JP5370913B2 - Glass substrate end surface polishing apparatus and end surface polishing method thereof - Google Patents

Glass substrate end surface polishing apparatus and end surface polishing method thereof Download PDF

Info

Publication number
JP5370913B2
JP5370913B2 JP2008324270A JP2008324270A JP5370913B2 JP 5370913 B2 JP5370913 B2 JP 5370913B2 JP 2008324270 A JP2008324270 A JP 2008324270A JP 2008324270 A JP2008324270 A JP 2008324270A JP 5370913 B2 JP5370913 B2 JP 5370913B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
edge
end surface
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008324270A
Other languages
Japanese (ja)
Other versions
JP2010142913A (en
Inventor
浩一 下津
広之 中津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2008324270A priority Critical patent/JP5370913B2/en
Publication of JP2010142913A publication Critical patent/JP2010142913A/en
Application granted granted Critical
Publication of JP5370913B2 publication Critical patent/JP5370913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve productivity by largely shortening the time required for chamfering treatment of the end edge while simplifying a device required for polishing, reducing its cost, and improving quality of the periphery of a chamfering surface applied to the end edge of a glass substrate. <P>SOLUTION: A chamfering treatment is applied to the end edges 7x, 7y of the glass substrate 7 by rotating a polishing tool 1 around a rotating axis 8 while relatively moving rectilinearly with respect to the end edges 7x, 7y where front and back surfaces 7a, 7b and the end surface 7c of the glass substrate 7 intersect with each other. In the polishing surface of the polishing tool 1, a roughness degree of the polishing surface 3a of an outer peripheral side is smaller than the roughness degree of the polishing surface 4a of an inner peripheral side, and when the polishing tool 1 relatively moves rectilinearly with respect to the end edges 7x, 7y of the glass substrate 7, the chamfering surfaces are respectively formed on the end edges 7x, 7y of the glass substrate 7 by the both polishing surfaces 3a, 4a on an outer peripheral side and an inner peripheral side. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ガラス基板の端面研磨装置およびその端面研磨方法に係り、詳しくは、ガラス基板の表裏面と端面とが交差する端縁を、回転軸と直交する研磨面を有する研磨具によって面取り処理するための技術に関する。   The present invention relates to a glass substrate end surface polishing apparatus and an end surface polishing method thereof, and more specifically, a chamfering treatment is performed on an edge where the front and back surfaces of the glass substrate intersect with an end surface by a polishing tool having a polishing surface orthogonal to a rotation axis. It relates to technology.

周知のように、液晶ディスプレイ(LCD)用等のフラットパネルディスプレイ(FPD)用に代表される各種のガラス基板は、オーバーフローダウンドロー法やフロート法等によりガラス原板を作製した後に、所定寸法に分割することで製造される。このガラス原板の分割は、ダイヤモンドカッター等を用いて、ガラス原板の表面にスクライブ(罫書き)を入れた後に、そのスクライブ痕を起点として引張応力が集中するようにガラス原板を折り曲げて分割する手法が採用されている。   As is well known, various glass substrates represented by flat panel displays (FPD) such as liquid crystal displays (LCDs) are divided into predetermined dimensions after the glass original plate is produced by the overflow down draw method or the float method. It is manufactured by doing. This glass original is divided by using a diamond cutter, etc., after scribing on the surface of the glass original, folding the glass original so that the tensile stress is concentrated starting from the scribe marks. Is adopted.

このような手法により作製されたガラス基板は、図5に示すように、そのガラス基板17の表裏面17a、17bと端面(分割面)17cとが交差する端縁17x、17yに、微小なクラックやガラス粉が不可避的に発生する。詳しくは、ダイヤモンドカッター等でガラス原板の表面にスクライブを入れると、ガラス原板の表面の微小領域が破壊され、ガラス原板の表面から板厚方向にメディアンクラックと称される微小なクラックが生じる。   As shown in FIG. 5, the glass substrate manufactured by such a method has minute cracks at the edges 17x and 17y where the front and back surfaces 17a and 17b and the end surface (divided surface) 17c of the glass substrate 17 intersect. And glass powder are inevitably generated. Specifically, when a scribe is put on the surface of the glass original plate with a diamond cutter or the like, a minute region on the surface of the glass original plate is destroyed, and a minute crack called a median crack is generated in the thickness direction from the surface of the glass original plate.

さらに、ダイヤモンドカッター等でガラス原板の表面にスクライブを入れる方法では、板厚方向のみならず、ガラス原板の表面に面方向にもガラスを破壊する力が作用し、約100〜150μmのラテラルクラックと称される微小なクラックが生じる。このラテラルクラックは、ガラス原板の表面から微小のガラス片を剥離させるため、微小なガラス粉がガラス基板の表裏面に付着する原因となる。このように微小なガラス粉がガラス基板の表裏面に付着すると、例えばFPDの製造工程では電極や配線を断線させる一因となり、その結果として、FPDの製造効率や製品特性が損なわれると共に、その付着した微小なガラス粉を洗浄等で除去することが困難となる。   Furthermore, in the method of scribing the surface of the glass original plate with a diamond cutter or the like, not only the plate thickness direction but also the surface breaking force acts on the surface of the glass original plate, and a lateral crack of about 100 to 150 μm A minute crack called as a result is generated. This lateral crack causes a minute glass piece to be peeled off from the surface of the glass original plate, thereby causing minute glass powder to adhere to the front and back surfaces of the glass substrate. If such a small amount of glass powder adheres to the front and back surfaces of the glass substrate, for example, in the FPD manufacturing process, the electrode and wiring are disconnected, and as a result, the FPD manufacturing efficiency and product characteristics are impaired. It becomes difficult to remove the adhered fine glass powder by washing or the like.

一方、近年においては、このような問題回避を企図した方法として、スクライブを入れる際にレーザスクライブと称される手法を採用してガラス原板を分割することが行われている。この手法は、レーザ光をガラス原板の表面に照射して、ガラス原板の微小領域を加熱膨張させた後に、その微小領域を冷却収縮させ、ガラスの熱膨脹により発生した応力を利用して、ガラス原板にスクライブを入れ、そのガラス原板を分割するものである。   On the other hand, in recent years, as a method for avoiding such a problem, when a scribe is inserted, a method called laser scribe is employed to divide the glass original plate. This method irradiates the surface of the glass original plate with laser light, heats and expands the micro area of the glass original board, cools and shrinks the micro area, and utilizes the stress generated by the thermal expansion of the glass, A scribe is put in and the glass original plate is divided.

このレーザスクライブは、ダイヤモンドカッター等でスクライブを入れる手法に比して、ガラス基板17の端面17cおよび端縁17x、17yの近傍に微小なクラック(特にラテラルクラック)が発生し難く、且つ得られる端面も滑らかである。しかしながら、このレーザスクライブにより分割されたガラス基板は、その表裏面と端面との交差角が略直角になり、ガラス基板の端縁が極めて脆い状態となるため、このガラス基板が例えばFPDの製造工程で位置決め装置のピン等に接触すると、その接触部位に欠損や微小なクラックが発生しやすくなる。   This laser scribe is less likely to generate minute cracks (particularly lateral cracks) in the vicinity of the end face 17c and the end edges 17x and 17y of the glass substrate 17 than the technique of scribing with a diamond cutter or the like, and the obtained end face. Is also smooth. However, the glass substrate divided by the laser scribe has a substantially perpendicular crossing angle between the front and back surfaces and the end surface, and the edge of the glass substrate becomes extremely brittle. Then, when it comes into contact with a pin or the like of the positioning device, a defect or a minute crack is likely to occur at the contact portion.

以上のような状況の下では、微小なクラック(特にラテラルクラック)を除去する必要性があることから、その要請に応じるべく、ガラス基板17の表裏面17a、17bや端面17c、特に端縁17x、17yを研磨する面取り処理が行われる。   Under the circumstances as described above, since it is necessary to remove minute cracks (particularly lateral cracks), the front and back surfaces 17a and 17b and the end surface 17c of the glass substrate 17, particularly the edge 17x, are required to meet the demand. , 17y is polished.

具体例として、特許文献1における明細書の段落[0008]、[0009]等には、先ず、回転軸と平行な外側面に粗度の大きい研磨面を有する第1の砥石を用いて、ガラス基板の端面全体をR状に粗研磨して円状に面取りをし、その後、回転軸と直交する粗度の小さい研磨面を有する第2の砥石を用いて、当該面取り部の仕上げ研磨を行うことが記載されている。   As a specific example, in paragraphs [0008] and [0009] of the specification in Patent Document 1, first, a first grindstone having a polished surface with a large roughness on an outer surface parallel to the rotation axis is used. The entire end face of the substrate is roughly polished in an R shape to be chamfered in a circular shape, and thereafter, the chamfered portion is finish-polished using a second grindstone having a polishing surface having a low roughness perpendicular to the rotation axis. It is described.

また、特許文献2における明細書の段落[0029]、[0033]等には、先ず、回転軸と平行な外側面に粗度の大きい研磨面を有する補助研磨砥石を用いて、ガラス基板の端面および端縁の予備的な粗研磨を行い、その後、回転軸と平行な外側面に粗度の小さい研磨面を有する凹型砥石を用いて、当該粗研磨処理部の本研磨を行うことが記載されている。   Further, in paragraphs [0029] and [0033] of the specification in Patent Document 2, first, an end surface of a glass substrate is obtained by using an auxiliary polishing grindstone having a polishing surface having a large roughness on an outer surface parallel to the rotation axis. And a preliminary rough polishing of the edge, and then performing a main polishing of the rough polishing processing portion using a concave grindstone having a polishing surface with a low roughness on the outer surface parallel to the rotation axis. ing.

さらに、特許文献3における明細書の段落[0016]等には、回転軸と平行な外側面に形成された凹状の研磨面につき、刃底部(凹状の底部)の砥粒を粗くすると共に該刃底部から離れるに連れて徐々に砥粒を細かくした面取用総型砥石を用いて、ガラス基板の面取りを行うことが記載されている。   Furthermore, in paragraph [0016] of the specification in Patent Document 3, etc., the abrasive grains on the bottom of the blade (concave bottom) are roughened and the blade is roughened on the concave polishing surface formed on the outer surface parallel to the rotation axis. It describes that chamfering of a glass substrate is performed using a chamfering total-type grindstone in which abrasive grains are gradually made finer as the distance from the bottom portion increases.

