JP5868577B2 - Glass substrate and manufacturing method thereof - Google Patents

Glass substrate and manufacturing method thereof Download PDF

Info

Publication number
JP5868577B2
JP5868577B2 JP2010116456A JP2010116456A JP5868577B2 JP 5868577 B2 JP5868577 B2 JP 5868577B2 JP 2010116456 A JP2010116456 A JP 2010116456A JP 2010116456 A JP2010116456 A JP 2010116456A JP 5868577 B2 JP5868577 B2 JP 5868577B2
Authority
JP
Japan
Prior art keywords
glass substrate
polishing
chamfered
end surface
chamfered surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010116456A
Other languages
Japanese (ja)
Other versions
JP2011241126A (en
Inventor
浩一 下津
浩一 下津
広之 中津
広之 中津
泰紀 三成
泰紀 三成
祐之 高橋
祐之 高橋
久敏 饗場
久敏 饗場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010116456A priority Critical patent/JP5868577B2/en
Publication of JP2011241126A publication Critical patent/JP2011241126A/en
Application granted granted Critical
Publication of JP5868577B2 publication Critical patent/JP5868577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、表面および裏面と、それら両面の外周端相互間に存する端面との間の境界部について、その面性状を適正化してなるガラス基板およびその製造方法に関する。   The present invention relates to a glass substrate formed by optimizing the surface properties of a boundary portion between a front surface and a back surface and end surfaces existing between outer peripheral ends of both surfaces, and a manufacturing method thereof.

周知のように、近年における画像(映像)表示装置は、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED)、有機ELディスプレイ(OLED)などに代表されるフラットパネルディスプレイ(FPD)が主流となっている。また、有機ELは、OLEDのように微細な三原色をTFTにより明滅させるディスプレイだけでなく、単色(例えば白色)のみで発光させてLCDのバックライトや屋内照明の光源などの平面光源としても利用されつつある。   As is well known, image (video) display devices in recent years are flat panel displays (FPD) represented by a liquid crystal display (LCD), a plasma display (PDP), a field emission display (FED), an organic EL display (OLED), and the like. ) Is the mainstream. Organic EL is used not only as a display that uses TFTs to flicker the three primary colors as in OLED, but also as a flat light source such as LCD backlights and indoor lighting sources by emitting light only in a single color (for example, white). It's getting on.

これらのFPDや照明は何れも、ガラス基板の表面に、それぞれの素子や配線を含む種々の構成物を付設等し且つ組み合わせることにより構成される。特に、FPDは、生産性効率化の観点から、一枚の大型のガラス基板上に複数個のFPD用パネル素子などを形成し、最終的にそれらを適宜分割して個々のFPD用ガラスパネルとする所謂マルチ採りが行われている。このマルチ採りは、ガラス基板が大型化するに連れて効率が向上することから、一辺の長さが3mを超えるガラス基板が使用されるに至っている。更に、近年においては、FPD自体の大型化が推進されていることから、その重量増を阻止する要請に応じるために、ガラス基板としては、より薄肉のものが必要となっている。また、この種のガラス基板は、上述のFPDや有機EL照明以外に、太陽電池のガラス基板としても利用されるに至っている。   Each of these FPDs and illuminations is configured by attaching and combining various components including respective elements and wirings on the surface of the glass substrate. In particular, from the viewpoint of improving productivity, FPD is formed by forming a plurality of FPD panel elements on a single large glass substrate, and finally dividing them appropriately to obtain individual FPD glass panels. So-called multi-taking is performed. Since this multi-collection improves the efficiency as the glass substrate becomes larger, a glass substrate having a side length of more than 3 m has been used. Further, in recent years, since the size of the FPD itself has been promoted, a thinner glass substrate is required to meet the demand for preventing the increase in weight. Moreover, this kind of glass substrate has come to be used as a glass substrate for solar cells in addition to the above-mentioned FPD and organic EL illumination.

そして、これらのFPD、有機EL照明、および太陽電池の製造工程においては、ガラス基板を例えば定盤から持ち上げる工程や熱処理する工程が存在しており、これらの工程でガラス基板を持ち上げる際には、次に示すような問題が生じる。   And in the manufacturing process of these FPD, organic EL lighting, and solar cell, for example, there is a step of lifting the glass substrate from the surface plate and a step of heat treatment. When lifting the glass substrate in these steps, The following problems arise.

すなわち、ガラス基板は、そのサイズが大型化し且つ薄肉化が進むと、撓みが生じ易く、その撓みに起因して凸になる面には引張応力が作用すると共に、凹になる面には圧縮応力が作用する。その場合、ガラス基板は、表面および裏面と、これら両面の外周端相互間に存する端面とが、それぞれ境界部を介して連なる形態を有するが、ガラス基板が撓んだ場合には、上述の境界部にも当該応力が作用する。したがって、ガラス基板が撓んだ際には、凸になる表面または裏面とその面に連接された端面との境界部周辺に大きな引張応力が生じる。そのため、ガラス基板の表裏面と端面とのそれぞれの境界部周辺に、傷やクラック或いは異物などの微小欠陥が存在していると、ガラス基板が撓んだ際に当該欠陥付近に大きな引張応力が生じると共に当該欠陥に応力集中が発生し、微小欠陥が拡大して一挙にガラス基板を破損に至らしめる。   That is, when the glass substrate is increased in size and thinned, the glass substrate is likely to bend, and tensile stress acts on the convex surface due to the deflection, and compressive stress is applied to the concave surface. Act. In that case, the glass substrate has a form in which the front surface and the back surface and the end surfaces existing between the outer peripheral ends of both surfaces are connected via a boundary portion, respectively. The stress also acts on the part. Therefore, when the glass substrate is bent, a large tensile stress is generated around the boundary between the convex surface or back surface and the end surface connected to the surface. Therefore, if there are micro defects such as scratches, cracks, or foreign matter around the boundary between the front and back surfaces and the end surface of the glass substrate, a large tensile stress is generated near the defects when the glass substrate is bent. At the same time, stress concentration occurs in the defect, and the micro defect expands to break the glass substrate all at once.

上述のガラス基板の熱処理工程においても、これと同様の問題が生じる。すなわち、ガラス基板は、温度上昇に伴って膨張し、また温度低下に伴って収縮するが、熱処理工程でガラス基板に不当な温度分布が生じると、一枚のガラス基板内に、膨張と収縮が生じて引張応力と圧縮応力とが混在することになる。その場合に、ガラス基板の表裏面と端面との境界部周辺に微小欠陥が存在し且つ当該境界部に引張応力が生じると、その微小欠陥に応力集中が発生し、ガラス基板を破損に至らしめる。   The same problem occurs in the above-described heat treatment step for the glass substrate. That is, the glass substrate expands as the temperature rises and contracts as the temperature decreases, but if an inappropriate temperature distribution occurs in the glass substrate during the heat treatment process, the glass substrate expands and contracts within one glass substrate. As a result, tensile stress and compressive stress are mixed. In that case, if a micro defect exists around the boundary between the front and back surfaces and the end surface of the glass substrate and tensile stress is generated in the boundary, stress concentration occurs in the micro defect, leading to damage to the glass substrate. .

ところで、この種のガラス基板は、分割することにより所望の大きさとされるが、その分割方法としては、ガラス基板の表面にダイヤモンドチップ等でスクライブ線を刻設し、そのスクライブ線に引張応力が作用するように力を加えて、ガラス基板を割断する所謂折割りが一般的に採用されている。このような分割方法では、分割後のガラス基板の表裏面と端面との境界部に、無数の微小欠陥が生じることになるので、上述のようにガラス基板の撓み時や熱処理時に当該ガラス基板が破損する確率が高くなる。   By the way, this kind of glass substrate is made to have a desired size by dividing. As a dividing method, a scribe line is engraved with a diamond chip or the like on the surface of the glass substrate, and the scribe line has a tensile stress. So-called splitting, in which a glass substrate is cut by applying a force so as to act, is generally employed. In such a dividing method, innumerable micro defects are generated at the boundary between the front and back surfaces and the end surface of the glass substrate after the division, so that the glass substrate is deformed or heat-treated as described above. The probability of breakage increases.

このような問題に対処すべく、特許文献1、2によれば、ガラス基板の表裏面と端面との境界部に研磨処理を施して面取り面を形成すると共に、端面よりも研磨後の面取り面を滑らかにすることが開示されている。詳しくは、特許文献1には、ガラス基板の端面は表裏面に対して直角であって、その端面の表面最大凹凸が0.05mm以下で且つ面取り面の表面最大凹凸が0.007mmであることが好ましいと記載されている。また、特許文献2には、ガラス基板の端面が、表裏面の外周端から湾曲して外方に突出しており、その端面の表面最大凹凸が0.04mm以下で且つ面取り面の表面最大凹凸が0.007mmであることが好ましいと記載されている。   According to Patent Documents 1 and 2, in order to cope with such a problem, a chamfered surface is formed by performing a polishing process on the boundary between the front and back surfaces and the end surface of the glass substrate, and the chamfered surface after polishing is more polished than the end surface. Smoothing out is disclosed. Specifically, in Patent Document 1, the end surface of the glass substrate is perpendicular to the front and back surfaces, the maximum surface unevenness of the end surface is 0.05 mm or less, and the maximum surface unevenness of the chamfered surface is 0.007 mm. Is preferred. Further, in Patent Document 2, the end face of the glass substrate is curved outward from the outer peripheral ends of the front and back surfaces, the maximum surface unevenness of the end surface is 0.04 mm or less, and the maximum surface unevenness of the chamfered surface is It is described that it is preferably 0.007 mm.

特開平9−278466号公報Japanese Patent Laid-Open No. 9-278466 特開平9−278467号公報Japanese Patent Laid-Open No. 9-278467

しかしながら、特許文献1、2に開示されたガラス基板は、強化ガラスであるため、強化処理を施していないガラス基板に、同各文献と同様に面取り面を形成する処理を行っても、ガラス基板に撓みや不当な温度分布が生じた場合に、ガラス基板の破損の招来を確実に回避することはできないと言える。すなわち、同各文献に記載された面取り面は、上記列挙した用途に使用されるガラス基板を含めて、どのようなガラス基板であっても好適に適用できるという面性状ではないと言える。   However, since the glass substrates disclosed in Patent Documents 1 and 2 are tempered glass, even if a glass substrate that has not been subjected to a tempering process is subjected to a process for forming a chamfered surface as in the same document, the glass substrate. It can be said that the occurrence of breakage of the glass substrate cannot be surely avoided when bending or an inappropriate temperature distribution occurs. That is, it can be said that the chamfered surface described in each document is not a surface property that can be suitably applied to any glass substrate including the glass substrates used for the above-described applications.

