JP2013211388A - Manufacturing method of multilayer wiring board and jig for pressure regulation - Google Patents

Manufacturing method of multilayer wiring board and jig for pressure regulation Download PDF

Info

Publication number
JP2013211388A
JP2013211388A JP2012080084A JP2012080084A JP2013211388A JP 2013211388 A JP2013211388 A JP 2013211388A JP 2012080084 A JP2012080084 A JP 2012080084A JP 2012080084 A JP2012080084 A JP 2012080084A JP 2013211388 A JP2013211388 A JP 2013211388A
Authority
JP
Japan
Prior art keywords
pressure adjusting
wiring board
jig
multilayer wiring
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012080084A
Other languages
Japanese (ja)
Inventor
Toshiyasu Inoue
寿康 井上
Masahiro Kato
雅広 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012080084A priority Critical patent/JP2013211388A/en
Publication of JP2013211388A publication Critical patent/JP2013211388A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a multilayer wiring board which can be applied for general purposes at a lower cost while ensuring high plate thickness accuracy, and to provide a pressure regulation jig during press molding used in this manufacturing method.SOLUTION: In the manufacturing method of a multilayer wiring board including a step for holding both sides of a molded object superposing a wiring board and an adhesive material for lamination by means of a lamination jig, and press molding the entirety while holding by means of a heating platen, press molding is carried out by disposing a planar pressure regulation jig smaller than the molded object, between the lamination jig and heating platen, in a region corresponding to the molded object.

Description

本発明は、多層配線板の製造方法及びプレス成形時の圧力調整用治具に関し、特には高精度の板厚分布を有する多層配線板の製造方法及びこの製造方法に用いる圧力調整用治具に関する。   The present invention relates to a method for manufacturing a multilayer wiring board and a pressure adjusting jig during press molding, and more particularly to a method for manufacturing a multilayer wiring board having a highly accurate thickness distribution and a pressure adjusting jig used in the manufacturing method. .

多層配線板の板厚は、一般的に、プレス成形する際のプリプレグの樹脂流れにより、中央部が厚く、外周部が薄くなる傾向がある(以下、1枚の多層配線板の板内における板厚の最大と最小の偏差を、板厚偏差という。)。高多層になるほど、積層するプリプレグの枚数が多くなることから、近年の電子機器の高密度化による配線板の高多層化に伴って、板厚偏差は、より大きくなる傾向にある。板厚偏差が大きい場合、多層配線板のプレス成形後の製造工程において、板厚の不均一による加工精度や品質の低下が懸念される。また、多層配線板の完成後には、多層配線板の表面への部品実装時の歩留り等に悪影響を及ぼすことも考えられる。これらのことから、板厚偏差の低減が求められている。   In general, the thickness of the multilayer wiring board tends to be thicker at the center and thinner at the outer periphery due to the resin flow of the prepreg during press molding (hereinafter referred to as a board in a single multilayer wiring board). The maximum and minimum deviation of thickness is called thickness deviation.) Since the number of prepregs to be stacked increases as the number of layers increases, the thickness deviation tends to increase with the increase in the number of layers of wiring boards due to the recent increase in the density of electronic devices. When the plate thickness deviation is large, in the manufacturing process after the press forming of the multilayer wiring board, there is a concern that the processing accuracy and quality are deteriorated due to the non-uniform thickness. In addition, after the completion of the multilayer wiring board, it may be considered to adversely affect the yield and the like when components are mounted on the surface of the multilayer wiring board. From these things, reduction of thickness deviation is calculated | required.

多層配線板の板厚偏差を低減するための従来技術としては、被成形物の周囲に設置した枠部材を用いてプレス成形時のプリプレグの樹脂の流動性を低く規制したり、あらかじめプリプレグを加熱処理して硬化を進めることにより、樹脂の流動性を小さくする方法が提案されている(特許文献1、2)。また、加熱時の熱供給源であるプレス機熱盤の温度分布を中心から外周部にかけて熱勾配を持たせることで、中央部から順次樹脂を流動させる方法が提案されている(特許文献3)。また、プレス機の熱盤に設けた容器内に充填した熱媒体により加圧力をコントロールすることで、均一加圧及び局所加圧を行い高精度に成形する方法が提案されている(特許文献4、5)。また、プレスに用いる成形プレートの周縁部の厚さを中央部より薄くし、且つ、プリプレグの樹脂含有量を中央部より周縁部で多くすることで、基板周縁部の板厚低下を防止する方法が提案されている(特許文献6)。さらに、被成形物よりもサイズの小さい板状の圧力調整用治具を、被成形物に対応する領域内の積層治具と熱盤との間に配置してプレス成形する方法が提案されている(特許文献7)。   Conventional techniques for reducing the thickness deviation of multilayer wiring boards include the use of a frame member installed around the object to be molded, which restricts the fluidity of the prepreg resin during press molding to a low level, or heats the prepreg in advance. Methods have been proposed in which the fluidity of the resin is reduced by proceeding with curing by treatment (Patent Documents 1 and 2). In addition, a method has been proposed in which the resin flows sequentially from the center by providing a thermal gradient from the center to the outer periphery of the temperature distribution of the press machine, which is a heat supply source during heating (Patent Document 3). . Further, a method has been proposed in which uniform pressurization and local pressurization are performed and molding is performed with high accuracy by controlling the pressurizing force with a heating medium filled in a container provided on a hot platen of a press machine (Patent Document 4). 5). Further, a method for preventing a reduction in the thickness of the peripheral edge of the substrate by making the peripheral edge of the molding plate used in the press thinner than the central part and increasing the resin content of the prepreg at the peripheral edge from the central part. Has been proposed (Patent Document 6). Furthermore, a method has been proposed in which a plate-like pressure adjusting jig having a size smaller than that of the molding is placed between a laminating jig and a heating plate in a region corresponding to the molding to be press-molded. (Patent Document 7).

特開2003−298241号公報JP 2003-298241 A 特開平6−152131号公報JP-A-6-152131 特開平5−121876号公報Japanese Patent Laid-Open No. 5-121876 特開平7−195391号公報Japanese Unexamined Patent Publication No. 7-195391 特開平8−192300号公報JP-A-8-192300 特開平8−198982号公報Japanese Patent Laid-Open No. 8-198982 特開2011−014597号公報JP 2011-014597 A

しかしながら、特許文献1、2に記載の樹脂の流動性を小さくする方法では、導体間の隙間を埋めるための成形性能が低下し、導体間に空隙が残存する危険性がある。また、特許文献3〜5のようにプレス機熱盤に熱勾配を持たせたり局所的に加圧力を制御するためには、特殊なプレス機が必要であり、多額の費用が必要になるという問題があった。また、特許文献6では、板厚偏差を調整した専用の成形プレートが必要であり、また、樹脂含有量を調整した特殊なプリプレグが必要で汎用性に乏しいという問題がある。また、特許文献7では、必ずしも製品である多層配線板の全体についての厚みが均一になるわけではないため、適用する多層配線板によっては、要求される板厚の均一性が得られない場合があった。特に、半導体テスタ用の多層配線板では、検査用の針が配置される針立て領域が、多層配線板の中央領域に円盤状に設けられるが、この針立て領域において、板厚の偏差による傾斜が大きいと、検査用の針の先端の高さが不揃いとなり、半導体の検査に支障を生じることがある。   However, in the method of reducing the fluidity of the resin described in Patent Documents 1 and 2, there is a risk that the molding performance for filling the gaps between the conductors is lowered and voids remain between the conductors. In addition, as in Patent Documents 3 to 5, a special press machine is required to give a thermal gradient to the press machine heat plate or to control the pressurizing force locally, which requires a large amount of cost. There was a problem. Moreover, in patent document 6, the exclusive shaping | molding plate which adjusted board thickness deviation is required, and the special prepreg which adjusted resin content is needed, and there exists a problem that versatility is scarce. Further, in Patent Document 7, since the thickness of the entire multilayer wiring board as a product is not necessarily uniform, depending on the multilayer wiring board to be applied, the required uniformity of the board thickness may not be obtained. there were. In particular, in a multilayer wiring board for a semiconductor tester, a needle stand area in which an inspection needle is arranged is provided in a disk shape in the central area of the multilayer wiring board. If the height is large, the heights of the tips of the inspection needles become uneven, which may hinder semiconductor inspection.