なお、特許文献4における明細書の段落[0060]、[0061]等には、台座上に配置され且つ回転軸と直交する円形の研磨面を有し、該研磨面の内周部の粗度を大きくし且つ外周部の粗度を小さくすると共に、ウェハー等の被研磨物に対して、先ず研磨面の内周部で粗削りをした後、研磨面の外周部で仕上げ削りをすることが記載されている。   Note that paragraphs [0060], [0061], etc. of the specification in Patent Document 4 have a circular polished surface disposed on the pedestal and perpendicular to the rotation axis, and the roughness of the inner peripheral portion of the polished surface. In addition to increasing the roughness and decreasing the roughness of the outer peripheral portion, the object to be polished such as a wafer is first subjected to rough cutting at the inner peripheral portion of the polishing surface and then finish-cutting at the outer peripheral portion of the polishing surface. Has been.

特開2002−59346号公報JP 2002-59346 A 特開平10−277899号公報JP-A-10-277899 特開平11−267975号公報JP-A-11-267975 特開2000−176829号公報JP 2000-176829 A

ところで、上記の特許文献1および特許文献2に記載された研磨手段は何れも、二種類の研磨具(研磨砥石)と、それらを回転駆動する二種類の駆動装置とが必要であるため、研磨に要する装置が複雑且つ大型になると共に、当該装置の製作コストの高騰を招くという問題を有している。   Incidentally, the polishing means described in Patent Document 1 and Patent Document 2 described above require two types of polishing tools (polishing grindstones) and two types of driving devices that rotationally drive them. The apparatus required for this is complicated and large in size, and the manufacturing cost of the apparatus increases.

しかも、これら二つの文献に記載された研磨手段は何れも、先ず粗度の大きい研磨砥石を用いて粗研磨を行った後、粗度の小さい研磨砥石を用いて仕上げ研磨を行う構成であるため、処理速度を上昇させることが困難或いは不可能となり、生産性の低下を招く。すなわち、粗度の大きい研磨砥石をガラス基板の端縁に対して高速で直線移動させて、当該端縁に所望の面取り面を形成しようとしたならば、ガラス基板の表裏面と面取り面との交差する領域、或いはガラス基板の端面と面取り面との交差する領域に欠けやクラック等が発生するおそれがある。この種の欠けやクラック等は、微小であっても、ガラス基板の端面強度を低下させる原因になるばかりでなく、その後の搬送時や熱処理時にガラス基板の破損を誘発する原因にもなる。そのため、粗度の大きい研磨砥石は低速で移動させる必要があり、且つその後に仕上げ研磨を別途行う必要があるため、処理速度が大幅に低下して、生産性の低下を余儀なくされる。   Moreover, both of the polishing means described in these two documents are configured to first perform rough polishing using a polishing grindstone having a high roughness and then perform final polishing using a polishing grindstone having a low roughness. Therefore, it is difficult or impossible to increase the processing speed, and the productivity is lowered. That is, if a grinding wheel having a large roughness is linearly moved at a high speed with respect to the edge of the glass substrate to form a desired chamfered surface on the edge, the front and back surfaces of the glass substrate and the chamfered surface There is a possibility that chipping, cracking, or the like may occur in the intersecting region or the region where the end surface of the glass substrate and the chamfered surface intersect. Even if this kind of chipping, cracking, or the like is minute, it not only causes a decrease in the end face strength of the glass substrate, but also causes a breakage of the glass substrate during subsequent transport or heat treatment. For this reason, it is necessary to move the polishing grindstone having a large roughness at a low speed and, after that, it is necessary to separately perform the final polishing, so that the processing speed is greatly reduced, and the productivity is inevitably lowered.

また、上記の特許文献3に記載された研磨手段によれば、ガラス基板の端面の板厚方向中央部は粗い砥粒により粗削りのみが行われ、ガラス基板の表裏面と端面とが交差する端縁は細かい砥粒により仕上げ削りのみが行われる。したがって、ガラス基板の端縁に対しては粗削りが行われないことになり、これに起因して、当該端縁に所望の面取り面を形成するために要する時間が不当に長くなることから、生産性が大幅に低下するという不具合を招く。   Moreover, according to the grinding | polishing means described in said patent document 3, the plate thickness direction center part of the end surface of a glass substrate is only rough-cut by a rough abrasive grain, and the edge where the front and back surfaces and end surface of a glass substrate cross | intersect The edges are only finished with fine abrasive grains. Therefore, no rough cutting is performed on the edge of the glass substrate, and as a result, the time required to form a desired chamfered surface on the edge is unreasonably long. This causes a problem that the performance is greatly reduced.

なお、上記の特許文献4に記載された研磨手段によれば、ウェハー等の被研磨物を、研磨面の粗削り用の内周部から仕上げ削り用の外周部に移行させるという技術的思想を有しているに過ぎず、このように被研磨物を研磨面の内周部から外周部に移行させるのみの手法では、ガラス基板の端縁を当該研磨面の内周部から外周部に直線移動させて該端縁に面取り処理を施すことが実質的に不可能となる。しかも、先ず粗削りを行った後に仕上げ削りを行うものであるため、仮にこの研磨具をガラス基板の端縁の面取り処理に適用したとしても、既に述べた如く、処理速度を上昇させることが困難或いは不可能となり、生産性の低下を招くことは必至である。   Note that the polishing means described in Patent Document 4 has a technical idea that the object to be polished, such as a wafer, is transferred from the inner peripheral portion for rough cutting of the polishing surface to the outer peripheral portion for finishing. In this way, the method of merely transferring the object to be polished from the inner peripheral portion of the polishing surface to the outer peripheral portion moves the edge of the glass substrate linearly from the inner peripheral portion of the polishing surface to the outer peripheral portion. Thus, it is substantially impossible to chamfer the edge. Moreover, since the roughing is first performed and then the finishing is performed, even if this polishing tool is applied to the chamfering processing of the edge of the glass substrate, it is difficult to increase the processing speed as already described or It is inevitable that it will become impossible and cause a decline in productivity.

本発明は、上記事情に鑑み、研磨に要する装置の簡素化および低コスト化、並びにガラス基板の端縁に施される面取り面周辺の品位向上を図りつつ、当該端縁の面取り処理に要する時間を大幅に短縮して、生産性の向上を図ることを技術的課題とする。   In view of the above circumstances, the present invention simplifies and reduces the cost of an apparatus required for polishing, and improves the quality of the periphery of the chamfered surface applied to the edge of the glass substrate, and the time required for the chamfering process of the edge. It is a technical problem to improve productivity by significantly shortening the above.

上記技術的課題を解決するために創案された本発明に係る装置は、回転軸と直交する研磨面を有する研磨具が、ガラス基板の表裏面と端面とが交差する端縁に対して相対的に直線移動しながら回転軸廻りに回転することにより、該ガラス基板の端縁に面取り処理を施すように構成したガラス基板の端面研磨装置において、前記研磨具の回転軸は、1本であって、前記研磨具の研磨面は、内周側から外周側に亘って区画して配列され且つ面取り面を形成するための複数の部分研磨面で構成され、これら複数の部分研磨面は、外周側の部分研磨面の粗度が内周側の部分研磨面の粗度よりも相対的に小さく、それらの部分研磨面は、相互間に、周溝を形成して得られた隙間を介在させて配列され、研磨時に発生するスラリ−が、前記隙間を通過して、前記部分研磨面がガラス基板と接触していない部位から外部に排出されるように構成し、前記ガラス基板の表裏面と端面とが交差する端縁のうち表面側の端縁と裏面側の端縁との双方に前記面取り処理を施すように前記ガラス基板の表面側と裏面側とにそれぞれ配設した前記研磨具を、同時に同方向に向かって同速度で前記双方の端縁に対して相対的に直線移動させて、前記双方の端縁に対して微細研磨と粗研磨と仕上げ研磨とからなる一連の研磨処理を施すように構成したことに特徴づけられる。 The apparatus according to the present invention, which has been created to solve the above technical problem, is such that a polishing tool having a polishing surface orthogonal to the rotation axis is relative to the edge where the front and back surfaces and the end surface of the glass substrate intersect. In the glass substrate end surface polishing apparatus configured to be chamfered on the edge of the glass substrate by rotating around the rotation axis while linearly moving, the rotation axis of the polishing tool is one. , the polishing surface of the polishing tool is constituted by the inner peripheral side a plurality of partial polishing surface for forming a且one face-up surfaces are arranged in compartments over the outer circumferential side from the plurality of partial polishing surface, The roughness of the partially polished surface on the outer peripheral side is relatively smaller than the roughness of the partially polished surface on the inner peripheral side, and these partially polished surfaces interpose gaps obtained by forming peripheral grooves between them. The slurry generated during polishing passes through the gap, The partially polished surface is configured to be discharged to the outside from a portion that is not in contact with the glass substrate, and the edge on the front side and the end on the back side among the edges where the front and back surfaces and the end surface of the glass substrate intersect The polishing tool disposed on the front surface side and the back surface side of the glass substrate so as to perform the chamfering treatment on both of the edges is simultaneously relative to the both edges at the same speed in the same direction. It is characterized in that a series of polishing processes including fine polishing, rough polishing, and final polishing are performed on both the edges by linear movement .