しかも、同各文献に記載されたガラス基板の面取り面の面性状は、表面最大凹凸をパラメータとして規定したものであり、このような規定に基づく面性状では、上述の如きガラス基板の破損を確実に阻止することはできない。すなわち、表面最大凹凸をパラメータとすること自体が最適であるとは言えないため、面取り面の面性状が同各文献に記載の規定を満たしていたとしても、基板の撓みや不当な温度分布に起因するガラス基板の破損に対しては的確に対処し得ないことになる。   In addition, the surface properties of the chamfered surface of the glass substrate described in each document are defined by using the maximum surface unevenness as a parameter, and the surface properties based on such a rule ensure that the glass substrate is not damaged as described above. Cannot be stopped. In other words, it is not optimal to use the maximum surface roughness as a parameter, so even if the surface properties of the chamfered surface satisfy the provisions described in each of the documents, the substrate may be bent or have an inappropriate temperature distribution. Therefore, the glass substrate cannot be dealt with accurately due to the damage of the glass substrate.

更に、同各文献にて規定された面取り面の面性状であれば、端面の研磨時に発生してガラス基板の表面に付着したガラスパーティクル等が、洗浄工程において、面取り面に滞留し易いという不具合をも招きかねない。そして、これが原因となって、乾燥工程において、ガラスパーティクル等が、ガラス基板の表面に付着した状態となり、ガラス基板の品位低下という致命的な欠陥をも招来する。   Furthermore, if the surface properties of the chamfered surface specified in the same document, glass particles, etc. generated during the polishing of the end surface and adhering to the surface of the glass substrate are likely to stay on the chamfered surface in the cleaning process. May also be invited. Due to this, in the drying process, glass particles and the like are attached to the surface of the glass substrate, which causes a fatal defect that the quality of the glass substrate is deteriorated.

なお、以上のような問題は、ガラス基板の分割が既述の折割りによるもの以外、例えばレーザー割断等のようにレーザーを使用して分割されたガラス基板についてその境界部に研磨による面取り面を形成した場合においても、同様にして生じ得る。   In addition, the above-mentioned problems are caused by chamfering by polishing at the boundary portion of a glass substrate divided by using a laser such as laser cleaving other than the above-described splitting of the glass substrate. In the case of formation, it can occur in the same manner.

そして、以上のような問題到来のおそれが否めないにも拘わらず、従来においては、その面性状を適切に規定するための具体的手段については、最適なものが見出されていないのが実情である。   In spite of the unavoidable possibility of the above problems, the actual situation is that no optimum means has been found in the past as a specific means for appropriately defining the surface properties. It is.

本発明は、上記事情に鑑み、ガラス基板の表裏面と端面とに連接される境界面の面性状を適正化させることにより、強化処理が施されているか否かに拘わらず、ガラス基板の撓みや不当な温度分布に起因する破損の発生を確実に防止すると共に、ガラスパーティクルの問題をも解消することを技術的課題とする。   In view of the circumstances described above, the present invention is made by bending the glass substrate regardless of whether or not the strengthening treatment is performed by optimizing the surface properties of the boundary surface connected to the front and back surfaces and the end surface of the glass substrate. In addition, the technical problem is to reliably prevent the occurrence of breakage due to the unjustified temperature distribution and to solve the problem of glass particles.

上記技術的課題を解決するために創案された本発明は、表面および裏面と、その両面の外周端の相互間に存する端面とを有するガラス基板において、前記表面および裏面と前記端面との間の少なくとも一方の境界部に面取り面が形成され、該面取り面における二乗平均平方根粗さRqが、0.3μm以下であり、且つ該面取り面が研磨面であることに特徴づけられる。ここで、二乗平均平方根粗さRqは、JIS B0601:2001に準拠している(以下、同様)。なお、上記の「面取り面」とは、当該境界部に面取り加工を施して得られる面取り部の表面を意味する。 The present invention devised to solve the above technical problem is a glass substrate having a front surface and a back surface, and end surfaces existing between outer peripheral ends of the both surfaces, and between the front surface and the back surface and the end surface. chamfered surface is formed on at least one of the boundary portion, the root-mean-square roughness Rq of the chamfered surface, 0.3 [mu] m Ri der less and the chamfered surface is characterized the polishing surface der Rukoto. Here, the root mean square roughness Rq is based on JIS B0601: 2001 (hereinafter the same). In addition, said "chamfering surface" means the surface of the chamfered part obtained by giving a chamfering process to the said boundary part.

このような構成によれば、ガラス基板の境界部に形成された面取り面の面性状が、二乗平均平方根粗さRqをパラメータとして使用して規定されており、このRqは、測定曲線である粗さ曲線の山谷部を二乗した値の平均値の平方根であるため、当該面取り面に存する高い山部及び深い谷部は、強調された数値となって表われる。すなわち、多段研磨された研磨面では必然的に山部よりも谷部の方が強調された値となる。これに加えて、その面取り面は、Rqが0.3μm以下と規定されているため、当該ガラス基板の撓みや不当な温度分布に起因する破損並びにガラスパーティクルに起因する品位低下の問題が可及的に抑制される。すなわち、上記の面取り面の性状を表わす粗さ曲線には、山部と谷部とが存在しているが、山部と谷部との落差が大きい場合に曲げや熱による引張応力が面取り面に作用すると、谷部を引き裂くようにその谷底に応力集中が生じ、これに起因して谷部の引き裂きが進展することにより、ガラス基板を破損に至らしめる。しかしながら、上記のように面取り面の二乗平均平方根粗さRqが0.3μm以下であると、面取り面には、熱や曲げによる引張応力に起因して谷部に引き裂きが進展するような落差が存在していないことになり、ガラス基板の破損が到来し難くなるばかりでなく、谷部にガラスパーティクルが残存滞留し難くなる。なお、このような観点から、境界部に形成された面取り面の二乗平均平方根粗さRqは、0.1μm以下であることがより好ましい。また、ガラス基板の面取り面における二乗平均平方根粗さRqは、この面取り面に連接する端面の二乗平均平方根粗さRqよりも小さいことが有効である。すなわち、ガラス基板の撓みや不当な温度分布に起因して当該ガラス基板の内部に応力が発生する場合には、それらの応力は、境界部付近に生じ易いことが判明している。そのため、境界部(面取り面)の二乗平均平方根粗さRqを、端面の二乗平均平方根粗さRqよりも小さくすれば、応力集中の生じ易い境界部からは、その応力集中の原因となる谷部が低減していることになる。その結果として、ガラス基板の撓みや不当な温度分布に起因する破損を可及的に低減させることができ、これに加えてガラスパーティクルの残存滞留の問題も回避される。なお、ガラス基板の端面における二乗平均平方根粗さRqが、境界部の面取り面における二乗平均平方根粗さRqよりも小さくても、面性状の観点からは過剰品質になるものの、破損やガラスパーティクルの問題に支障が生じることはない。そして、本発明に係るガラス基板は、強化処理(熱強化処理)が施されていなくても、或いは施されていても、上記のような利点を得ることができる。   According to such a configuration, the surface property of the chamfered surface formed at the boundary portion of the glass substrate is defined using the root mean square roughness Rq as a parameter, and this Rq is a measurement curve. Since it is the square root of the average value of the squares of the valleys and valleys of the curve, the high peaks and deep valleys existing on the chamfered surface appear as emphasized numerical values. That is, in the polished surface that has been subjected to multi-stage polishing, the valleys are inevitably emphasized rather than the peaks. In addition to this, since the chamfered surface is defined to have an Rq of 0.3 μm or less, there is a possibility that the glass substrate bends or breaks due to an inappropriate temperature distribution, and the quality deteriorates due to glass particles. Is suppressed. In other words, the roughness curve representing the properties of the chamfered surface has crests and troughs, but when the drop between the crests and troughs is large, tensile stress due to bending or heat causes chamfered surfaces. When acting on, the stress concentration is generated at the bottom of the valley so as to tear the valley, and the tear of the valley develops due to this, thereby causing the glass substrate to break. However, when the root mean square roughness Rq of the chamfered surface is 0.3 μm or less as described above, the chamfered surface has a drop that causes tearing to develop in the valley due to tensile stress due to heat or bending. As a result, the glass substrate is not easily damaged, and the glass particles hardly remain in the valleys. From such a viewpoint, the root mean square roughness Rq of the chamfered surface formed at the boundary is more preferably 0.1 μm or less. In addition, it is effective that the root mean square roughness Rq on the chamfered surface of the glass substrate is smaller than the root mean square roughness Rq of the end surface connected to the chamfered surface. That is, it has been found that when stress is generated inside the glass substrate due to bending of the glass substrate or an inappropriate temperature distribution, these stresses are likely to occur near the boundary. Therefore, if the root mean square roughness Rq of the boundary portion (chamfered surface) is made smaller than the root mean square roughness Rq of the end surface, the valley portion that causes the stress concentration from the boundary portion where stress concentration easily occurs. Is reduced. As a result, it is possible to reduce as much as possible the damage caused by the bending of the glass substrate and the inappropriate temperature distribution, and in addition to this, the problem of remaining glass particles is avoided. In addition, even if the root mean square roughness Rq on the end face of the glass substrate is smaller than the root mean square roughness Rq on the chamfered surface of the boundary portion, although it becomes excessive quality from the viewpoint of surface properties, The problem will not be disturbed. And the glass substrate which concerns on this invention can acquire the above advantages, even if it does not perform the reinforcement | strengthening process (thermal reinforcement | strengthening process) or is performed.

この場合、既述のように、前記面取り面は、研磨面であるIn this case, as described above, the chamfered surface is a polished surface .

従ってこの場合の面取り面は研磨処理によって形成されることになるため、単一のガラス基板の境界部に、長手方向全長に亘って小さな数値の二乗平均平方根粗さRqを有する面取り面を形成することができる。加えて、複数のガラス基板についても、ガラス基板の別異に拘わらず、それぞれの境界部に同等の二乗平均平方根粗さRqを有する面取り面を形成することが可能となり、品質のバラツキを低減させることが可能となる。なお、面取り面の研磨処理を、多段階研磨とすれば、山部が平坦面に近い面性状となるため、当該面取り面における二乗平均平方根粗さRqを効果的に小さくすることができ、クラック進展や破損の問題を回避する上で有利となる。 Therefore, it becomes that this chamfered surface of the case is thus formed in the polishing process, the boundary of a single glass substrate, a chamfered surface having a root mean square roughness Rq of small numbers over the entire length in the longitudinal direction Can be formed. In addition, even for a plurality of glass substrates, it is possible to form a chamfered surface having an equivalent root mean square roughness Rq at each boundary portion regardless of the difference in glass substrates, thereby reducing variations in quality. It becomes possible. Note that if the chamfered surface is treated in a multi-step manner, the crest portion has a surface property close to a flat surface, so that the root mean square roughness Rq on the chamfered surface can be effectively reduced, and cracks can be generated. This is advantageous in avoiding problems of progress and breakage.

