JP5867441B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5867441B2
JP5867441B2 JP2013079834A JP2013079834A JP5867441B2 JP 5867441 B2 JP5867441 B2 JP 5867441B2 JP 2013079834 A JP2013079834 A JP 2013079834A JP 2013079834 A JP2013079834 A JP 2013079834A JP 5867441 B2 JP5867441 B2 JP 5867441B2
Authority
JP
Japan
Prior art keywords
injector
fuel
air
intake passage
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013079834A
Other languages
Japanese (ja)
Other versions
JP2013151942A (en
Inventor
宮本 勝彦
勝彦 宮本
川辺 敬
敬 川辺
清隆 細野
清隆 細野
健敏 平田
健敏 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013079834A priority Critical patent/JP5867441B2/en
Publication of JP2013151942A publication Critical patent/JP2013151942A/en
Application granted granted Critical
Publication of JP5867441B2 publication Critical patent/JP5867441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Description

この発明は、一気筒に対し複数のインジェクタを有する内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine having a plurality of injectors for one cylinder.

筒内に直接的に燃料を噴射する筒内燃料噴射インジェクタ、および吸気路に燃料を噴射する吸気路燃料噴射インジェクタと複数のインジェクタを有する内燃機関では、筒内燃料噴射および吸気路燃料噴射をエンジン回転数や負荷に応じた所定の分担率で実行するとともに、噴射燃料と吸込み空気との混合気が理論空燃比となるよう空燃比フィードバック制御を行う(例えば特許文献1)。   An in-cylinder fuel injection injector that directly injects fuel into a cylinder, and an intake path fuel injection injector that injects fuel into an intake path and an internal combustion engine having a plurality of injectors, the in-cylinder fuel injection and the intake path fuel injection are performed in the engine. The air-fuel ratio feedback control is performed so that the air-fuel ratio of the injected fuel and the intake air becomes the stoichiometric air-fuel ratio while being executed at a predetermined sharing ratio according to the rotation speed and the load (for example, Patent Document 1).

特開2005−307756号公報JP 2005-307756 A

空燃比フィードバック制御の要素としてフィードバック補正係数があり、そのフィードバック補正係数が固定のままでは、車両状態や環境の変化などにより、最適な空燃比フィードバック制御が困難となる。結果として、燃費の悪化、CO(二酸化炭素)排出量の増加、HC(炭化水素)排出量の増加、車両の走行性および操縦性の悪化を招いてしまう。そこでインジェクタ毎のフィードバック補正係数を学習するため、各インジェクタを単独噴射させて学習の機会を設定する必要がある。しかしながら、フィードバックの補正係数を学習する運転状態が、各インジェクタの単独噴射に適切なものであるとは限らない。したがって、この学習のために一時的に燃費の悪化、CO(二酸化炭素)排出量の増加、HC(炭化水素)排出量の増加、車両の走行性および操縦性の悪化等を招いてしまうこととなる。 There is a feedback correction coefficient as an element of the air-fuel ratio feedback control. If the feedback correction coefficient remains fixed, optimal air-fuel ratio feedback control becomes difficult due to changes in the vehicle state and environment. As a result, fuel consumption is deteriorated, CO 2 (carbon dioxide) emission is increased, HC (hydrocarbon) emission is increased, and vehicle running performance and maneuverability are deteriorated. Therefore, in order to learn the feedback correction coefficient for each injector, it is necessary to set an opportunity for learning by individually injecting each injector. However, the operating state in which the correction coefficient for feedback is learned is not always appropriate for the single injection of each injector. Therefore, this learning may cause a temporary deterioration in fuel consumption, an increase in CO 2 (carbon dioxide) emissions, an increase in HC (hydrocarbon) emissions, a deterioration in driving performance and maneuverability of the vehicle, and the like. It becomes.

この発明は、上記事情を考慮したもので、その目的は、各インジェクタの単独噴射を行わずとも空燃比フィードバック制御の学習を最適に行うことができ、これにより燃費の低減、CO排出量の削減、HC排出量の削減、車両の走行性および操縦性などの改善が図れる内燃機関の制御装置を提供することである。 The present invention takes the above circumstances into consideration, and the object thereof is to optimize the learning of air-fuel ratio feedback control without performing individual injection of each injector, thereby reducing fuel consumption and reducing CO 2 emissions. It is an object of the present invention to provide a control device for an internal combustion engine that can achieve reductions, reductions in HC emissions, vehicle running performance and maneuverability.