このような構成によれば、研磨具の研磨面(複数の部分研磨面)1本の回転軸と直交し且つそれらの部分研磨面は外周側の部分研磨面の粗度が内周側の部分研磨面の粗度よりも小さくされているので、この研磨具をガラス基板の端縁に対して相対的に直線移動させつつ回転軸廻りに回転させて該端縁の研磨処理を行う場合には、先ず研磨面における粗度の小さい外周側の部分研磨面によって、角張った当該端縁の微細削り(微細研磨)が行われていわゆる「ならし」効果が得られる。これにより、ガラス基板の端縁に対する面取り処理の初期段階において、不当な応力集中が抑制され、且つガラス基板のばたつきに起因する欠け(初期チッピング)やクラック等の発生が抑制された上で、当該端縁に初期段階に相当する面取り面が形成される。この後、次段階として、研磨具が相対的に直線移動することにより、研磨面における粗度の大きい内周側の部分研磨面が、上記の初期段階に相当する面取り面に当接して、粗削り(粗研磨)が行われる。この粗研磨によって、研磨の進行速度が高められるため、面取り処理時間が短縮されると共に、粗研磨の開始時には当該端縁が微細研磨されて上述の「ならし」が行われていることから、欠けやクラック等の発生或いはそれらの伸展を招くことなく、円滑に粗研磨が開始されて進行していく。この後、最終段階として、研磨具がさらに相対的に直線移動することにより、研磨面における上述の粗度の小さい外周側の部分研磨面が、粗研磨を施された面取り面に当接して、仕上げ削り(仕上げ研磨)が行われる。これにより、研磨具の振動が研磨面の移動方向後端から面取り面に作用することによる該面取り面の後端への欠けやクラック等の発生が抑止されると共に、粗研磨に起因して面取り面に残存した微小な研削粉或いはガラス粉が除去されることになる。このように、単一の研磨具の相対的な直線移動に伴って、微細研磨(ならし)と、粗研磨と、仕上げ研磨とからなる一連の研磨処理が、ガラス基板の端縁に対して順次施されることにより、欠けやクラック等の発生を抑止しつつ短時間で面取り処理を行うことが可能となるため、装置の簡素化および面取り面周辺の良好な品位を確保した上で、大幅な生産性の向上が図られる。更に、研磨時に発生するスラリ−(研削液と研磨粉やガラス粉等の混合物)は、研磨具の回転に伴い、複数の研磨面の相互間に形成された隙間(周溝の形成により得られた隙間であるから、この隙間は有底である)を通過して、両研磨面がガラス基板と接触していない部位から外部に排出される。これにより、研磨時に発生するスラリーがガラス基板の表裏面に飛散することを阻止できるため、ガラス基板の汚染が効率よく回避される。なお、研磨具とガラス基板とは、何れか一方または双方が直線移動すればよいが、ガラス基板の端縁に沿う方向の寸法が、研磨具の研磨面の最大幅寸法よりも長い場合には、ガラス基板を作業台上等に固定した状態で研磨具をその端縁に沿う方向に移動させるのが有利であり、その逆の場合には、研磨具を定置設置してガラス基板が研磨面を横切るように直線移動させるのが有利である。また、研磨具は、ガラス基板の表裏面と面取り面との交差角が120〜150°および/またはガラス基板の端面と面取り面との交差角が120〜150°になるように、その研磨面が傾斜していることが好ましい。 According to such a configuration, the polishing surface (a plurality of partially polished surfaces) of the polishing tool is orthogonal to one rotating shaft, and the roughness of the partially polished surface on the outer peripheral side of the partially polished surface is the inner peripheral side. Since the roughness of the partially polished surface is smaller than this, when this polishing tool is rotated around the rotation axis while moving linearly relative to the edge of the glass substrate, the edge is polished. First, the sharpened edge is finely ground (finely ground) by the partially polished surface on the outer peripheral side having a small roughness on the polished surface , and a so-called “running” effect is obtained. Thereby, in the initial stage of the chamfering process for the edge of the glass substrate, unreasonable stress concentration is suppressed, and occurrence of chipping (initial chipping), cracks, and the like due to flapping of the glass substrate is suppressed. A chamfered surface corresponding to the initial stage is formed on the edge. After this, as the next step, the polishing tool moves relatively linearly, so that the partially polished surface on the inner peripheral side having a large roughness on the polished surface comes into contact with the chamfered surface corresponding to the above-mentioned initial step, thereby roughing the surface. (Rough polishing) is performed. Since this advancing speed of polishing is increased by this rough polishing, the chamfering processing time is shortened, and at the start of the rough polishing, the edge is finely polished, and the above-described "running" is performed. The rough polishing is smoothly started and progressed without causing the occurrence of cracks, cracks, or the like or the extension thereof. After this, as a final stage, the polishing tool is further moved relatively linearly, and the above-mentioned partially polished outer peripheral surface of the polishing surface is in contact with the chamfered surface subjected to the rough polishing, Finishing (finish polishing) is performed. As a result, the occurrence of chipping or cracking at the rear end of the chamfered surface due to the vibration of the polishing tool acting on the chamfered surface from the rear end in the moving direction of the polishing surface is suppressed, and chamfering is caused due to rough polishing. Fine grinding powder or glass powder remaining on the surface is removed. In this way, with the relative linear movement of a single polishing tool, a series of polishing processes including fine polishing (roughening), rough polishing, and final polishing are performed on the edge of the glass substrate. Since the chamfering process can be performed in a short time while suppressing the occurrence of chipping and cracking by applying them sequentially, the equipment is greatly simplified while ensuring good quality around the chamfered surface. Productivity can be improved. Furthermore, the slurry (mixture of grinding fluid and polishing powder, glass powder, etc.) generated during polishing is obtained by forming gaps (circumferential grooves) formed between the polishing surfaces as the polishing tool rotates. Since this gap is a gap, this gap has a bottom) and is discharged to the outside from a portion where both polished surfaces are not in contact with the glass substrate. Thereby, since the slurry generated at the time of polishing can be prevented from scattering on the front and back surfaces of the glass substrate, contamination of the glass substrate is efficiently avoided. Either one or both of the polishing tool and the glass substrate may be linearly moved, but when the dimension along the edge of the glass substrate is longer than the maximum width dimension of the polishing surface of the polishing tool. It is advantageous to move the polishing tool in the direction along its edge while the glass substrate is fixed on the work table or the like. It is advantageous to make a linear movement across the line. Further, the polishing tool has a polished surface such that the crossing angle between the front and back surfaces of the glass substrate and the chamfered surface is 120 to 150 ° and / or the crossing angle between the end surface of the glass substrate and the chamfered surface is 120 to 150 °. Is preferably inclined.

この場合、前記研磨具の研磨面は、内周側から外周側に亘って区画して配列され且つ前記面取り面を形成するための複数の部分研磨面で構成され、これら複数の部分研磨面は、相対的に外周側の部分研磨面の粗度が相対的に内周側の部分研磨面の粗度よりも小さくされている In this case, the polishing surface of the polishing tool is divided and arranged from the inner peripheral side to the outer peripheral side, and is composed of a plurality of partial polishing surfaces for forming the chamfered surface. The roughness of the partially polished surface on the outer peripheral side is relatively smaller than the roughness of the partially polished surface on the inner peripheral side .

このようにすれば、研磨具の研磨面が、粗度の相違する複数の部分研磨面に区画されることから、例えば内周側から外周側に移行するに連れて粗度が徐々に小さくなるように研磨面を形成する場合に比して、簡単且つ容易に研磨面を作製することができる。これにより、研磨具の製作容易化および製作コストの低廉化が図られる。なお、本発明は、上記の内周側から外周側に移行するに連れて粗度が徐々に小さくなるように研磨面が形成される場合を排除するものではない。   In this way, since the polishing surface of the polishing tool is partitioned into a plurality of partially polished surfaces having different roughnesses, for example, the roughness gradually decreases as it moves from the inner peripheral side to the outer peripheral side. Thus, the polished surface can be produced easily and easily as compared with the case where the polished surface is formed. Thereby, the manufacture of the polishing tool can be facilitated and the manufacturing cost can be reduced. Note that the present invention does not exclude the case where the polishing surface is formed so that the roughness gradually decreases as the shift from the inner peripheral side to the outer peripheral side.

さらに、前記複数の部分研磨面は、それぞれが帯状円形(円形リング状)をなす研磨面であり且つ同心円状に配列されていることが好ましい。   Furthermore, it is preferable that each of the plurality of partially polished surfaces is a polished surface having a belt-like circular shape (circular ring shape) and arranged concentrically.

このようにすれば、複数の部分研磨面の形状および配列状態が簡素になるため、研磨具のさらなる製作容易化や製作コストの低廉化が図られる。   This simplifies the shape and arrangement of the plurality of partially polished surfaces, thereby further facilitating the manufacture of the polishing tool and reducing the manufacturing cost.

この構成において、前記複数の部分研磨面は、それぞれが帯状円形をなし且つ所定の厚みを有する部分研磨板の表面に形成され、それらの部分研磨板は、相互間に上述の隙間を介在させて配列されていることが好ましい。 In this configuration, each of the plurality of partially polished surfaces is formed on the surface of a partially polished plate having a belt-like circular shape and a predetermined thickness, and the partially polished plates have the above-described gaps interposed therebetween. It is preferable that they are arranged.

このようにすれば、研磨時に発生するスラリー(研削液と研磨粉やガラス粉等の混合物)は、研磨具の回転に伴い、各部分研磨板の相互間の隙間(溝)を通過して、研磨面がガラス基板と接触していない部位から外部に排出され得ることになる。これにより、スラリーがガラス基板の表裏面に飛散することを阻止できるため、ガラス基板の汚染が効率よく回避される。   In this way, the slurry generated during polishing (a mixture of grinding liquid and polishing powder or glass powder) passes through the gaps (grooves) between the partial polishing plates as the polishing tool rotates, The polished surface can be discharged to the outside from a portion that is not in contact with the glass substrate. Thereby, since slurry can be prevented from scattering on the front and back surfaces of the glass substrate, contamination of the glass substrate is efficiently avoided.

以上の構成において、前記研磨具の研磨面は、中央部に部分研磨面を有さず、且つ該中央部が凹部であることが好ましい。   In the above configuration, it is preferable that the polishing surface of the polishing tool does not have a partial polishing surface at the center, and the center is a recess.

このようにすれば、研磨面の粗度の大きい内周部での研磨により発生したスラリーが、研磨面の中央部の凹部を通じて効率よく外部に排出されるため、ガラス基板の汚染がより一層確実に阻止される。   In this way, the slurry generated by polishing at the inner peripheral portion where the roughness of the polished surface is large is efficiently discharged to the outside through the concave portion in the central portion of the polished surface, so that the contamination of the glass substrate is further ensured. To be blocked.

さらに、以上の構成において、前記ガラス基板が、ガラス原板をレーザスクライブした後に分割して作製される場合には、その板厚が200μm以上であることが好ましい。   Furthermore, in the above configuration, when the glass substrate is produced by dividing the glass original plate after laser scribing, the plate thickness is preferably 200 μm or more.

すなわち、レーザスクライブを用いてガラス原板にスクライブを形成した後に切断されたガラス基板は、それぞれの切断面が均一で且つ高度な寸法精度を有するため、ガラス基板の端縁に形成される面取り面も均一に且つ寸法精度を高くすることができる。この場合、ガラス原板(ガラス基板)の板厚が200μm未満であると、このレーザスクライブの特異性に起因してガラス原板を適切に切断することが困難であるが、その板厚が200μm以上であれば、上記のレーザスクライブによる利点を有効に確保した上で、安定してガラス原板を切断して良質のガラス基板を得ることができる。したがって、このようなガラス基板の端縁に対して、既述の構成を備えた研磨具で面取り処理を施せば、高品位の面取り面を短時間で形成することが可能となる。   That is, since the glass substrate cut after forming the scribe on the glass original plate using laser scribe has a uniform and high dimensional accuracy, the chamfered surface formed on the edge of the glass substrate also has Uniform and high dimensional accuracy can be achieved. In this case, if the thickness of the glass original plate (glass substrate) is less than 200 μm, it is difficult to appropriately cut the glass original plate due to the specificity of the laser scribe, but the thickness is 200 μm or more. If it exists, after securing the advantage by said laser scribe effectively, a glass original plate can be cut | disconnected stably and a quality glass substrate can be obtained. Therefore, if a chamfering process is performed on the edge of such a glass substrate with a polishing tool having the above-described configuration, a high-quality chamfered surface can be formed in a short time.