更に、前記面取り面は、前記端面の研磨処理後における研磨処理により形成されていることが好適である。   Furthermore, it is preferable that the chamfered surface is formed by a polishing process after the end surface is polished.

すなわち、先ずガラス基板の端面を研磨することにより当該端面の二乗平均平方根粗さRqを適度に小さくしておき、その後に、研磨により面取り面を形成することにより当該面取り面の二乗平均平方根粗さRqを前記端面の二乗平均平方根粗さRqよりも小さくすれば、効率良くガラス基板の破損やパーティクルの問題を解消し得る面性状とすることができる。したがって、面性状の観点からは、効率的な処理となる。   That is, by first polishing the end face of the glass substrate, the root mean square roughness Rq of the end face is appropriately reduced, and then the root mean square roughness of the chamfered face is formed by polishing. If Rq is made smaller than the root mean square roughness Rq of the end face, it is possible to achieve a surface property capable of efficiently solving the glass substrate breakage and particle problems. Therefore, it is an efficient process from the viewpoint of surface properties.

上記の構成において、前記端面は、前記表面および裏面の外周端の相互間に平坦面として形成することができる。   In the above configuration, the end surface can be formed as a flat surface between the outer peripheral ends of the front surface and the back surface.

このようにすれば、表面および裏面と端面との境界部が角張った状態となるため、引張応力の緩和の観点から、当該境界部に二乗平均平方根粗さRqが0.3μm以下の面取り面を形成する意義は大きくなる。この場合、ガラス基板の端面は、研磨処理が施されているものであってもよく、或いは、ガラス基板の分割をレーザー割断等のようにレーザーを使用して行ったものについては研磨処理が施されていなくてもよい。すなわち、ガラス基板の分割をレーザー割断等で行った場合には、平坦面として形成されるガラス基板の端面の面性状が、表裏面と略同等の面に近くなることから、端面に研磨を行うことなく、境界部に研磨による面取り面を形成するだけで充分となる。   In this way, the boundary portion between the front surface and the back surface and the end surface is in an angular state. Therefore, from the viewpoint of relaxation of tensile stress, a chamfered surface having a root mean square roughness Rq of 0.3 μm or less is applied to the boundary portion. The significance of forming increases. In this case, the end surface of the glass substrate may be subjected to a polishing process, or a glass substrate that has been divided using a laser, such as laser cutting, is subjected to a polishing process. It does not have to be. That is, when the glass substrate is divided by laser cutting or the like, the end surface of the glass substrate formed as a flat surface is close to the same surface as the front and back surfaces, so the end surface is polished. Instead, it is sufficient to form a chamfered surface by polishing at the boundary.

また、前記端面は、前記表面および裏面の外周端から板厚中央部にかけて外方に漸次突出する湾曲面として形成することもできる。   Further, the end surface can be formed as a curved surface that gradually protrudes outward from the outer peripheral ends of the front and back surfaces to the central portion of the plate thickness.

このようにすれば、面取り面と端面との連接部、および面取り面と表面(または裏面)との連接部を、緩やかな屈曲部を介して連ならせることが可能となるため、面取り面周辺に生じる引張応力或いは応力集中を小さくする上で有利となる。   In this way, the connecting portion between the chamfered surface and the end surface and the connecting portion between the chamfered surface and the front surface (or the back surface) can be connected via a gentle bent portion, so that the periphery of the chamfered surface This is advantageous in reducing the tensile stress or stress concentration generated in the case.

このような端面形状の場合、前記端面の長手方向と直交する断面において、前記面取り面の表面側および裏面側の少なくとも一方への接線と、当該表面および裏面の少なくとも一方とのなす角度が、10°以上で且つ30°以下であることが好ましい。   In the case of such an end face shape, in a cross section orthogonal to the longitudinal direction of the end face, an angle formed by a tangent to at least one of the front side and the back side of the chamfered surface and at least one of the front side and the back side is 10 It is preferably at least 30 ° and at most 30 °.

すなわち、上記の角度が10°よりも小さいと、面取り面を研磨により形成する場合における端面側の研磨領域が狭くなり、当該端面と表面および裏面とのそれぞれの境界部に残存しているガラスチッピング或いは欠けやクラック等の除去が不十分となるため、これを回避するには研磨領域を表面および裏面側に広げる必要性が生じて、境界部として好ましくない形態となる。これに対して、上記の角度が30°を超えると、面取り面を研磨により形成する場合における端面側の研磨領域を不当に広くしなければ、当該面取り面を形成できなくなり、生産性の悪化を招く。したがって、この角度が上記の数値範囲内にあれば、これらの不具合は生じない。このような観点から、より好ましくは、上記の角度の下限値が15°とされ、上限値が20°とされる。   That is, when the angle is smaller than 10 °, the polishing area on the end face side in the case where the chamfered surface is formed by polishing becomes narrow, and the glass chipping remaining at the boundary portion between the end face and the front and back surfaces is reduced. Alternatively, since removal of chips, cracks and the like becomes insufficient, in order to avoid this, it becomes necessary to widen the polishing region on the front and back surfaces, and the boundary portion is not preferable. On the other hand, if the angle exceeds 30 °, the chamfered surface cannot be formed unless the end surface side polishing region is unreasonably widened when the chamfered surface is formed by polishing. Invite. Therefore, if this angle is within the above numerical range, these problems do not occur. From such a viewpoint, more preferably, the lower limit value of the angle is set to 15 ° and the upper limit value is set to 20 °.

以上の構成において、板厚Tは、1.1mm以下で且つ0.05mm以上であることが好ましい。   In the above configuration, the plate thickness T is preferably 1.1 mm or less and 0.05 mm or more.

すなわち、ガラス基板の板厚Tが1.1mmを超えると、当該ガラス基板の強度に対するガラス基板の板厚Tの影響が大きくなり、上述のガラス基板の破損につながる撓みや不当な温度分布による応力に対抗するための本発明特有の効果を充分に発揮し得なくなるおそれがある。これに対して、ガラス基板の板厚Tが0.05mm未満であると、表裏面と端面とのそれぞれの間に適正な研磨処理を施すことが困難となり得る。したがって、ガラス基板の板厚Tが上記の数値範囲内にあれば、このような不具合を回避することができる。なお、これらの観点から、より好ましくは、ガラス基板の板厚Tの下限値が0.1mmとされ、上限値が0.7mmとされる。   That is, when the thickness T of the glass substrate exceeds 1.1 mm, the influence of the thickness T of the glass substrate on the strength of the glass substrate increases, and the stress due to the bending or the inappropriate temperature distribution that leads to the breakage of the glass substrate described above. There exists a possibility that the effect peculiar to this invention for countering may not fully be exhibited. On the other hand, if the plate thickness T of the glass substrate is less than 0.05 mm, it may be difficult to perform an appropriate polishing process between the front and back surfaces and the end surfaces. Therefore, if the thickness T of the glass substrate is within the above numerical range, such a problem can be avoided. From these viewpoints, more preferably, the lower limit value of the plate thickness T of the glass substrate is 0.1 mm, and the upper limit value is 0.7 mm.

ここで、既述のように本発明は、板厚Tと、前記面取り面の長手方向と直交する方向の幅Wとが、0.07≦W/T≦0.30の関係を満たしている Here, the present invention is as described above, and the plate thickness T, and width W in a direction perpendicular to the longitudinal direction of the chamfered surface, and satisfy the relationship of 0.07 ≦ W / T ≦ 0.30 Yes .

すなわち、W/Tが0.07未満であると、面取り面の形成領域が不十分となり、面取り面の存在による端面強度の上昇効果が少なくなる。これに対して、W/Tが0.30を超えると、面取り面の形成に要する時間が長期化され、生産性が低下する。したがって、W/Tが上記の数値範囲内にあれば、このような不具合を回避し得る。なお、これらの観点から、より好ましくは、0.10≦W/T≦0.20の関係を満たすことである。   That is, when W / T is less than 0.07, the formation area of the chamfered surface becomes insufficient, and the effect of increasing the end face strength due to the presence of the chamfered surface is reduced. On the other hand, when W / T exceeds 0.30, the time required for forming the chamfered surface is prolonged, and the productivity is lowered. Therefore, if W / T is within the above numerical range, such a problem can be avoided. From these viewpoints, it is more preferable to satisfy the relationship of 0.10 ≦ W / T ≦ 0.20.

なお、以上の構成を備えたガラス基板は、面取り面が辺の全長に亘って形成されていることが好ましいが、板厚の薄いガラス基板等については、面取り面の研磨による形成の困難性を考慮して、平面視でのコーナー部近傍を面取り面の形成箇所から除外してもよい。   In addition, it is preferable that the chamfered surface of the glass substrate having the above configuration is formed over the entire length of the side. However, for a glass substrate having a thin plate thickness, it is difficult to form the chamfered surface by polishing. Considering this, the vicinity of the corner portion in plan view may be excluded from the chamfered surface forming portion.

一方、上記技術的課題を解決するために創案された本発明に係る方法は、上述の面取り面を形成してなるガラス基板を製造する方法であって、前記面取り面を研磨する研磨具として、回転軸と直交する研磨面を有する回転研磨具を使用し、且つ前記研磨面の外周部の粗度を内周部の粗度よりも小さく形成すると共に、ガラス基板の表面および裏面と研磨処理後の端面との間の少なくとも一方の境界部に対して、前記回転研磨具がその長手方向に相対的に直線移動しながら前記回転軸廻りに回転することにより、前記研磨面の外周部および内周部の双方によって前記面取り面を形成することに特徴づけられる。   On the other hand, the method according to the present invention, which was created to solve the above technical problem, is a method for producing a glass substrate formed with the above-mentioned chamfered surface, and as a polishing tool for polishing the chamfered surface, Using a rotary polishing tool having a polishing surface orthogonal to the rotation axis, and forming the roughness of the outer peripheral portion of the polishing surface smaller than the roughness of the inner peripheral portion, and after polishing the front and back surfaces of the glass substrate The rotating polishing tool rotates about the rotation axis while moving relatively linearly in the longitudinal direction with respect to at least one boundary portion between the outer peripheral surface and the inner peripheral surface of the polishing surface. The chamfered surface is formed by both of the parts.