本発明は、上記問題点に鑑みなされたもので、半導体テスタ用の多層配線板に対して、圧力調整用冶具を適用することにより、検査用の針を配置する針立て領域の傾斜を抑制し、検査用針の先端の高さが不揃いなことによる検査上の問題を抑制可能な、多層配線板の製造方法及びこれに用いる圧力調整用冶具を提供する。   The present invention has been made in view of the above problems, and by applying a pressure adjusting jig to a multilayer wiring board for a semiconductor tester, the inclination of a needle stand region in which a needle for inspection is arranged is suppressed. The present invention provides a method for manufacturing a multilayer wiring board and a pressure adjusting jig used therefor, capable of suppressing problems in inspection caused by uneven heights of tips of inspection needles.

本発明は、以下のものに関する。
1. 配線基板と多層化用接着材料とを重ねた被成形物の両側を積層治具で挟み、これらの全体をさらに熱盤で挟んでプレス成形する工程を有する半導体テスタ用の多層配線板の製造方法であって、前記プレス成形する工程において、支持体と、この支持体上に積層される圧力調整体とを有し、この圧力調整体は支持体よりも小さく、かつ上層になるにつれて小さくなるように階段状に積層されている圧力調整用治具を、前記被成形物に対応する領域内の前記積層治具と熱盤との間に配置してプレス成形する半導体テスタ用の多層配線基板の製造方法。
2. 項1において、半導体テスタ用の多層配線板が、半導体検査用の針が配置される針立て領域を中央部に有する半導体テスタ用の多層配線板の製造方法。
3. 項1又は2において、針立て領域が円形である多層配線板の製造方法。
4. 項1から3の何れかの多層配線板の製造方法に用いる圧力調整用冶具であって、圧力調整体よりも大きい接着材と被覆体とを、前記圧力調整体の上に設け、前記被覆体と圧力調整体と支持体とを一体化した圧力調整用冶具。
5. 項4において、階段状に積層された最上層の圧力調整体の大きさが、多層配線板の針立て領域に対応するように設定される圧力調整用冶具。
6. 項4又は5において、積層された圧力調整体の全体の厚みが105〜175μmである圧力調整用冶具。
7. 項4から6の何れかにおいて、支持体が銅張積層板であり、圧力調整体及び被覆体が金属箔である圧力調整用冶具。
The present invention relates to the following.
1. A method of manufacturing a multilayer wiring board for a semiconductor tester, comprising the steps of sandwiching both sides of a molded article in which a wiring board and an adhesive material for multilayering are stacked with a laminating jig, and further press-molding the whole with a heating platen In the press molding step, the support has a pressure adjusting body laminated on the support, and the pressure adjusting body is smaller than the support and becomes smaller as the upper layer is formed. A multilayer wiring board for a semiconductor tester in which a pressure adjusting jig laminated in a step shape is placed between the laminating jig and a heating plate in a region corresponding to the object to be molded and press-molded. Production method.
2. Item 2. The method of manufacturing a multilayer wiring board for a semiconductor tester according to Item 1, wherein the multilayer wiring board for a semiconductor tester has a needle stand region at a central portion where a needle for semiconductor inspection is arranged.
3. Item 3. The method for manufacturing a multilayer wiring board according to Item 1 or 2, wherein the needle holder region is circular.
4). The pressure adjusting jig used in the method for manufacturing a multilayer wiring board according to any one of Items 1 to 3, wherein an adhesive and a covering larger than the pressure adjusting body are provided on the pressure adjusting body, and the covering Pressure adjusting jig that integrates the pressure adjusting body and the support.
5. Item 5. The pressure adjusting jig according to Item 4, wherein the size of the uppermost pressure adjusting body stacked stepwise corresponds to the needle holder region of the multilayer wiring board.
6). Item 6. The pressure adjusting jig according to Item 4 or 5, wherein the total thickness of the stacked pressure adjusting bodies is 105 to 175 μm.
7). Item 7. The pressure adjusting jig according to any one of Items 4 to 6, wherein the support is a copper clad laminate, and the pressure adjusting body and the covering are metal foil.

本発明によれば、半導体テスタ用の多層配線板に対して、圧力調整用冶具を適用することにより、検査用の針を配置する針立て領域の傾斜を抑制し、検査用針の先端の高さが不揃いなことによる検査上の問題を抑制可能な、多層配線板の製造方法及びこれに用いる圧力調整用冶具を提供することができる。   According to the present invention, by applying a pressure adjusting jig to a multilayer wiring board for a semiconductor tester, it is possible to suppress the inclination of the needle stand region in which the inspection needle is disposed and to increase the height of the tip of the inspection needle. It is possible to provide a method for manufacturing a multilayer wiring board and a pressure adjusting jig used therefor, which can suppress problems in inspection due to unevenness of the length.

本発明の多層配線板の製造方法及び圧力調整用治具の使用方法を、構成部材を分離して示した断面図。Sectional drawing which isolate | separated and showed the structural member the manufacturing method of the multilayer wiring board of this invention, and the usage method of the jig for pressure adjustment. 本発明の製造方法で用いる、基板中央部が厚く周辺部に向かって段階的に薄くなる形状の圧力調整用治具の平面図。The top view of the jig | tool for pressure adjustment of the shape used by the manufacturing method of this invention in which the center part of a board | substrate is thick and becomes thin in steps toward a peripheral part. 本発明の製造方法で用いる、基板中央部が厚く周辺部に向かって段階的に薄くなる形状の圧力調整用治具の断面図。Sectional drawing of the jig for pressure adjustment of the shape used in the manufacturing method of this invention in which the board | substrate center part is thick and becomes thin in steps toward a peripheral part.

以下、本発明の実施の形態を、図1から図3を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.

図1に示すように、本発明は、配線基板とプリプレグ等の多層化接着材料とを重ねた被成形物1の上下両側を積層治具7(鏡板2及び積層治具板3)で挟み、これらの全体をさらに熱盤6で挟んでプレス成形する工程を有する半導体テスタ用の多層配線板の製造方法であって、前記プレス成形する工程において、支持体と、この支持体上に積層される圧力調整体とを有し、この圧力調整体は支持体よりも小さく、かつ上層になるにつれて小さくなるように階段状に積層されている圧力調整用治具4を、前記被成形物に対応する領域内の前記積層治具7と熱盤6との間に配置してプレス成形する半導体テスタ用の多層配線基板の製造方法である。   As shown in FIG. 1, the present invention sandwiches the upper and lower sides of a molded article 1 in which a wiring board and a multi-layered adhesive material such as a prepreg are stacked with a lamination jig 7 (end plate 2 and lamination jig board 3), A method of manufacturing a multilayer wiring board for a semiconductor tester having a step of press molding by sandwiching the entirety of the whole with a heating platen, and in the step of press molding, a support and a laminate are formed on the support. A pressure adjusting jig 4 which is smaller than the support and is stacked stepwise so as to become smaller as it becomes an upper layer, corresponding to the object to be molded. This is a method for manufacturing a multilayer wiring board for a semiconductor tester which is placed between the laminating jig 7 and the heating plate 6 in a region and press-molded.

本発明において、配線基板とは、絶縁基板上に導体回路を形成した多層化用の内層基板をいう。配線基板としては、例えば、銅張積層板の銅箔をエッチングすることにより導体回路を形成した基板や、布線基板上に貼り合わせた銅箔をエッチングすることにより導体回路を形成したシールド層付き布線基板等が挙げられる。布線基板とは、布線コア基板上に貼り合わせた接着シートに布線パターンを形成したものをいい、布線コア基板とは、導体回路を形成した基板の両側にプリプレグを接着した状態のものをいう。複数枚の配線基板の間に、プリプレグ等の多層化接着材料を挟んで、プレス成形することにより、多層配線板が形成される。   In the present invention, the wiring substrate refers to an inner layer substrate for multilayering in which a conductor circuit is formed on an insulating substrate. As a wiring board, for example, a substrate having a conductor circuit formed by etching a copper foil of a copper clad laminate, or a shield layer having a conductor circuit formed by etching a copper foil bonded on a wiring board A wiring board etc. are mentioned. The wiring board refers to a sheet in which a wiring pattern is formed on an adhesive sheet bonded on a wiring core board. The wiring core board is a state in which a prepreg is bonded to both sides of a board on which a conductor circuit is formed. Say things. A multilayer wiring board is formed by pressing a multilayer adhesive material such as a prepreg between a plurality of wiring boards.

