JP2018091267A - Controller of internal combustion engine - Google Patents

Controller of internal combustion engine Download PDF

Info

Publication number
JP2018091267A
JP2018091267A JP2016236680A JP2016236680A JP2018091267A JP 2018091267 A JP2018091267 A JP 2018091267A JP 2016236680 A JP2016236680 A JP 2016236680A JP 2016236680 A JP2016236680 A JP 2016236680A JP 2018091267 A JP2018091267 A JP 2018091267A
Authority
JP
Japan
Prior art keywords
fuel injection
sub
fuel
combustion
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016236680A
Other languages
Japanese (ja)
Inventor
広樹 小林
Hiroki Kobayashi
広樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016236680A priority Critical patent/JP2018091267A/en
Publication of JP2018091267A publication Critical patent/JP2018091267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a controller of an internal combustion engine capable of suppressing occurrence of deposit in a fuel injector and improving control accuracy of fuel injection, in a case of causing the fuel injector of dividedly executing fuel injection into a sub-combustion chamber.SOLUTION: A controller 1 of an internal combustion engine 3 includes an ECU 2. The ECU 2 is configured to control a sub-fuel injection valve 7 so as to, when a sub-injection valve temperature Tinj is not less than a predetermined value α, dividedly execute fuel injection into a sub-combustion chamber 3d two times during one combustion cycle, and execute one-time fuel injection after combustion of air-fuel mixture in the sub-combustion chamber 3d (steps 9-11).SELECTED DRAWING: Figure 4

Description

本発明は、互いに連通する主燃焼室及び副燃焼室が気筒ごとに設けられ、燃料噴射装置による副燃焼室への燃料噴射によって混合気が副燃焼室内に生成される内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine in which a main combustion chamber and a sub-combustion chamber that communicate with each other are provided for each cylinder, and an air-fuel mixture is generated in the sub-combustion chamber by fuel injection into the sub-combustion chamber by the fuel injection device.

従来、内燃機関の制御装置として、特許文献1に記載されたものが知られている。同文献の図1に示す内燃機関の場合、互いに連通する主燃焼室及び副燃焼室が気筒ごとに設けられており、主燃焼室には吸気ポートから主燃料としてのガソリンが供給される。また、噴射弁が副燃焼室に臨むように設けられており、この噴射弁によって、着火反応促進要素の燃料(ガソリンなど)が副燃焼室に噴射され、これが点火プラグによって着火されることにより、燃焼生成物が連結孔を介して主燃焼室内に流入する。それにより、主燃焼室内の主燃料が自己着火する。   Conventionally, what was described in patent document 1 is known as a control apparatus of an internal combustion engine. In the case of the internal combustion engine shown in FIG. 1 of the same document, a main combustion chamber and a sub-combustion chamber communicating with each other are provided for each cylinder, and gasoline as main fuel is supplied to the main combustion chamber from an intake port. Further, the injection valve is provided so as to face the auxiliary combustion chamber, and by this injection valve, the fuel of the ignition reaction promoting element (gasoline etc.) is injected into the auxiliary combustion chamber, and this is ignited by the ignition plug, Combustion products flow into the main combustion chamber through the connecting holes. Thereby, the main fuel in the main combustion chamber self-ignites.

また、この制御装置の場合、同文献の図9(A),(B)に示す例では、着火反応促進要素の燃料を、吸気行程から圧縮行程の間で1回、噴射するように、噴射弁が制御される。さらに、同文献の図9(C)に示す例では、着火反応促進要素の燃料を、吸気行程から圧縮行程の間で複数回に分割して噴射するように、噴射弁が制御される。   In the case of this control device, in the example shown in FIGS. 9A and 9B of the same document, the fuel of the ignition reaction promoting element is injected so as to be injected once between the intake stroke and the compression stroke. The valve is controlled. Further, in the example shown in FIG. 9C of the same document, the injection valve is controlled so that the fuel of the ignition reaction promoting element is injected divided into a plurality of times from the intake stroke to the compression stroke.