このような方法によれば、回転研磨具の研磨面(砥面)が回転軸と直交し且つ該研磨面の外周部の粗度が内周部の粗度よりも小さくされているので、この回転研磨具を上述のガラス基板の境界部に対して相対的に直線移動させつつ回転軸廻りに回転させて該境界部の特定研磨処理を行う場合には、先ず研磨面における粗度の小さい外周部によって、当該境界部の微細削り(微細研磨)が行われていわゆる「ならし」効果が得られる。これにより、ガラス基板の境界部に対する面取り面形成の初期段階において、不当な応力集中が抑制され、且つガラス基板のばたつきに起因する欠け(初期チッピング)やクラック等の発生が抑制された上で、当該境界部に初期段階に相当する面取り面が形成される。次段階として、回転研磨具が相対的に直線移動することにより、研磨面における粗度の大きい内周部が、上記の初期段階に相当する面取り面に当接して、相対的な粗研磨が行われる。この相対的粗研磨によって、研磨の進行速度が高められるため、面取り面形成時間が短縮されると共に、相対的粗研磨の開始時には当該境界部が微細研磨されて上述の「ならし」が行われていることから、欠けやクラック等の発生或いはそれらの進展を招くことなく、円滑に相対的粗研磨が開始されて進行していく。最終段階として、回転研磨具がさらに相対的に直線移動することにより、研磨面における上述の粗度の小さい外周部が、相対的粗研磨を施された面取り面に当接して、仕上げ研磨が行われる。これにより、回転研磨具の振動が研磨面の移動方向後端から面取り面に作用することによる該面取り面の後端への欠けやクラック等の発生が抑止されると共に、相対的粗研磨に起因して面取り面に残存した微小な研削粉或いはガラス粉が除去されることになる。このように、単一の回転研磨具の相対的な直線移動に伴って、微細研磨(ならし)と、相対的粗研磨と、仕上げ研磨とからなる一連の研磨処理が、ガラス基板の境界部に対して順次施されることにより、欠けやクラック等の発生を抑止しつつ短時間で面取り面の形成処理を行うことが可能となるため、装置の簡素化および面取り面周辺の良好な品位を確保した上で、大幅な生産性の向上が図られる。なお、回転研磨具とガラス基板とは、何れか一方または双方が直線移動すればよいが、ガラス基板の境界部の長手方向の寸法が、1000mm以上という大型のガラス基板の場合には、ガラス基板を作業台上等に固定した状態で回転研磨具をその境界部の長手方向に移動させるのが有利であり、その逆の小型のガラス基板の場合には、回転研磨具を定置設置してガラス基板が研磨面を横切るように直線移動させるのが有利である。そして、好ましくは、回転研磨具をスプリング等の弾性体を用いて弾性支持した状態で、上述のガラス基板の境界部に圧接させることにより、面取り面の面性状を好適なものとすることができる。   According to such a method, the polishing surface (abrasive surface) of the rotary polishing tool is orthogonal to the rotation axis, and the roughness of the outer peripheral portion of the polishing surface is smaller than the roughness of the inner peripheral portion. When the specific polishing process for the boundary portion is performed by rotating the rotary polishing tool around the rotation axis while linearly moving relative to the boundary portion of the glass substrate, first, the outer periphery having a small roughness on the polishing surface. By the portion, the boundary portion is finely cut (fine polishing) to obtain a so-called “running” effect. Thereby, in the initial stage of chamfered surface formation with respect to the boundary portion of the glass substrate, unreasonable stress concentration is suppressed, and occurrence of chipping (initial chipping) or cracks due to flapping of the glass substrate is suppressed, A chamfered surface corresponding to the initial stage is formed at the boundary portion. As the next stage, the rotary polishing tool moves relatively linearly, so that the inner peripheral part having a large roughness on the polishing surface comes into contact with the chamfered surface corresponding to the initial stage described above, and the relative rough polishing is performed. Is called. Since this relative rough polishing increases the speed of polishing, the time for forming a chamfered surface is shortened, and at the start of the relative rough polishing, the boundary portion is finely polished to perform the above-described “run-in”. Therefore, relative rough polishing is smoothly started and progressed without causing the occurrence of cracks, cracks, or the like or the progress thereof. As a final step, the rotary polishing tool further moves relatively linearly, so that the outer peripheral portion having the low roughness on the polishing surface comes into contact with the chamfered surface that has been subjected to relative rough polishing, and finish polishing is performed. Is called. As a result, the occurrence of chipping or cracking at the rear end of the chamfered surface due to the vibration of the rotary polishing tool acting on the chamfered surface from the rear end in the moving direction of the polishing surface is suppressed, and due to relative rough polishing. Thus, the fine grinding powder or glass powder remaining on the chamfered surface is removed. As described above, a series of polishing processes including fine polishing (relative polishing), relative rough polishing, and final polishing are performed along the relative linear movement of a single rotary polishing tool. Since the chamfered surface can be formed in a short time while suppressing the occurrence of chips and cracks, the device is simplified and the quality around the chamfered surface is improved. Once secured, productivity can be significantly improved. It should be noted that either one or both of the rotary polishing tool and the glass substrate may be linearly moved. However, in the case of a large glass substrate having a longitudinal dimension of the boundary portion of the glass substrate of 1000 mm or more, the glass substrate It is advantageous to move the rotating polishing tool in the longitudinal direction of the boundary portion while the tool is fixed on the work table or the like. It is advantageous to move the substrate linearly across the polishing surface. Then, preferably, the surface property of the chamfered surface can be made suitable by bringing the rotary polishing tool into elastic contact with an elastic body such as a spring and press-contacting the boundary portion of the glass substrate. .

更に、上記技術的課題を解決するために創案された本発明に係る方法は、上述の端面の研磨処理後に面取り面を形成してなるガラス基板を製造する方法であって、ガラス基板の端面に対して粗研磨処理を施した後に仕上げ研磨処理を施し、然る後、ガラス基板の表面および裏面と前記端面との間の少なくとも一方の境界部に、前記仕上げ研磨処理よりも細かい粒度を有する研磨具を用いて研磨処理(以下、この研磨処理を「特定研磨処理」と称する。)を施すことにより前記面取り面を形成することに特徴づけられる。 Furthermore, the method according to the present invention, which was created to solve the above technical problem, is a method of manufacturing a glass substrate formed by chamfering after the end face polishing process described above, and is provided on the end face of the glass substrate. After the rough polishing treatment is performed, the finish polishing treatment is performed. After that, at least one boundary portion between the front and back surfaces of the glass substrate and the end surface has a finer particle size than the final polishing treatment. Migaku Ken process using the ingredients (hereinafter, the polishing process is referred to as "specific polishing process.") it is characterized in forming the chamfered surface by performing.

このような方法によれば、ガラス基板の端面を粗研磨と仕上げ研磨とによって効率よく短時間で例えば断面略円弧状等に研磨できると共に、その後の研磨として、さらにその端面をより細かい粒度の研磨具で同形状に研磨するのではなく、その端面と表面および裏面とのそれぞれの境界部の少なくとも一方に、より細かい粒度の研磨具で面取り面を形成するものである。そのため、端面と、面取り面と、表裏面との3種の面性状を、最適なものとして、端面強度を効率よく向上させることができる。そして、好ましくは、端面の粗研磨処理を行う研磨具と、端面の仕上げ研磨処理を行う研磨具と、特定研磨処理を行う研磨具とを、同一の経路上に配設しておくことにより、各研磨具が連続して相対的に直線移動しながら各研磨処理を行っていくことができ、各処理を別々に行う場合と比較して、処理時間を大幅に短縮して生産性の向上を図ることが可能となる。更に、好ましくは、特定研磨処理を行う研磨具をスプリング等の弾性体を用いて弾性支持した状態で、上述のガラス基板の境界部に圧接させることにより、面取り面の面性状を好適なものとすることができる。   According to such a method, the end face of the glass substrate can be polished efficiently in a short time by rough polishing and finish polishing, for example, in a substantially arc-shaped cross section, and the end face is further polished at a finer grain size as subsequent polishing. A chamfered surface is formed with a finer-grained polishing tool at at least one of the boundary portions between the end surface, the front surface, and the back surface instead of polishing the same shape with the tool. Therefore, the end face strength can be efficiently improved by optimizing the three kinds of surface properties of the end face, the chamfered face, and the front and back faces. And, preferably, by arranging a polishing tool for performing rough polishing processing of the end surface, a polishing tool for performing final polishing processing of the end surface, and a polishing tool for performing specific polishing processing on the same path, Each polishing tool can perform each polishing process while continuously moving relatively linearly, and compared with the case where each process is performed separately, the processing time is greatly reduced and the productivity is improved. It becomes possible to plan. Furthermore, preferably, the surface property of the chamfered surface is made suitable by bringing the polishing tool for performing the specific polishing treatment into pressure contact with the boundary portion of the glass substrate in a state where the polishing tool is elastically supported using an elastic body such as a spring. can do.

以上のように本発明によれば、ガラス基板の表裏面と端面との間に存する少なくとも一方の境界部に面取り面が形成され、この面取り面の面性状が、二乗平均平方根粗さRqをパラメータとして使用して規定されたものである。そして、この二乗平均平方根粗さRqは、高い山部と深い谷部とがどの程度であるかを強調して示す指標となり得る値であることから、このRqが0.3μm以下と規定した面取り面を有する本発明に係るガラス基板は、撓みや不当な温度分布に起因して当該面取り面に引張応力が発生した場合であっても、山部と谷部との落差が小さいことにより応力集中が生じ難くなり、破損の発生確率が激減すると共に、ガラスパーティクルが残存滞留し難くなり製品品位の向上が図られる。   As described above, according to the present invention, a chamfered surface is formed at at least one boundary portion between the front and back surfaces and the end surface of the glass substrate, and the surface property of the chamfered surface is determined by using the root mean square roughness Rq as a parameter. It is specified by using as The root mean square roughness Rq is a value that can be used as an index that emphasizes the extent of the high peaks and the deep valleys. Therefore, the chamfer that defines Rq to be 0.3 μm or less. The glass substrate according to the present invention having a surface has a stress concentration due to a small drop between a crest and a trough even when a tensile stress is generated on the chamfered surface due to bending or an inappropriate temperature distribution. As a result, the occurrence probability of breakage is drastically reduced, and the glass particles are less likely to stay and improve the product quality.