多層化用接着材料とは、複数の配線基板を積層して多層配線板を形成する際に、配線基板同士を多層化接着するものであり、ガラス繊維を補強材とするプリプレグを用いることができる。   The multi-layer adhesive material is used for multi-layer bonding of wiring substrates when a plurality of wiring substrates are laminated to form a multilayer wiring board, and a prepreg using glass fiber as a reinforcing material can be used. .

被成形物1とは、プレス成形等によって、多層化接着されるものであり、本発明においては、複数枚の配線基板の間に多層化用接着材料を挟んで重ねることにより、プレス成形用に構成した状態のものをいう。   The object 1 is multi-layer bonded by press molding or the like. In the present invention, the multi-layer adhesive material is sandwiched and stacked between a plurality of wiring boards for press molding. The one in the configured state.

積層治具7は、鏡板2と積層治具板3とを備えるものであり、プレス面を平滑に保ち、かつ熱盤6からの熱を伝え、配線基板や多層化接着材料の位置ずれを、積層治具板3のガイドピン等により防止するものである。   The laminating jig 7 includes the end plate 2 and the laminating jig plate 3, keeps the press surface smooth and transmits heat from the heating platen 6, and shifts the position of the wiring board and the multilayered adhesive material. This is prevented by a guide pin or the like of the laminated jig plate 3.

鏡板2は、プレス面を平滑に保ち、かつ熱盤6からの熱を伝えるものであり、例えば、厚さ1.2mm程度のステンレス板等の、多層配線板の製造プロセスで通常用いられるものを使用することができる。鏡板2は、複数枚の配線基板と多層化用接着材料とを重ねた被成形物1の全体の上下両側を挟むように配置され、この被成形物1を挟んだ上下の鏡板2を、さらに後述する積層治具板3が上下両側から挟む状態となるように配置される。   The end plate 2 keeps the press surface smooth and transmits heat from the hot platen 6, for example, a stainless steel plate having a thickness of about 1.2 mm, which is usually used in the manufacturing process of a multilayer wiring board. Can be used. The end plate 2 is arranged so as to sandwich both the upper and lower sides of the whole molding object 1 in which a plurality of wiring boards and a multi-layer adhesive material are stacked, and the upper and lower end panels 2 sandwiching the molding object 1 are further arranged. It arrange | positions so that the lamination jig board 3 mentioned later may be in the state pinched | interposed from the up-and-down both sides.

積層治具板3は、配線基板や多層化接着材料の位置ずれを、積層治具板3のガイドピン等により防止したり、熱盤6からの熱を伝えるものであり、例えば、通常は5〜12mm厚のもので、主として特殊ステンレス鋼(SUS630等)により作製される。被成形物1の全体の上下両側に設けられた鏡板2の上下両側を挟むように配置され、この被成形物1を挟んだ上下の積層治具板3を、さらに熱盤6が上下両側から挟む状態で被成形物1を加熱加圧することにより、プレス成形が行なわれる。   The laminated jig plate 3 prevents the displacement of the wiring board and the multilayer adhesive material by the guide pins of the laminated jig plate 3 and transmits heat from the hot platen 6. It is ˜12 mm thick and is mainly made of special stainless steel (SUS630 etc.). It arrange | positions so that the up-and-down both sides of the end plate 2 provided in the upper and lower sides of the whole to-be-molded object 1 may be pinched | interposed. Press molding is performed by heating and pressurizing the molding 1 in a sandwiched state.

熱盤6は、一般には、プレス成形する工程で用いられるプレス機に付属する部材であり、積層治具7(積層治具板3及び鏡板2)及び被成形物の全体を挟み、積層治具7を介して、被成形物を加熱・加圧するものである。   The hot platen 6 is generally a member attached to a press used in the press molding process, and sandwiches the entire stacking jig 7 (the stacking jig plate 3 and the end plate 2) and the object to be molded. 7, the object to be molded is heated and pressurized.

プレス成形する工程とは、多層配線板の製造プロセスの一つであり、配線基板や多層化接着材料を重ね合わせて、これらをプレス機等を用いて加熱・加圧し、一体化する工程である。   The step of press molding is one of the manufacturing processes of the multilayer wiring board, and is a step of superimposing the wiring board and the multilayered adhesive material, and heating and pressurizing them using a press or the like to integrate them. .

半導体テスタ用の多層配線板とは、半導体をテストするためのテスタを構成するのに用いられる多層配線板のことであり、被検査対象となる半導体の電極に接触させる検査用の針を配置する針立て領域10を有している。この針立て領域10が、半導体テスタ用の多層配線板の中央部に配置される場合、後述する圧力調整用冶具4の圧力調整体9を、針立て領域10に対応する多層配線板の中央部に配置してプレス成形することにより、針立て領域10を平坦化し易いので好ましい。また、針立て領域10が円形であると、この針立て領域10に対応する圧力調整用冶具4の圧力調整体9を円形にすればよいので、より好ましい。   The multilayer wiring board for a semiconductor tester is a multilayer wiring board used to constitute a tester for testing a semiconductor, and an inspection needle to be brought into contact with a semiconductor electrode to be inspected is arranged. A needle holder region 10 is provided. When the needle holder region 10 is disposed at the central portion of the multilayer wiring board for the semiconductor tester, the pressure adjusting body 9 of the pressure adjusting jig 4 to be described later is connected to the central portion of the multilayer wiring board corresponding to the needle holder region 10. It is preferable that the needle holder region 10 is easily flattened by being placed in a press molding. Further, it is more preferable that the needle holder region 10 is circular because the pressure adjusting body 9 of the pressure adjusting jig 4 corresponding to the needle holder region 10 may be circular.

圧力調整用治具4は、熱盤から積層治具7(積層治具板3及び鏡板2)を介して被成形物1に加えられる圧力の分布を調整するものである。本発明の圧力調整用治具4の材料としては、プレス温度に耐える耐熱性を持つ材料であれば、金属材料や樹脂材料等の任意の材料を使用できるが、中でも、積層治具7用の金属材料であるステンレス材、また、被成形物1である多層化基板用の材料である銅張積層板や銅箔であれば熱伝導率が被成形物1と近く、積層時の温度分布に与える影響が少ないため、従来のプレス温度条件を適用することが可能となる。   The pressure adjusting jig 4 adjusts the distribution of pressure applied to the molding 1 from the heating plate via the laminating jig 7 (the laminating jig plate 3 and the end plate 2). As a material of the pressure adjusting jig 4 of the present invention, any material such as a metal material or a resin material can be used as long as it has heat resistance capable of withstanding the press temperature. If the stainless steel material is a metal material, and the copper-clad laminate or copper foil is a multilayer substrate material that is the molding object 1, the thermal conductivity is close to that of the molding object 1, and the temperature distribution during lamination is Since there is little influence, it becomes possible to apply the conventional press temperature conditions.