一方、上記の構成において、前記ガラス基板が、ガラス原板の表面にスクライブを入れると共にそのスクライブ痕を起点として該ガラス原板を折り曲げ分割して作製される場合には、その板厚が200μm未満であることが好ましい。   On the other hand, in the above configuration, when the glass substrate is prepared by putting a scribe on the surface of the glass original plate and bending and dividing the glass original plate starting from the scribe mark, the plate thickness is less than 200 μm. It is preferable.

すなわち、上述のようにレーザスクライブを用いた手法では、その特異性から板厚が200μm未満のガラス原板を適切に切断することができないが、ダイヤモンドカッター等を使用してガラス原板の表面に形成されたスクライブ痕を起点として折り曲げ分割する手法によれば、そのような特異性を有しないことから、ガラス原板の板厚が200μm未満であっても、良好にガラス原板を切断して好適なガラス基板を得ることができる。また、このスクライブ痕を起点として折り曲げ分割する手法は、ガラス原板の板厚が大きいと、折り割りが困難であり且つ切断面も悪質なものとなるため、これを回避する上で、その板厚が200μm未満であることが有利となる。そして、このようなガラス基板の端縁に対して、既述の構成を備えた研磨具で面取り処理を施せば、高品位の面取り面を短時間で形成することが可能となる。   That is, the method using laser scribing as described above cannot properly cut a glass original plate having a thickness of less than 200 μm due to its specificity, but it is formed on the surface of the glass original plate using a diamond cutter or the like. According to the method of bending and dividing with a scribe mark as a starting point, since it does not have such a specificity, even if the thickness of the glass original plate is less than 200 μm, the glass original plate can be favorably cut to be a suitable glass substrate Can be obtained. In addition, the method of folding and dividing the scribe mark as a starting point is difficult to fold when the glass plate thickness is large and the cut surface is also malicious. Is advantageously less than 200 μm. Then, if the edge of the glass substrate is chamfered with a polishing tool having the above-described configuration, a high-quality chamfered surface can be formed in a short time.

以上の構成を備えた装置は、フラットパネルディスプレイ用ガラス基板の端面研磨に好適であり、液晶ディスプレイ用ガラス基板の端面研磨であればさらに好適である。   The apparatus having the above-described configuration is suitable for end face polishing of a glass substrate for flat panel display, and more preferably for end face polishing of a glass substrate for liquid crystal display.

すなわち、この種のガラス基板は、それらのディスプレイの製造工程中に熱処理を受けるが、この熱処理工程ではガラス基板が均一に加熱されることはなく、ガラス基板の表面から内部に向かって温度勾配が生じているのが通例である。そして、ガラス基板に温度勾配が生じると、ガラス基板の表裏面、端面および面取り面に引張応力が作用するが、その場合にガラス基板に微小なクラック等が存在していたならば、ガラス基板の破損確率が高くなる。これに対しては、上記の構成からなる端面研磨装置は、研磨具の移動速度を高めた場合でも、ガラス基板の面取り面に対する微小クラックの発生確率を可及的に低減できるため、熱処理を受けてもガラス基板が破損する確率は極めて低くなる。なお、このガラス基板の面取り面およびその周辺に残存する微小クラックや欠け等は、10μm以下であることが、破損防止の観点から好ましい。   That is, this type of glass substrate is subjected to heat treatment during the manufacturing process of these displays, but in this heat treatment step, the glass substrate is not heated uniformly, and the temperature gradient from the surface of the glass substrate toward the inside is increased. It is customary to have it. When a temperature gradient occurs in the glass substrate, tensile stress acts on the front and back surfaces, the end face, and the chamfered surface of the glass substrate. In this case, if a minute crack or the like exists in the glass substrate, The probability of breakage increases. On the other hand, the end surface polishing apparatus having the above-described configuration is subjected to heat treatment because the probability of occurrence of microcracks on the chamfered surface of the glass substrate can be reduced as much as possible even when the moving speed of the polishing tool is increased. Even so, the probability that the glass substrate is broken is extremely low. In addition, it is preferable from a viewpoint of damage prevention that the chamfering surface of this glass substrate and the micro crack, a chip | tip, etc. which remain | survive around it are 10 micrometers or less.

一方、上記技術的課題を解決するために創案された本発明に係る方法は、回転軸と直交する研磨面を有する研磨具が、ガラス基板の表裏面と端面とが交差する端縁に対して相対的に直線移動しながら回転軸廻りに回転することにより、該ガラス基板の端縁に面取り処理を施すガラス基板の端面研磨方法において、回転軸が1本である前記研磨具の研磨面は、内周側から外周側に亘って区画して配列され且つ面取り面を形成するための複数の部分研磨面で構成され、これら複数の部分研磨面は、外周側の部分研磨面の粗度が内周側の部分研磨面の粗度よりも相対的に小さく、それらの部分研磨面は、相互間に、周溝を形成して得られた隙間を介在させて配列され、研磨時に発生するスラリ−が、前記隙間を通過して、前記部分研磨面がガラス基板と接触していない部位から外部に排出されると共に、前記ガラス基板の表裏面と端面とが交差する端縁のうち表面側の端縁と裏面側の端縁との双方に前記面取り処理を施すように前記ガラス基板の表面側と裏面側とにそれぞれ配設された前記研磨具を、同時に同方向に向かって同速度で前記双方の端縁に対して相対的に直線移動させて、前記双方の端縁に対して微細研磨と粗研磨と仕上げ研磨とからなる一連の研磨処理を施すことに特徴づけられる。 On the other hand, the method according to the present invention, which was created to solve the above technical problem, is based on the polishing tool having a polishing surface orthogonal to the rotation axis, against the edge where the front and back surfaces and the end surface of the glass substrate intersect. In the method of polishing an end surface of a glass substrate, in which the edge of the glass substrate is chamfered by rotating around a rotation axis while relatively linearly moving, the polishing surface of the polishing tool having one rotation axis is: is composed of the inner peripheral side a plurality of partial polishing surface for being arranged in compartments over the outer circumferential side to form a且one face-up plane from roughness of the plurality of partial polishing surface, the outer peripheral side of the partial polishing surface Is relatively smaller than the roughness of the partially polished surface on the inner peripheral side, and these partially polished surfaces are arranged with a gap obtained by forming a circumferential groove between them, and are generated during polishing. Slurry passes through the gap and the partially polished surface is glass-based. While being discharged to the outside from a portion not in contact, the chamfering process on both the edge of the surface side of the edge and the back side of the end edge of the front and back surfaces and the end surface of the glass substrate crosses performed with The polishing tool disposed on the front surface side and the back surface side of the glass substrate is simultaneously moved linearly relative to both edges at the same speed in the same direction, It is characterized by performing a series of polishing treatments consisting of fine polishing, rough polishing, and finish polishing on the edge of each .

この方法の構成は、既述の装置における基本的構成と同一であるため、この方法についての作用効果を含む説明事項も、既述の装置における基本的構成についての作用効果を含む説明事項と実質的に同一であり、したがって、ここではその説明を省略する。   Since the configuration of this method is the same as the basic configuration of the above-described apparatus, the explanation items including the operational effects of this method are substantially the same as the explanation items including the operational effects of the basic configuration of the above-described apparatus. Therefore, the description thereof is omitted here.

以上のように本発明によれば、ガラス基板の表裏側双方の端縁に対する微細研磨(ならし)と、粗研磨と、仕上げ研磨とからなる一連の研磨処理が、前記双方の端縁についてそれぞれ単一の研磨具の回転と相対的な直線移動とによって行われることから、装置の簡素化および面取り面周辺の良好な品位が確保されると共に、欠けやクラック等の発生が抑止された上で、短時間で面取り処理が行われ得ることになり、大幅な生産性の向上が図られる。しかも、研磨時に発生したスラリーによるガラス基板の汚染が、効率よく回避され得る。 As described above, according to the present invention, a series of polishing processes including fine polishing (roughening), rough polishing, and finish polishing on both edges of the front and back sides of the glass substrate are performed on both edges. Since it is performed by rotation of a single polishing tool and relative linear movement, it is possible to simplify the device and ensure good quality around the chamfered surface, and to prevent the occurrence of chips and cracks. Therefore, the chamfering process can be performed in a short time, and the productivity is greatly improved. In addition, contamination of the glass substrate due to the slurry generated during polishing can be efficiently avoided.

以下、本発明の実施形態に係るガラス基板の端面研磨装置を添付図面を参照して説明する。なお、本実施形態に係る端面研磨装置の研磨対象は、FPD用(特にPDP用)のガラス基板である。   Hereinafter, an end surface polishing apparatus for a glass substrate according to an embodiment of the present invention will be described with reference to the accompanying drawings. The polishing target of the end surface polishing apparatus according to this embodiment is a glass substrate for FPD (particularly for PDP).

図1は、本実施形態に係るガラス基板の端面研磨装置の主たる構成要素である研磨具1を示す斜視図である。同図に示すように、この研磨具1は、円形の基盤2上に固定された外周側の部分研磨板(以下、外周側研磨板という)3と、内周側の部分研磨板(以下、内周側研磨板という)4とを備えてなる。外周側研磨板3および内周側研磨板4は何れも、帯状円形をなす板状体であって、この両者3、4のそれぞれの平面からなる表面が外研磨面3aおよび内研磨面4aとされている。そして、この両研磨面3a、4aは、同一平面上に且つ同心円状に配列されている。   FIG. 1 is a perspective view showing a polishing tool 1 which is a main component of a glass substrate end surface polishing apparatus according to the present embodiment. As shown in the figure, the polishing tool 1 includes an outer peripheral side polishing plate (hereinafter referred to as an outer peripheral side polishing plate) 3 fixed on a circular base 2, and an inner peripheral side partial polishing plate (hereinafter referred to as an outer peripheral side polishing plate). 4) (referred to as an inner peripheral polishing plate). Each of the outer peripheral side polishing plate 3 and the inner peripheral side polishing plate 4 is a plate-like body having a belt-like circular shape, and the surfaces formed by the planes of both the three and four are the outer polishing surface 3a and the inner polishing surface 4a. Has been. The two polishing surfaces 3a and 4a are arranged on the same plane and concentrically.

この場合、内周側研磨板4の外周面と、外周側研磨板3の内周面との間には、隙間5が形成され、この隙間5は、両研磨板3、4の板厚に相当する深さで且つ全周に亘って一定幅(0.5〜4.0mm)の周溝を構成している。さらに、この研磨具1における基盤2の中央部つまり内周側研磨板4の内側部位は、研磨板を有さずに凹部6とされている。この凹部6の半径は、内周側研磨板4の内周面から外周側研磨板3の外周面までの径方向寸法よりも長くなるように設定されている。そして、外周側研磨板3の砥粒は、内周側研磨板4の砥粒よりも細粒とされ、したがって外研磨面3aの粗度は、内研磨面4aの粗度よりも小さくされている。 In this case, a gap 5 is formed between the outer peripheral surface of the inner peripheral side polishing plate 4 and the inner peripheral surface of the outer peripheral side polishing plate 3, and this gap 5 has the thickness of both polishing plates 3, 4. A circumferential groove with a corresponding depth and a constant width ( 0.5 to 4.0 mm ) is formed over the entire circumference. Further, the central portion of the base 2 in the polishing tool 1, that is, the inner portion of the inner peripheral polishing plate 4 is a recess 6 without having a polishing plate. The radius of the recess 6 is set to be longer than the radial dimension from the inner peripheral surface of the inner peripheral polishing plate 4 to the outer peripheral surface of the outer peripheral polishing plate 3. The abrasive grains of the outer peripheral polishing plate 3 are finer than the abrasive grains of the inner peripheral polishing plate 4, and therefore the roughness of the outer polishing surface 3a is made smaller than the roughness of the inner polishing surface 4a. Yes.

この研磨具1は、図2に示すように、ガラス基板7の表面7aと端面7cとが交差する表面側の端縁7xと、ガラス基板7の裏面7bと端面7cとが交差する裏面側の端縁7yとに対して面取り処理を施すものである。詳述すると、このガラス基板7は、板厚が200μm以上である場合には、ガラス原板をレーザスクライブした後に分割することにより得られるものであって、その分割面が上記の端面7cに該当する。一方、板厚が200μm未満である場合には、ガラス原板の表面にダイヤモンドカッター等を用いてスクライブを入れ且つそのスクライブ痕を起点としてガラス原板を折り曲げて分割することにより上記のガラス基板7が得られるものであって、その分割面が上記の端面7cに該当する。そして、ガラス基板7の表面側の端縁7xを面取り処理する場合には、研磨具1の両研磨面3a、4aは、ガラス基板7の表面7aとのなす角度αが30〜60°(図示例では45°)となるように配置される。また、ガラス基板7の裏面側の端縁7yを面取り処理する場合には、研磨具1の両研磨面3a、4aは、ガラス基板7の裏面7bとのなす角度βが30〜60°(図示例では45°)となるように配置される。   As shown in FIG. 2, the polishing tool 1 has an edge 7x on the surface side where the surface 7a and the end surface 7c of the glass substrate 7 intersect, and a back surface side where the back surface 7b and the end surface 7c of the glass substrate 7 intersect. A chamfering process is performed on the edge 7y. More specifically, the glass substrate 7 is obtained by dividing the glass original plate after laser scribing when the plate thickness is 200 μm or more, and the divided surface corresponds to the end surface 7c. . On the other hand, when the plate thickness is less than 200 μm, the glass substrate 7 is obtained by putting a scribe on the surface of the glass original plate using a diamond cutter or the like and bending and dividing the glass original plate from the scribe mark as a starting point. The divided surface corresponds to the end surface 7c. When the edge 7x on the surface side of the glass substrate 7 is chamfered, the angle α between the both polishing surfaces 3a and 4a of the polishing tool 1 and the surface 7a of the glass substrate 7 is 30 to 60 ° (see FIG. It is arranged so as to be 45 ° in the illustrated example. When the edge 7y on the back surface side of the glass substrate 7 is chamfered, the angle β formed between the polishing surfaces 3a and 4a of the polishing tool 1 and the back surface 7b of the glass substrate 7 is 30 to 60 ° (see FIG. It is arranged so as to be 45 ° in the illustrated example.

このような配置状態の下で、研磨具1は、回転軸8廻りに回転しながら、作業台9上に固定されたガラス基板7の端縁7x、7yに沿って直線移動するように構成されている。この実施形態では、図3に示すように、ガラス基板7の表面側に配置された研磨具1と、ガラス基板7の裏面側に配置された研磨具1とを、干渉しない範囲内で近接させた状態の下で、この両研磨具1を同時に同方向(矢印A方向)に向かって同速度で直線移動させる構成とされている。 Under such an arrangement, the polishing tool 1 is configured to linearly move along the edges 7x and 7y of the glass substrate 7 fixed on the work table 9 while rotating around the rotation shaft 8. ing. In this embodiment, as shown in FIG. 3, the polishing tool 1 disposed on the front surface side of the glass substrate 7 and the polishing tool 1 disposed on the back surface side of the glass substrate 7 are brought close to each other within a range that does not interfere. Under these conditions, both polishing tools 1 are linearly moved at the same speed in the same direction (arrow A direction) at the same time.

この場合、図4に示すように、研磨具1は、ガラス基板7の端縁7x(7y)が、内研磨面4aと外研磨面3aとの双方に接触し且つ中央部の凹部6を横切るように配置された状態を維持するが、当該端縁7x(7y)は凹部6の中心上に位置している必要はなく、図示例のように当該中心から偏倚していてもよい。そして、この状態の下で、研磨具1が同図に矢印Bで示す方向に回転する場合には、研磨具1は矢印Cで示す方向に直線移動するように構成されている。そして、図示しないが、この研磨具1における基盤2の中心からは、ガラス基板7の端縁7x(7y)の周辺に向かって、高圧の水流等の研削液が噴射されるように構成されている。さらに、この実施形態では、研磨具1の両研磨面3a、4aがガラス基板7の端縁7x(7y)に接触しつつ直線移動する際には、ガラス基板7の表面7aの中央部側および裏面7bの中央部側からそれぞれ対応する端縁7x(7y)に向かって、高圧の水流等の研削液が噴射されるように構成されている。   In this case, as shown in FIG. 4, in the polishing tool 1, the edge 7x (7y) of the glass substrate 7 is in contact with both the inner polishing surface 4a and the outer polishing surface 3a and crosses the recess 6 at the center. However, the edge 7x (7y) does not have to be located on the center of the recess 6 and may be deviated from the center as in the illustrated example. Under this state, when the polishing tool 1 rotates in the direction indicated by the arrow B in the figure, the polishing tool 1 is configured to linearly move in the direction indicated by the arrow C. And although not shown in figure, from the center of the base | substrate 2 in this grinding | polishing tool 1, it is comprised so that grinding liquids, such as a high voltage | pressure water flow, may be injected toward the periphery of the edge 7x (7y) of the glass substrate 7. FIG. Yes. Furthermore, in this embodiment, when both polishing surfaces 3a and 4a of the polishing tool 1 move linearly while contacting the edge 7x (7y) of the glass substrate 7, the center side of the surface 7a of the glass substrate 7 and A grinding fluid such as a high-pressure water stream is jetted from the center side of the back surface 7b toward the corresponding edge 7x (7y).

このような構成によれば、研磨具1の両研磨面3a、4aが、回転軸8廻りに回転しながらガラス基板7の端縁7x(7y)に接触しつつ該端縁7x(7y)に沿って直線移動する際には、先ず粗度の小さい外研磨面3aによって、端縁7x(7y)の微細削り(微細研磨)が行われ、これによりいわゆる「ならし」効果が得られる。その結果、ガラス基板7の端縁7x(7y)に対する面取り処理の初期段階における不当な応力集中が抑制され、且つガラス基板7のばたつきに起因する欠け(初期チッピング)やクラック等の発生が抑制された上で、当該端縁7x(7y)に初期段階に相当する面取り面が形成される。   According to such a configuration, both the polishing surfaces 3a and 4a of the polishing tool 1 are rotated around the rotation shaft 8 and are in contact with the edge 7x (7y) of the glass substrate 7 while being in contact with the edge 7x (7y). When moving along a straight line, the edge 7x (7y) is first finely ground (finely polished) by the outer polished surface 3a having a low roughness, thereby obtaining a so-called “running” effect. As a result, unreasonable stress concentration in the initial stage of the chamfering process on the edge 7x (7y) of the glass substrate 7 is suppressed, and occurrence of chipping (initial chipping), cracks, and the like due to flapping of the glass substrate 7 is suppressed. In addition, a chamfered surface corresponding to the initial stage is formed on the edge 7x (7y).

この後、次段階として、粗度の大きい内研磨面4aが、上記の初期段階に相当する面取り面に当接して、粗削り(粗研磨)が行われる。この粗研磨により、研磨の進行速度が高められるため、面取り処理時間が短縮されると共に、粗研磨の開始時には当該端縁7x(7y)が微細研磨されて上述の「ならし」が行われていることから、欠けやクラック等の発生或いはそれらの伸展を招くことなく、円滑に粗研磨が開始されて進行していく。   Thereafter, as the next step, the inner polished surface 4a having a large roughness comes into contact with the chamfered surface corresponding to the initial step, and rough cutting (rough polishing) is performed. This rough polishing increases the speed of polishing, thereby shortening the chamfering process time, and at the start of rough polishing, the edge 7x (7y) is finely polished to perform the above-described "running". Therefore, the rough polishing is smoothly started and progressed without causing the occurrence of cracks, cracks, or the like or extending them.

さらにこの後、最終段階として、再び粗度の小さい外研磨面3aが、粗研磨を施された面取り面に当接して、仕上げ削り(仕上げ研磨)が行われる。これにより、研磨具1の振動が面取り面に不当に伝播されることによる該面取り面への欠けやクラック等の発生が抑止されると共に、粗研磨に起因して面取り面に残存した微小な研削粉或いはガラス粉が除去されることになる。 After this, as a final step, the outer polished surface 3a having a low roughness is again brought into contact with the chamfered surface that has been subjected to the rough polishing, and finishing (finish polishing) is performed. As a result, the occurrence of chipping or cracking on the chamfered surface due to improper propagation of the vibration of the polishing tool 1 to the chamfered surface is suppressed, and minute grinding remaining on the chamfered surface due to rough polishing. Powder or glass powder will be removed.

この場合、高圧の水流等の研削液が、ガラス基板7の表裏面7a、7bの中央部側から面取り面に向かって噴射供給されることから、面取り処理に起因して発生する微小なガラス粉がガラス基板7の表裏面7a、7bに付着することを阻止できると共に、研磨時の摩擦熱によってガラス基板7の面取り面周辺が焼けて破損するという問題も生じなくなる。   In this case, since a grinding liquid such as a high-pressure water stream is sprayed and supplied from the center side of the front and back surfaces 7a and 7b of the glass substrate 7 toward the chamfered surface, minute glass powder generated due to the chamfering process is generated. Can be prevented from adhering to the front and back surfaces 7a and 7b of the glass substrate 7, and the problem that the periphery of the chamfered surface of the glass substrate 7 is burnt and damaged by frictional heat during polishing does not occur.

しかも、この面取り処理時には、研削液と研磨粉やガラス粉等の混合物からなるスラリーが発生するが、このスラリーは、研磨具1の回転に伴って、外周側研磨板3と内周側研磨板4との間の隙間5(周溝)を通過し、両研磨面3a、4aがガラス基板7と接触していない部位から外部に排出される。これにより、スラリーがガラス基板7の表裏面7a、7bに飛散することを可及的に抑止して、ガラス基板7が汚染されることを有効に回避することが可能となる。   In addition, during this chamfering process, a slurry made of a mixture of a grinding liquid and polishing powder, glass powder or the like is generated, and this slurry is mixed with the outer peripheral polishing plate 3 and the inner peripheral polishing plate as the polishing tool 1 rotates. 4 passes through the gap 5 (circumferential groove) between the two polishing surfaces 3a and 4a and is discharged to the outside from the portion where the polished surfaces 3a and 4a are not in contact with the glass substrate 7. Thereby, it is possible to prevent the slurry from being scattered on the front and back surfaces 7a and 7b of the glass substrate 7 as much as possible, and to effectively avoid contamination of the glass substrate 7.

さらに、研磨具1の中央部には研磨板が配設されておらず、その中央部は凹部6であることから、粗度の大きい内研磨面4aでの研磨により発生した悪質の汚泥性を有するスラリーが、その内側の凹部6を通じて効率よく外部に排出される。これにより、ガラス基板7の汚染がより一層確実に阻止される。   Further, since the polishing plate is not disposed in the central portion of the polishing tool 1 and the central portion is the concave portion 6, the malicious sludge generated by the polishing on the inner polishing surface 4a having a large roughness can be prevented. The slurry it has is efficiently discharged to the outside through the recess 6 inside. Thereby, contamination of the glass substrate 7 is prevented more reliably.

なお、上記の実施形態は、研磨板を、内周側研磨板4と外周側研磨板3との二枚で構成したが、本発明はこれに限定されるわけではなく、三枚以上の研磨板で構成するようにしてもよく、その場合には、相対的に外周側の研磨板(研磨面)の粗度を相対的に内周側の研磨板(研磨面)の粗度よりも小さくする必要がある。   In the above-described embodiment, the polishing plate is composed of two pieces of the inner peripheral polishing plate 4 and the outer peripheral polishing plate 3, but the present invention is not limited to this, and three or more polishing plates are used. In this case, the roughness of the polishing plate (polishing surface) on the outer peripheral side is relatively smaller than the roughness of the polishing plate (polishing surface) on the inner peripheral side. There is a need to.

本発明者等は、上述の図1に例示した研磨具1についての効果を確認すべく、本発明の実施例1〜3と比較例1〜6との対比、ならびに実施例4、5と比較例7〜10との対比を、以下に示すようにして行った。これらの実施例および比較例は何れについても、ガラス原板として、オーバーフローダウンドロー法で成形された日本電気硝子株式会社製OA−10を用いた。なお、ガラス基板の表裏面および端面は、未研磨とした。また、ガラス原板としては、板厚が0.7mmのものと、0.1mmのものとの二種類を準備し、これらのガラス原板の表面にダイヤモンドチップまたはレーザスクライブを用いてスクライブを入れた。   In order to confirm the effect of the polishing tool 1 illustrated in FIG. 1 described above, the present inventors compared Examples 1 to 3 with Comparative Examples 1 to 6 and compared with Examples 4 and 5. A comparison with Examples 7-10 was made as follows. In each of these Examples and Comparative Examples, OA-10 manufactured by Nippon Electric Glass Co., Ltd., which was molded by the overflow downdraw method, was used as the glass original plate. The front and back surfaces and end surfaces of the glass substrate were not polished. Moreover, as a glass original plate, two types with a plate thickness of 0.7 mm and a 0.1 mm thickness were prepared, and the surface of these glass original plates was scribed using a diamond chip or a laser scribe.

先ず、下記の表1に示す本発明の実施例1〜3及び比較例1〜6については、用いる試料として、板厚が0.7mmのガラス原板をスクライブ痕に沿って分割することにより、短辺寸法が730mmおよび長辺寸法が920mmのガラス基板を得た。そして、このガラス基板の端縁に面取り面を形成するための研磨具は、実施例1〜3では、外周側研磨板(外研磨面)が半径50〜60mm(10mm幅)、内周側研磨板(内研磨面)が半径38〜48mm(10mm幅)であって、両研磨板の相互間の隙間(周溝の幅)が2mmとされている。また、実施例1では、外周側研磨板の砥粒(ダイヤモンド砥粒)が#3000で且つ内周側研磨板の砥粒が#1500、実施例2では、外周側研磨板の砥粒が#3000で且つ内周側研磨板の砥粒が#2000、実施例3では、外周側研磨板の砥粒が#3000で且つ内周側研磨板の砥粒が#2500であって、いずれの研磨板も、ダイヤモンド研磨板、すなわち樹脂材料にダイヤモンド砥粒を分散させたもの(ダイヤモンド砥粒の上記の大きさは、JIS R6001:1998に準拠(以下の研磨板についても同様))を用いた。一方、比較例1〜6では、研磨板を単一とし且つその研磨板が半径40〜60mm(20mm幅)であって、砥粒(ダイヤモンド砥粒)がそれぞれ、#1500、#2000、#2500、#2500、#3000、#3000のものを用いた。   First, for Examples 1 to 3 and Comparative Examples 1 to 6 of the present invention shown in Table 1 below, as a sample to be used, by dividing a glass original plate having a plate thickness of 0.7 mm along the scribe marks, A glass substrate having a side dimension of 730 mm and a long side dimension of 920 mm was obtained. The polishing tool for forming the chamfered surface on the edge of the glass substrate is that the outer peripheral side polishing plate (outer polishing surface) has a radius of 50 to 60 mm (10 mm width) in the first to third embodiments, and the inner peripheral side is polished. The plate (inner polishing surface) has a radius of 38 to 48 mm (10 mm width), and the gap between both polishing plates (the width of the circumferential groove) is 2 mm. In Example 1, the abrasive grains (diamond abrasive grains) on the outer peripheral side polishing plate are # 3000 and the abrasive grains on the inner peripheral side polishing plate are # 1500. In Example 2, the abrasive grains on the outer peripheral side polishing plate are # 3000 and the abrasive grain of the inner peripheral side polishing plate is # 2000, and in Example 3, the abrasive grain of the outer peripheral side polishing plate is # 3000 and the abrasive grain of the inner peripheral side polishing plate is # 2500. The plate was also a diamond polishing plate, that is, a resin material in which diamond abrasive grains are dispersed (the above-mentioned size of diamond abrasive grains conforms to JIS R6001: 1998 (the same applies to the following polishing plates)). On the other hand, in Comparative Examples 1 to 6, a single polishing plate is used, the polishing plate has a radius of 40 to 60 mm (20 mm width), and abrasive grains (diamond abrasive grains) are # 1500, # 2000, and # 2500, respectively. , # 2500, # 3000, and # 3000 were used.

各実施例および各比較例(比較例6を除く)においては、面取り寸法(面取り幅)が15〜75μmの範囲内になるように、研磨具の移動速度を選定し、試料であるガラス基板のすべての端縁に略平坦な面取り面を形成した。この面取り処理の実行に際しては、ガラス基板を定盤上に載置して固定した状態で、ガラス基板の表裏面と面取り面との交差角が135°で且つガラス基板の端面と面取り面との交差角が135°になるように、研磨具の研磨面の接触角度を調整した上で、研磨具(研磨板)の中心より研削水を供給し、所望の面取り寸法が得られるように、研磨板を周速2000m/分で回転させながら、250mm/secと1000mm/secとの二通りの速度で直線移動させて研磨を行った。そして、実施例1〜3および比較例1〜6のそれぞれについて、面取り寸法と、研磨後にガラス基板の端縁(面取り面周辺)に残存するクラックと、ガラス粉の付着特性とを評価した。この場合、面取り寸法および面取り面周辺のクラックのサイズは、同一の条件で面取り処理を10枚のガラス基板に施した上で、それぞれについて10回測定し、その平均値を算出することによって評価した。その結果を下記の表1に示す。なお、下記の表1中、符号「◎」は極めて良好であること、符号「○」は良好であること、符号「×」は不良であることを意味する。   In each example and each comparative example (excluding comparative example 6), the moving speed of the polishing tool is selected so that the chamfer dimension (chamfer width) is in the range of 15 to 75 μm, and the glass substrate as the sample is measured. A substantially flat chamfered surface was formed on all edges. When performing this chamfering process, with the glass substrate placed on a surface plate and fixed, the intersection angle between the front and back surfaces of the glass substrate and the chamfered surface is 135 °, and the end surface of the glass substrate and the chamfered surface are After adjusting the contact angle of the polishing surface of the polishing tool so that the crossing angle is 135 °, polishing water is supplied from the center of the polishing tool (polishing plate) so that the desired chamfer dimension can be obtained. Polishing was performed by linearly moving the plate at two speeds of 250 mm / sec and 1000 mm / sec while rotating the plate at a peripheral speed of 2000 m / min. And about each of Examples 1-3 and Comparative Examples 1-6, the chamfering dimension, the crack which remain | survives in the edge (around chamfering surface periphery) of a glass substrate after grinding | polishing, and the adhesion characteristic of glass powder were evaluated. In this case, the chamfer dimension and the size of the crack around the chamfered surface were evaluated by performing chamfering treatment on 10 glass substrates under the same conditions, measuring 10 times for each, and calculating an average value thereof. . The results are shown in Table 1 below. In Table 1 below, the symbol “◎” means very good, the symbol “◯” means good, and the symbol “x” means bad.