本発明の実施形態に係るガラス基板の側縁部の長手方向と直交する方向で切断した端面の要部拡大縦断面図である。It is a principal part expansion longitudinal cross-sectional view of the end surface cut | disconnected in the direction orthogonal to the longitudinal direction of the side edge part of the glass substrate which concerns on embodiment of this invention. ガラス原板を切断して得られたガラス基板と、そのガラス基板の端面部を研磨する研磨具とを示す概略図である。It is the schematic which shows the glass substrate obtained by cut | disconnecting a glass original plate, and the polishing tool which grind | polishes the end surface part of the glass substrate. 端面研磨処理のみを行ったガラス基板の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the glass substrate which performed only the end surface grinding | polishing process. 端面処理後のガラス基板に対して面取り面の形成処理を行っている状態を示す概略正面図である。It is a schematic front view which shows the state which is forming the chamfering surface with respect to the glass substrate after an end surface process. 端面処理後のガラス基板に対して面取り面の形成処理を行っている状態を示す概略平面図である。It is a schematic plan view which shows the state which is performing the formation process of a chamfering surface with respect to the glass substrate after an end surface process. 面取り面の形成後におけるガラス基板の要部を示す概略平面図である。It is a schematic plan view which shows the principal part of the glass substrate after formation of a chamfered surface.

以下、本発明の実施形態を添付図面を参照して説明する。なお、以下の実施形態においては、LCD用に代表されるFPD用のガラス基板を対象とする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following embodiments, a glass substrate for FPD typified by LCD is targeted.

図1は、本実施形態に係るガラス基板1の要部を拡大した縦断面図である。なお、同図は、ガラス基板1の表面2a側部分の形態のみを図示しているが、裏面側部分も板厚方向中心線Xを挟んで略対称となる形態をなしている。同図に示すように、このガラス基板1は、平面状の表面2aと、縦断面が凸状の円弧形状をなす端面3と、表面2aと端面3との間に形成された平面状の面取り面4とを有する。換言すれば、ガラス基板1は、表面2aおよび裏面の外周端相互間に存する端面3と、表面2aおよび裏面とが、それぞれ面取り面4を介して連なっている。なお、このガラス基板1は、強化処理(熱強化処理等)が施されていないが、当該処理が施されていても差し支えない。   FIG. 1 is an enlarged longitudinal sectional view of a main part of the glass substrate 1 according to the present embodiment. In addition, although the figure has shown only the form of the surface 2a side part of the glass substrate 1, the back side part also has comprised the form which becomes substantially symmetrical on both sides of the plate | board thickness direction center line X. As shown in the figure, the glass substrate 1 has a planar surface 2a, an end surface 3 having a convex arcuate cross section, and a planar chamfer formed between the surface 2a and the end surface 3. Surface 4. In other words, in the glass substrate 1, the end surface 3 existing between the outer peripheral ends of the front surface 2 a and the back surface, and the front surface 2 a and the back surface are connected via the chamfered surfaces 4, respectively. In addition, although this glass substrate 1 is not subjected to the tempering process (thermal tempering process or the like), the glass substrate 1 may be subjected to the process.

ガラス基板1の端面3は、本実施形態では粗研磨処理が施された後に仕上げ研磨処理が施された研磨面であると共に、表面2aは、成形面つまり未研磨面であり、且つ、面取り面4は、端面3の仕上げ研磨処理後に特定研磨処理が施された特定研磨面である。そして、面取り面4の二乗平均平方根粗さRqは、0.3μm以下(好ましくは0.1μm以下)とされている。なお、表面2aは、鏡面であることから、その二乗平均平方根粗さRqは、面取り面4の二乗平均平方根粗さRqよりも小さい。   In the present embodiment, the end surface 3 of the glass substrate 1 is a polished surface that has been subjected to a final polishing process after being subjected to a rough polishing process, and the surface 2a is a molded surface, that is, an unpolished surface, and a chamfered surface. Reference numeral 4 denotes a specific polished surface that has been subjected to a specific polishing process after the finish polishing of the end face 3. The root mean square roughness Rq of the chamfered surface 4 is 0.3 μm or less (preferably 0.1 μm or less). In addition, since the surface 2a is a mirror surface, the root mean square roughness Rq thereof is smaller than the root mean square roughness Rq of the chamfered surface 4.

さらに、図1に示す断面(端面3の長手方向と直交する断面)においては、面取り面4の表面2a側への接線Aと表面2aとのなす角度αは、10°以上で且つ30°以下(本実施形態では18°)であると共に、図示しないが、裏面側の面取り面も、その裏面側への接線と裏面とのなす角度が、10°以上で且つ30°以下(本実施形態では18°)である。   Further, in the cross section shown in FIG. 1 (cross section orthogonal to the longitudinal direction of the end face 3), the angle α formed between the tangent line A to the surface 2a side of the chamfered surface 4 and the surface 2a is 10 ° or more and 30 ° or less. (In this embodiment, the angle between the tangent to the back surface side and the back surface is 10 ° or more and 30 ° or less (not illustrated). 18 °).

この場合、面取り面4は、端面3の研磨処理が行われたのみの状態での表面2aと端面3との波形をなす元の境界部zの周辺(図1に破線で示す部位の周辺)を、特定研磨処理により除去してなるものであり、その除去部は、元の境界部zから端面3側への幅W1が70μmで且つ元の境界部zから表面2a側への幅W2が30μmの領域である。なお、この元の境界部zの接線Bと表面2aとのなす角度γは、本実施形態では25°である。   In this case, the chamfered surface 4 is a periphery of the original boundary portion z that forms a waveform between the surface 2a and the end surface 3 in a state where the polishing process of the end surface 3 is performed (a periphery of a portion indicated by a broken line in FIG. 1). Is removed by a specific polishing process, and the removed portion has a width W1 from the original boundary z to the end surface 3 side of 70 μm and a width W2 from the original boundary z to the surface 2a side. The region is 30 μm. The angle γ formed between the tangent line B of the original boundary portion z and the surface 2a is 25 ° in the present embodiment.

さらに、このガラス基板1は、その板厚Tが、1.1mm以下で且つ0.05mm以上であると共に、面取り面4の幅W(面取り面4の長手方向(辺に沿う方向)と直交する方向の寸法)と板厚Tとの比であるW/Tは、0.07以上で且つ0.30以下となるように設定されている。   Further, the glass substrate 1 has a thickness T of 1.1 mm or less and 0.05 mm or more, and is orthogonal to the width W of the chamfered surface 4 (longitudinal direction of the chamfered surface 4 (direction along the side)). W / T, which is the ratio between the dimension in the direction) and the plate thickness T, is set to be 0.07 or more and 0.30 or less.

以上のような構成を備えたガラス基板1は、以下のようにして製造される。   The glass substrate 1 having the above configuration is manufactured as follows.

図2は、ダウンドロー法やフロート法等による成形後におけるガラス原板の表面の四箇所に、略矩形の刻設線が描かれた領域が得られるようにスクライブを入れ、且つそのスクライブ痕を起点としてガラス原板を折り割ることにより得られた略矩形のガラス基板1と、そのガラス基板1の折り割られた端面部3aを研磨処理する研磨具5とを例示している。このガラス基板1の端面部3aは、先ず第1の研磨具により粗研磨処理が行われ、次いで第2の研磨具により仕上げ研磨処理が行われる。第1の研磨具は、図2に示すように、正面視で凹状の略円弧形状をなす外周面に、メタルボンドで保持されたダイヤモンド砥粒層を取り付けてなる粗研磨用回転砥石ホイール(メタルボンドダイヤモンドホイール)である。そして、この第1研磨具を、ガラス基板1の端面部3aに押し当てた状態で、第1研磨具をガラス基板1の端面部3aの長手方向(辺に沿う方向)に相対移動させることにより粗研磨処理を行う。第2研磨具は、第1研磨具と同形状をなし、その外周面に、炭化珪素等の細かい砥粒をポリウレタン樹脂等で結合した仕上げ研磨用回転砥石ホイール(レジンボンドホイール)である。この第2研磨具は、ガラス基板1の粗研磨処理した端面部に押し当てられた状態で、上記と同様に相対移動することにより仕上げ研磨処理が行われ、その結果として図3に示すように、ガラス基板1に二乗平均平方根粗さRqが約0.2〜2.0μmの断面略円弧状の端面3bが形成される。なお、ガラス基板1の端面3bの形成は、上記のように二段階に亘る研磨処理に限らず、三段階以上に亘る研磨処理により行うようにしてもよい。   Fig. 2 shows scribing at four locations on the surface of the glass glass after molding by the downdraw method, float method, etc., so that areas with roughly rectangular engraving lines are drawn, and the scribe marks are the starting points. As an example, a substantially rectangular glass substrate 1 obtained by folding a glass original plate and a polishing tool 5 for polishing the end surface portion 3a of the glass substrate 1 that has been broken are illustrated. The end surface portion 3a of the glass substrate 1 is first subjected to a rough polishing process using a first polishing tool, and then a final polishing process using a second polishing tool. As shown in FIG. 2, the first polishing tool is a rough polishing rotary grindstone wheel (metal) that is formed by attaching a diamond abrasive grain layer held by a metal bond to an outer peripheral surface having a concave arc shape when viewed from the front. Bond diamond wheel). Then, with the first polishing tool pressed against the end surface portion 3a of the glass substrate 1, the first polishing tool is relatively moved in the longitudinal direction (direction along the side) of the end surface portion 3a of the glass substrate 1. Rough polishing is performed. The second polishing tool is a grinding wheel for finishing polishing (resin bond wheel) having the same shape as the first polishing tool, and fine abrasive grains such as silicon carbide bonded to the outer peripheral surface thereof with polyurethane resin or the like. The second polishing tool is subjected to a final polishing process by moving in the same manner as described above while being pressed against the end surface of the glass substrate 1 subjected to the rough polishing process. As a result, as shown in FIG. The glass substrate 1 is formed with an end surface 3b having a substantially arc-shaped cross section having a root mean square roughness Rq of about 0.2 to 2.0 μm. The formation of the end face 3b of the glass substrate 1 is not limited to the two-stage polishing process as described above, and may be performed by a three-stage or more polishing process.