特開2003−286848号公報JP 2003-286848 A

上記特許文献1の制御装置によれば、噴射弁が副燃焼室内に臨むように設けられているので、着火反応促進要素の燃料が副燃焼室内で燃焼する際、噴射弁の受熱量が増大し、それに起因して、噴射動作が繰り返されるのに伴い、噴射弁におけるデポジットの発生量が増大してしまう。その場合には、噴射量が減少し、燃料噴射の制御精度が低下してしまうことによって、空燃比のずれや燃焼変動が生じ、商品性が低下してしまう。特に、同文献の図9(C)に示す例のように、着火反応促進要素の燃料を複数回に分割して噴射する場合には、1回分の燃料噴射量が少なくなり、1回分の燃料噴射による噴射弁の放熱量が低下することで、上記の問題がより顕著になってしまう。   According to the control device of Patent Document 1, since the injection valve is provided so as to face the auxiliary combustion chamber, when the fuel of the ignition reaction promoting element burns in the auxiliary combustion chamber, the amount of heat received by the injection valve increases. As a result, as the injection operation is repeated, the amount of deposit generated in the injection valve increases. In this case, the injection amount is reduced, and the control accuracy of fuel injection is reduced, resulting in an air-fuel ratio shift and combustion fluctuations, resulting in a decline in merchantability. In particular, as in the example shown in FIG. 9C of the same document, when the fuel of the ignition reaction promoting element is divided and injected into a plurality of times, the fuel injection amount for one time is reduced, and the fuel for one time is reduced. The above problem becomes more noticeable when the heat radiation amount of the injection valve is reduced due to the injection.

本発明は、上記課題を解決するためになされたもので、燃料噴射装置により副燃焼室内への燃料噴射を複数回に分割して実行する場合において、燃料噴射装置におけるデポジットの発生を抑制でき、燃料噴射の制御精度を向上させることができる内燃機関の制御装置を提供することを目的とする。   The present invention was made to solve the above-described problem, and in the case where the fuel injection into the sub-combustion chamber is divided into a plurality of times and executed by the fuel injection device, generation of deposits in the fuel injection device can be suppressed, An object of the present invention is to provide a control device for an internal combustion engine that can improve the control accuracy of fuel injection.

上記目的を達成するために、請求項1に係る発明は、互いに連通する主燃焼室3c及び副燃焼室3dと、副燃焼室3dへの燃料噴射によって混合気を副燃焼室3d内に生成する燃料噴射装置(副燃料噴射弁7)とが気筒3aごとに設けられた内燃機関3の制御装置1であって、副燃焼室3dへの燃料噴射を1燃焼サイクル中に複数回に分割して実行するとともに、複数回の燃料噴射のうちの1回以上を副燃焼室3d内の混合気の燃焼後に実行するように、燃料噴射装置(副燃料噴射弁7)を制御する燃料噴射制御手段(ECU2、ステップ10,11)を備えることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, an air-fuel mixture is generated in the auxiliary combustion chamber 3d by fuel injection into the auxiliary combustion chamber 3d and the main combustion chamber 3c and the auxiliary combustion chamber 3d communicating with each other. The fuel injection device (sub fuel injection valve 7) is a control device 1 for the internal combustion engine 3 provided for each cylinder 3a, and the fuel injection to the sub combustion chamber 3d is divided into a plurality of times during one combustion cycle. And a fuel injection control means for controlling the fuel injection device (sub fuel injection valve 7) so that at least one of the plurality of fuel injections is executed after combustion of the air-fuel mixture in the sub combustion chamber 3d. The ECU 2 includes steps 10 and 11).

この内燃機関の制御装置によれば、副燃焼室内への燃料噴射を1燃焼サイクル中に複数回に分割して実行するとともに、複数回の燃料噴射のうちの1回以上を副燃焼室内の混合気の燃焼後に実行するように、燃料噴射装置が制御されるので、この副燃焼室内の混合気の燃焼後における1回以上の燃料噴射によって、燃料噴射装置の温度を低下させることができ、燃料噴射装置におけるデポジットの発生を抑制することができる。それにより、燃料噴射の制御精度を向上させることができ、商品性を向上させることができる。   According to this control device for an internal combustion engine, fuel injection into the sub-combustion chamber is performed in a plurality of times during one combustion cycle, and at least one of the plurality of fuel injections is mixed in the sub-combustion chamber. Since the fuel injection device is controlled to be executed after the combustion of the gas, the temperature of the fuel injection device can be lowered by one or more fuel injections after the combustion of the air-fuel mixture in the auxiliary combustion chamber, Generation | occurrence | production of the deposit in an injection apparatus can be suppressed. Thereby, the control accuracy of fuel injection can be improved, and the merchantability can be improved.