図1に示すように、本発明の多層配線板の製造方法は、プレス成形する工程において、支持体8と、この支持体8上に積層される圧力調整体9とを有し、この圧力調整体9は支持体8よりも小さく、かつ上層になるにつれて小さくなるように階段状に積層されている圧力調整用治具4を、前記被成形物1に対応する領域内の積層治具7と熱盤6との間に配置してプレス成形を行なう。このように、本発明では、プレス成形する工程において用いられる積層治具7(積層治具板3及び鏡板2)や熱盤6自体に変更を加えるのではなく、これらとは別に用意した圧力調整用治具4を用いることによって、プレス成形時の被成形物1への圧力分布を調整するものである。このため、従来用いられてきた積層治具7や熱盤6をそのまま使用することができるうえ、圧力調整用治具4は汎用の材料を用いて安価かつ容易に作製できるので、より低コストで汎用的に適用できる。また、剛性のある支持体8を用いることで、圧力調整体9が薄くても、圧力調整用冶具4全体としての剛性を確保できるので取り扱いが容易となる。   As shown in FIG. 1, the method for manufacturing a multilayer wiring board of the present invention includes a support 8 and a pressure adjusting body 9 laminated on the support 8 in the step of press molding. The body 9 is smaller than the support 8 and is stacked in a stepped manner so as to become smaller as it becomes an upper layer, and the pressure adjusting jig 4 is connected to the stacking jig 7 in the region corresponding to the molding 1. It press-molds by arrange | positioning between the hot plates 6. As described above, in the present invention, the pressure adjustment prepared separately is not applied to the laminating jig 7 (the laminating jig plate 3 and the end plate 2) and the heating plate 6 itself used in the press molding process. By using the jig 4 for use, the pressure distribution to the article 1 during press molding is adjusted. For this reason, the conventionally used stacking jig 7 and hot platen 6 can be used as they are, and the pressure adjusting jig 4 can be manufactured inexpensively and easily using a general-purpose material, so that it can be manufactured at a lower cost. Applicable universally. Further, by using the rigid support 8, even if the pressure adjusting body 9 is thin, the rigidity of the pressure adjusting jig 4 as a whole can be secured, so that handling becomes easy.

圧力調整用冶具4に用いる支持体8とは、圧力調整体9を支持するためのものであり、取り扱いに必要な剛性を備え、厚さが均一な板状体を用いるのが好ましい。また、圧力調整体9とは、支持体8の上に凸状になるように配置されて、実際に、プレス形成における圧力を調整するものである。微妙な圧力調整を可能とするため、支持体8よりも薄いシート状のものが好ましい。支持体8や圧力調整体9としては、プレス温度に耐える耐熱性を持つ材料であれば、金属材料や樹脂材料等の任意の材料を使用できるが、多層配線板の製造において、汎用される銅張積層板や、銅箔を用いるのがコストや加工性の点から有利である。   The support 8 used for the pressure adjusting jig 4 is for supporting the pressure adjusting body 9, and it is preferable to use a plate-like body having rigidity necessary for handling and having a uniform thickness. Further, the pressure adjusting body 9 is arranged so as to be convex on the support 8 and actually adjusts the pressure in the press formation. In order to enable fine pressure adjustment, a sheet-like one thinner than the support 8 is preferable. As the support 8 and the pressure adjuster 9, any material such as a metal material or a resin material can be used as long as it is a material having heat resistance capable of withstanding the press temperature. The use of a tension laminate or copper foil is advantageous from the viewpoint of cost and workability.

また、プレス成形する工程において、圧力調整用治具4をプレス機の熱盤6と積層治具7との間に挟み込んで使用する際には、圧力調整用治具4と熱盤6との間にクッション材5を配置する。クッション材5としては、紙や樹脂シート等、一般的に多層配線板をプレス成形する工程で用いられるものを使用することができる。クッション材5の厚さは、圧力調整用治具4の圧力調整体9の全体の厚さよりも1.5倍〜5倍程度厚くするのが望ましい。これにより、圧力調整用治具4の圧力調整体9の端部の段差等によって、熱盤6が傷ついたり変形したりするのを抑制でき、また段差があっても、クッション材5が変形して追従するので、熱盤6からの圧力や熱を圧力調整用治具4及び積層治具7を介して、被成形物1に伝えることができる。   In the press molding process, when the pressure adjusting jig 4 is sandwiched between the hot platen 6 and the laminating jig 7 of the press machine, the pressure adjusting jig 4 and the hot platen 6 The cushion material 5 is disposed between them. As the cushion material 5, a material generally used in a step of press-molding a multilayer wiring board such as paper or a resin sheet can be used. The thickness of the cushion material 5 is desirably about 1.5 to 5 times thicker than the entire thickness of the pressure adjusting body 9 of the pressure adjusting jig 4. Thereby, it is possible to prevent the heating platen 6 from being damaged or deformed by a step or the like at the end of the pressure adjusting body 9 of the pressure adjusting jig 4, and the cushion material 5 is deformed even if there is a step. Therefore, the pressure and heat from the hot platen 6 can be transmitted to the workpiece 1 through the pressure adjusting jig 4 and the stacking jig 7.

圧力調整用治具4の圧力調整体9の全体の厚みは、併用するクッション材5の厚み以下、例えば105〜175μm程度であれば、プレス成形後の多層配線板の針立て領域10における板厚の偏差を抑制でき、しかも、熱盤6や積層治具7を変形させることがなく好ましい。   If the total thickness of the pressure adjusting body 9 of the pressure adjusting jig 4 is equal to or less than the thickness of the cushion material 5 to be used together, for example, about 105 to 175 μm, the plate thickness in the needle stand region 10 of the multilayer wiring board after press molding. This is preferable because the heating platen 6 and the laminating jig 7 are not deformed.

図2及び図3に示すように、板状の圧力調整用治具4は、支持体8と、この支持体8上に積層される圧力調整体9とを有し、この圧力調整体9は支持体8よりも小さく、かつ上層になるにつれて小さくなるように階段状に積層される。圧力調整体9は、形状、厚さ及び材質が同じで、サイズのみが異なる板状体を、複数枚重ねて形成されるのが望ましい。これにより、複数枚の圧力調整用治具4を張り合わせて、圧力調整用治具4を作製する場合でも、厚さが均一な板状体を必要なサイズに、必要な枚数だけ切り出し、張り合わせればよいので作製が簡便である。また、所望の領域について、厚さを段階的に変化させて、厚さに分布を設けた圧力調整用治具4を容易に作製できる。このように圧力調整用治具4の厚みに分布を設けた場合は、プレス成形を行なう面内で、より細かな圧力調整を行うことができるので、被成形物1の全面に渡って均一な板厚を得ることができる。厚み分布の形状としては、例えば、図2及び図3のように、被成形物1の中央部から周辺部に向かって段階的に薄くなる形状であれば、中央部から周辺部に向かって樹脂を押出しながら流動させることができるので、被成形物1の中央部と周辺部の厚さを均一にすることができる。また、例えば、マルチワイヤ配線板でワイヤが密集するために板厚が厚くなる部分を、ワイヤが疎な部分に比べて選択的に高圧とすれば、ワイヤが密な部分と疎な部分の板厚差を低減することができる。このため、所望する領域の被成形物1の樹脂流動を制御することが可能となり、多層配線板をプレス成形する場合でも、板厚精度を向上することができる。   As shown in FIGS. 2 and 3, the plate-like pressure adjusting jig 4 has a support 8 and a pressure adjusting body 9 stacked on the support 8, and the pressure adjusting body 9 is The layers are stacked in a stepped manner so as to be smaller than the support 8 and smaller as it becomes an upper layer. The pressure adjusting body 9 is preferably formed by stacking a plurality of plate-like bodies having the same shape, thickness, and material but different in size. As a result, even when the pressure adjusting jig 4 is manufactured by bonding a plurality of pressure adjusting jigs 4, a necessary number of plate-like bodies having a uniform thickness can be cut out and bonded together. Therefore, the production is simple. In addition, the pressure adjusting jig 4 having a distribution in thickness can be easily manufactured by changing the thickness in steps for a desired region. When the thickness of the pressure adjusting jig 4 is thus distributed, the pressure can be finely adjusted in the surface where the press molding is performed, so that it is uniform over the entire surface of the molding 1. A plate thickness can be obtained. As the shape of the thickness distribution, for example, as shown in FIG. 2 and FIG. 3, if the shape gradually decreases from the central part to the peripheral part of the molding 1, the resin from the central part to the peripheral part is used. Therefore, the thickness of the center part and the peripheral part of the molding 1 can be made uniform. In addition, for example, if the portion where the thickness is thick due to the denseness of the wires in the multi-wire wiring board is selectively set to a high pressure compared to the portion where the wire is sparse, the plate where the wire is dense and the portion where the wire is sparse The thickness difference can be reduced. For this reason, it becomes possible to control the resin flow of the molding 1 in a desired region, and the thickness accuracy can be improved even when the multilayer wiring board is press-molded.