以上のようにして、ガラス基板1に断面略円弧状の端面3bが形成された場合には、その端面3bと表面2aとの境界部z、および端面3bと裏面2bとの境界部zに、第3研磨具6を用いて特定研磨処理を施すことにより面取り面4を形成する。この第3研磨具6は、図4に示すように、回転軸6aと直交する平面状の研磨面(砥面)6bを有し、この研磨面6bは、上記の第2研磨具よりも細かい砥粒で形成されている。なお、ガラス基板1は、端面3bの周辺がせり出した状態で、作業台(定盤)7の上面にセットされる。   As described above, when the end surface 3b having a substantially arc-shaped cross section is formed on the glass substrate 1, the boundary portion z between the end surface 3b and the surface 2a, and the boundary portion z between the end surface 3b and the back surface 2b, The chamfered surface 4 is formed by performing a specific polishing process using the third polishing tool 6. As shown in FIG. 4, the third polishing tool 6 has a flat polishing surface (abrasive surface) 6b orthogonal to the rotation shaft 6a. The polishing surface 6b is finer than the second polishing tool. It is made of abrasive grains. The glass substrate 1 is set on the upper surface of the work table (surface plate) 7 with the periphery of the end surface 3b protruding.

そして、ガラス基板1の表面2a側の境界部zと裏面2b側の境界部zとに対して、同時に2つの第3研磨具6の研磨面6bを押し当てて回転させながら、第3研磨具6をガラス基板1の境界部zの長手方向に相対移動させることにより特定研磨処理が行われる。これにより、ガラス基板1の境界部zに残存していた多数のガラスチッピング等が除去される。この場合、2つの第3研磨具6の研磨面6bと、ガラス基板1の表面2aおよび裏面2bとのなす角度はそれぞれ10°以上で且つ30°以下(本実施形態では18°)に設定される。好ましくは、第3研磨具6は、図5に示すように、中央部が円形の凹部であり、その凹部を取り囲むように、粗度が相対的に大きい内周側研磨部6baと、粗度が相対的に小さい外周側研磨部6bbとが配列され、この双方の研磨部6ba、6bbによってガラス基板1の境界部zが特定研磨処理を受ける。なお、2つの第3研磨具6は、相対移動方向に対して離隔して配置される。 Then, while simultaneously pressing and rotating the polishing surface 6b of the two third polishing tools 6 against the boundary z on the front surface 2a side and the boundary z on the back surface 2b side of the glass substrate 1, the third polishing tool The specific polishing process is performed by relatively moving 6 in the longitudinal direction of the boundary portion z of the glass substrate 1. Thereby, a large number of glass chippings and the like remaining at the boundary z of the glass substrate 1 are removed. In this case, the angles formed by the polishing surfaces 6b of the two third polishing tools 6 and the front surface 2a and the back surface 2b of the glass substrate 1 are each set to 10 ° or more and 30 ° or less (18 ° in this embodiment). The Preferably, the third polishing tool 6, as shown in FIG. 5, the central portion is a circular recess, so as to surround the recess, and the inner peripheral-side polishing portion 6ba roughness is relatively not large, coarse degree is relatively is small has the outer peripheral side polishing portion 6bb array, polishing portion 6ba of the both boundary z of the glass substrate 1 is subjected to a specific polishing process by 6bb. Note that the two third polishing tools 6 are spaced apart from each other in the relative movement direction.

そして、この特定研磨処理を終えることにより、図6(および図1)に示すように、ガラス基板1の表面2aと端面3との間に境界部zを完全に除去してなる面取り面4が形成される。この面取り面4は、二乗平均平方根粗さRqが0.3μm以下であることにより、ガラス基板1の撓みや不当な温度分布に起因する引っ張り応力が当該面取り面4に作用しても、山部と谷部との落差(高低差)が小さい面性状とされていることから、面取り面4には応力集中が生じ難く、端面3(面取り面4を含む)の破壊強度が上昇すると共に、ガラスパーティクル或いはガラスチッピング等が残存滞留するという問題も回避される。   Then, by completing this specific polishing treatment, as shown in FIG. 6 (and FIG. 1), a chamfered surface 4 is obtained by completely removing the boundary portion z between the surface 2a and the end surface 3 of the glass substrate 1. It is formed. Since this chamfered surface 4 has a root mean square roughness Rq of 0.3 μm or less, even if tensile stress due to bending of the glass substrate 1 or an inappropriate temperature distribution acts on the chamfered surface 4, Since the surface property of the head and the valley is small, the stress concentration is unlikely to occur on the chamfered surface 4, the fracture strength of the end surface 3 (including the chamfered surface 4) is increased, and the glass The problem of remaining particles or glass chipping remaining is also avoided.

なお、上記実施形態では、端面3が、表面2aおよび裏面2bの外周端から外方に凸状に湾曲してなるガラス基板1に本発明を適用したが、端面3が、平坦面(好ましくは表裏面と直角な平坦面)をなすガラス基板についても同様に本発明を適用することが可能である。   In the above embodiment, the present invention is applied to the glass substrate 1 in which the end surface 3 is curved outwardly from the outer peripheral ends of the front surface 2a and the back surface 2b, but the end surface 3 is a flat surface (preferably The present invention can be similarly applied to a glass substrate having a flat surface perpendicular to the front and back surfaces.

また、上記実施形態では、ガラス原板を折割りにより分割してなるガラス基板に本発明を適用したが、ガラス原板をレーザー割断等のようにレーザー或いは熱応力を使用して分割してなるガラス基板についても同様に本発明を適用することができる。この場合には、平坦面をなす端面に対して研磨処理が行われず、境界部に対してのみ研磨処理による面取り面が形成される。   Moreover, in the said embodiment, although this invention was applied to the glass substrate formed by dividing | segmenting a glass original plate by folding, the glass substrate formed by dividing a glass original plate using a laser or a thermal stress like laser cleaving etc. The present invention can be similarly applied to. In this case, the polishing process is not performed on the end surface forming the flat surface, and the chamfered surface is formed only by the polishing process on the boundary portion.

また、上記実施形態では、FPD用のガラス基板に本発明を適用したが、例えば、有機EL照明用や太陽電池用のガラス基板についても同様に本発明を適用することが可能である。   Moreover, in the said embodiment, although this invention was applied to the glass substrate for FPD, it is possible to apply this invention similarly to the glass substrate for organic EL illumination or a solar cell, for example.

本発明者等は、上述の図1に例示したガラス基板についての効果を確認すべく、本発明の実施例1、2と比較例との対比を、以下に示すようにして行った。これらの実施例および比較例は何れについても、ガラス原板として、オーバーフローダウンドロー法で成形された日本電気硝子株式会社製OA−10(強化処理は施されていない)を用いた。   In order to confirm the effect of the glass substrate illustrated in FIG. 1, the present inventors made a comparison between Examples 1 and 2 of the present invention and a comparative example as follows. In each of these examples and comparative examples, OA-10 (not subjected to strengthening treatment) manufactured by Nippon Electric Glass Co., Ltd., which was molded by the overflow downdraw method, was used as the glass original plate.

下記の表1に示す本発明の実施例1、2および比較例については、用いる試料として、板厚が700μmのガラス原板にスクライブを入れて折割り分割することにより、短辺寸法が1500mmおよび長辺寸法が1800mmのガラス基板を得た。具体的なガラス原板の分割手法は、ダイヤモンドチップでガラス原板の表面にスクライブを入れて、そのスクライブ線に引張応力が生じるようにガラス原板に曲げモーメントを作用させることにより折割り分割を行った。なお、その他の分割手法として、ガラス原板の一部にダイヤモンドホイールなどで初期傷(イニシャルクラック)を形成し、この部位にレーザーを照射して局部加熱を行った後、冷媒を吹き付けて急激に冷却をすることによりイニシャルクラックを進展させ、これによりガラス原板を割断させるようにしてもよい。但し、このようなレーザー割断による場合には、ガラス基板の端面は平坦面となるため、この実施例及び比較例に係るガラス基板とは異なる端面形状となる。   For Examples 1 and 2 and Comparative Examples of the present invention shown in Table 1 below, as a sample to be used, a glass original plate having a plate thickness of 700 μm is scribed and split into pieces, so that the short side dimension is 1500 mm and long. A glass substrate having a side dimension of 1800 mm was obtained. As a specific method for dividing the glass original plate, a scribe was made on the surface of the glass original plate with a diamond tip, and a bending moment was applied to the glass original plate so that a tensile stress was generated on the scribe line. As another division method, initial scratches are formed on a part of the glass original plate with a diamond wheel, etc., and this part is irradiated with laser to perform local heating, and then cooled rapidly by blowing a refrigerant. It is also possible to cause the initial crack to progress by cutting the glass original plate. However, in the case of such laser cleaving, the end surface of the glass substrate is a flat surface, and thus has an end surface shape different from those of the glass substrates according to this example and the comparative example.

このようにして得られたガラス基板の端面に対しては、外周面が円筒面(この実施例及び比較例では外周面が略円弧状に凹んでいる)からなる円柱状の砥石を、その回転軸がガラス基板の表面の法線方向と平行になるように配列させた状態で回転させながら押し当てつつ、その端面の長手方向に相対的に直線移動させることにより、当該端面の研磨処理を行う。この場合、ガラス基板の端面を研磨する砥石としては、砥粒やバインダーの異なる複数種の砥石を用意しておき、先ず砥粒が粗くバインダーの硬い砥石から、次第に砥粒が細かくバインダーが柔らかい砥石に変更した。   With respect to the end surface of the glass substrate thus obtained, a cylindrical grindstone whose outer peripheral surface is a cylindrical surface (in this example and the comparative example, the outer peripheral surface is recessed in a substantially arc shape) is rotated. Polishing of the end surface is performed by moving the shaft relatively linearly in the longitudinal direction of the end surface while rotating while pressing in a state where the shaft is arranged in parallel with the normal direction of the surface of the glass substrate. . In this case, as the grindstone for polishing the end surface of the glass substrate, a plurality of types of grindstones with different abrasive grains and binders are prepared. First, the grindstone is coarse and the binder is hard, and the grindstone is gradually finer and the binder is softer. Changed to

次に、端面の研磨処理を終えたガラス基板について、端面と表面(裏面)との境界部に略平面状の面取り面を研磨により形成した。この場合、面取り面の研磨に使用される砥石は、上述の端面の研磨用の砥石と比較して、砥粒が細かくバインダーが柔らかいことが必須の要件となる。面取り面の研磨用の砥石は、面取り面に押し当てる面が、円筒面や円錐面であってもよく、また略平面状の円形端面や円環端面であってもよく、更にはベルトに砥粒を固定した研磨布の表面であってもよい。そして、これらの砥石(または研磨布)は、ガラス基板の面取り面の長手方向に対して相対的に直線移動する。   Next, about the glass substrate which finished the grinding | polishing process of the end surface, the substantially planar chamfering surface was formed in the boundary part of an end surface and the surface (back surface) by grinding | polishing. In this case, it is essential that the grindstone used for chamfered surface polishing is finer in abrasive grains and softer in binder than the grindstone for polishing the end face described above. In the grindstone for polishing a chamfered surface, the surface pressed against the chamfered surface may be a cylindrical surface or a conical surface, or may be a substantially flat circular end surface or an annular end surface. The surface of the polishing cloth which fixed the grain may be sufficient. These grindstones (or polishing cloths) move linearly relative to the longitudinal direction of the chamfered surface of the glass substrate.