請求項1に係る発明の内燃機関の制御装置は、吸気路に燃料を噴射するための吸気路噴射インジェクタと筒内に燃料を噴射するための筒内噴射インジェクタとを備えた内燃機関の制御装置において、前記内燃機関の運転状態に応じて、前記吸気路噴射インジェクタのみによる燃料噴射と、前記吸気路噴射インジェクタと前記筒内噴射インジェクタとによる燃料噴射との分担を決定する分担決定手段と、空燃比センサの出力に基づき燃料噴射量を空燃比フィードバック制御する空燃比フィードバック制御手段とを有する。空燃比フィードバック制御手段は、前記吸気路噴射インジェクタのみにより燃料が噴射されているときに前記吸気路噴射インジェクタの燃料噴射量の空燃比フィードバック制御の比例補正係数の最適値を学習し、前記吸気路噴射インジェクタと前記筒内噴射インジェクタとにより燃料が噴射されているときに前記学習した比例補正係数の最適値を用いて前記筒内噴射インジェクタの燃料噴射量の空燃比フィードバック制御の積分補正係数の最適値を学習する。前記分担決定手段は、前記決定に基づいて前記吸気路噴射インジェクタと前記筒内噴射インジェクタとの両方または一方により燃料が噴射されその燃料噴射量が前記空燃比フィードバック制御手段で空燃比フィードバック制御されているときに、前記比例補正係数の最適値が学習されていないときは、前記吸気路噴射インジェクタのみによる燃料噴射を行う。 A control apparatus for an internal combustion engine according to a first aspect of the present invention includes an intake path injector for injecting fuel into an intake path and an in-cylinder injector for injecting fuel into a cylinder. In accordance with the operating state of the internal combustion engine, a sharing determination means for determining a share between the fuel injection by only the intake passage injector and the fuel injection by the intake passage injector and the in-cylinder injector, Air-fuel ratio feedback control means for performing air-fuel ratio feedback control on the fuel injection amount based on the output of the fuel ratio sensor. The air-fuel ratio feedback control means learns the optimum value of the proportional correction coefficient of the air-fuel ratio feedback control of the fuel injection amount of the intake passage injector when the fuel is injected only by the intake passage injector. Optimizing the integral correction coefficient of the air-fuel ratio feedback control of the fuel injection amount of the in-cylinder injector using the learned optimal value of the proportional correction coefficient when fuel is being injected by the injector and the in-cylinder injector Learn the value. The allocation determining means, the air-fuel ratio feedback control that the fuel injection quantity of fuel is injected both or by one of said cylinder injection injector and the intake passage injector in Jefferies Kuta based on the determination by said air-fuel ratio feedback control means when it is, when said optimum value of the proportional correction coefficient is not learned performs only the fuel injection the intake passage injector.

この発明の内燃機関の制御装置によれば、一気筒に対し複数あるインジェクタの学習を特別な運転状態にすることなく行えるため、迅速にかつ燃費、CO2排出量、HC排出量等の抑制、または車両走行性または操縦性を低下させることなくフィードバック制御の学習を行える。   According to the control device for an internal combustion engine of the present invention, since learning of a plurality of injectors for one cylinder can be performed without putting into a special operation state, fuel consumption, CO2 emissions, HC emissions, etc. can be quickly suppressed, or It is possible to learn feedback control without deteriorating vehicle running performance or maneuverability.

一実施形態の構成を示す図。The figure which shows the structure of one Embodiment. 一実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of one Embodiment. 一実施形態におけるフィードバック補正係数の変化を示す図。The figure which shows the change of the feedback correction coefficient in one Embodiment.

以下、この発明の一実施形態について図面を参照しながら説明する。
図1において、1は内燃機関で、シリンダ2、ピストン3、点火プラグ4、吸気弁5、排気弁6を有し、ピストン3の下降により、シリンダ2内の燃焼室に、吸気ポート7および吸気弁5を通して空気を吸込む(吸気行程)。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes an internal combustion engine having a cylinder 2, a piston 3, a spark plug 4, an intake valve 5, and an exhaust valve 6, and when the piston 3 descends, an intake port 7 and an intake air are brought into the combustion chamber in the cylinder 2. Air is sucked through the valve 5 (intake stroke).