図2及び図3に示すように、板状の圧力調整用治具4は、サイズの大きさの順に、中央部を合わせて積層することにより、中央部から端部に向かって階段状に薄くなるように形成するのが望ましい。これにより、被成形物1の中央部にかかる圧力がより大きく、被成形物1の周辺部にかかる圧力がより小さくなるので、樹脂流動の小さい被成形物1の中央部と樹脂流動の大きい周辺部の樹脂流動の差を低減することができ、プレス成形後の被成形物1である多層配線板の板厚を均一化できる。   As shown in FIG. 2 and FIG. 3, the plate-like pressure adjusting jig 4 is thinned in a stepped manner from the central portion toward the end portion by stacking the central portions in order of size. It is desirable to form so that it becomes. Thereby, since the pressure applied to the central portion of the molding 1 is larger and the pressure applied to the peripheral portion of the molding 1 is smaller, the central portion of the molding 1 having a small resin flow and the periphery having a large resin flow. The difference in the resin flow of the part can be reduced, and the thickness of the multilayer wiring board which is the molding 1 after press molding can be made uniform.

図2及び3に示すように、圧力調整体9よりも大きい接着材11と被覆体12とを、圧力調整体9の上に設け、被覆体12と圧力調整体9と支持体8とを一体化した圧力調整用冶具4とするのが望ましい。これにより、プレス成形の度毎に、支持体8と圧力調整体9をそれぞれ重ねて配置する必要がなく、これらを一体化した冶具として取り扱うことができるので作業性が向上する。支持体として銅張積層板を、圧力調整体及び被覆体として金属箔を用いると、プレス成形の熱にも耐え、熱伝導性も良好なのでより好ましい。   As shown in FIGS. 2 and 3, an adhesive 11 and a covering body 12 larger than the pressure adjusting body 9 are provided on the pressure adjusting body 9, and the covering body 12, the pressure adjusting body 9 and the support body 8 are integrated. It is desirable to use the pressure adjusting jig 4 that has been converted into a pressure. Thereby, it is not necessary to arrange | position the support body 8 and the pressure adjustment body 9 in piles for every press molding, and since these can be handled as an integrated jig, workability | operativity improves. It is more preferable to use a copper-clad laminate as a support and a metal foil as a pressure regulator and a covering because it can withstand the heat of press molding and has good thermal conductivity.

図2及び図3に示すように、板状の圧力調整用治具4は、階段状に積層された最上層の圧力調整体9の大きさが、多層配線板の針立て領域10に対応するように設定されるのが望ましい。これにより、平坦性が要求される針立て領域10が、最も突出した圧力調整体9によって押されることになり、優先的に圧力がかかることよって平坦化され易い。このため、針立て領域10の平坦化を図ることができる。   As shown in FIGS. 2 and 3, in the plate-like pressure adjusting jig 4, the size of the uppermost pressure adjusting body 9 stacked in a step shape corresponds to the needle stand region 10 of the multilayer wiring board. It is desirable to set as follows. As a result, the needle holder region 10 requiring flatness is pushed by the most protruding pressure adjusting body 9 and is easily flattened by preferentially applying pressure. For this reason, the needle holder region 10 can be flattened.

板状の圧力調整用治具4の形状は、例えば円形、楕円形又は四角形のように、被成形物1の中心から対称となる形状であるのが望ましい。これにより、被成形物1である配線基板や多層化接着材料は円形、楕円形又は四角形の何れかであることが多いため、プリプレグ等の一般的な多層化用接着材料の樹脂流れを、被成形物1の形状に合わせて、中央部から周辺部に向かうように制御できる。このため、多層配線板であっても、全体に亘って均一な板厚を得ることができ、板厚精度を向上させることができる。なお、圧力調整用治具4の形状は、円形、楕円形又は四角形の何れかに限定されるものではなく、被成形物1の樹脂流動性や配線パターンに合わせ、任意の形状としてよい。   The shape of the plate-like pressure adjusting jig 4 is desirably a shape that is symmetrical from the center of the molding 1 such as a circle, an ellipse, or a quadrangle. As a result, the wiring substrate or multilayer adhesive material as the molding 1 is often either a circle, an ellipse, or a quadrangle. Therefore, the resin flow of a general multilayer adhesive material such as a prepreg can be reduced. In accordance with the shape of the molded product 1, it can be controlled from the central portion toward the peripheral portion. For this reason, even if it is a multilayer wiring board, a uniform board thickness can be obtained over the whole and board thickness precision can be improved. Note that the shape of the pressure adjusting jig 4 is not limited to a circular shape, an elliptical shape, or a rectangular shape, and may be an arbitrary shape according to the resin fluidity and the wiring pattern of the article 1.

以下に、本発明を実施例に基づき具体的に説明するが、本発明は本実施例に限定されない。   Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the examples.

(実施例1)
配線基板の材料として、銅張積層板である、基板サイズ510mm×615mm、樹脂厚0.10mm、銅箔厚35μmのMCL−E−679(日立化成工業株式会社製、商品名)を用いた。この銅張積層板の両面に、レジストフィルムラミネート、焼付、現像、エッチング工程にて内層回路となる導体回路を形成し、内層基板となる配線基板とした。内層回路は、ベタ銅箔にクリアランスを配置した残銅率84%のパターンであった。この作業を21枚分行い、21枚の配線基板を作製した。
Example 1
As a material for the wiring board, MCL-E-679 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a copper-clad laminate, having a substrate size of 510 mm × 615 mm, a resin thickness of 0.10 mm, and a copper foil thickness of 35 μm was used. On both surfaces of the copper-clad laminate, a conductor circuit serving as an inner layer circuit was formed by resist film laminating, baking, developing, and etching processes to obtain a wiring substrate serving as an inner layer substrate. The inner layer circuit was a pattern with a remaining copper ratio of 84% in which a clearance was disposed on the solid copper foil. This operation was performed for 21 sheets, and 21 wiring boards were produced.

続いて、ピンラミネーション法により、配線基板、高Tg(Tgは、ガラス転移点を示す。)で厚さ0.06mmのガラスエポキシプリプレグGEA−679N(日立化成工業株式会社製、商品名)、電解銅箔YGP−18(日本電解株式会社製、商品名)を重ねて、被成形物1を構成した。プレス成形のための構成の順番は、まず電解銅箔を1枚置き、その上にプリプレグ2枚と配線基板1枚とが交互に積層されるようにして、全部で配線基板21枚とプリプレグ44枚とを重ね合わせ、最後に電解銅箔を重ねて構成した。   Subsequently, by a pin lamination method, a wiring board, glass epoxy prepreg GEA-679N (trade name, manufactured by Hitachi Chemical Co., Ltd.), high Tg (Tg indicates a glass transition point), and a thickness of 0.06 mm, electrolytic Copper article YGP-18 (manufactured by Nippon Electrolytic Co., Ltd., trade name) was stacked to form object 1. The order of the configuration for press molding is as follows. First, one electrolytic copper foil is placed, and two prepregs and one wiring board are alternately laminated thereon, so that a total of 21 wiring boards and prepreg 44 are formed. The sheets were stacked and finally the electrolytic copper foil was stacked.