下記の表1に示す実施例1について具体的に説明をすると、先ず、分割後のガラス基板を定盤上に載置して吸着固定した状態で、図2に示す形態をなす第1研磨具としての粗研磨用回転砥石(#400の砥粒がメタルボンドで固定)の外周面を、ガラス基板の端面部に押し当てつつ直線移動させることにより、断面略円弧形状の粗面である端面部を形成した。次いで、同様に、図2に示す形態をなす第2研磨具としての仕上げ研磨用回転砥石(#1000の砥粒がレジンボンドで固定)の外周面を、ガラス基板の粗研磨後の端面部に押し当てつつ直線移動させることにより、断面略円弧形状に仕上げ研磨された端面を形成した。この後、ガラス基板の端面と表面および裏面とのそれぞれの境界部に対して、第3研磨具で特定研磨処理を行った。第3研磨具としては、円形の基盤上に、樹脂材料にダイヤモンド砥粒(#3000の砥粒)を分散させてなる平板状のダイヤモンド研磨板を固定したものを使用した。特定研磨処理の実行に際しては、ガラス基板の表面および裏面と面取り面の接線とのそれぞれがなす角度(図1の角度α:裏面側も同様)が18°〜22°になるように、適宜第3研磨具の角度を調整した上で、第3研磨具とガラス基板との接触面に研削液(研削水)を供給した。そして、所望の面取り面の幅寸法が得られるように、第3研磨具(研磨板)を周速2000m/minで回転させながら、ガラス基板の平面視でのコーナー部近傍を除く全外周に亘り、特定研磨処理を行った。以上のようにして、実施例1のガラス基板を得た。なお、上記の砥粒の大きさは、JIS R6001:1998に準拠している。この場合、実施例2および比較例については、第1、第2、第3研磨具の砥粒がそれぞれ実施例1と相違している。   Example 1 shown in Table 1 below will be described in detail. First, the first polishing tool having the form shown in FIG. 2 in a state where the divided glass substrate is placed on the surface plate and fixed by suction. As a rough grinding rotary grindstone (# 400 abrasive grains fixed by metal bond), the outer peripheral surface is linearly moved while being pressed against the end surface portion of the glass substrate, so that the end surface portion is a rough surface having a substantially arc-shaped cross section. Formed. Next, similarly, the outer peripheral surface of the final polishing rotary grindstone (# 1000 abrasive grains fixed by resin bond) as the second polishing tool having the form shown in FIG. 2 is used as the end surface portion after rough polishing of the glass substrate. An end face that was finished and polished into a substantially arc shape in cross section was formed by linearly moving while pressing. Thereafter, a specific polishing process was performed with a third polishing tool on each boundary portion between the end surface, the front surface, and the back surface of the glass substrate. As the third polishing tool, a flat diamond polishing plate obtained by dispersing diamond abrasive grains (# 3000 abrasive grains) in a resin material on a circular base was used. When executing the specific polishing process, the angle formed by the front and back surfaces of the glass substrate and the tangent line of the chamfered surface (angle α in FIG. 1; the same applies to the back surface side) is 18 ° to 22 ° as appropriate. After adjusting the angle of the 3 polishing tool, a grinding liquid (grinding water) was supplied to the contact surface between the third polishing tool and the glass substrate. Then, while rotating the third polishing tool (polishing plate) at a peripheral speed of 2000 m / min so as to obtain a desired chamfered surface width dimension, it extends over the entire outer periphery excluding the vicinity of the corner portion in plan view of the glass substrate. Specific polishing treatment was performed. The glass substrate of Example 1 was obtained as described above. In addition, the magnitude | size of said abrasive grain is based on JISR6001: 1998. In this case, with respect to Example 2 and the comparative example, the abrasive grains of the first, second, and third polishing tools are different from Example 1, respectively.

下記の表1に示すガラス基板における面取り面の二乗平均平方根粗さRqは、東京精密社製サーフコム590Aを用いて、測定長5.0mmに亘って粗さ測定を行い、JIS B0601:2001にてその値を算出した。この二乗平均平方根粗さRqは、同一の条件で面取り面を10枚のガラス基板に施した上で、それらについて10回測定し、その平均値を算出することによって評価した。更に、これらと同時に、ガラス基板の面取り面の最大断面高さPtを求めた。加えて、ガラス基板の撓みや熱応力による破損し易さの目安として、ガラス基板の端面強度を求めた。ガラス基板の端面強度については、Orientec社製Tensilon RTA−250を用いた三点曲げ試験法により破壊強度を測定し、これを端面強度とした。曲げ試験のサンプルには、ガラス基板の端面部の辺の中央部を80×15mmのサイズに切り出した試験片を用い、さらに端面部の頂点(断面略円弧の頂点)を上にして荷重を負荷し、その破損時の荷重を測定し、下記の数1で示される式で計算することにより、破壊応力(端面強度)σを測定した。   The root-mean-square roughness Rq of the chamfered surface of the glass substrate shown in Table 1 below is measured using a Surfcom 590A manufactured by Tokyo Seimitsu Co., Ltd., over a measurement length of 5.0 mm, according to JIS B0601: 2001. The value was calculated. This root-mean-square roughness Rq was evaluated by measuring 10 times for chamfered surfaces on 10 glass substrates under the same conditions and calculating the average value. At the same time, the maximum cross-sectional height Pt of the chamfered surface of the glass substrate was determined. In addition, the strength of the end face of the glass substrate was determined as a measure of the ease with which the glass substrate was bent or damaged by thermal stress. About the end surface strength of the glass substrate, the fracture strength was measured by a three-point bending test method using Orientec's Tensilon RTA-250, and this was used as the end surface strength. For the sample of the bending test, a test piece obtained by cutting the center part of the end face part of the glass substrate into a size of 80 × 15 mm is used, and a load is applied with the apex of the end face part (vertical arc of the cross section) facing upward. Then, the load at the time of breakage was measured, and the fracture stress (end surface strength) σ was measured by calculating with the formula shown by the following formula 1.

Figure 0005868577
Figure 0005868577

なお、上記の数1で示される式中、Pは破壊荷重、Lは支点間距離、Bはサンプル幅、hはガラス厚みである。   In the equation expressed by the above equation 1, P is a breaking load, L is a distance between fulcrums, B is a sample width, and h is a glass thickness.

以上のようにして求めた面取り面の二乗平均平方根粗さRq、面取り面の最大断面高さPt、および破壊応力(端面強度)σを、下記の表1に示す。   Table 1 below shows the root mean square roughness Rq of the chamfered surface, the maximum cross-sectional height Pt of the chamfered surface, and the fracture stress (end surface strength) σ obtained as described above.

Figure 0005868577
Figure 0005868577

上記の表1中、面取り面の最大断面高さPtは、JIS B0601:1982での最大高さRmaxに相当するため、既述の特許文献1、2の表面最大凹凸に相当するものと考えることができる。そして、比較例のガラス基板は、その面取り面の最大高さPtが、6.94μmであって7μm(0.007mm)以下であることから、既述の特許文献1、2に記載された数値範囲の条件を満たしている。しかしながら、この比較例に係るガラス基板は、FPD、有機EL、および太陽電池などの製造工程において、破損が頻繁に起きていることを本発明者等は確認している。これは、比較例に係るガラス基板は、端面強度が不十分であったことを意味している。この事を勘案すれば、端面強度は、160MPaが必要であると把握することができる。そして、本発明の実施例1、2は、面取り面の二乗平均平方根粗さRqが0.3μm以下であることにより端面強度が160MPaを超えており、十分な端面強度を有していることが把握できる。したがって、ガラス基板の面取り面の二乗平均平方根粗さRqを0.3μm以下と規定することは、ガラス基板の撓みや不当な温度分布に起因する引張り応力の発生を抑制して応力集中を可及的に低減させ、ガラス基板の破損を防止する上で、大きな意義があることを確認することができた。   In Table 1 above, the maximum cross-sectional height Pt of the chamfered surface corresponds to the maximum height Rmax according to JIS B0601: 1982, and is therefore considered to correspond to the maximum surface irregularities of the aforementioned Patent Documents 1 and 2. Can do. Since the maximum height Pt of the chamfered surface of the glass substrate of the comparative example is 6.94 μm and 7 μm (0.007 mm) or less, the numerical values described in Patent Documents 1 and 2 described above are used. Meet range requirements. However, the present inventors have confirmed that the glass substrate according to this comparative example is frequently damaged in the manufacturing process of FPD, organic EL, solar cell and the like. This means that the glass substrate according to the comparative example has insufficient end face strength. Considering this, it can be understood that the end face strength needs to be 160 MPa. In Examples 1 and 2 of the present invention, the root mean square roughness Rq of the chamfered surface is 0.3 μm or less, so that the end face strength exceeds 160 MPa, and the end face strength is sufficient. I can grasp. Therefore, prescribing the root mean square roughness Rq of the chamfered surface of the glass substrate to 0.3 μm or less suppresses the generation of tensile stress due to the deflection of the glass substrate and the inappropriate temperature distribution, thereby allowing stress concentration. It can be confirmed that there is a great significance in reducing the amount of damage and preventing breakage of the glass substrate.

また、ガラス原板をレーザー割断して分割されたガラス基板は、その平坦面をなす端面の面性状が、表裏面と同様に鏡面に近いことから、このガラス基板の当該境界部に上記と同様に面取り面を形成した場合であっても、その面取り面の二乗平均平方根粗さRqが0.3μm以下であれば、上記の表1に示す好結果と同等或いはそれ以上の結果が得られるものと推認できる。   In addition, since the glass substrate divided by laser cutting the glass original plate is close to a mirror surface as in the case of the front and back surfaces, the surface property of the flat surface of the glass substrate is similar to the above on the boundary portion of the glass substrate. Even when a chamfered surface is formed, if the root mean square roughness Rq of the chamfered surface is 0.3 μm or less, a result equal to or better than the good results shown in Table 1 above can be obtained. I can guess.