吸気ポート7には、吸気量を検知するエアーフローメータ21を設けるとともに、吸気量を決定するスロットル弁22を設けている。また、シリンダ2内の燃焼室に臨む状態に筒内噴射インジェクタ11を設けるとともに、吸気ポート7の吸気路に臨む状態に吸気路噴射インジェクタ12を設けている。筒内噴射インジェクタ11は、燃焼室に燃料を噴射する。吸気路噴射インジェクタ12は、吸気路内の吸気弁5に向けて燃料を噴射する。   The intake port 7 is provided with an air flow meter 21 for detecting the intake air amount and a throttle valve 22 for determining the intake air amount. Further, the in-cylinder injector 11 is provided so as to face the combustion chamber in the cylinder 2, and the intake passage injector 12 is provided so as to face the intake passage of the intake port 7. The in-cylinder injector 11 injects fuel into the combustion chamber. The intake passage injector 12 injects fuel toward the intake valve 5 in the intake passage.

筒内噴射インジェクタ11が噴射する燃料は、燃焼室内で、吸気路および吸気弁5からの吸込み空気と混合される。吸気路噴射インジェクタ12が噴射する燃料は吸気路内の吸込み空気と混合され、その混合気が吸気弁5を介して燃焼室内に供給される。   The fuel injected by the in-cylinder injector 11 is mixed with the intake air from the intake passage and the intake valve 5 in the combustion chamber. The fuel injected by the intake passage injector 12 is mixed with the intake air in the intake passage, and the mixture is supplied into the combustion chamber via the intake valve 5.

これら混合気はピストン3の上昇によって圧縮され(圧縮行程)、その圧縮混合気が点火プラグ4の火花により着火して燃焼・爆発する(燃焼行程)。この燃焼・爆発によってピストン3が再び下降し、上記動作が繰り返される。燃焼・爆発によって生じるガスは、排気弁6および排気ポート8を通って排出される(排気行程)。   The air-fuel mixture is compressed by the ascending of the piston 3 (compression stroke), and the compressed air-fuel mixture is ignited by the spark of the spark plug 4 to burn and explode (combustion stroke). The piston 3 descends again by this combustion / explosion, and the above operation is repeated. The gas generated by the combustion / explosion is discharged through the exhaust valve 6 and the exhaust port 8 (exhaust stroke).

排気ポート8には、排気弁6を経た排出ガスの空燃比を検知する空燃比センサ23を設けるとともに、その排出ガスを浄化する触媒24を設けている。   The exhaust port 8 is provided with an air-fuel ratio sensor 23 that detects the air-fuel ratio of the exhaust gas that has passed through the exhaust valve 6 and a catalyst 24 that purifies the exhaust gas.

30は燃料タンクで、燃料を送り出すためのフィードポンプ31を有する。このフィードポンプ31から燃料パイプ32に燃料が送り出され、その燃料が燃料パイプ32、分岐パイプ32a、およびその分岐パイプ32a上の高圧ポンプ33によって筒内噴射インジェクタ11に供給される。また、燃料パイプ32内の燃料が分岐パイプ32bによって筒内噴射インジェクタ11に供給される。   Reference numeral 30 denotes a fuel tank having a feed pump 31 for sending out fuel. Fuel is sent from the feed pump 31 to the fuel pipe 32, and the fuel is supplied to the in-cylinder injector 11 by the fuel pipe 32, the branch pipe 32a, and the high-pressure pump 33 on the branch pipe 32a. Further, the fuel in the fuel pipe 32 is supplied to the in-cylinder injector 11 by the branch pipe 32b.

一方、制御部であるECU40に、インジェクタ11,12、上記エアーフローメータ21、スロットル弁22、空燃比センサ23、フィードポンプ31、高圧ポンプ33、点火コイル41、クランク角センサ42、冷却水温センサ43、アクセル開度センサ44などが接続される。   On the other hand, the ECU 40 serving as a control unit is connected to the injectors 11 and 12, the air flow meter 21, the throttle valve 22, the air / fuel ratio sensor 23, the feed pump 31, the high pressure pump 33, the ignition coil 41, the crank angle sensor 42, and the cooling water temperature sensor 43. The accelerator opening sensor 44 is connected.

点火コイル41は、上記点火プラグ4に点火用の駆動電圧を供給する。クランク角センサ42は、上記ピストン3の上下動に連動するクランクの角度を検知する。冷却水温センサ43は、内燃機関1の冷却水温度を検知する。アクセル開度センサ44は、アクセル開度(アクセルペダルの踏込み量)を検知する。   The ignition coil 41 supplies a driving voltage for ignition to the ignition plug 4. The crank angle sensor 42 detects a crank angle that is linked to the vertical movement of the piston 3. The cooling water temperature sensor 43 detects the cooling water temperature of the internal combustion engine 1. The accelerator opening sensor 44 detects the accelerator opening (the amount by which the accelerator pedal is depressed).

