JP3685295B2 - Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same - Google Patents

Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same Download PDF

Info

Publication number
JP3685295B2
JP3685295B2 JP13185298A JP13185298A JP3685295B2 JP 3685295 B2 JP3685295 B2 JP 3685295B2 JP 13185298 A JP13185298 A JP 13185298A JP 13185298 A JP13185298 A JP 13185298A JP 3685295 B2 JP3685295 B2 JP 3685295B2
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
casing
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13185298A
Other languages
Japanese (ja)
Other versions
JPH11320737A (en
Inventor
聡 名合
正睦 山根
修 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP13185298A priority Critical patent/JP3685295B2/en
Publication of JPH11320737A publication Critical patent/JPH11320737A/en
Application granted granted Critical
Publication of JP3685295B2 publication Critical patent/JP3685295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化熱可塑性樹脂成形用材料並びにパーソナルコンピュータ、ワードプロセッサ等の各種携帯用電子機器や、携帯電話などの携帯端末用として好適な筐体材料とその筐体に関する。
【0002】
【従来の技術】
情報化の時代にあって、マルチメディアネットワーク時代の到来を受け、携帯情報・通信機器である各種携帯用電子機器や、携帯端末は軽薄短小化が計られ、携帯性を高めるために軽量化が至上命題となってきている(日経メカニカル,1996,No.477,p70〜83)。このような状況の下で、1mm程度の肉厚でも内部部品を保護する剛性や耐衝撃性を実現でき、薄肉に加工できること、またリサイクル可能なことが筐体用材料として求められている。このような状況の下で、従来の技術としては下記のものが挙げられる。
【0003】
例えば、特公平5−58371号公報には、繊維長が10〜100mmである炭素繊維が面内でランダムに配向する炭素繊維強化熱硬化性樹脂複合材料(Carbon Fiber Reinforced Thermoset Composites;以下、CFRTSと表す)からなるシート状プリプレグを用いた成形品が示されている。この成形品は次のような欠点を有する。
【0004】
すなわち、上記成形品は熱硬化性樹脂を金型内で流動、硬化させるため、硬化時間が3分以上と長く、成形サイクルが長いため、製造コストが高くなる欠点を有する。また、熱硬化性樹脂をマトリックスとするために、成形品のリサイクル使用が困難であることも問題点として挙げられる。一部では、成形不良品や、端材を回収して、400〜600℃に加熱し、例えば、フェノール系樹脂のような熱硬化性樹脂と炭素繊維を分離し、炭素繊維は再利用して、気化した熱硬化性樹脂は、ガスか液体で回収し、燃やして毒性を無くした後、大気に放出するなどの方策も採られている(日経メカニカル,1996,No.477,p70〜83)。しかしながら、上記のようなリサイクル方法は炭素繊維と熱硬化性樹脂の分離に多くのエネルギを必要とし、リサイクル効率が悪いという欠点を有する。
【0005】
そこで、まず製造コストを下げる方策としては、成形が容易な、例えば、ポリカーボネートやABSあるいはこれらのアロイなどの熱可塑性樹脂を炭素繊維で強化した射出成形用材料(Short Carbon Fiber Reinforced Thermoplastic Composites;以下、SCFRTPと表す)が挙げられる。この場合は、射出成形を行う際に、射出成型器のシリンダーやゲートを通過するときに炭素繊維が1mm以下の長さに切断されてしまったり、繊維の含有率を上げることができないなどの理由により、その成形品は高価な炭素繊維を用いている割には強化効率が悪く、また電磁シールド特性も低下するという欠点を有する。
【0006】
さらに、強度や剛性の低下を補うため、成形品に剛性を持たせるためのリブ立てが必要なため、薄肉化も難しく、近年の軽薄短小化の要求を満たすことが困難となってきている。そして、すでに成形品中の炭素繊維の長さが1mm以下であるため、リサイクルに用いる場合、メリットが少なく、焼却処分以外に処分方法がないのが現実である。
【0007】
上記のCFRTSやSCFRTPなどの欠点を克服するために、特開平8−244054号公報には、板面と平行な面内においてランダムな方向に配置された長さ3〜100mmの炭素繊維とポリフェニレンスルファイド(以下、PPSと略記する)を用いた炭素繊維強加熱可塑性樹脂成形用材料(Carbon Mat Reinfoeced Thermoplastic ;以下、CMTと表す)が提示されている。
【0008】
該成形用材料は余熱され,ある温度に保たれた金型に投入され、加圧、冷却、固化して成形される(スタンピング成形)ため、繊維の破断が起こり難いという特徴を有する。この材料と成形方法によって成形された成形品は、長い強化繊維が樹脂に混入しているため、強度、剛性が高く、電磁波シールド特性に優れ、なおかつ薄肉の成形品が得られるとしている。
【0009】
該成形用材料は強化繊維の解繊マットやチョップドストランドマットなどに、PPSのフィルムを重ね合わせ、これらを加熱、加圧して含浸を行ったり、炭素繊維束にPPSをコーティングしたPPS被覆炭素繊維を余熱した後に加圧ロールに通してテープ状に加工し、そのテープを切断して金型中に散布し、圧縮成形することによって製造できるとしている。しかしながら、解繊マットや、チョップドストランドマットに、粘度の高い熱可塑性樹脂であるPPSを含浸することは非常に困難であり、強化繊維と強化繊維の間への樹脂の含浸が不十分となることが多い。樹脂の含浸が不十分であると、空洞などの欠陥を生じ、成形品表面にピンホールや、あばたのような欠陥が生じ、筐体としての外観に耐えないばかりか、強度の低下を招くことがある。
【0010】