図1に示すように、積層治具7の構成は、鏡板2として、厚さ1.2mm、サイズ540mm×640mmのSUS301板を、被成形物1の外側の上下両側に配置し、また、積層治具板3として、厚さ8.0mm、サイズ540mm×640mmのSUS630板を、鏡板2の外側の上下両側に配置した。また、圧力調整用治具4としては、510mm×615mmに切断した樹脂厚0.10mm、銅箔厚18μmのMCL−E−67(日立化成工業株式会社製、商品名)を支持体8とし、この支持体8上の中央に、圧力調整体9として、直径490mm、直径360mm、直径280mm、直径200mmの円形に切り出した厚さ18μmの銅箔を、上層になるにつれて小さくなるように中心を合わせて配置し、その上に、接着材11(GIA−671N、厚さ0.05mm、日立化成工業株式会社製、商品名)と、被覆材12(厚さ35μmの銅箔)を重ね、真空プレス機MHPC−V250(株式会社名機製作所製、商品名)を用いて、熱盤昇温速度6.0℃/分、最高熱盤温度200℃、200℃保持時間120分、面圧2.0MPaにて真空プレス成形したものを準備した。なお、階段状に積層された最上層の圧力調整体9の大きさ(直径200mmの円形)が、多層配線板の針立て領域10(直径200mmの円形)に対応するように設定した。この圧力調整用冶具4を、積層治具板3中央部の外側の上下両側に配置し、さらに、クッション材5として、厚さ0.2mmの紙クッション材KS190(王子製紙株式会社製、商品名)5枚を圧力調整用治具4の外側の上下両側に配置した。   As shown in FIG. 1, the stacking jig 7 has a structure in which SUS301 plates having a thickness of 1.2 mm and a size of 540 mm × 640 mm are arranged on both the upper and lower sides outside the molding 1 as the end plate 2. As the jig plate 3, SUS630 plates having a thickness of 8.0 mm and a size of 540 mm × 640 mm were arranged on both upper and lower sides outside the end plate 2. Further, as the pressure adjusting jig 4, MCL-E-67 (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a resin thickness of 0.10 mm and a copper foil thickness of 18 μm cut to 510 mm × 615 mm is used as the support 8. At the center of the support 8, as the pressure adjusting body 9, a copper foil having a thickness of 18 μm cut into a circle having a diameter of 490 mm, a diameter of 360 mm, a diameter of 280 mm, and a diameter of 200 mm is aligned so that it becomes smaller as it becomes an upper layer. The adhesive material 11 (GIA-671N, thickness 0.05 mm, manufactured by Hitachi Chemical Co., Ltd., trade name) and the covering material 12 (copper foil having a thickness of 35 μm) are stacked thereon, and the vacuum press Using machine MHPC-V250 (trade name, manufactured by Meiki Seisakusho Co., Ltd.), heating plate temperature rising rate 6.0 ° C./min, maximum hot plate temperature 200 ° C., 200 ° C. holding time 120 minutes, surface pressure 2.0 MPa The It was prepared which was empty press molding. In addition, the size (circular with a diameter of 200 mm) of the uppermost pressure adjusting body 9 stacked in a step shape was set so as to correspond to the needle stand region 10 (circular with a diameter of 200 mm) of the multilayer wiring board. This pressure adjusting jig 4 is arranged on both the upper and lower sides outside the central portion of the laminated jig plate 3, and further, as the cushion material 5, a paper cushion material KS190 having a thickness of 0.2 mm (trade name, manufactured by Oji Paper Co., Ltd.) ) Five sheets were arranged on both the upper and lower sides outside the pressure adjusting jig 4.

その後、真空プレス機MHPC−V250(株式会社名機製作所製、商品名)を用いて、熱盤昇温速度6.0℃/分、最高熱盤温度200℃、200℃保持時間120分、面圧2.0MPaにて真空プレス成形により多層化接着を行なった。多層化接着後の多層配線板は、カットソーにて、基板短手2辺を5mm、長手2辺を7.5mmずつ切断し、基板サイズ500mm×600mm、板厚6.2mm、内層層数42層の多層配線板とした。   Thereafter, using a vacuum press machine MHPC-V250 (trade name, manufactured by Meiki Seisakusho Co., Ltd.), a hot platen heating rate of 6.0 ° C / min, a maximum hot platen temperature of 200 ° C, a 200 ° C holding time of 120 minutes, a surface pressure. Multilayer adhesion was performed by vacuum press molding at 2.0 MPa. The multilayer wiring board after the multi-layer bonding is cut with a cut-and-saw at 5 mm on the short side of the substrate and 7.5 mm on the two long sides, the substrate size is 500 mm × 600 mm, the plate thickness is 6.2 mm, and the number of inner layers is 42. Multilayer wiring board.

(実施例2)
圧力調整用冶具4として、階段状に積層された最上層の圧力調整体9の大きさを、直径150mmの円形とし、多層配線板の針立て領域10(直径200mmの円形)とは対応しないように設定した。これ以外は、実施例1と同様にして多層配線板を作製した。
(Example 2)
As the pressure adjusting jig 4, the size of the uppermost pressure adjusting body 9 stacked stepwise is a circle having a diameter of 150 mm and does not correspond to the needle holder region 10 (a circle having a diameter of 200 mm) of the multilayer wiring board. Set to. A multilayer wiring board was produced in the same manner as in Example 1 except for this.

(実施例3)
配線基板の材料として、銅張積層板である、基板サイズ510mm×610mm、樹脂厚0.10mm、銅箔厚35μmのMCL−I−671(日立化成工業株式会社製、商品名)を用いた。この銅張積層板の両面に、レジストフィルムラミネート、焼付、現像、エッチング工程にて内層回路となる導体回路を形成し、内層基板となる配線基板とした。内層回路は、ベタ銅箔にクリアランスを配置した残銅率84%のパターンであった。この作業を15枚分行い、15枚の内層基板となる配線基板を作製した。
(Example 3)
As a wiring board material, a copper-clad laminate MCL-I-671 (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a substrate size of 510 mm × 610 mm, a resin thickness of 0.10 mm, and a copper foil thickness of 35 μm was used. On both surfaces of the copper-clad laminate, a conductor circuit serving as an inner layer circuit was formed by resist film laminating, baking, developing, and etching processes to obtain a wiring substrate serving as an inner layer substrate. The inner layer circuit was a pattern with a remaining copper ratio of 84% in which a clearance was disposed on the solid copper foil. This operation was performed for 15 sheets, and 15 wiring boards to be inner layer substrates were produced.

その後、15枚中12枚を内層基板となる配線基板としてそのまま保管し、残りの15枚中3枚を用いて、シールド層付き布線基板となる配線基板を作製した。   Thereafter, 12 out of 15 sheets were stored as they were as the wiring board serving as the inner layer board, and a wiring board serving as a wiring board with a shield layer was produced using 3 out of the remaining 15 sheets.

シールド層付き布線基板となる配線基板の作製は、まず、内層基板となる配線基板の両側に、厚さ0.03mmの変性ポリイミドプリプレグGIA−671N(日立化成工業株式会社製、商品名)を1枚重ね、真空プレス機MHPC−V250(株式会社名機製作所製、商品名)を用いて、熱盤昇温速度4.1℃/分、最高熱盤温度175℃、175℃保持時間80分、面圧3.0MPaにて真空プレス成形により接着し、布線コア基板とした。   Fabrication of a wiring board to be a wiring board with a shield layer is as follows. First, a modified polyimide prepreg GIA-671N (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 0.03 mm is formed on both sides of the wiring board to be an inner layer board. Stack one sheet, using a vacuum press machine MHPC-V250 (trade name, manufactured by Meiki Seisakusho Co., Ltd.), hot plate heating rate 4.1 ° C./min, maximum hot plate temperature 175 ° C., 175 ° C. holding time 80 minutes, Bonding was performed by vacuum press molding at a surface pressure of 3.0 MPa to obtain a wired core substrate.

布線コア基板の両面に、厚み80μmのアクリル系接着シートAS−U01(日立化成工業株式会社製、商品名)をロールラミネータを用いてラミネートし、その後、数値制御布線機を用いて、芯線径0.08mmでポリイミド被覆層を有する絶縁電線HAW(日立化成工業株式会社製、商品名)を布線し、布線基板を作製した。ワイヤパターンは、基板中央部の正方形の一辺が200mmのエリア、正方形の一辺が200mm〜400mmのエリア、正方形の一辺が400mm〜基板外周部までのエリアの、それぞれの単位面積あたりの配線長比率が、1:2.44:0.14のパターンを使用した。   An acrylic adhesive sheet AS-U01 (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 80 μm is laminated on both sides of the wiring core substrate using a roll laminator, and then a core wire is used using a numerical control wiring machine. An insulated wire HAW (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a diameter of 0.08 mm and having a polyimide coating layer was wired to prepare a wiring board. The wire pattern has a wiring length ratio per unit area of an area of one side of the square in the center of the substrate of 200 mm, an area of one side of the square of 200 mm to 400 mm, and an area of one side of the square from 400 mm to the outer periphery of the substrate. 1: 2.44: 0.14 pattern was used.

その後、布線基板の上下両側それぞれに、厚さ0.03mmの変性ポリイミドプリプレグGIA−671N(日立化成工業株式会社製、商品名)を2枚と電解銅箔YGP−35(日本電解株式会社製、商品名)1枚とを重ね、真空プレス機MHPC−V250(株式会社名機製作所製、商品名)を用いて、熱盤昇温速度4.1℃/分、最高熱盤温度175℃、175℃保持時間80分、面圧3.0MPaにて真空プレス成形により接着した。次に、内層回路の形成の際と同様の工程で、両面にシールド層パターンを形成し、シールド層付き布線基板となる配線基板を作製した。シールド層パターンは、内層回路と同様に、ベタ銅箔にクリアランスを配置した残銅率84%のパターンであった。   Thereafter, two sheets of modified polyimide prepreg GIA-671N (manufactured by Hitachi Chemical Co., Ltd., trade name) having a thickness of 0.03 mm and electrolytic copper foil YGP-35 (manufactured by Nippon Electro Co., Ltd.) are provided on both upper and lower sides of the wiring board. , Product name) are stacked one on the other, and using a vacuum press machine MHPC-V250 (trade name, manufactured by Meiki Seisakusho Co., Ltd.), the heating plate heating rate is 4.1 ° C./min, the maximum heating plate temperature is 175 ° C., 175 Bonding was performed by vacuum press molding at a holding pressure of 80 ° C. and a surface pressure of 3.0 MPa. Next, a shield layer pattern was formed on both sides in the same process as that for forming the inner layer circuit, and a wiring board to be a wiring board with a shield layer was produced. The shield layer pattern was a pattern with a residual copper ratio of 84% in which clearance was disposed on the solid copper foil, as in the case of the inner layer circuit.

続いて、ピンラミネーション法により、内層基板となる配線基板、シールド層付き布線基板となる配線基板、厚さ0.03mmの変性ポリイミドプリプレグGIA−671N(日立化成工業株式会社製、商品名)、電解銅箔YGP−18(日本電解株式会社製、商品名)を重ねて、被成形物1を構成した。構成の順番は、内層基板となる配線基板3枚と、シールド層付き布線基板となる配線基板1枚とを繰り返し構成し、多層化構成を行った。その際、それぞれの配線基板の間には、上記プリプレグ2枚を構成した。また、最も外側の上下両側には、外層となる電解銅箔YGP−18(日本電解株式会社製、商品名)を構成した。   Subsequently, by a pin lamination method, a wiring board serving as an inner layer board, a wiring board serving as a wiring board with a shield layer, a modified polyimide prepreg GIA-671N having a thickness of 0.03 mm (trade name, manufactured by Hitachi Chemical Co., Ltd.), The molded object 1 was configured by stacking electrolytic copper foil YGP-18 (manufactured by Nippon Electrolytic Co., Ltd., trade name). The order of the configuration was such that three wiring boards serving as the inner layer board and one wiring board serving as the wiring board with the shield layer were repeatedly configured to form a multilayer structure. At that time, the two prepregs were formed between the respective wiring boards. Moreover, electrolytic copper foil YGP-18 (manufactured by Nippon Electrolytic Co., Ltd., product name) serving as an outer layer was formed on the upper and lower sides on the outermost side.

図1に示すように、積層治具7の構成は、鏡板2として、厚さ1.2mm、サイズ540mm×640mmのSUS301板を、被成形物1の外側の上下両側に配置し、また、積層治具板3として、厚さ8.0mm、サイズ540mm×640mmのSUS630板を、鏡板2の外側の上下両側に配置した。また、圧力調整用治具4としては、実施例1と同様のものを準備した。また、階段状に積層された最上層の圧力調整体9の大きさ(直径200mmの円形)が、多層配線板の針立て領域10(直径200mmの円形)に対応するように設定した。この圧力調整用冶具4を、積層治具板3中央部の外側の上下両側に配置し、さらに、クッション材5として、厚さ0.2mmのKS190(王子製紙株式会社製、商品名)5枚を圧力調整用治具4の外側の上下両側に配置した。   As shown in FIG. 1, the stacking jig 7 has a structure in which SUS301 plates having a thickness of 1.2 mm and a size of 540 mm × 640 mm are arranged on both the upper and lower sides outside the molding 1 as the end plate 2. As the jig plate 3, SUS630 plates having a thickness of 8.0 mm and a size of 540 mm × 640 mm were arranged on both upper and lower sides outside the end plate 2. Further, as the pressure adjusting jig 4, the same one as in Example 1 was prepared. Further, the size (circular shape with a diameter of 200 mm) of the uppermost pressure adjusting body 9 stacked stepwise was set so as to correspond to the needle stand region 10 (circular shape with a diameter of 200 mm) of the multilayer wiring board. This pressure adjusting jig 4 is arranged on both the upper and lower sides outside the central portion of the laminated jig plate 3, and further, as a cushion material 5, KS190 (trade name, manufactured by Oji Paper Co., Ltd.) having a thickness of 0.2 mm Were arranged on both upper and lower sides outside the pressure adjusting jig 4.

その後、真空プレス機MHPC−V250(株式会社名機製作所製、商品名)を用いて、熱盤昇温速度4.1℃/分、最高熱盤温度175℃、175℃保持時間80分、面圧4.0MPaにて真空プレス成形により多層化接着を行なった。多層化接着後の多層配線板は、カットソーにて、基板外周四辺を各5mmずつ切断し、基板サイズ500mm×600mm、板厚6.3mm、銅箔による内層層数36層、布線層数6層の多層マルチワイヤ配線板とした。   Thereafter, using a vacuum press machine MHPC-V250 (trade name, manufactured by Meiki Seisakusho Co., Ltd.), a hot platen heating rate of 4.1 ° C./minute, a maximum hot platen temperature of 175 ° C., a 175 ° C. holding time of 80 minutes, a surface pressure. Multilayer adhesion was performed by vacuum press molding at 4.0 MPa. The multilayer wiring board after the multi-layer bonding is cut with a cut-and-saw at 5 mm each on the four sides of the substrate, the substrate size is 500 mm × 600 mm, the plate thickness is 6.3 mm, the number of inner layers is 36 layers, and the number of wiring layers is 6 A multilayer multi-wire wiring board was obtained.

(実施例4)
圧力調整用冶具4として、階段状に積層された最上層の圧力調整体9の大きさを、直径150mmの円形とし、多層配線板の針立て領域10(直径200mmの円形)とは対応しないように設定した。これ以外は、実施例2と同様にして多層配線板を作製した。
Example 4
As the pressure adjusting jig 4, the size of the uppermost pressure adjusting body 9 stacked stepwise is a circle having a diameter of 150 mm and does not correspond to the needle holder region 10 (a circle having a diameter of 200 mm) of the multilayer wiring board. Set to. A multilayer wiring board was produced in the same manner as in Example 2 except for this.

(比較例1)
プレス成形時の構成において、積層治具7の外側に圧力調整用治具4を設置しないこと以外は、実施例1と同様に基板を作製した。
(Comparative Example 1)
A substrate was produced in the same manner as in Example 1 except that the pressure adjusting jig 4 was not installed outside the lamination jig 7 in the configuration at the time of press molding.

(比較例2)
プレス構成において積層治具7の外側に圧力調整用治具4を設置しないこと以外は、実施例2と同様に基板を作製した。
(Comparative Example 2)
A substrate was produced in the same manner as in Example 2 except that the pressure adjusting jig 4 was not installed outside the lamination jig 7 in the press configuration.

実施例1〜4、比較例1及び2で製造した多層配線板、多層マルチワイヤ配線板の板厚を、CCDレーザ変位計による板厚測定システム(株式会社キーエンス製)にて測定した結果を表1及び表2に示す。表1は、多層マルチワイヤ配線板の製品としての最終サイズ(500mm×600mm)の全体についての測定値である。板厚測定ポイントは、50mm間隔の格子状(500mm方向11点、600mm方向13点の計143点)とした。表2は、針立て領域(直径200mm)についての測定値である。板厚測定ポイントは、50mm間隔の格子状とした。実施例1及び2と比較例1、実施例3及び4と比較例2をそれぞれ比較すると、何れも圧力調整用治具4を用いた実施例の方が圧力調整用治具4を設置していない比較例よりも、板厚偏差(板厚の最大−最小)は小さく、多層配線板としての板厚精度が優れることがわかった。   Table 1 shows the results of measuring the thicknesses of the multilayer wiring boards and multilayer multi-wire wiring boards manufactured in Examples 1 to 4 and Comparative Examples 1 and 2 using a board thickness measurement system (manufactured by Keyence Corporation) using a CCD laser displacement meter. 1 and Table 2. Table 1 shows measured values for the entire final size (500 mm × 600 mm) as a product of the multilayer multi-wire wiring board. The plate thickness measurement points were in the form of a grid with an interval of 50 mm (total of 143 points, 11 points in the 500 mm direction and 13 points in the 600 mm direction). Table 2 shows the measured values for the needle holder region (diameter 200 mm). The plate thickness measurement points were in the form of a grid with an interval of 50 mm. When Examples 1 and 2 are compared with Comparative Example 1, and Examples 3 and 4 are compared with Comparative Example 2, respectively, the Examples using the pressure adjusting jig 4 have the pressure adjusting jig 4 installed. It was found that the plate thickness deviation (maximum-minimum of plate thickness) was smaller than that of the comparative example, and the plate thickness accuracy as a multilayer wiring board was excellent.

Figure 2013211388
Figure 2013211388

Figure 2013211388
Figure 2013211388

1…被成形物
2…鏡板
3…積層治具板
4…圧力調整用治具
5…クッション材
6…熱盤
7…積層治具
8…支持体
9…圧力調整体
10…針立て領域
11…接着材
12…被覆体
DESCRIPTION OF SYMBOLS 1 ... Molding object 2 ... End plate 3 ... Lamination jig board 4 ... Pressure adjustment jig 5 ... Cushion material 6 ... Heating board 7 ... Lamination jig 8 ... Support body 9 ... Pressure adjustment body 10 ... Needle stand area 11 ... Adhesive 12 ... cover

Claims (7)

配線基板と多層化用接着材料とを重ねた被成形物の両側を積層治具で挟み、これらの全体をさらに熱盤で挟んでプレス成形する工程を有する半導体テスタ用の多層配線板の製造方法であって、前記プレス成形する工程において、支持体と、この支持体上に積層される圧力調整体とを有し、この圧力調整体は支持体よりも小さく、かつ上層になるにつれて小さくなるように階段状に積層されている圧力調整用治具を、前記被成形物に対応する領域内の前記積層治具と熱盤との間に配置してプレス成形する半導体テスタ用の多層配線基板の製造方法。   A method of manufacturing a multilayer wiring board for a semiconductor tester, comprising the steps of sandwiching both sides of a molded article in which a wiring board and an adhesive material for multilayering are stacked with a laminating jig, and further press-molding the whole with a heating platen In the press molding step, the support has a pressure adjusting body laminated on the support, and the pressure adjusting body is smaller than the support and becomes smaller as the upper layer is formed. A multilayer wiring board for a semiconductor tester in which a pressure adjusting jig laminated in a step shape is placed between the laminating jig and a heating plate in a region corresponding to the object to be molded and press-molded. Production method. 請求項1において、半導体テスタ用の多層配線板が、半導体検査用の針が配置される針立て領域を中央部に有する半導体テスタ用の多層配線板の製造方法。   2. The method of manufacturing a multilayer wiring board for a semiconductor tester according to claim 1, wherein the multilayer wiring board for a semiconductor tester has a needle stand region in a central portion where a needle for semiconductor inspection is arranged. 請求項1又は2において、針立て領域が円形である多層配線板の製造方法。   The method for manufacturing a multilayer wiring board according to claim 1 or 2, wherein the needle holder region is circular. 請求項1から3の何れかの多層配線板の製造方法に用いる圧力調整用冶具であって、圧力調整体よりも大きい接着材と被覆体とを、前記圧力調整体の上に設け、前記被覆体と圧力調整体と支持体とを一体化した圧力調整用冶具。   A pressure adjusting jig used in the method for manufacturing a multilayer wiring board according to any one of claims 1 to 3, wherein an adhesive material and a covering body larger than the pressure adjusting body are provided on the pressure adjusting body, and the covering Pressure adjusting jig that integrates the body, pressure adjusting body and support. 請求項4において、階段状に積層された最上層の圧力調整体の大きさが、多層配線板の針立て領域に対応するように設定される圧力調整用冶具。   5. The pressure adjusting jig according to claim 4, wherein a size of the uppermost pressure adjusting body stacked in a step shape is set so as to correspond to a needle stand region of the multilayer wiring board. 請求項4又は5において、積層された圧力調整体の全体の厚みが105〜175μmである圧力調整用冶具。   The jig for pressure adjustment according to claim 4 or 5, wherein the total thickness of the laminated pressure adjusting bodies is 105 to 175 µm. 請求項4から6の何れかにおいて、支持体が銅張積層板であり、圧力調整体及び被覆体が金属箔である圧力調整用冶具。   The pressure adjusting jig according to any one of claims 4 to 6, wherein the support is a copper clad laminate, and the pressure adjusting body and the covering are metal foils.
JP2012080084A 2012-03-30 2012-03-30 Manufacturing method of multilayer wiring board and jig for pressure regulation Pending JP2013211388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080084A JP2013211388A (en) 2012-03-30 2012-03-30 Manufacturing method of multilayer wiring board and jig for pressure regulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080084A JP2013211388A (en) 2012-03-30 2012-03-30 Manufacturing method of multilayer wiring board and jig for pressure regulation

Publications (1)

Publication Number Publication Date
JP2013211388A true JP2013211388A (en) 2013-10-10

Family

ID=49528985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080084A Pending JP2013211388A (en) 2012-03-30 2012-03-30 Manufacturing method of multilayer wiring board and jig for pressure regulation

Country Status (1)

Country Link
JP (1) JP2013211388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726913A (en) * 2018-06-28 2020-01-24 株洲中车时代电气股份有限公司 Semiconductor device testing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726913A (en) * 2018-06-28 2020-01-24 株洲中车时代电气股份有限公司 Semiconductor device testing device

Similar Documents

Publication Publication Date Title
JP4840132B2 (en) Multilayer substrate manufacturing method
KR20060061402A (en) Method of manufacturing multi-layer circuit board
JP4935957B1 (en) Manufacturing method of resin sheet for sealing
US7172925B2 (en) Method for manufacturing printed wiring board
JP5062844B2 (en) Manufacturing method of ceramic laminate
JP2013211388A (en) Manufacturing method of multilayer wiring board and jig for pressure regulation
JP2007221068A (en) Flush printed wiring board, method for manufacturing same, and multilayer printed wiring board made thereof
EP3478037B1 (en) Method of manufacturing multilayer substrate
JP5194951B2 (en) Circuit board manufacturing method
JP5574145B2 (en) Multilayer wiring board manufacturing method and pressure adjusting jig
KR20080012390A (en) A pres-adhesive method for multi board
JP4175192B2 (en) Multilayer substrate manufacturing method
JP4462057B2 (en) Inner layer circuit member, multilayer wiring circuit board using the same, and manufacturing method thereof
JP2016162956A (en) Jig for pin lamination and method of manufacturing multilayer wiring board
JP2007329244A (en) Method of manufacturing laminated circuit wiring board
JP3985304B2 (en) Method for manufacturing printed wiring board
JP2010109042A (en) Cushioning material for manufacturing circuit board
JP2016025306A (en) Manufacturing method of wiring board
JP5353027B2 (en) Circuit board manufacturing method
JP4715017B2 (en) Multilayer laminate manufacturing method
JP3969302B2 (en) Sheet material lamination method
JP5880082B2 (en) Multilayer substrate manufacturing method and multilayer substrate manufacturing apparatus
JP2014216401A (en) Manufacturing apparatus of circuit board and manufacturing method using the same
JP2020136625A (en) Manufacturing method of circuit board
JP2010238756A (en) Manufacturing method of substrate sheet with conductive bump and manufacturing method of multilayered printed wiring board