そして、ECU40は、内燃機関1の制御に関する主要な機能として次の(1)〜(7)の手段を有する。
(1)クランク角センサ42の検知角度から内燃機関1の回転数Neを検出(算出)する回転数検出手段。
The ECU 40 has the following means (1) to (7) as main functions related to the control of the internal combustion engine 1.
(1) A rotational speed detection means for detecting (calculating) the rotational speed Ne of the internal combustion engine 1 from the detection angle of the crank angle sensor 42.

(2)アクセル開度センサ44の検知開度およびエアーフローメータ21の検知量から内燃機関1の負荷Lを検出する負荷検出手段。   (2) Load detection means for detecting the load L of the internal combustion engine 1 from the detected opening of the accelerator opening sensor 44 and the detected amount of the air flow meter 21.

(3)筒内噴射インジェクタ11の筒内燃料噴射と吸気路噴射インジェクタ12の吸気路燃料噴射の分担率を上記検出される回転数Neおよび負荷Lに応じて決定する分担率決定手段。   (3) A sharing rate determining means for determining a sharing rate between the in-cylinder fuel injection of the in-cylinder injector 11 and the intake channel fuel injection of the intake channel injector 12 according to the detected rotation speed Ne and the load L.

(4)上記検出される回転数Neおよび負荷Lが予め定められた空燃比フィードバック制御域に入っているか否かを判定する判定手段。   (4) Determination means for determining whether or not the detected rotation speed Ne and load L are within a predetermined air-fuel ratio feedback control range.

(5)上記判定手段の判定結果が肯定の場合に、空燃比センサ23で検知される空燃比が理論空燃比となるよう、インジェクタ11,12の一方または両方の燃料噴射量を制御する空燃比フィードバック制御を実行する空燃比フィードバック制御手段。   (5) The air-fuel ratio for controlling the fuel injection amount of one or both of the injectors 11 and 12 so that the air-fuel ratio detected by the air-fuel ratio sensor 23 becomes the stoichiometric air-fuel ratio when the determination result of the determination means is affirmative. Air-fuel ratio feedback control means for executing feedback control.

(6)上記判定手段の判定結果が肯定の場合に、かつ所定の学習タイミングに際し、吸気路噴射インジェクタ12の吸気路燃料噴射のみを行い空燃比フィードバック制御の比例補正(P1)実行しながら、その比例補正係数Kp1最適値を学習して更新記憶する第1学習手段。所定の学習タイミングとは、例えば、予め定められている一定時間のことである。 (6) When the determination result of the determination means is affirmative and at a predetermined learning timing, only the intake passage fuel injection of the intake passage injection injector 12 is performed and proportional correction (P1) of air-fuel ratio feedback control is executed. First learning means for learning, updating and storing the optimum value of the proportional correction coefficient Kp1. The predetermined learning timing is, for example, a predetermined time.

(7)上記の第1学習手段の学習が完了した後、吸気路噴射インジェクタ12の吸気路燃料噴射および筒内噴射インジェクタ11の筒内燃料噴射を行い、吸気路噴射インジェクタ12を第1学習手段で学習した比例補正係数Kp1で空燃比フィードバック制御し、かつ筒内噴射インジェクタ11の空燃比フィードバック制御の積分補正(I2)を実行しながら、その積分補正係数Ki2の最適値を学習して更新記憶する第2学習手段。   (7) After the learning of the first learning means is completed, the intake path fuel injection of the intake path injector 12 and the in-cylinder fuel injection of the in-cylinder injector 11 are performed, and the intake path injector 12 is made the first learning means. While performing the air-fuel ratio feedback control with the proportional correction coefficient Kp1 learned in step 1 and executing the integral correction (I2) of the air-fuel ratio feedback control of the in-cylinder injector 11, the optimum value of the integral correction coefficient Ki2 is learned and updated and stored. Second learning means.

つぎに、図2のフローチャートを参照しながら作用について説明する。
クランク角センサ42の検知角度から回転数Neが検出され(ステップ101)、アクセル開度センサ44の検知開度およびエアーフローメータ21の検知量から負荷Lが検出される(ステップ102)。そして、筒内噴射インジェクタ11の筒内燃料噴射と吸気路噴射インジェクタ12の吸気路燃料噴射の分担率が、上記検出された回転数Neおよび負荷Lに応じて決定される(ステップ103)。この場合、分担率決定用の条件データがECU40の内部メモリに格納されており、その条件データが回転数Neおよび負荷Lに基づいて参照されることにより、分担率が決定される。基本的には、低負荷では吸気路噴射インジェクタ12の吸気路燃料噴射を行い、高負荷では筒内噴射インジェクタ11の筒内燃料噴射と吸気路噴射インジェクタ12の吸気路燃料噴射の両方を行う。これは、筒内噴射インジェクタ11から噴射された燃料が吸気路に付着することなく空気中の熱により気化するため充填効率が向上して高負荷運転に有利となる。
Next, the operation will be described with reference to the flowchart of FIG.
The rotational speed Ne is detected from the detection angle of the crank angle sensor 42 (step 101), and the load L is detected from the detection opening of the accelerator opening sensor 44 and the detection amount of the air flow meter 21 (step 102). Then, the share ratio between the in-cylinder fuel injection of the in-cylinder injector 11 and the intake passage fuel injection of the intake passage injector 12 is determined according to the detected rotation speed Ne and the load L (step 103). In this case, the condition data for determining the sharing rate is stored in the internal memory of the ECU 40, and the sharing rate is determined by referring to the condition data based on the rotational speed Ne and the load L. Basically, the intake passage fuel injection of the intake passage injector 12 is performed at a low load, and both the in-cylinder fuel injection of the in-cylinder injector 11 and the intake passage fuel injection of the intake passage injection injector 12 are performed at a high load. This is because fuel injected from the in-cylinder injector 11 is vaporized by heat in the air without adhering to the intake passage, so that the charging efficiency is improved, which is advantageous for high-load operation.

また、回転数Neおよび負荷Lが予め定められた空燃比フィードバック制御域に入っているか否かが判定される(ステップ105)。この判定結果が否定であれば(ステップ105のNO)、インジェクタ11,12の一方または両方の燃料噴射に関わる空燃比のオープンループ制御が実行される(ステップ106)。つまり、空燃比フィードバック制御は実行されない。   Further, it is determined whether or not the rotational speed Ne and the load L are within a predetermined air-fuel ratio feedback control range (step 105). If this determination result is negative (NO in step 105), open-loop control of the air-fuel ratio related to fuel injection of one or both of the injectors 11 and 12 is executed (step 106). That is, the air-fuel ratio feedback control is not executed.

上記判定結果が肯定であれば(ステップ105のYES)、つまり回転数Neおよび負荷Lが空燃比フィードバック制御域に入っていれば、空燃比センサ23で検知される空燃比が理論空燃比となるよう、インジェクタ11,12の一方または両方の燃料噴射量を制御する空燃比フィードバック制御が実行される(ステップ107)。   If the determination result is affirmative (YES in step 105), that is, if the rotational speed Ne and the load L are within the air-fuel ratio feedback control region, the air-fuel ratio detected by the air-fuel ratio sensor 23 becomes the stoichiometric air-fuel ratio. Thus, air-fuel ratio feedback control for controlling the fuel injection amount of one or both of the injectors 11 and 12 is executed (step 107).

この筒内噴射インジェクタ11と吸気路噴射インジェクタ12の両方のインジェクタで燃料噴射を行う際の空燃比フィードバック制御のフィードバック補正係数Kの変化を図3に示す。すなわち、吸気路噴射インジェクタ12の燃料噴射に際しては空燃比フィードバック制御の比例補正(P1)が実行され、空燃比がリッチからリーンに反転した際に、フィードバック補正係数Kが比例補正係数Kp1の分だけ増加される。空燃比がリーンからリッチに反転すると、フィードバック補正係数Kが比例補正係数Kp1の分だけ減少される。   FIG. 3 shows changes in the feedback correction coefficient K of the air-fuel ratio feedback control when fuel is injected by both the in-cylinder injector 11 and the intake passage injector 12. That is, the proportional correction (P1) of the air-fuel ratio feedback control is executed at the time of fuel injection of the intake passage injector 12, and when the air-fuel ratio is reversed from rich to lean, the feedback correction coefficient K is equal to the proportional correction coefficient Kp1. Will be increased. When the air-fuel ratio is reversed from lean to rich, the feedback correction coefficient K is decreased by the proportional correction coefficient Kp1.

一方、筒内噴射インジェクタ11の燃料噴射に際しては空燃比フィードバック制御の積分補正(I)が実行され、空燃比がリッチの場合に、フィードバック補正係数Kが積分補正係数Nxの分だけ減少される。空燃比がリーンであれば、フィードバック補正係数Kが積分補正係数Nxの分だけ増加される。   On the other hand, when fuel is injected from the in-cylinder injector 11, integral correction (I) of air-fuel ratio feedback control is executed. When the air-fuel ratio is rich, the feedback correction coefficient K is decreased by the integral correction coefficient Nx. If the air-fuel ratio is lean, the feedback correction coefficient K is increased by the integral correction coefficient Nx.

空燃比フィードバック制御域に入っていて(ステップ105のYES)かつ所定の学習タイミングが巡ってくると(ステップ108のYES)、吸気路噴射インジェクタ12の吸気路燃料噴射のみ実行され(ステップ109)、その吸気路燃料噴射に関わる空燃比フィードバック制御の比例補正(P1)実行される(ステップ110)。そして、この吸気路燃料噴射および比例補正(P1)実行された状態で、比例補正(P1)の比例補正係数Kp1の最適値学習される(ステップ111)。 When the air-fuel ratio feedback control range is entered (YES in step 105) and a predetermined learning timing is reached (YES in step 108), only the intake passage fuel injection of the intake passage injector 12 is executed (step 109). Proportional correction (P1) of air-fuel ratio feedback control related to the intake passage fuel injection is executed (step 110 ). Then, the optimum value of the proportional correction coefficient Kp1 of the proportional correction (P1) is learned in a state where the intake passage fuel injection and the proportional correction (P1) are executed (step 111).

比例補正係数Kp1最適値の学習が完了すると(ステップ112のYES)、その最適値が吸気路噴射インジェクタ12の吸気路燃料噴射および筒内噴射インジェクタ11の筒内燃料噴射の両方が実行されるときの吸気路噴射インジェクタ12の比例補正係数Kp1としてECU40内の内部メモリに更新記憶される(ステップ113)。 When learning of the optimum value of the proportional correction coefficient Kp1 is completed (YES in step 112), both the intake passage fuel injection of the intake passage injector 12 and the in-cylinder fuel injection of the in-cylinder injector 11 are executed with the optimum value. Is updated and stored in the internal memory of the ECU 40 as the proportional correction coefficient Kp1 of the intake manifold injector 12 (step 113).

続いて、吸気路噴射インジェクタ12の吸気路燃料噴射および筒内噴射インジェクタ11の筒内燃料噴射の両方が実行される(ステップ114)。これに伴い、吸気路燃料噴射に関わる空燃比フィードバック制御の比例補正(P1)が実行されるとともに(ステップ115)、筒内噴射インジェクタ11の筒内燃料噴射に関わる空燃比フィードバック制御の積分補正(I2)が実行される(ステップ116)。   Subsequently, both the intake passage fuel injection of the intake passage injector 12 and the in-cylinder fuel injection of the in-cylinder injector 11 are executed (step 114). Along with this, proportional correction (P1) of air-fuel ratio feedback control related to intake-path fuel injection is executed (step 115), and integral correction of air-fuel ratio feedback control related to in-cylinder fuel injection of in-cylinder injector 11 ( I2) is executed (step 116).

この状態で、積分補正(I2)の積分補正係数Ki2の平均値が算出される(ステップ118)。そして、この平均値の算出に必要な所定時間が経過すると、算出完了との判断の下に(ステップ117のYES)、算出された平均値から、積分補正係数Ki2の最適値が求められる(ステップ119)。求められた最適値は、吸気路噴射インジェクタ12の吸気路燃料噴射および筒内噴射インジェクタ11の筒内燃料噴射の両方が実行されるときの筒内噴射インジェクタ11の積分補正係数Ki2としてECU40内の内部メモリに更新記憶される(ステップ120)。   In this state, the average value of the integral correction coefficient Ki2 for the integral correction (I2) is calculated (step 118). Then, when a predetermined time necessary for calculating the average value has elapsed, an optimum value of the integral correction coefficient Ki2 is obtained from the calculated average value under the determination that the calculation is complete (YES in Step 117) (Step S1). 119). The obtained optimum value is an integral correction coefficient Ki2 of the in-cylinder injector 11 when both the intake passage fuel injection of the intake passage injector 12 and the in-cylinder fuel injection of the in-cylinder injector 11 are executed. It is updated and stored in the internal memory (step 120).