Figure 0005370913
Figure 0005370913

上記の表1によれば、本発明の実施例1〜3の何れもが、研磨具の移動速度(研磨速度)を1000mm/secと高速にした場合であっても、面取り寸法と、面取り面周辺のクラックと、ガラス粉の付着との全てにおいて良好または極めて良好な結果を示すことが確認された。一方、比較例1〜4については、研磨具の移動速度が1000mm/secの場合は勿論のこと、250mm/secと低速にしても、良好な結果が得られず、比較例5については、研磨具の移動速度が低速で且つ面取り寸法が短いという欠点があり、比較例6については面取り寸法が極端に短くなるという欠点を有することが確認された。   According to Table 1 above, the chamfering dimensions and the chamfered surface of each of the first to third embodiments of the present invention can be obtained even when the moving speed (polishing speed) of the polishing tool is as high as 1000 mm / sec. It was confirmed that good or extremely good results were exhibited in all of the peripheral cracks and adhesion of glass powder. On the other hand, as for Comparative Examples 1-4, not only when the moving speed of the polishing tool is 1000 mm / sec, but also at a low speed of 250 mm / sec, good results cannot be obtained. It was confirmed that the moving speed of the tool is low and the chamfer dimension is short, and Comparative Example 6 has the disadvantage that the chamfer dimension is extremely short.

次に、下記の表2に示す本発明の実施例4、5及び比較例7〜11については、用いる試料として、板厚が0.1mmのガラス原板をスクライブ痕に沿って分割することにより、短辺寸法が370mmおよび長辺寸法が470mmのガラス基板を得た。そして、このガラス基板の端縁に面取り面を形成するための研磨具は、実施例4、5では、外周側研磨板(外研磨面)が半径23〜30mm(7mm幅)、内周側研磨板(内研磨面)が半径15〜22mm(7mm幅)であって、両研磨板の相互間の隙間(周溝の幅)が1mmとされている。また、実施例4では、外周側研磨板の砥粒(ダイヤモンド砥粒)が#5000で且つ内周側研磨板の砥粒が#2500、実施例5では、外周側研磨板の砥粒が#5000で且つ内周側研磨板の砥粒が#3000としたものを用いた。一方、比較例7〜11では、研磨板を単一とし且つその研磨板が半径45〜60mm(15mm幅)であって、砥粒(ダイヤモンド砥粒)がそれぞれ、#2500、#3000、#3000、#5000、#5000のものを用いた。   Next, for Examples 4 and 5 and Comparative Examples 7 to 11 of the present invention shown in Table 2 below, as a sample to be used, by dividing a glass original plate having a plate thickness of 0.1 mm along the scribe marks, A glass substrate having a short side dimension of 370 mm and a long side dimension of 470 mm was obtained. The polishing tool for forming a chamfered surface on the edge of the glass substrate is that the outer side polishing plate (outer polishing surface) has a radius of 23 to 30 mm (7 mm width) in Examples 4 and 5, and inner side polishing. The plate (inner polishing surface) has a radius of 15 to 22 mm (7 mm width), and the gap between both polishing plates (width of the circumferential groove) is 1 mm. In Example 4, the abrasive grains (diamond abrasive grains) on the outer peripheral side polishing plate are # 5000 and the abrasive grains on the inner peripheral side polishing plate are # 2500. In Example 5, the abrasive grains on the outer peripheral side polishing plate are # What was 5000 and the abrasive grain of the inner peripheral side polishing plate was # 3000 was used. On the other hand, in Comparative Examples 7 to 11, a single polishing plate was used, the polishing plate had a radius of 45 to 60 mm (15 mm width), and the abrasive grains (diamond abrasive grains) were # 2500, # 3000, and # 3000, respectively. , # 5000, # 5000 were used.

各実施例および各比較例においては、面取り処理の実行に際して、ガラス基板を定盤上に載置して固定した状態で、ガラス基板の表裏面と面取り面との交差角が135°で且つガラス基板の端面と面取り面との交差角が135°になるように、研磨具の研磨面の接触角度を調整した上で、研磨具(研磨板)の中心より研削水を供給し、所望の面取り寸法が得られるように、研磨板を周速1500m/分で回転させながら、50mm/secと300mm/secとの二通りの速度で直線移動させて研磨を行った。そして、実施例4、5および比較例7〜11のそれぞれについて、面取り寸法と、研磨後にガラス基板の端縁(面取り面周辺)に残存するクラックと、ガラス粉の付着特性とを評価した。この場合、面取り寸法および面取り面周辺のクラックのサイズは、同一の条件で面取り処理を10枚のガラス基板に施した上で、それぞれについて10回測定し、その平均値を算出することによって評価した。その結果を下記の表2に示す。なお、下記の表2中、符号「○」は良好であること、符号「×」は不良であることを意味する。   In each example and each comparative example, when the chamfering process is performed, the crossing angle between the front and back surfaces of the glass substrate and the chamfered surface is 135 ° and the glass substrate is placed on a surface plate and fixed. Adjust the contact angle of the polishing surface of the polishing tool so that the crossing angle between the end surface of the substrate and the chamfered surface is 135 °, and then supply grinding water from the center of the polishing tool (polishing plate) to obtain the desired chamfering Polishing was performed by linearly moving the polishing plate at two speeds of 50 mm / sec and 300 mm / sec while rotating the polishing plate at a peripheral speed of 1500 m / min so as to obtain the dimensions. And about each of Example 4, 5 and Comparative Examples 7-11, the chamfering dimension, the crack which remain | survives in the edge (around chamfering surface periphery) of a glass substrate after grinding | polishing, and the adhesion characteristic of glass powder were evaluated. In this case, the chamfer dimension and the size of the crack around the chamfered surface were evaluated by performing chamfering treatment on 10 glass substrates under the same conditions, measuring 10 times for each, and calculating an average value thereof. . The results are shown in Table 2 below. In Table 2 below, the symbol “◯” means good and the symbol “x” means bad.

Figure 0005370913
Figure 0005370913

上記の表2によれば、本発明の実施例4、5の何れもが、研磨具の移動速度(研磨速度)を300mm/secと高速にした場合であっても、研磨時にガラス基板が破損することなく、面取り寸法と、面取り面周辺のクラックと、ガラス粉の付着との全てにおいて良好な結果を示すことが確認された。一方、比較例7〜11については、研磨板の砥粒を#5000にした場合のみ、ガラス基板の破損を招くことなく面取り処理が可能であったが、面取り寸法が短いという欠点があり、それ以外の比較例では、研磨具の移動速度を低速にした場合であっても、ガラス基板が破損して使用に耐え得ないことが確認された。   According to Table 2 above, the glass substrate was damaged during polishing even when the moving speed of the polishing tool (polishing speed) was increased to 300 mm / sec in any of Examples 4 and 5 of the present invention. It was confirmed that good results were exhibited in all of the chamfered dimensions, cracks around the chamfered surface, and adhesion of glass powder. On the other hand, for Comparative Examples 7 to 11, only when the abrasive grains of the polishing plate were set to # 5000, chamfering treatment was possible without causing damage to the glass substrate, but there was a drawback that the chamfering dimension was short, In other comparative examples, it was confirmed that the glass substrate was broken and could not be used even when the moving speed of the polishing tool was lowered.

本発明の実施形態に係るガラス基板の端面研磨装置の構成要素である研磨具を示す斜視図である。It is a perspective view which shows the polishing tool which is a component of the end surface polishing apparatus of the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板の端面研磨装置によりガラス基板の端面の研磨処理を行っている状態を示す概略正面図である。It is a schematic front view which shows the state which is grinding | polishing the end surface of a glass substrate with the end surface polishing apparatus of the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板の端面研磨装置によりガラス基板の端面の研磨処理を行っている状態を示す概略平面図である。It is a schematic plan view which shows the state which is grinding | polishing the end surface of a glass substrate with the end surface grinding | polishing apparatus of the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板の端面研磨装置の構成要素である研磨具とガラス基板の端縁との位置関係を示す概略図である。It is the schematic which shows the positional relationship of the polishing tool which is a component of the end surface grinding | polishing apparatus of the glass substrate which concerns on embodiment of this invention, and the edge of a glass substrate. 一般的なガラス基板の端面周辺を示す縦断面図である。It is a longitudinal cross-sectional view which shows the end surface periphery of a common glass substrate.

符号の説明Explanation of symbols

1 研磨具
2 基盤
3 外周側研磨板(部分研磨板)
3a 外研磨面(部分研磨面)
4 内周側研磨板(部分研磨板)
4a 内研磨面(部分研磨面)
5 隙間(周溝)
6 凹部
7 ガラス基板
7a ガラス基板の表面
7b ガラス基板の裏面
7c ガラス基板の端面
7x、7y ガラス基板の端縁
8 回転軸
1 Polishing tool 2 Base 3 Outer peripheral side polishing plate (partial polishing plate)
3a Outer polished surface (partially polished surface)
4 Inner peripheral side polishing plate (partial polishing plate)
4a Inner polished surface (partially polished surface)
5 Clearance (circumferential groove)
6 Recess 7 Glass substrate 7a Glass substrate surface 7b Glass substrate back surface 7c Glass substrate end face 7x, 7y Glass substrate edge 8 Rotating shaft

Claims (9)

回転軸と直交する研磨面を有する研磨具が、ガラス基板の表裏面と端面とが交差する端縁に対して相対的に直線移動しながら回転軸廻りに回転することにより、該ガラス基板の端縁に面取り処理を施すように構成したガラス基板の端面研磨装置において、
前記研磨具の回転軸は、1本であって、前記研磨具の研磨面は、内周側から外周側に亘って区画して配列され且つ面取り面を形成するための複数の部分研磨面で構成され、これら複数の部分研磨面は、外周側の部分研磨面の粗度が内周側の部分研磨面の粗度よりも相対的に小さく、
それらの部分研磨面は、相互間に、周溝を形成して得られた隙間を介在させて配列され、研磨時に発生するスラリ−が、前記隙間を通過して、前記部分研磨面がガラス基板と接触していない部位から外部に排出されるように構成し
前記ガラス基板の表裏面と端面とが交差する端縁のうち表面側の端縁と裏面側の端縁との双方に前記面取り処理を施すように前記ガラス基板の表面側と裏面側とにそれぞれ配設した前記研磨具を、同時に同方向に向かって同速度で前記双方の端縁に対して相対的に直線移動させて、前記双方の端縁に対して微細研磨と粗研磨と仕上げ研磨とからなる一連の研磨処理を施すように構成した
ことを特徴とするガラス基板の端面研磨装置。
A polishing tool having a polishing surface orthogonal to the rotation axis rotates around the rotation axis while linearly moving relative to the edge where the front and back surfaces and the end surface of the glass substrate intersect, whereby the edge of the glass substrate In the glass substrate end surface polishing apparatus configured to chamfer the edge,
The rotation axis of the polishing tool is a one, the polishing surface of the polishing tool has a plurality of partial polishing to be arranged in compartments over the outer circumferential side to form a且one face-up plane from the inner periphery A plurality of these partially polished surfaces, the roughness of the outer peripheral side partially polished surface is relatively smaller than the roughness of the inner peripheral side partially polished surface,
These partially polished surfaces are arranged with a gap obtained by forming a circumferential groove between them, slurry generated during polishing passes through the gap, and the partially polished surface is a glass substrate. configured to be discharged to the outside from a portion not in contact with,
Out of the edges where the front and back surfaces of the glass substrate and the end surfaces intersect, both the front edge and the back edge of the glass substrate are subjected to the chamfering treatment on both the front edge and the back edge. The disposed polishing tool is moved linearly relative to both edges at the same speed in the same direction at the same time, and fine polishing, rough polishing, and finish polishing are performed on both edges. An apparatus for polishing an end face of a glass substrate, characterized in that a series of polishing treatments comprising:
前記複数の部分研磨面は、それぞれが帯状円形をなす研磨面であり且つ同心円状に配列されていることを特徴とする請求項1に記載のガラス基板の端面研磨装置。   2. The glass substrate end surface polishing apparatus according to claim 1, wherein each of the plurality of partial polishing surfaces is a polishing surface having a belt-like circular shape and is arranged concentrically. 前記複数の部分研磨面は、それぞれが帯状円形をなし且つ所定の厚みを有する部分研磨板の表面に形成されていることを特徴とする請求項1または2に記載のガラス基板の端面研磨装置。   3. The glass substrate end surface polishing apparatus according to claim 1, wherein each of the plurality of partial polishing surfaces is formed on a surface of a partial polishing plate having a belt-like circular shape and a predetermined thickness. 前記研磨具の研磨面は、中央部に部分研磨面を有さず、且つ該中央部が凹部であることを特徴とする請求項1〜3の何れかに記載のガラス基板の端面研磨装置。   The glass substrate end surface polishing apparatus according to any one of claims 1 to 3, wherein the polishing surface of the polishing tool does not have a partial polishing surface at a central portion, and the central portion is a concave portion. 前記ガラス基板が、ガラス原板をレーザスクライブした後に分割して作製され、且つその板厚が200μm以上であることを特徴とする請求項1〜4の何れかに記載のガラス基板の端面研磨装置。   The glass substrate end face polishing apparatus according to any one of claims 1 to 4, wherein the glass substrate is prepared by dividing a glass original plate after laser scribing, and has a thickness of 200 µm or more. 前記ガラス基板が、ガラス原板の表面にスクライブを入れると共にそのスクライブ痕を起点として該ガラス原板を折り曲げ分割して作製され、且つその板厚が200μm未満であることを特徴とする請求項1〜4の何れかに記載のガラス基板の端面研磨装置。   The glass substrate is produced by scribing the surface of the glass original plate and bending and dividing the glass original plate with the scribe mark as a starting point, and the thickness of the glass substrate is less than 200 μm. An end surface polishing apparatus for a glass substrate according to any one of the above. 前記ガラス基板が、フラットパネルディスプレイ用ガラス基板であることを特徴とする請求項1〜6の何れかに記載のガラス基板の端面研磨装置。   The said glass substrate is a glass substrate for flat panel displays, The end surface grinding | polishing apparatus of the glass substrate in any one of Claims 1-6 characterized by the above-mentioned. 前記ガラス基板が、液晶ディスプレイ用ガラス基板であることを特徴とする請求項7に記載のガラス基板の端面研磨装置。   The said glass substrate is a glass substrate for liquid crystal displays, The end surface grinding | polishing apparatus of the glass substrate of Claim 7 characterized by the above-mentioned. 回転軸と直交する研磨面を有する研磨具が、ガラス基板の表裏面と端面とが交差する端縁に対して相対的に直線移動しながら回転軸廻りに回転することにより、該ガラス基板の端縁に面取り処理を施すガラス基板の端面研磨方法において、
回転軸が1本である前記研磨具の研磨面は、内周側から外周側に亘って区画して配列され且つ面取り面を形成するための複数の部分研磨面で構成され、これら複数の部分研磨面は、外周側の部分研磨面の粗度が内周側の部分研磨面の粗度よりも相対的に小さく、
それらの部分研磨面は、相互間に、周溝を形成して得られた隙間を介在させて配列され、研磨時に発生するスラリ−が、前記隙間を通過して、前記部分研磨面がガラス基板と接触していない部位から外部に排出されると共に、
前記ガラス基板の表裏面と端面とが交差する端縁のうち表面側の端縁と裏面側の端縁との双方に前記面取り処理を施すように前記ガラス基板の表面側と裏面側とにそれぞれ配設された前記研磨具を、同時に同方向に向かって同速度で前記双方の端縁に対して相対的に直線移動させて、前記双方の端縁に対して微細研磨と粗研磨と仕上げ研磨とからなる一連の研磨処理を施す
ことを特徴とするガラス基板の端面研磨方法。
A polishing tool having a polishing surface orthogonal to the rotation axis rotates around the rotation axis while linearly moving relative to the edge where the front and back surfaces and the end surface of the glass substrate intersect, whereby the edge of the glass substrate In the edge polishing method of the glass substrate for chamfering the edge,
Polishing surface of the polishing tool rotation axis is one is constituted of a plurality of partial polishing surface for forming the inner peripheral且are arranged in compartments over the outer circumferential side one from side faces up surface, the plurality The roughness of the partially polished surface of the outer peripheral side is relatively smaller than the roughness of the inner peripheral side partially polished surface,
These partially polished surfaces are arranged with a gap obtained by forming a circumferential groove between them, slurry generated during polishing passes through the gap, and the partially polished surface is a glass substrate. Discharged from the part that is not in contact with the outside ,
Out of the edges where the front and back surfaces of the glass substrate and the end surfaces intersect, both the front edge and the back edge of the glass substrate are subjected to the chamfering treatment on both the front edge and the back edge. The disposed polishing tool is moved linearly relative to both edges simultaneously at the same speed in the same direction, and fine polishing, rough polishing, and finish polishing are performed on both edges. A method for polishing an end face of a glass substrate, comprising performing a series of polishing treatments comprising :
JP2008324270A 2008-12-19 2008-12-19 Glass substrate end surface polishing apparatus and end surface polishing method thereof Expired - Fee Related JP5370913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324270A JP5370913B2 (en) 2008-12-19 2008-12-19 Glass substrate end surface polishing apparatus and end surface polishing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324270A JP5370913B2 (en) 2008-12-19 2008-12-19 Glass substrate end surface polishing apparatus and end surface polishing method thereof

Publications (2)

Publication Number Publication Date
JP2010142913A JP2010142913A (en) 2010-07-01
JP5370913B2 true JP5370913B2 (en) 2013-12-18

Family

ID=42563875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324270A Expired - Fee Related JP5370913B2 (en) 2008-12-19 2008-12-19 Glass substrate end surface polishing apparatus and end surface polishing method thereof

Country Status (1)

Country Link
JP (1) JP5370913B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868577B2 (en) * 2010-05-20 2016-02-24 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
JP6050086B2 (en) * 2012-10-30 2016-12-21 AvanStrate株式会社 Manufacturing method of glass substrate
CN114055324B (en) * 2021-11-22 2022-08-19 杭州职业技术学院 Machining precision polishing machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983989A (en) * 1972-12-19 1974-08-13
JPH01257555A (en) * 1988-04-04 1989-10-13 Toshiba Corp Grinder
JPH0344556U (en) * 1989-09-01 1991-04-25
JPH07112354A (en) * 1993-10-14 1995-05-02 Bando Kiko Kk Head for machining glass pane, etc.
JPH09225840A (en) * 1996-02-20 1997-09-02 Asahi Glass Co Ltd Grinding wheel for polishing funnel glass of cathode-ray tube
US5816897A (en) * 1996-09-16 1998-10-06 Corning Incorporated Method and apparatus for edge finishing glass
JP2006142420A (en) * 2004-11-18 2006-06-08 Yamanashi Kogaku:Kk Automatic chamfering device for thin-plate-like workpiece
JP2007038327A (en) * 2005-08-02 2007-02-15 Shiraitekku:Kk Chamfering device for glass
JP2007185753A (en) * 2006-01-16 2007-07-26 Shuji Horichi Grinding and polishing wheel
JP4863168B2 (en) * 2007-04-17 2012-01-25 日本電気硝子株式会社 Glass substrate for flat panel display and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010142913A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
KR101228959B1 (en) Method for chamfering brittle material substrate
KR101164856B1 (en) Method for manufacturing brittle material scribing wheel
TWI480127B (en) Glass substrate and its production method
KR101755062B1 (en) Glass substrate and method for manufacturing glass substrate
JP5439066B2 (en) Method and apparatus for chamfering hard brittle plate
JP6238117B2 (en) Processing method of plate
WO2010104039A1 (en) Glass substrate and method for manufacturing same
JP4883352B2 (en) Method and apparatus for chamfering plate-like body
JP5479424B2 (en) Scribing wheel for brittle material, scribing device and scribing tool for brittle material substrate using the same
JP5440786B2 (en) Glass substrate and manufacturing method thereof
JP5516941B2 (en) Glass substrate and manufacturing method thereof
JP5516940B2 (en) Glass substrate and manufacturing method thereof
JP5370913B2 (en) Glass substrate end surface polishing apparatus and end surface polishing method thereof
JP5516952B2 (en) Glass substrate and manufacturing method thereof
KR101925646B1 (en) Method for manufacturing glass substrate and magnetic fluid for polishing glass substrate
JP5868577B2 (en) Glass substrate and manufacturing method thereof
US10745313B2 (en) Method for micro-grinding tip-accurately induced brittle fracture forming of curved mirror surface
JP2013095649A (en) Method for producing brittle material substrate from mother brittle material substrate
JP2017007043A (en) Glass sheet and method for manufacturing the same
KR100895780B1 (en) Flat display glass substrate
TWI491470B (en) A chamfering method for a hard brittle plate, and a chamfering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130908

LAPS Cancellation because of no payment of annual fees