さらに、上記のような製造方法では、成形品の表面に強化繊維が浮くことによって、ファイバーパターンが残ることがあり、成形品の外観を損ねるという欠点を有する。このような表面性を損ねる欠点を隠すために、成形品表面にウレタン塗装などを行う必要があり、コスト高となるばかりか、リサイクルを行うときに塗料をはがす必要があり、リサイクルコストの上昇を招くことになる。
【0011】
また近年では、構造材として用いることが出来る最も軽量な金属であるマグネシウムを射出成形(チクソモールディング)した筐体も見受けられる。このような筐体は、軽量で、剛性が高く、電磁波シールド性、リサイクル性が良好なばかりか、薄肉化も可能であり、生産性も高いという優れた特徴を有する。
【0012】
しかしながら、マグネシウムを用いた筐体は金属であるため、振動減衰率が低く、制振性に欠けるという欠点を有する。パーソナルコンピュータは、回転駆動するハードディスクなどを内蔵するため、筐体が制振性に乏しいとこのような駆動部品の振動が不快な振動となって、直接入力する人の手に伝わるなどの不具合を生じる。
【0013】
また、樹脂部品と異なり、弾性率が高すぎるために、部品の結合にスナップオンなどの手法を用いることができず、ねじ止めを多用する必要がある。ねじ止めの多用は組立工数の増加を招くばかりか、耐用年数をすぎた機器を廃棄する際に分解を難しくし、結果としてリサイクルコストの上昇を招くという欠点を有する。
【0014】
【発明が解決しようとする課題】
本発明の目的は、従来の筐体の上述した問題点を解決し、薄肉で、強度や剛性が高く、電磁波シールド性に優れ、しかも外観に優れた意匠性を有する筐体用繊維強化熱可塑性樹脂成形用材料及びそれを用いた筐体を提供することにある。
【0015】
【課題を解決するための手段】
上記の目的を達成するために、発明者らは、鋭意研究の結果、織布の形態をなす強化繊維が用いられ、かつ一定レベル以上の物理的特性を有する成形用材料が有用であることを見出し、本発明に到達した。すなわち、本発明は、以下のような構成からなる。
(1) 織布の形態をなす強化繊維に熱可塑性樹脂が含浸されてなる繊維強化熱可塑性樹脂材料からなる筐体用繊維強化熱可塑性樹脂材料であって、該繊維強化熱可塑性樹脂材料が、曲げ弾性率15GPa以上、曲げ強度30MPa以上、衝撃吸収エネルギー15J/mm以上であり、熱可塑性樹脂を含浸した強化繊維束を製織した布帛を加熱、溶融、含浸、冷却および固化することによって得られたものであることを特徴とする筐体用繊維強化熱可塑性樹脂成形用材料。
(2) 強化繊維の体積含有率が30〜60%である前記(1)記載の筐体用繊維強化熱可塑性樹脂成形用材料。
(3) 経糸および緯糸の打ち込み本数がいずれも0.5〜10本/inchである前記(1)または(2)に記載の筐体用繊維強化熱可塑性樹脂成形用材料。
(4) 強化繊維の扁平度が5以上である前記(1)〜(3)のいずれかに記載の筐体用繊維強化熱可塑性樹脂成形用材料。
(5) 強化繊維のクリンプ率が0.2以下である前記(1)〜(4)のいずれかに記載の筐体用繊維強化熱可塑性樹脂成形用材料。
(6) 三次元変角光度計を用いて測定した輝度分布が180°の周期を持って変化する前記(1)〜(5)のいずれかに記載の筐体用繊維強化熱可塑性樹脂成形用材料。
(7) 輝度計を用いて測定した経糸もしくは緯糸の繊維軸方向の輝度が0.1inch若しくは2inchの周期を有するパルス状の波形となることを特徴とする前記(1)〜(6)のいずれかに記載の筐体用繊維強化熱可塑性樹脂成形用材料。
(8) 前記(1)〜(7)記載の筐体用材料を一部若しくは全体に用いられたことを特徴とする電子・電気機器用筐体。
【0016】
【発明の実施の形態】
本発明の繊維強化熱可塑性樹脂成形材料(以下、FRTPと表す)は、強化繊維の体積含有率(以下、Vfと表す)が30〜60%であることが好ましい。強化繊維のVfが30%未満であると、強度、剛性が不足したり、衝撃力を受けた際にこれに抗する強化繊維が少ないため、耐衝撃性に劣るという結果を招く。強化繊維のVfが60%を越えると樹脂の含浸が不良となりやすくなり、含浸不足による強度低下を招くおそれがある。なお、強化形態が織布であり、連続繊維を用いていることから、強化繊維の強度,剛性を十分に利用することが出来る。
【0017】
補強繊維として用いる織布の経糸及び緯糸の打ち込み本数は、各0.5〜10本/inchにある織布を用いることが好ましい。0.5本/inch未満では事実上、強化繊維束の幅が広いため、製織が困難である。一方、10本/inchより大きなものは、強化繊維の直進性が劣り、織布の厚みが厚くなり、筐体に最適な薄肉の厚みを得ることが困難となる。
【0018】
FRTPにおける扁平度及びクリンプ率は、FRTPから切り出した小片において、一片の長さが25.4mm以上あり、しかも経緯糸のいずれかの繊維軸に対して垂直な断面を研磨し、これを50倍以上に拡大して観察した結果に基づいて求めることが出来る。該断面観察写真の例を図1に示す。
【0019】
本発明における扁平度とは、上述の断面観察写真を模式的に表した図2に示すような、織物を構成する繊維束の繊維軸に垂直な断面における縦横比(長尺(a)/短尺(b))で定義される値である。本発明における扁平度は5以上であることが好ましい。強化繊維束が5未満の場合は、繊維束間に熱可塑性樹脂のたまり(樹脂リッチ部)ができやすくなり、これが欠陥となって強度の低下を生じることがある。
【0020】
同様に、本発明におけるクリンプ率とは、図2の模式図に示すような経糸もしくは緯糸が、緯糸もしくは経糸を越える際の厚み(d)/ピッチ(c)の比で定義された値である。本発明におけるクリンプ率は0.2以下であることが好ましい。強化繊維束のクリンプ率が0.2より大きいと、強化繊維束のうねりが大きくなり直進性が低下するため、成形品中で強化繊維の遊びが生じ、ひいては剛性低下を引き起こす。また同様の理由で、衝撃力が加わった場合、繊維の強力の寄与率が低下し、衝撃吸収エネルギーが低下することがある。
【0021】
また特徴ある外観を発現するために、例えば三次元変角光度計(村上色彩研究所製GP−200)で測定した輝度が周期的に変化することが好ましく、例えば、パーソナル画像処理システム(株式会社ピアス製、PIAS LA−500)などを用い、FRTPの表面をCCDで撮影し、画像処理した画像における繊維軸方向の輝度が繊維束間の距離と関係つけられる周期でパルス状に変化することが好ましい。
【0022】
さらに三次元変角高度計を用いて二次元反射光分布測定により測定した輝度が、図3に示すような180°の周期で変わることにより、図4(a)及び(b)のようにみる方向により様々な様相を見せるような特徴のある表面性を有することが出来る。このような様相は、強化繊維の繊維軸方向と円周方向に存在する光学異方性により発現するものと想像される。
【0023】
また、経糸もしくは緯糸の繊維軸方向の輝度が図5に示すように一定の周期を持って変化することにより、図6のような特徴のある外観を発現することが出来る。このような外観は、強化繊維束を構成する強化繊維一本一本(モノフィラメント)の直進性に優れ、繊維同士の平行度が高いことで得られるものと考えられ、これらに優れるほどパルスの立ち上がりが鋭くなり、上下限のピーク差が大きくなるためと考えられる。
【0024】
本発明のFRTPを得るためには、少なくとも1枚以上の強化繊維織物に熱可塑性樹脂を含浸するか、熱可塑性樹脂と強化繊維の混繊糸を製織した布帛を加熱、溶融、含浸、冷却、固化する、または熱可塑性樹脂を含浸した強化繊維束を製織した布帛を用いることにより得ることができる。
【0025】
本発明のFRTPにおいて、強化繊維としては、例えば、ガラス繊維、炭素繊維,炭化珪素繊維,アルミナ繊維、金属ワイヤーなどの無機繊維や、金属繊維、アラミド繊維、高分子量ポリエチレン繊維、PBO繊維などの有機繊維などを用いることができる。なかでも、筐体として用いる場合は、電磁波シールド性の関係から、炭素繊維や、金属繊維を用いることが望ましい。さらに軽量化の観点、並びに上述の光学異方性を有する観点から、炭素繊維を用いることがより好ましい。
【0026】
該強化繊維に組み合わせる樹脂としては、熱硬化性樹脂や熱可塑性樹脂が挙げられる。リサイクルの面から、熱可塑性樹脂が好ましく、さらにコストの面から、ポリプロピレンなどのオレフィン樹脂、ナイロンなどのポリアミド樹脂が好ましい。難燃性が特に重要な場合には、ポリフェニレンスルファイドなどの難燃性樹脂,耐衝撃性が重要な場合にはポリカーボネートや、ポリメチルメタクリレートなどを用いることが好ましい。そして、必要に応じて、これらの樹脂に耐候性の向上や、耐紫外線劣化防止、難燃性の向上を目的として、添加剤などが付与されていても何ら問題はない。
【0027】
また、上記の素材を用いて、上述のFRTPを得る手段としては、例えば、少なくとも1枚以上の強化繊維織物とシート上の熱可塑性樹脂を金型内で加熱・加圧・溶融、含浸し、冷却・固化して板状のFRTPを得ることができる。この場合は、樹脂の融点よりも高い温度を保持したまま金型を常温まで冷却し固化することによって得ることができる。
【0028】
さらに、熱可塑性樹脂繊維と強化繊維をあらかじめ混繊した混繊糸を製織した布帛を、熱可塑性樹脂繊維の融点よりも高い温度に加熱された金型で2.5〜5.0MPaの圧力をかけた状態のままで、加熱・加圧・溶融、含浸、冷却、固化することにより得ることができる。さらに望ましくは、解じょ撚りが生じないように解じょした後に、開繊した強化繊維を、圧力下で熱可塑性樹脂が充満したダイ内に通し、引き取った熱可塑性樹脂が含浸したテープ状の強化繊維束を作成し、これを製織した布帛を熱可塑性樹脂の融点よりも高い温度に加熱された金型内で、0.2〜2.5MPaの低い圧力を保持した状態で、加熱・加圧・溶融、含浸し、冷却・固化したものを用いることにより得ることができる。このようにして得られたFRTPは、特に強化繊維の直進性に優れ、モノフィラメントの平行度に優れたものを得ることができる。
【0029】
なお、FRTPを得る手段として、金型を用いる方式の他に、例えばダブルベルトプレスや、プレス併用の間欠式ダブルベルトプレスなどを用いたとしても何ら問題はない。さらに滑り止めを目的として、表面に細かな凹凸や、シボ加工などが施されていることがより好ましい。
【0030】
本発明のFRTPは、曲げ弾性率15GPa以上、曲げ強度30MPa以上、衝撃吸収エネルギー15J/mm以上であることを特徴としている。本発明のFRTPは剛性があり、耐衝撃性に優れた筐体を得ることが出来る。曲げ弾性率が15GPa未満、曲げ強度が300MPa未満、もしくは衝撃吸収エネルギーが15J/mm未満であると、剛性が低いために多くのリブを必要とし、薄肉化が困難であったり、筐体に圧迫荷重がかかったときに変形が大きく、筐体に組み込まれた液晶表示板を変形させ、これを破壊するおそれがある。そして、また机の角などにぶつけた場合、壊れやすく、内部を保護することができない。
【0031】
上記のような特徴を有する本発明のFRTPは、電子・電気機器用筐体として用いることが特に有用である。ここで、電子・電気機器とは、例えば、ディスクトップコンピュータや、ラップトップコンピュータ、ノートパソコン、サブノートパソコンを始め、ワードプロセッサ、パーソナルデジタルアシスタント,携帯電話、携帯用コンピュータ周辺機器(ハードディスク、リムーバブルディスク、プリンター、液晶モニター)、液晶テレビ、デジタルカメラ、デジタルビデオ、携帯用カセットテープレコーダー、携帯用ミニディスクプレーヤー、携帯用コンパクトディスクプレーヤーなどが挙げられ、広く電子機器類全般を指すものである。
【0032】
【実施例】
以下、実施例により、本発明を詳細に説明する。なお、本発明は、実施例により特に制限されるものではない。なお、実施例において、曲げ弾性率、曲げ強度はJIS K 7055、衝撃吸収エネルギーは、ASTM D3029により、輝度分布は例えば、「最近の光沢度測定方法」(沢路 雅夫,染色工業,Vol.18,No.11,p46〜55)などに従い測定を行った。
【0033】
[実施例1]
炭素繊維ロービングを開繊し、220℃のポリプロピレンが充満されたダイ内に通し、幅10mm、厚み0.1mm、繊維体積含有率50%のテープ状の成形材料を得た。この成形材料を製織し、この織物を3層積層し、220℃、10kgf/cm2 の加熱・加圧下で5分間加熱、冷却して繊維強化熱可塑性樹脂平板(打ち込み本数2.25本/inch、偏平度87.5、クリンプ率0.0085)を得た。この平板の断面観察の結果を図7に、物性ならびに評価結果を表1に示す。またこの材料を用いたコンピュータの筐体の例を図8に示す。
【0034】
[実施例2]
炭素繊維とポリアミド6の混繊糸織物を3層積層し、250℃、20kgf/cm2 の加熱・加圧下で10分間加熱し、冷却して繊維強化熱可塑性樹脂平板(打ち込み本数10本/inch、偏平度は5.4、クリンプ率は0.0595)を得た。物性ならびに評価結果を同じく表1に示す。
【0035】
[実施例3]
ガラス繊維ロービングを220℃のポリプロピレンが充満されたダイ内に通し、幅10mm、厚み0.1mm、繊維体積含有率50%のテープ状の成形材料を得た。この成形材料を製織した織物を2層積層し、220℃、10kgf/cm2 の加熱・加圧下で5分間加熱した後、冷却し繊維強化熱可塑性樹脂複合材料平板(打ち込み本数2.25本/inch、扁平度75、クリンプ率0.0104)を得た。物性ならびに評価結果を表1に示す。
【0036】
[比較例1]
打ち込み本数40本/inchのガラス繊維織物(13層)とポリアミド6フィルムを交互にスタッキングしたものを250℃、15kgf/cm2 の加熱・加圧下で10分間加熱し、冷却して繊維強化熱可塑性樹脂複合材料平板を得た。この平板の扁平度は6.39、クリンプ率は0.24であった。この平板の物性並びに評価結果を表1に示す。
【0037】
[比較例2]
市販のスタンパブルシート(ガラス繊維/ポリプロピレン、Vf19%)を220℃、5kgf/cm2 の加熱・加圧下で1分間加熱し、冷却して繊維強化熱可塑性樹脂複合材料平板を得た。結果を表1に示す。
【0038】
[比較例3]
市販の炭素繊維添加ポリアミド6の射出成形用材料を射出成形し、繊維強化熱可塑性樹脂複合材料平板を得た。評価結果を表1に示す。
【0039】
【表1】

Figure 0003685295
【0040】
【発明の効果】
上述したように、本発明の繊維強化熱可塑性樹脂成形用材料は、射出成形品と比較して強度、剛性に優れ、良好な耐衝撃性を有する。また、スタンパブルシートや、シートモールディングコンパウンドで発生する外観上見苦しいフローパターン(流動の痕跡)や、ファイバーパターン(繊維の右記)、あばたのような表面欠陥を押さえることができ、折り目の通った良好な外観を得ることができる。さらに、このような良好な外観が得られることにより、塗装の必要性が無く、リサイクルにおいても連続した強化繊維を用いた熱可塑性樹脂複合材料であるため、そのままペレタイズを行い、射出成形用材料として再利用することが可能であり、リサイクルコスト並びにエネルギーを押さえることが容易である。
【図面の簡単な説明】
【図1】 本発明の繊維強化熱可塑性樹脂材料の一例における断面観察者浸を示す図である。
【図2】 本発明の繊維強化熱可塑性樹脂成形用材料の一例における断面観察写真に関する模式図である。
【図3】 本発明の繊維強化熱可塑性樹脂材料の一例に関する180の周期で変動する輝度分布を示す図である。
【図4】 本発明の繊維強化熱可塑性樹脂成形材料の一例に関する光の入射角により外観が変わることを示す図である。
【図5】 本発明の繊維強化熱可塑性樹脂成形材料の一例に関する繊維軸方向における輝度分布を示す図である。
【図6】 本発明の繊維強化熱可塑性樹脂成形用材料の一例に関する表面観察者浸を示す図である。
【図7】 本発明の実施例1で得られた繊維強化熱可塑性樹脂平板の断面観察写真を示す図である。
【図8】 本発明の実施例1で得られた熱可塑性樹脂平板を用いたコンピュータ用筐体の観察写真を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber reinforced thermoplastic resin molding material, a housing material suitable for various portable electronic devices such as a personal computer and a word processor, and a portable terminal such as a mobile phone, and the housing.
[0002]
[Prior art]
In the age of computerization, with the advent of the multimedia network era, various portable electronic devices and portable terminals, which are portable information / communication devices, are being made lighter, thinner, and smaller, and lighter to improve portability. It has become a supreme proposition (Nikkei Mechanical, 1996, No. 477, p70-83). Under such circumstances, the housing material is required to be capable of realizing rigidity and impact resistance to protect internal parts even with a thickness of about 1 mm, and to be processed into a thin wall and recyclable. Under such circumstances, the following are listed as conventional techniques.
[0003]
For example, Japanese Patent Publication No. 5-58371 discloses carbon fiber reinforced thermoset composites (hereinafter referred to as CFRTS) in which carbon fibers having a fiber length of 10 to 100 mm are randomly oriented in a plane. A molded product using a sheet-like prepreg consisting of This molded article has the following drawbacks.
[0004]
That is, the molded product has a disadvantage that the manufacturing cost is high because the thermosetting resin flows and cures in the mold and the curing time is as long as 3 minutes or longer and the molding cycle is long. Further, since the thermosetting resin is used as a matrix, it is difficult to recycle the molded product. In some cases, defective moldings and scraps are collected and heated to 400 to 600 ° C., for example, a thermosetting resin such as a phenolic resin is separated from carbon fibers, and the carbon fibers are reused. The vaporized thermosetting resin is recovered in gas or liquid, burned to eliminate toxicity, and then released to the atmosphere (Nikkei Mechanical, 1996, No. 477, p70-83). . However, the above recycling method requires a lot of energy to separate the carbon fiber and the thermosetting resin, and has a disadvantage that the recycling efficiency is poor.
[0005]
Therefore, as a measure for lowering the manufacturing cost, first, an injection molding material (Short Carbon Fiber Reinforced Thermoplastic Composites), which is easily molded, for example, a thermoplastic resin such as polycarbonate, ABS, or an alloy thereof reinforced with carbon fiber (hereinafter referred to as “Short Carbon Fiber Reinforced Thermoplastic Composites”) SCFRTP). In this case, when performing injection molding, the carbon fiber is cut to a length of 1 mm or less when passing through the cylinder or gate of the injection molding machine, or the fiber content cannot be increased. Therefore, the molded product has the disadvantage that the reinforcing efficiency is poor and the electromagnetic shielding characteristics are deteriorated even though expensive carbon fibers are used.
[0006]
Further, in order to compensate for the decrease in strength and rigidity, a rib stand for imparting rigidity to the molded product is required. Therefore, it is difficult to reduce the thickness, and it has become difficult to satisfy the recent demands for lightness and reduction. And since the length of the carbon fiber in a molded article is 1 mm or less already, when using for recycling, there are few merits and there is no disposal method other than incineration disposal.
[0007]
In order to overcome the above drawbacks such as CFRTS and SCFRTP, JP-A-8-244054 discloses carbon fibers having a length of 3 to 100 mm arranged in a random direction in a plane parallel to the plate surface and polyphenylene sulfate. A carbon fiber strong thermoplastic resin molding material (Carbon Mat Reinfoeced Thermoplastic; hereinafter referred to as CMT) using Fido (hereinafter abbreviated as PPS) is proposed.
[0008]
The molding material is preheated, put into a mold kept at a certain temperature, and molded by pressurization, cooling and solidification (stamping molding), and therefore has a characteristic that the fiber is hardly broken. A molded product molded by this material and molding method is said to have a high strength and rigidity, excellent electromagnetic shielding characteristics and a thin molded product because long reinforcing fibers are mixed in the resin.
[0009]
The molding material is made of PPS-coated carbon fibers in which PPS films are superposed on defibrating mats of reinforced fibers or chopped strand mats, and these are heated and pressurized to be impregnated, or carbon fiber bundles are coated with PPS. After preheating, it is processed into a tape shape through a pressure roll, and the tape is cut, sprayed into a mold, and compression molded. However, it is very difficult to impregnate defibrating mats and chopped strand mats with PPS, which is a high-viscosity thermoplastic resin, resulting in insufficient impregnation of the resin between the reinforcing fibers and the reinforcing fibers. There are many. If the resin is not sufficiently impregnated, defects such as cavities will occur, and defects such as pinholes and ribs will occur on the surface of the molded product, which not only withstands the appearance of the housing but also causes a decrease in strength. There is.
[0010]
Furthermore, the manufacturing method as described above has a drawback that the fiber pattern may remain due to the reinforcing fibers floating on the surface of the molded product, which impairs the appearance of the molded product. In order to conceal such defects that impair the surface properties, it is necessary to perform urethane coating on the surface of the molded product, which not only increases the cost, but also requires the paint to be peeled off during recycling, which increases the recycling cost. Will be invited.
[0011]
In recent years, there have also been cases where magnesium, which is the lightest metal that can be used as a structural material, is injection-molded (thixomolding). Such a casing is excellent in that it is lightweight, has high rigidity, has good electromagnetic shielding properties and recyclability, can be thinned, and has high productivity.
[0012]
However, since the casing using magnesium is a metal, it has a drawback that the vibration damping rate is low and the damping performance is lacking. Since personal computers incorporate a hard disk that rotates, etc., if the housing is poorly damped, the vibrations of these drive parts become unpleasant vibrations that are transmitted directly to the hand of the user. Arise.
[0013]
In addition, unlike a resin component, since the elastic modulus is too high, a method such as snap-on cannot be used for joining the components, and it is necessary to use many screws. The heavy use of screwing not only increases the assembly man-hours, but also has the disadvantage that it becomes difficult to disassemble when the equipment whose service life has passed is discarded, resulting in an increase in recycling costs.
[0014]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of conventional casings, and is thin, high in strength and rigidity, excellent in electromagnetic shielding properties, and has excellent design in appearance and fiber reinforced thermoplastics for casings. It is providing the resin molding material and the housing | casing using the same.
[0015]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventors have found that, as a result of intensive research, a reinforcing material in the form of a woven fabric is used, and a molding material having a physical property of a certain level or more is useful. The headline, the present invention has been reached. That is, the present invention has the following configuration.
(1) A fiber reinforced thermoplastic resin material for a casing made of a fiber reinforced thermoplastic resin material obtained by impregnating a thermoplastic resin into a reinforced fiber in the form of a woven fabric, the fiber reinforced thermoplastic resin material comprising: flexural modulus 15GPa or more, bending strength 30MPa or more, impact absorption energy 15 J / mm or more der is, the thermoplastic resin heated fabric was woven reinforcing fiber bundle impregnated, melt impregnation, obtained by cooling and solidifying A fiber-reinforced thermoplastic resin molding material for a casing , characterized by being
(2) The fiber-reinforced thermoplastic resin molding material for a casing according to (1), wherein the volume content of the reinforcing fiber is 30 to 60%.
(3) The fiber-reinforced thermoplastic resin molding material for a casing according to the above (1) or (2), wherein the number of warps and wefts driven is 0.5 to 10 / inch.
(4) The fiber-reinforced thermoplastic resin molding material for a casing according to any one of (1) to (3), wherein the flatness of the reinforcing fiber bundle is 5 or more.
(5) The fiber-reinforced thermoplastic resin molding material for a casing according to any one of (1) to (4), wherein the crimp ratio of the reinforcing fibers is 0.2 or less.
(6) The fiber-reinforced thermoplastic resin molding for a casing according to any one of the above (1) to (5), wherein the luminance distribution measured using a three-dimensional goniophotometer changes with a period of 180 ° material.
(7) Any one of the above (1) to (6), wherein the brightness in the fiber axis direction of the warp or weft measured using a luminance meter is a pulse waveform having a period of 0.1 inch or 2 inch A fiber-reinforced thermoplastic resin molding material for a casing according to claim 1 .
(8) A housing for electronic / electric equipment, wherein the housing material according to any one of (1) to (7) is used in part or in whole.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The fiber-reinforced thermoplastic resin molding material (hereinafter referred to as FRTP) of the present invention preferably has a volume content of reinforcing fibers (hereinafter referred to as Vf) of 30 to 60%. If the Vf of the reinforcing fiber is less than 30%, the strength and rigidity are insufficient, or there are few reinforcing fibers that resist this when subjected to an impact force, resulting in poor impact resistance. If the Vf of the reinforcing fiber exceeds 60%, the impregnation of the resin tends to be poor, and the strength may be reduced due to insufficient impregnation. In addition, since the reinforcing form is a woven fabric and continuous fibers are used, the strength and rigidity of the reinforcing fibers can be fully utilized.
[0017]
It is preferable to use a woven fabric having a warp and a weft of the woven fabric used as the reinforcing fiber at 0.5 to 10 / inch. If it is less than 0.5 / inch, weaving is difficult because the width of the reinforcing fiber bundle is practically wide. On the other hand, when the number is greater than 10 / inch, the straightness of the reinforcing fiber is inferior, the thickness of the woven fabric is increased, and it is difficult to obtain the optimum thin thickness for the casing.
[0018]
The flatness and crimp rate in FRTP are as follows. In a small piece cut out from FRTP, the length of one piece is 25.4 mm or more, and the cross section perpendicular to any fiber axis of the warp is polished 50 times. It can obtain | require based on the result expanded and observed above. An example of the cross-sectional observation photograph is shown in FIG.
[0019]
The flatness in the present invention is the aspect ratio (long (a) / short) in the cross section perpendicular to the fiber axis of the fiber bundle constituting the woven fabric as shown in FIG. It is a value defined in (b)). The flatness in the present invention is preferably 5 or more. When the reinforcing fiber bundle is less than 5, a pool of thermoplastic resin (resin rich portion) is likely to be formed between the fiber bundles, and this may become a defect and cause a decrease in strength.
[0020]
Similarly, the crimp rate in the present invention is a value defined by a ratio of thickness (d) / pitch (c) when warp or weft exceeds the weft or warp as shown in the schematic diagram of FIG. . The crimp rate in the present invention is preferably 0.2 or less. When the crimp ratio of the reinforcing fiber bundle is larger than 0.2, the swell of the reinforcing fiber bundle becomes large and the straightness is lowered, so that the play of the reinforcing fiber occurs in the molded article, and the rigidity is lowered. For the same reason, when impact force is applied, the contribution ratio of fiber strength may be reduced, and impact absorption energy may be reduced.
[0021]
In order to develop a characteristic appearance, it is preferable that the luminance measured by, for example, a three-dimensional goniophotometer (GP-200 manufactured by Murakami Color Research Laboratory) changes periodically. The surface of FRTP is photographed with a CCD using PIAS LA-500 (Pierce, etc.), and the brightness in the fiber axis direction in the image processed image changes in a pulse shape with a period related to the distance between the fiber bundles. preferable.
[0022]
Further, the luminance as measured by the two-dimensional reflected light distribution measurement using a three-dimensional variable angle altimeter changes with a period of 180 ° as shown in FIG. 3, so that the directions as shown in FIGS. 4 (a) and (b) are obtained. Therefore, it is possible to have a surface property with a characteristic that shows various aspects. Such an aspect is imagined to be manifested by optical anisotropy existing in the fiber axis direction and circumferential direction of the reinforcing fiber.
[0023]
Further, when the brightness in the fiber axis direction of the warp or weft changes with a constant period as shown in FIG. 5, a characteristic appearance as shown in FIG. 6 can be expressed. Such an appearance is considered to be obtained by excellent straightness of each reinforcing fiber constituting the reinforcing fiber bundle (monofilament) and high parallelism between the fibers. This is thought to be because the peak difference between the upper and lower limits becomes large.
[0024]
In order to obtain the FRTP of the present invention, at least one reinforcing fiber woven fabric is impregnated with a thermoplastic resin, or a fabric woven with a mixed yarn of a thermoplastic resin and a reinforcing fiber is heated, melted, impregnated, cooled, It can be obtained by using a fabric which is solidified or woven with a bundle of reinforcing fibers impregnated with a thermoplastic resin.
[0025]
In the FRTP of the present invention, examples of reinforcing fibers include inorganic fibers such as glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, and metal wires, and organic fibers such as metal fibers, aramid fibers, high molecular weight polyethylene fibers, and PBO fibers. A fiber etc. can be used. Especially, when using as a housing | casing, it is desirable to use carbon fiber or a metal fiber from the relationship of electromagnetic shielding property. Furthermore, it is more preferable to use carbon fiber from the viewpoint of weight reduction and the viewpoint of having the optical anisotropy described above.
[0026]
Examples of the resin combined with the reinforcing fiber include a thermosetting resin and a thermoplastic resin. From the viewpoint of recycling, a thermoplastic resin is preferable, and from the viewpoint of cost, an olefin resin such as polypropylene and a polyamide resin such as nylon are preferable. It is preferable to use a flame retardant resin such as polyphenylene sulfide when flame retardancy is particularly important, and polycarbonate or polymethyl methacrylate when impact resistance is important. And if necessary, these resins may be added with additives for the purpose of improving weather resistance, preventing UV degradation, and improving flame retardancy.
[0027]
Further, as a means for obtaining the above-mentioned FRTP using the above-mentioned material, for example, at least one reinforcing fiber fabric and a thermoplastic resin on the sheet are heated, pressurized, melted, impregnated in a mold, A plate-like FRTP can be obtained by cooling and solidification. In this case, it can be obtained by cooling and solidifying the mold to room temperature while maintaining a temperature higher than the melting point of the resin.
[0028]
Further, a cloth woven from a mixed yarn in which thermoplastic resin fibers and reinforcing fibers are mixed in advance is applied to a pressure of 2.5 to 5.0 MPa with a mold heated to a temperature higher than the melting point of the thermoplastic resin fibers. It can be obtained by heating, pressurizing, melting, impregnating, cooling and solidifying in the applied state. More preferably, after unwinding so as not to cause untwisting, the opened reinforcing fiber is passed through a die filled with a thermoplastic resin under pressure, and a tape-shaped impregnated with the taken-out thermoplastic resin is impregnated. A reinforcing fiber bundle was prepared, and the fabric woven from this was heated and heated in a mold heated to a temperature higher than the melting point of the thermoplastic resin while maintaining a low pressure of 0.2 to 2.5 MPa. It can be obtained by using pressure / melting, impregnation, cooling and solidification. The FRTP obtained in this way is particularly excellent in the straightness of the reinforcing fiber and can be obtained in which the monofilament has excellent parallelism.
[0029]
As a means for obtaining FRTP, there is no problem even if, for example, a double belt press or an intermittent double belt press combined with a press is used in addition to a method using a mold. Further, for the purpose of preventing slipping, it is more preferable that the surface is subjected to fine irregularities or texture processing.
[0030]
The FRTP of the present invention is characterized by a bending elastic modulus of 15 GPa or more, a bending strength of 30 MPa or more, and an impact absorption energy of 15 J / mm or more. The FRTP of the present invention is rigid and can provide a casing with excellent impact resistance. If the flexural modulus is less than 15 GPa, the flexural strength is less than 300 MPa, or the impact absorption energy is less than 15 J / mm, the rigidity is low and many ribs are required, making it difficult to reduce the thickness or pressing the casing. When a load is applied, the deformation is large, and there is a possibility that the liquid crystal display panel incorporated in the housing is deformed and destroyed. And when it hits the corner of a desk, it is fragile and the inside cannot be protected.
[0031]
The FRTP of the present invention having the above-described features is particularly useful when used as a casing for electronic / electric equipment. Here, electronic / electrical devices include, for example, desktop computers, laptop computers, notebook computers, sub-notebook computers, word processors, personal digital assistants, mobile phones, portable computer peripheral devices (hard disks, removable disks, Printers, liquid crystal monitors), liquid crystal televisions, digital cameras, digital videos, portable cassette tape recorders, portable mini disc players, portable compact disc players, and the like, and widely refer to electronic devices in general.
[0032]
【Example】
Hereinafter, the present invention will be described in detail by way of examples. The present invention is not particularly limited by the examples. In the examples, the flexural modulus and flexural strength are in accordance with JIS K 7055, the impact absorption energy is in accordance with ASTM D3029, and the luminance distribution is, for example, “Recent Gloss Measurement Method” (Masao Sawaji, Dyeing Industry, Vol. 18). , No. 11, p46-55).
[0033]
[Example 1]
The carbon fiber roving was opened and passed through a die filled with 220 ° C. polypropylene to obtain a tape-shaped molding material having a width of 10 mm, a thickness of 0.1 mm, and a fiber volume content of 50%. Weaving this molding material, laminating three layers of this woven fabric, heating and cooling for 5 minutes at 220 ° C. under 10 kgf / cm 2 heating and pressurizing, fiber reinforced thermoplastic resin flat plate (number of driven 2.25 / inch) , Flatness 87.5, crimp rate 0.0085). FIG. 7 shows the results of cross-sectional observation of this flat plate, and Table 1 shows the physical properties and evaluation results. An example of a computer housing using this material is shown in FIG.
[0034]
[Example 2]
Three layers of carbon fiber and polyamide 6 mixed yarn fabric are laminated, heated for 10 minutes under heating / pressurization at 250 ° C. and 20 kgf / cm 2 , cooled, and fiber reinforced thermoplastic resin flat plate (number of driven 10 / inch) The flatness was 5.4 and the crimp rate was 0.0595). The physical properties and evaluation results are also shown in Table 1.
[0035]
[Example 3]
The glass fiber roving was passed through a die filled with polypropylene at 220 ° C. to obtain a tape-shaped molding material having a width of 10 mm, a thickness of 0.1 mm, and a fiber volume content of 50%. Two layers of fabrics woven with this molding material are laminated, heated at 220 ° C. and 10 kgf / cm 2 for 5 minutes under heating and pressurization, then cooled and a fiber reinforced thermoplastic resin composite material plate (number of driven 2.25 / inch, flatness 75, crimp rate 0.0104). Table 1 shows the physical properties and evaluation results.
[0036]
[Comparative Example 1]
40 fiber / inch glass fiber fabric (13 layers) and polyamide 6 film stacked alternately are heated for 10 minutes at 250 ° C under 15kgf / cm 2 heating and pressurization, cooled and fiber reinforced thermoplastic A resin composite material flat plate was obtained. The flatness of this flat plate was 6.39, and the crimp rate was 0.24. Table 1 shows the physical properties and evaluation results of this flat plate.
[0037]
[Comparative Example 2]
A commercially available stampable sheet (glass fiber / polypropylene, Vf 19%) was heated at 220 ° C. and 5 kgf / cm 2 for 1 minute under heating and pressurization, and cooled to obtain a fiber reinforced thermoplastic resin composite material flat plate. The results are shown in Table 1.
[0038]
[Comparative Example 3]
A commercially available carbon fiber-added polyamide 6 injection molding material was injection molded to obtain a fiber reinforced thermoplastic resin composite plate. The evaluation results are shown in Table 1.
[0039]
[Table 1]
Figure 0003685295
[0040]
【The invention's effect】
As described above, the fiber-reinforced thermoplastic resin molding material of the present invention is superior in strength and rigidity as compared with injection-molded products, and has good impact resistance. In addition, it can control surface defects such as stampable sheets, unsightly flow patterns (flowing traces), fiber patterns (right of fibers), and flutters that occur in sheet molding compounds, and has good creases. Can be obtained. Furthermore, since such a good appearance is obtained, there is no need for coating, and since it is a thermoplastic resin composite material using continuous reinforcing fibers even in recycling, it is pelletized as it is as a material for injection molding. It can be reused, and it is easy to reduce the recycling cost and energy.
[Brief description of the drawings]
FIG. 1 is a diagram showing cross-section observer immersion in an example of a fiber-reinforced thermoplastic resin material of the present invention.
FIG. 2 is a schematic view relating to a cross-sectional observation photograph in an example of a fiber-reinforced thermoplastic resin molding material of the present invention.
FIG. 3 is a diagram showing a luminance distribution that fluctuates with a period of 180 regarding an example of the fiber-reinforced thermoplastic resin material of the present invention.
FIG. 4 is a diagram showing that the appearance changes according to the incident angle of light with respect to an example of the fiber-reinforced thermoplastic resin molding material of the present invention.
FIG. 5 is a diagram showing a luminance distribution in the fiber axis direction regarding an example of the fiber-reinforced thermoplastic resin molding material of the present invention.
FIG. 6 is a diagram showing surface observer immersion for an example of a fiber-reinforced thermoplastic resin molding material of the present invention.
FIG. 7 is a view showing a cross-sectional observation photograph of the fiber-reinforced thermoplastic resin flat plate obtained in Example 1 of the present invention.
FIG. 8 is a view showing an observation photograph of a computer case using the thermoplastic resin flat plate obtained in Example 1 of the present invention.

Claims (8)

織布の形態をなす強化繊維に熱可塑性樹脂が含浸されてなる繊維強化熱可塑性樹脂材料からなる筐体用繊維強化熱可塑性樹脂材料であって、該繊維強化熱可塑性樹脂材料が、曲げ弾性率15GPa以上、曲げ強度30MPa以上、衝撃吸収エネルギー15J/mm以上であり、熱可塑性樹脂を含浸した強化繊維束を製織した布帛を加熱、溶融、含浸、冷却および固化することによって得られたものであることを特徴とする筐体用繊維強化熱可塑性樹脂成形用材料。A fiber reinforced thermoplastic resin material for a casing made of a fiber reinforced thermoplastic resin material in which a reinforced fiber in the form of a woven fabric is impregnated with a thermoplastic resin, wherein the fiber reinforced thermoplastic resin material has a bending elastic modulus. 15GPa or more, bending strength 30MPa or more, impact absorption energy 15 J / mm or more der is, the thermoplastic resin heated fabric obtained by weaving a reinforcing fiber bundle impregnated, melt impregnation, which was obtained by cooling and solidifying A material for molding a fiber-reinforced thermoplastic resin for a casing , characterized by being. 強化繊維の体積含有率が30〜60%である請求項1記載の筐体用繊維強化熱可塑性樹脂成形用材料。2. The fiber-reinforced thermoplastic resin molding material for a casing according to claim 1, wherein the volume content of the reinforcing fiber is 30 to 60%. 経糸および緯糸の打ち込み本数がいずれも0.5〜10本/inchである請求項1または2に記載の筐体用繊維強化熱可塑性樹脂成形用材料。The material for molding a fiber-reinforced thermoplastic resin for a casing according to claim 1 or 2, wherein the number of warps and wefts driven is 0.5 to 10 / inch. 強化繊維の扁平度が5以上である請求項1〜3のいずれかに記載の筐体用繊維強化熱可塑性樹脂成形用材料。The flatness of the reinforcing fiber bundle is 5 or more. The fiber-reinforced thermoplastic resin molding material for a casing according to any one of claims 1 to 3. 強化繊維のクリンプ率が0.2以下である請求項1〜4のいずれかに記載の筐体用繊維強化熱可塑性樹脂成形用材料。5. The casing fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the reinforcing fiber has a crimp rate of 0.2 or less. 三次元変角光度計を用いて測定した輝度分布が180°の周期を持って変化する請求項1〜5のいずれかに記載の筐体用繊維強化熱可塑性樹脂成形用材料。The fiber-reinforced thermoplastic resin molding material for a casing according to any one of claims 1 to 5, wherein the luminance distribution measured using a three-dimensional goniophotometer changes with a period of 180 °. 輝度計を用いて測定した経糸もしくは緯糸の繊維軸方向の輝度が0.1inch若しくは2inchの周期を有するパルス状の波形となることを特徴とする請求項1〜6のいずれかに記載の筐体用繊維強化熱可塑性樹脂成形用材料。The casing according to any one of claims 1 to 6, wherein the brightness in the fiber axis direction of the warp or weft measured using a luminance meter is a pulsed waveform having a period of 0.1 inch or 2 inch. use fiber-reinforced thermoplastic resin molding material. 請求項1〜7記載の筐体用材料を一部若しくは全体に用いられたことを特徴とする電子・電気機器用筐体。Electrical and electronic equipment housing, characterized in that the claims 1-7 casing material according used in part or whole.
JP13185298A 1998-05-14 1998-05-14 Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same Expired - Lifetime JP3685295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13185298A JP3685295B2 (en) 1998-05-14 1998-05-14 Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13185298A JP3685295B2 (en) 1998-05-14 1998-05-14 Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same

Publications (2)

Publication Number Publication Date
JPH11320737A JPH11320737A (en) 1999-11-24
JP3685295B2 true JP3685295B2 (en) 2005-08-17

Family

ID=15067635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13185298A Expired - Lifetime JP3685295B2 (en) 1998-05-14 1998-05-14 Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same

Country Status (1)

Country Link
JP (1) JP3685295B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178331A (en) * 2000-12-18 2002-06-26 Asahi Fiber Glass Co Ltd Sheet molding compound
JP4469334B2 (en) * 2003-01-10 2010-05-26 株式会社ハセ・プロ Reinforcing fiber sheet
CN100540290C (en) 2003-01-10 2009-09-16 赫世普罗股份有限公司 Fortifying fibre plate and its manufacture method and the decorative panel that uses this plate
JP4310680B2 (en) * 2003-01-20 2009-08-12 東洋紡績株式会社 Method for producing shock absorber
US20100261014A1 (en) * 2004-04-14 2010-10-14 Geiger Jr Ervin Utilization of recycled carbon fiber
WO2007055017A1 (en) * 2005-11-11 2007-05-18 Takayasu Co., Ltd. Composite and process for producing the same
AU2008328856B2 (en) * 2007-11-30 2012-11-01 Teijin Aramid B.V. Flexible continuous tape from multifilament yarn and method for making these
CN103403071B (en) * 2011-02-23 2016-07-06 东丽株式会社 Fibre reinforced composites
JP5935299B2 (en) * 2011-11-16 2016-06-15 東レ株式会社 Fiber-reinforced composite material and method for producing fiber-reinforced composite material.
KR101437212B1 (en) 2012-01-11 2014-09-11 (주)엘지하우시스 Continuous carbon fiber reinforced thermoplastic composites with well-impregnated and method for manufacturing of the same
JP5687233B2 (en) * 2012-03-09 2015-03-18 レノボ・シンガポール・プライベート・リミテッド Housing material, housing for electronic device using the housing material, and electronic device using the housing for electronic device
JP6048820B2 (en) * 2012-10-05 2016-12-21 東洋紡株式会社 Reinforcing fiber sheet
JP2014136357A (en) * 2013-01-16 2014-07-28 Fujitsu Ltd Case for electronic equipment and manufacturing method of the same
EP3868533A4 (en) * 2019-04-17 2022-07-20 Nitto Boseki Co., Ltd. Composite yarn fabric and method for producing fiber-reinforced resin molded article using same
WO2021251103A1 (en) * 2020-06-10 2021-12-16 日東紡績株式会社 Glass fiber-reinforced resin molded article, housing of electronic device, interior component for mobility product and exterior component for mobility product

Also Published As

Publication number Publication date
JPH11320737A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
JP3685295B2 (en) Fiber reinforced thermoplastic resin molding material and casing for electronic and electrical equipment using the same
KR102406662B1 (en) Spreader element for manufacturing unidirectional fiber-reinforced tapes
US8562886B2 (en) Composite laminate having an improved cosmetic surface and method of making same
EP2966117B1 (en) Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using same
JP4802802B2 (en) Enclosure for electronic equipment
EP3352543B1 (en) Housing
US10571963B2 (en) Housing
JP2005317942A (en) Electrical/electronic equipment
EP3352541B1 (en) Housing
EP3352542A1 (en) Housing
KR20190118141A (en) Fiber-reinforced composites including and/or formed in part from fibrous non-woven layers
JP6163970B2 (en) Decorative molded product and method for producing decorative molded product
JPH09277420A (en) Fiber reinforced plastic structure and its production
JP2004209717A (en) Fiber reinforced molded product
JP2020163674A (en) Fiber reinforced plastic molding
JP2885038B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
JP7347496B2 (en) Base material for molding
WO2020067535A1 (en) Surface-coated film, surface-coated fiber-reinforced resin molded product, and manufacturing method thereof
JP3035409B2 (en) Manufacturing method of carbon fiber composite molded product
JPH0946082A (en) Case for electric/electronic apparatus and its manufacture
WO2021200008A1 (en) Fiber-reinforced plastic molded body
JP7153253B2 (en) fiber reinforced plastic molding
JPH10156881A (en) Production of carbon fiber composite molding
KR20150001481U (en) Fiber-reinforced sheet
JP3142091U (en) Electrical / electronic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

EXPY Cancellation because of completion of term