1 ガラス基板
2a 表面
2b 裏面
3 端面
4 面取り面
5 研磨具(第1、第2研磨具)
6 第3研磨具
6a 第3研磨具の回転軸
6b 第3研磨具の研磨面(砥面)
6ba 第3研磨具の研磨面(砥面)の内周部
6bb 第3研磨具の研磨面(砥面)の外周部
A 境界面の表面側への接線
z 境界部
α 接線と表面とのなす角度
DESCRIPTION OF SYMBOLS 1 Glass substrate 2a Front surface 2b Back surface 3 End surface 4 Chamfering surface 5 Polishing tool (1st, 2nd polishing tool)
6 Third polishing tool 6a Rotating shaft 6b of third polishing tool Polishing surface (abrasive surface) of third polishing tool
6ba Inner peripheral portion 6bb of the polishing surface (abrasive surface) of the third polishing tool 6bb Outer peripheral portion A of the polishing surface (abrasive surface) of the third polishing tool A tangent line to the surface side of the boundary surface Boundary portion α angle

Claims (8)

表面および裏面と、その両面の外周端の相互間に存する端面とを有するガラス基板において、前記表面および裏面と前記端面との間の少なくとも一方の境界部に面取り面が形成され、該面取り面における二乗平均平方根粗さRqが、0.3μm以下であり、且つ該面取り面が研磨面であることを特徴とするガラス基板。 In a glass substrate having a front surface and a back surface and end faces existing between outer peripheral edges of both surfaces, a chamfered surface is formed at at least one boundary portion between the front surface and the back surface and the end surface. glass substrate root-mean-square roughness Rq is, 0.3 [mu] m Ri der hereinafter to and chamfered surface and wherein the polishing surface der Rukoto. 前記端面は、前記表面および裏面の外周端の相互間に平坦面として形成されていることを特徴とする請求項1に記載のガラス基板。 The glass substrate according to claim 1, wherein the end surface is formed as a flat surface between outer peripheral ends of the front surface and the back surface. 前記端面は、前記表面および裏面の外周端から板厚中央部にかけて外方に漸次突出する湾曲面として形成されていることを特徴とする請求項1に記載のガラス基板。 2. The glass substrate according to claim 1, wherein the end surface is formed as a curved surface that gradually protrudes outward from an outer peripheral end of the front surface and the back surface to a central portion of the plate thickness. 前記端面の長手方向と直交する断面において、前記面取り面の表面側および裏面側の少なくとも一方への接線と、当該表面および裏面の少なくとも一方とのなす角度が、10°以上で且つ30°以下であることを特徴とする請求項に記載のガラス基板。 In a cross section orthogonal to the longitudinal direction of the end face, an angle formed by a tangent to at least one of the front surface side and the back surface side of the chamfered surface and at least one of the front surface and the back surface is 10 ° or more and 30 ° or less. The glass substrate according to claim 3 , wherein the glass substrate is provided. 板厚Tは、1.1mm以下で且つ0.05mm以上であることを特徴とする請求項1〜の何れかに記載のガラス基板。 The plate thickness T is 1.1 mm or less and 0.05 mm or more, The glass substrate in any one of Claims 1-4 characterized by the above-mentioned. 板厚Tと、前記面取り面の長手方向と直交する方向の幅Wとが、0.07≦W/T≦0.30の関係を満たすことを特徴とする請求項1〜の何れかに記載のガラス基板。 And the plate thickness T, and width W in a direction perpendicular to the longitudinal direction of the chamfered surface is to any one of claims 1 to 5, characterized in that satisfies the relationship of 0.07 ≦ W / T ≦ 0.30 The glass substrate as described. 請求項に記載のガラス基板を製造する方法であって、前記面取り面を研磨する研磨具として、回転軸と直交する研磨面を有する回転研磨具を使用し、且つ前記研磨面の外周部の粗度を内周部の粗度よりも小さく形成すると共に、ガラス基板の表面および裏面と研磨処理後の端面との間の少なくとも一方の境界部に対して、前記回転研磨具がその長手方向に相対的に直線移動しながら前記回転軸廻りに回転することにより、前記研磨面の外周部および内周部の双方によって前記面取り面を形成することを特徴とするガラス基板の製造方法。 It is a method of manufacturing the glass substrate of Claim 1 , Comprising: As a grinding | polishing tool which grind | polishes the said chamfering surface, the rotary grinding tool which has a grinding | polishing surface orthogonal to a rotating shaft is used, and the outer peripheral part of the said grinding | polishing surface is used. The rotational polishing tool is formed in the longitudinal direction with respect to at least one boundary portion between the front and back surfaces of the glass substrate and the end surface after the polishing treatment, while forming the roughness smaller than the roughness of the inner peripheral portion. A method for producing a glass substrate, wherein the chamfered surface is formed by both an outer peripheral portion and an inner peripheral portion of the polishing surface by rotating around the rotation axis while relatively moving linearly. 請求項に記載のガラス基板を製造する方法であって、ガラス基板の端面に対して粗研磨処理を施した後に仕上げ研磨処理を施し、然る後、ガラス基板の表面および裏面と前記端面との間の少なくとも一方の境界部に、前記仕上げ研磨処理よりも細かい粒度を有する研磨具を用いて研磨処理を施すことにより前記面取り面を形成することを特徴とするガラス基板の製造方法。 The method for producing a glass substrate according to claim 1 , wherein a rough polishing process is performed on the end surface of the glass substrate, and then a final polishing process is performed. Thereafter, the front and back surfaces of the glass substrate, the end surface, at least one of the boundary portion, a manufacturing method of a glass substrate and forming the chamfered surface by applying a grinding tool Migaku Ken process with having a finer granularity than the final polishing process between.
JP2010116456A 2010-05-20 2010-05-20 Glass substrate and manufacturing method thereof Expired - Fee Related JP5868577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010116456A JP5868577B2 (en) 2010-05-20 2010-05-20 Glass substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010116456A JP5868577B2 (en) 2010-05-20 2010-05-20 Glass substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011241126A JP2011241126A (en) 2011-12-01
JP5868577B2 true JP5868577B2 (en) 2016-02-24

Family

ID=45408166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116456A Expired - Fee Related JP5868577B2 (en) 2010-05-20 2010-05-20 Glass substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5868577B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794143B2 (en) * 2011-12-28 2015-10-14 旭硝子株式会社 Fireproof double glazing
KR101580287B1 (en) * 2014-05-02 2015-12-24 삼성전기주식회사 Printed circuit board, printed circuit board strip and manufacturing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983989A (en) * 1972-12-19 1974-08-13
JPH07186022A (en) * 1993-12-27 1995-07-25 Sinto Brator Co Ltd Plate glass end surface polishing working method
JP3308446B2 (en) * 1996-04-11 2002-07-29 日本板硝子株式会社 Heat-strengthened glass sheet and method for finishing edge portion thereof
JP3308447B2 (en) * 1996-04-11 2002-07-29 日本板硝子株式会社 Heat-strengthened glass sheet and method for finishing edge portion thereof
US6325704B1 (en) * 1999-06-14 2001-12-04 Corning Incorporated Method for finishing edges of glass sheets
JP4588863B2 (en) * 2000-11-21 2010-12-01 旭硝子株式会社 Edge glass edge polishing method
JP4406752B2 (en) * 2005-05-27 2010-02-03 日本電気硝子株式会社 Glass substrate end face processing apparatus and end face processing method
JP2007185753A (en) * 2006-01-16 2007-07-26 Shuji Horichi Grinding and polishing wheel
JP4863168B2 (en) * 2007-04-17 2012-01-25 日本電気硝子株式会社 Glass substrate for flat panel display and manufacturing method thereof
JP5370913B2 (en) * 2008-12-19 2013-12-18 日本電気硝子株式会社 Glass substrate end surface polishing apparatus and end surface polishing method thereof
JP5516940B2 (en) * 2009-10-19 2014-06-11 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
WO2010104039A1 (en) * 2009-03-10 2010-09-16 日本電気硝子株式会社 Glass substrate and method for manufacturing same
JP5516941B2 (en) * 2009-10-19 2014-06-11 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
JP5516952B2 (en) * 2010-01-05 2014-06-11 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
JP5440786B2 (en) * 2009-03-10 2014-03-12 日本電気硝子株式会社 Glass substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011241126A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
TWI480127B (en) Glass substrate and its production method
WO2010104039A1 (en) Glass substrate and method for manufacturing same
JP5516941B2 (en) Glass substrate and manufacturing method thereof
JP5516940B2 (en) Glass substrate and manufacturing method thereof
JP5440786B2 (en) Glass substrate and manufacturing method thereof
KR101228959B1 (en) Method for chamfering brittle material substrate
CN1265439C (en) Semicondoctor wafer with improved partial planeness and making method thereof
JP5538251B2 (en) Polishing method using a grinder, display device manufacturing method using the polishing method, and display device
CN103084957A (en) Sheet glass, manufacturing method therefor, method and apparatus for polishing end edge portion of sheet glass
JP5516952B2 (en) Glass substrate and manufacturing method thereof
KR20130108514A (en) Glass substrate and method for manufacturing glass substrate
JP6759222B2 (en) A method of strengthening the edges of a glass-laminated article and the glass-laminated article formed thereby.
JP5456942B2 (en) Manufacturing method of glass plate, manufacturing method of glass substrate for display, and glass plate
KR100895830B1 (en) Method for cutting the edge of the flat display glass substrate
WO2015083713A1 (en) Glass substrate finish-polishing method and alkali-free glass substrate that has been finish-polished by said method
KR20140067886A (en) The polishing apparatus and the polishing methdo for polishing the peripheral edge of the work, etc by the polishing tape
WO2013183539A1 (en) Glass substrate finish-polishing method, and alkali-free glass substrate finish-polished according to said method
CN1826208A (en) Methods and apparatus for edge finishing glass sheets
JP5868577B2 (en) Glass substrate and manufacturing method thereof
KR20130102521A (en) Scribing wheel and method for manufacturing the same
JP5370913B2 (en) Glass substrate end surface polishing apparatus and end surface polishing method thereof
JPWO2016098824A1 (en) Glass plate chamfering apparatus, glass plate chamfering method, and glass plate manufacturing method
KR101552936B1 (en) Liquid crystal display and method for manufacturing the same
JP7415267B2 (en) Glass plate manufacturing method
JP5169209B2 (en) Glass substrate for flat panel display and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141118

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5868577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees