜10本/inchである請求項1または2に
記載の繊維強化熱可塑性樹脂成形用材料。
3. The fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the number of warp yarns and the number of weft yarns is 0.5 to 10 yarns / inch.
【請求項4】 強化繊維即の扁平度が5以上である請求
項1〜3のいずれかに記載の繊維強化熱可塑性樹脂成形
用材料。
4. The material for molding a fiber-reinforced thermoplastic resin according to claim 1, wherein the flatness of the reinforcing fiber immediately is 5 or more.
【請求項5】 強化繊維のクリンプ率が0.2以下であ
る請求項1〜4のいずれかに記載の繊維強化熱可塑性樹
脂成形用材料。
5. The fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the crimp ratio of the reinforcing fibers is 0.2 or less.
【請求項6】 三次元変角光度計を用いて測定した輝度
分布が180°の周期を持って変化する請求項1〜5の
いずれかに記載の繊維強化熱可塑性樹脂成形用材料。
6. The fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the luminance distribution measured with a three-dimensional variable angle photometer changes with a period of 180 °.
【請求項7】 輝度計を用いて測定した経糸もしくは緯
糸の繊維軸方向の輝度が0.1inch若しくは2in
chの周期を有するパルス状の波形となることを特徴と
する請求項1〜6のいずれかに記載の繊維強化熱可塑性
樹脂成形用材料。
7. The brightness of a warp or a weft in a fiber axis direction measured using a brightness meter is 0.1 inch or 2 inch.
The fiber-reinforced thermoplastic resin molding material according to any one of claims 1 to 6, wherein the material has a pulse-like waveform having a period of ch.
【請求項8】 1枚以上の強化繊維織物に熱可塑性樹脂
が含浸されてなる請求項1〜7のいずれかに記載の繊維
強化熱可塑性樹脂成形用材料。
8. The material for molding a fiber-reinforced thermoplastic resin according to claim 1, wherein at least one reinforcing fiber fabric is impregnated with a thermoplastic resin.
【請求項9】 熱可塑性樹脂と強化繊維の混繊糸を製織
した布帛を加熱、溶融、含浸、冷却および固化すること
によって得られた請求項1〜7のいずれかに記載の繊維
強化熱可塑性樹脂成形用材料。
9. The fiber-reinforced thermoplastic according to claim 1, which is obtained by heating, melting, impregnating, cooling and solidifying a fabric woven from a mixed yarn of a thermoplastic resin and a reinforcing fiber. Materials for resin molding.
【請求項10】 熱可塑性樹脂を含浸した強化繊維束を
製織した布帛を加熱、溶融、含浸、冷却および固化する
ことによって得られた請求項1〜7のいずれかに記載の
繊維強化熱可塑性樹脂成形用材料。
10. The fiber-reinforced thermoplastic resin according to claim 1, which is obtained by heating, melting, impregnating, cooling and solidifying a fabric woven from a reinforcing fiber bundle impregnated with a thermoplastic resin. Molding materials.
【請求項11】 請求項1〜10のいずれかに記載の繊
維強化熱可塑性樹脂成形材料からなることを特徴とする
筐体用材料。
11. A housing material comprising the fiber-reinforced thermoplastic resin molding material according to claim 1. Description:
【請求項12】 請求項11記載の筐体用材料を一部若
しくは全体に用いられたことを特徴とする電子・電気機
器用筐体。
12. A housing for an electronic / electric device, wherein the housing material according to claim 11 is partially or wholly used.
JP13185298A 1998-05-14 1998-05-14 Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same Expired - Lifetime JP3685295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13185298A JP3685295B2 (en) 1998-05-14 1998-05-14 Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13185298A JP3685295B2 (en) 1998-05-14 1998-05-14 Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same

Publications (2)

Publication Number Publication Date
JPH11320737A true JPH11320737A (en) 1999-11-24
JP3685295B2 JP3685295B2 (en) 2005-08-17

Family

ID=15067635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13185298A Expired - Lifetime JP3685295B2 (en) 1998-05-14 1998-05-14 Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same

Country Status (1)

Country Link
JP (1) JP3685295B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178331A (en) * 2000-12-18 2002-06-26 Asahi Fiber Glass Co Ltd Sheet molding compound
WO2004062906A1 (en) 2003-01-10 2004-07-29 Hasepro, Inc Fibrous reinforcing sheet, process for production thereof, and dress-up sheet made by using the sheet
JP2004223743A (en) * 2003-01-20 2004-08-12 Toyobo Co Ltd Method for manufacturing impact absorbing body
JP2006159915A (en) * 2003-01-10 2006-06-22 Hase Pro:Kk Reinforcing fiber sheet, its manufacturing process and dress-up sheet using the sheet
WO2007055017A1 (en) * 2005-11-11 2007-05-18 Takayasu Co., Ltd. Composite and process for producing the same
JP2011508794A (en) * 2007-11-30 2011-03-17 テイジン・アラミド・ビー.ブイ. Flexible continuous tape from multifilament yarns and methods for making them
JP2013104033A (en) * 2011-11-16 2013-05-30 Toray Ind Inc Fiber-reinforced composite material and method for producing fiber-reinforced composite material
JP2013186815A (en) * 2012-03-09 2013-09-19 Lenovo Singapore Pte Ltd Enclosure material, electronic apparatus enclosure using said enclosure material, and electronic apparatus using said electronic apparatus enclosure
JP2013539503A (en) * 2010-06-25 2013-10-24 マテリアルズ イノベーション テクノロジーズ エルエルシー Use of recycled carbon fiber
JP2014088652A (en) * 2012-10-05 2014-05-15 Toyobo Co Ltd Fiber sheet for reinforcement
JPWO2012114829A1 (en) * 2011-02-23 2014-07-07 東レ株式会社 Fiber reinforced composite material
JP2014136357A (en) * 2013-01-16 2014-07-28 Fujitsu Ltd Case for electronic equipment and manufacturing method of the same
JP2015506292A (en) * 2012-01-11 2015-03-02 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Continuous carbon fiber reinforced thermoplastic composite material excellent in impregnation and method for producing the same
WO2020213416A1 (en) * 2019-04-17 2020-10-22 日東紡績株式会社 Composite yarn fabric and method for producing fiber-reinforced resin molded article using same
WO2021251103A1 (en) * 2020-06-10 2021-12-16 日東紡績株式会社 Glass fiber-reinforced resin molded article, housing of electronic device, interior component for mobility product and exterior component for mobility product

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178331A (en) * 2000-12-18 2002-06-26 Asahi Fiber Glass Co Ltd Sheet molding compound
WO2004062906A1 (en) 2003-01-10 2004-07-29 Hasepro, Inc Fibrous reinforcing sheet, process for production thereof, and dress-up sheet made by using the sheet
JPWO2004062906A1 (en) * 2003-01-10 2006-05-18 株式会社ハセ・プロ Method for producing reinforcing fiber sheet and method for producing dress-up sheet using the sheet
JP2006159915A (en) * 2003-01-10 2006-06-22 Hase Pro:Kk Reinforcing fiber sheet, its manufacturing process and dress-up sheet using the sheet
US7883748B2 (en) 2003-01-10 2011-02-08 Hasepro, Inc. Method of making reinforcing fiber sheet by screen printing
JP2004223743A (en) * 2003-01-20 2004-08-12 Toyobo Co Ltd Method for manufacturing impact absorbing body
WO2007055017A1 (en) * 2005-11-11 2007-05-18 Takayasu Co., Ltd. Composite and process for producing the same
JP2011508794A (en) * 2007-11-30 2011-03-17 テイジン・アラミド・ビー.ブイ. Flexible continuous tape from multifilament yarns and methods for making them
JP2013539503A (en) * 2010-06-25 2013-10-24 マテリアルズ イノベーション テクノロジーズ エルエルシー Use of recycled carbon fiber
JPWO2012114829A1 (en) * 2011-02-23 2014-07-07 東レ株式会社 Fiber reinforced composite material
JP5790643B2 (en) * 2011-02-23 2015-10-07 東レ株式会社 Fiber reinforced composite material
JP2013104033A (en) * 2011-11-16 2013-05-30 Toray Ind Inc Fiber-reinforced composite material and method for producing fiber-reinforced composite material
US9539742B2 (en) 2012-01-11 2017-01-10 Lg Hausys, Ltd. Continuous carbon fiber reinforced thermoplastic plastic composite having excellent impregnation properties and a method for manufacturing the same
JP2015506292A (en) * 2012-01-11 2015-03-02 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Continuous carbon fiber reinforced thermoplastic composite material excellent in impregnation and method for producing the same
JP2013186815A (en) * 2012-03-09 2013-09-19 Lenovo Singapore Pte Ltd Enclosure material, electronic apparatus enclosure using said enclosure material, and electronic apparatus using said electronic apparatus enclosure
JP2014088652A (en) * 2012-10-05 2014-05-15 Toyobo Co Ltd Fiber sheet for reinforcement
JP2014136357A (en) * 2013-01-16 2014-07-28 Fujitsu Ltd Case for electronic equipment and manufacturing method of the same
WO2020213416A1 (en) * 2019-04-17 2020-10-22 日東紡績株式会社 Composite yarn fabric and method for producing fiber-reinforced resin molded article using same
JP6813139B1 (en) * 2019-04-17 2021-01-13 日東紡績株式会社 Manufacturing method of composite yarn woven fabric and fiber reinforced resin molded product using it
US12104294B2 (en) 2019-04-17 2024-10-01 Nitto Boseki Co., Ltd. Composite yarn fabric and method for producing fiber-reinforced resin molded article using same
WO2021251103A1 (en) * 2020-06-10 2021-12-16 日東紡績株式会社 Glass fiber-reinforced resin molded article, housing of electronic device, interior component for mobility product and exterior component for mobility product
JP7014346B1 (en) * 2020-06-10 2022-02-01 日東紡績株式会社 Glass fiber reinforced resin molded products, electronic device housings, interior parts for mobility products, and exterior parts for mobility products
KR20220047390A (en) * 2020-06-10 2022-04-15 니토 보세키 가부시기가이샤 Glass fiber reinforced resin molded products, electronic device housings, interior parts for mobility products, and exterior parts for mobility products
TWI768943B (en) * 2020-06-10 2022-06-21 日商日東紡績股份有限公司 Glass fiber reinforced resin moldings, electronic equipment casings, internal parts for mobile products, and external parts for mobile products
US11591723B2 (en) 2020-06-10 2023-02-28 Nitto Boseki Co., Ltd. Glass fiber-reinforced resin molded article, housing of electronic device, interior component for mobility product and exterior component for mobility product

Also Published As

Publication number Publication date
JP3685295B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JPH11320737A (en) Fiber reinforced thermoplastic molding material and housing for electronic/electric equipment using the same
JP6822147B2 (en) Structure
JP6197968B1 (en) Manufacturing method of structure
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
US10571963B2 (en) Housing
CN113365812B (en) Fiber-reinforced plastic molded body
JP2014015706A (en) Carbon fiber nonwoven fabric, carbon fiber-reinforced resin sheet, and carbon fiber-reinforced resin molded article
EP3352541A1 (en) Housing
JP2004209717A (en) Fiber reinforced molded product
JP2885038B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
JP2017170781A (en) Laminate and vehicle component using the same
JPS63303732A (en) Extremely thin sheet
EP3750706A1 (en) Portable electronic device housings comprising an asymmetric fiber-reinforced laminate and a sidewall including a polymeric body and methods of making the same
US10462920B2 (en) Polymer fiber composite
EP3252093A1 (en) Reinforcing fibre composite material
JP2012028508A (en) Frame-like member and housing
JPH0668594B2 (en) Carbon fiber reinforced thermosetting resin camera shutter blades
JPH10156881A (en) Production of carbon fiber composite molding
JP2009173027A (en) Manufacturing method of composite molded product
JP2007177345A (en) Doctor blade
Zal et al. Investigation and analysis of glass fabric/PVC composite laminates processing parameters
JP2001139831A (en) Carbon fiber-based bulk molding compound material and molded article
US20230191667A1 (en) Method for producing press molded body
JP2010076174A (en) Frp molding and method of repairing the same
JPH0661883B2 (en) Carbon fiber reinforced resin molded article having fine uneven surface and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

EXPY Cancellation because of completion of term