以上のように、単独で燃料噴射を行う吸気路噴射インジェクタ12の比例補正係数Kp1最適値を学習し、続いて吸気路噴射インジェクタ12および筒内噴射インジェクタ11で燃料噴射を行う際に吸気路噴射インジェクタ12の空燃比フィードバック制御を比例補正係数Kp1で行い、筒内噴射インジェクタ11の積分補正係数Ki2の最適値を学習することにより、低負荷時の吸気路噴射インジェクタ12による燃料噴射では学習された比例補正係数Kp1高負荷時の吸気路噴射インジェクタ12および筒内噴射インジェクタ11の燃料噴射では学習された比例補正係数Kp1と積分補正係数Ki2で空燃比フィードバック制御を車両状態や環境の変化などにかかわらず常に最適な状態に維持することができる。よって、燃費の低減、CO排出量の削減、HC排出量の削減、車両の走行性および操縦性などの改善が図れる。 As described above, the optimum value of the proportional correction coefficient Kp1 of the intake passage injection injector 12 that performs fuel injection alone is learned, and then the intake passage when the intake passage injector 12 and the in-cylinder injection injector 11 perform fuel injection. By performing the air-fuel ratio feedback control of the injection injector 12 with the proportional correction coefficient Kp1, and learning the optimum value of the integral correction coefficient Ki2 of the in-cylinder injector 11, the fuel injection by the intake passage injection injector 12 at low load is learned. proportional correction coefficient Kp1, high in load of the fuel injection in the intake passage injector 12 and the in-cylinder injection injector 11 and the proportional correction coefficient Kp1 learned integration correction by a factor Ki2 the air-fuel ratio feedback control vehicle state and changes in the environment, such as Regardless of the situation, it can always be maintained in an optimum state. Therefore, it is possible to improve fuel consumption, CO 2 emissions, HC emissions, vehicle running performance and maneuverability.

また、学習のために筒内噴射インジェクタ11の単独での燃料噴射を行わなくてもよいので、筒内噴射インジェクタ11を吸気路噴射インジェクタ12のアシストとして使用する内燃機関においては、筒内噴射インジェクタ11の単独燃料噴射という特別な運転状態を設定する必要がなく、車両走行性または操縦性を低下させることなくフィードバック制御の学習を行える。   In addition, since the in-cylinder injector 11 does not have to perform fuel injection alone for learning, an in-cylinder injector is used in an internal combustion engine that uses the in-cylinder injector 11 as an assist for the intake manifold injector 12. Therefore, it is not necessary to set a special driving state of 11 individual fuel injections, and feedback control learning can be performed without deteriorating the vehicle running performance or the maneuverability.

なお、1つのシリンダについてのみ説明したが、複数のシリンダを有する場合にも同様に実施可能である。その他、この発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。   Although only one cylinder has been described, the present invention can be similarly applied to a case having a plurality of cylinders. In addition, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

1…内燃機関、2…シリンダ、3…ピストン、4…点火プラグ、5…吸気弁、6…排気弁、7…吸気ポート、8…排気ポート、11…筒内噴射インジェクタ、12…吸気路噴射インジェクタ、21…エアーフローメータ、22…スロットル弁、23…空燃比センサ、24…触媒、40…ECU(制御部)、41…点火コイル、42…クランク角センサ、43…冷却水温センサ、44…アクセル開度センサ   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Cylinder, 3 ... Piston, 4 ... Spark plug, 5 ... Intake valve, 6 ... Exhaust valve, 7 ... Intake port, 8 ... Exhaust port, 11 ... In-cylinder injector, 12 ... Intake path injection Injector, 21 ... Air flow meter, 22 ... Throttle valve, 23 ... Air-fuel ratio sensor, 24 ... Catalyst, 40 ... ECU (control unit), 41 ... Ignition coil, 42 ... Crank angle sensor, 43 ... Cooling water temperature sensor, 44 ... Accelerator position sensor

Claims (2)

吸気路に燃料を噴射するための吸気路噴射インジェクタと筒内に燃料を噴射するための筒内噴射インジェクタとを備えた内燃機関の制御装置において、前記内燃機関の運転状態に応じて、前記吸気路噴射インジェクタのみによる燃料噴射と、前記吸気路噴射インジェクタと前記筒内噴射インジェクタとによる燃料噴射との分担を決定する分担決定手段と、
空燃比センサの出力に基づき燃料噴射量を空燃比フィードバック制御する空燃比フィードバック制御手段とを有し、
前記空燃比フィードバック制御手段は、前記吸気路噴射インジェクタのみにより燃料が噴射されているときに前記吸気路噴射インジェクタの燃料噴射量の空燃比フィードバック制御の比例補正係数の最適値を学習し、
前記吸気路噴射インジェクタと前記筒内噴射インジェクタとにより燃料が噴射されているときに前記学習した比例補正係数の最適値を用いて前記筒内噴射インジェクタの燃料噴射量の空燃比フィードバック制御の積分補正係数の最適値を学習し、
前記分担決定手段は、前記決定に基づいて前記吸気路噴射インジェクタと前記筒内噴射インジェクタとの両方または一方により燃料が噴射されその燃料噴射量が前記空燃比フィードバック制御手段で空燃比フィードバック制御されているときに、前記比例補正係数の最適値が学習されていないときは、前記吸気路噴射インジェクタのみによる燃料噴射を行う
ことを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine comprising an intake passage injector for injecting fuel into an intake passage and an in-cylinder injector for injecting fuel into a cylinder, the intake air in accordance with an operating state of the internal combustion engine Sharing determination means for determining sharing between fuel injection only by the road injection injector and fuel injection by the intake path injection injector and the in-cylinder injection;
Air-fuel ratio feedback control means for air-fuel ratio feedback control of the fuel injection amount based on the output of the air-fuel ratio sensor,
The air-fuel ratio feedback control means learns the optimum value of the proportional correction coefficient of the air-fuel ratio feedback control of the fuel injection amount of the intake passage injector when the fuel is injected only by the intake passage injector.
Integral correction of air-fuel ratio feedback control of the fuel injection amount of the in-cylinder injector using the optimal value of the learned proportional correction coefficient when fuel is being injected by the intake manifold injector and the in-cylinder injector Learn the optimal value of the coefficient ,
The allocation determining means, the air-fuel ratio feedback control that the fuel injection quantity of fuel is injected both or by one of said cylinder injection injector and the intake passage injector in Jefferies Kuta based on the determination by said air-fuel ratio feedback control means when it is, the proportional when the optimum value of the correction coefficient is not learned, the control apparatus for an internal combustion engine and performs only the fuel injection the intake passage injector.
前記分担決定手段は、前記内燃機関の低負荷運転時には前記吸気路噴射インジェクタのみによる噴射を決定し、高負荷運転時には前記吸気路噴射インジェクタと前記筒内噴射インジェクタとによる噴射を決定することを特徴とする請求項1に記載の内燃機関の制御装置。 The allocation determining means that the during the low load operation of the internal combustion engine the determines by that injected only into the intake passage injector, at the time of high load operation to determine the injection by said cylinder injection injector and the intake passage injector The control device for an internal combustion engine according to claim 1.
JP2013079834A 2013-04-05 2013-04-05 Control device for internal combustion engine Active JP5867441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013079834A JP5867441B2 (en) 2013-04-05 2013-04-05 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079834A JP5867441B2 (en) 2013-04-05 2013-04-05 Control device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010035079A Division JP5348012B2 (en) 2010-02-19 2010-02-19 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013151942A JP2013151942A (en) 2013-08-08
JP5867441B2 true JP5867441B2 (en) 2016-02-24

Family

ID=49048442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079834A Active JP5867441B2 (en) 2013-04-05 2013-04-05 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5867441B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274401B2 (en) * 2013-12-13 2018-02-07 三菱自動車工業株式会社 Engine fuel injection control device
US10914264B2 (en) * 2016-06-23 2021-02-09 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and method for internal combustion engine
JP6390670B2 (en) * 2016-07-12 2018-09-19 トヨタ自動車株式会社 Engine fuel injection control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048730A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Air fuel ratio control device of internal combustion engine
JP2006138249A (en) * 2004-11-11 2006-06-01 Toyota Motor Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2013151942A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
US7747379B2 (en) Control device of direct injection internal combustion engine
US8006663B2 (en) Post-start controller for diesel engine
JP2018091267A (en) Controller of internal combustion engine
JP2008309036A (en) Fuel estimation device
JP5240370B2 (en) Control device for internal combustion engine
US10495021B2 (en) Engine control device
JP5867441B2 (en) Control device for internal combustion engine
JP6361537B2 (en) Fuel property discrimination device
JP2008163815A (en) Fuel injection control device for internal combustion engine
JP5273310B2 (en) Control device for internal combustion engine
US20130151118A1 (en) Air-fuel ratio control apparatus, and control method, of hybrid power unit
JP5348012B2 (en) Internal combustion engine
JP4968206B2 (en) INTERNAL COMBUSTION ENGINE AND FUEL INJECTION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP5077768B2 (en) Fuel injection control device for internal combustion engine
JP2009097453A (en) Control device of internal combustion engine
JP2008297922A (en) Internal combustion engine controlling device
JP4232710B2 (en) Control device for hydrogenated internal combustion engine
JP2017066867A (en) Fuel injection control device
JP2008298028A (en) Fuel injection control device of in cylinder injection type internal combustion engine
US20220010749A1 (en) Engine device
JP2012077713A (en) Multi-cylinder internal combustion engine control device
JP2005163609A (en) Operation control device for internal combustion engine and operation control method for internal combustion engine
JP5400700B2 (en) Fuel injection control device for internal combustion engine
JP6003770B2 (en) Control device for spark ignition engine
JP2013142305A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5867441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350