請求項2に係る発明は、請求項1に記載の内燃機関3の制御装置1において、燃料噴射装置(副燃料噴射弁7)の温度である装置温度(副噴射弁温Tinj)を取得する装置温度取得手段(副噴射弁温センサ21)をさらに備え、燃料噴射制御手段は、装置温度(副噴射弁温Tinj)が所定値α以上のときに、副燃焼室3d内の混合気の燃焼後における1回以上の燃料噴射を実行するように、燃料噴射装置(副燃料噴射弁7)を制御する(ステップ9〜11)ことを特徴とする。   According to a second aspect of the present invention, in the control device 1 for the internal combustion engine 3 according to the first aspect of the present invention, a device temperature (sub-injection valve temperature Tinj) that is the temperature of the fuel injection device (sub-fuel injection valve 7) is acquired. The fuel injection control means further includes a temperature acquisition means (sub-injection valve temperature sensor 21), and the fuel injection control means after combustion of the air-fuel mixture in the sub-combustion chamber 3d when the apparatus temperature (sub-injection valve temperature Tinj) is equal to or higher than a predetermined value α. The fuel injection device (sub fuel injection valve 7) is controlled so as to execute one or more fuel injections in (steps 9 to 11).

この内燃機関の制御装置によれば、装置温度が所定値以上のときに、副燃焼室内の混合気の燃焼後における1回以上の燃料噴射を実行するように、燃料噴射装置が制御されるので、この所定値を適切に設定することによって、燃料噴射装置におけるデポジットの発生を確実に抑制することができる。それにより、燃料噴射の制御精度をさらに向上させることができ、商品性をさらに向上させることができる(なお、本明細書における「装置温度の取得」の「取得」は、センサなどにより装置温度を直接検出することに限らず、装置温度を他のパラメータに基づいて算出/推定することを含む)。   According to the control device for an internal combustion engine, the fuel injection device is controlled to execute one or more fuel injections after the combustion of the air-fuel mixture in the auxiliary combustion chamber when the device temperature is equal to or higher than a predetermined value. By appropriately setting this predetermined value, it is possible to reliably suppress the occurrence of deposits in the fuel injection device. As a result, the control accuracy of fuel injection can be further improved, and the merchantability can be further improved (Note that “acquisition” in “acquisition of apparatus temperature” in this specification refers to an apparatus temperature measured by a sensor or the like. Not only directly detecting, but also calculating / estimating the device temperature based on other parameters).

本発明の一実施形態に係る制御装置及びこれを適用した内燃機関の構成を模式的に示す図である。It is a figure showing typically composition of a control device concerning one embodiment of the present invention, and an internal-combustion engine to which this is applied. 内燃機関の副燃焼室周辺の概略的な構成を示す図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 1 showing a schematic configuration around the auxiliary combustion chamber of the internal combustion engine. エンジン制御処理を示すフローチャートである。It is a flowchart which shows an engine control process. エンジン制御処理を実行したときの副燃焼室内のガス温度などの推移を示すタイミングチャートである。It is a timing chart which shows transition of gas temperature etc. in a subcombustion chamber when engine control processing is performed. 副燃焼室内の混合気の燃焼終了タイミングから燃焼後噴射の実行タイミングまでのクランク角と副燃料噴射弁の温度との関係を示す図である。It is a figure which shows the relationship between the crank angle from the combustion end timing of the air-fuel | gaseous mixture in a subcombustion chamber to the execution timing of post-combustion injection, and the temperature of a sub fuel injection valve.

以下、図面を参照しながら、本発明の一実施形態に係る内燃機関の制御装置について説明する。図1に示すように、本実施形態の制御装置1は、内燃機関(以下「エンジン」という)3の運転状態を制御するものであり、ECU2を備えている。このECU2によって、後述するエンジン制御処理などが実行される。   Hereinafter, an internal combustion engine control apparatus according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the control device 1 according to the present embodiment controls an operating state of an internal combustion engine (hereinafter referred to as “engine”) 3 and includes an ECU 2. The ECU 2 executes an engine control process described later.

このエンジン3は、ガソリンを燃料とするものであり、図示しない車両に動力源として搭載されている。エンジン3は、複数組の気筒3a及びピストン3b(1組のみ図示)を有する多気筒タイプのものであり、吸気弁及び排気弁(いずれも図示せず)が気筒3aごとに設けられている。エンジン3の運転中、吸気弁及び排気弁によって、気筒3a内への吸気動作と気筒3aからの排気動作がそれぞれ実行される。   The engine 3 uses gasoline as fuel, and is mounted on a vehicle (not shown) as a power source. The engine 3 is a multi-cylinder type having a plurality of sets of cylinders 3a and pistons 3b (only one set is shown), and an intake valve and an exhaust valve (both not shown) are provided for each cylinder 3a. During operation of the engine 3, an intake operation into the cylinder 3a and an exhaust operation from the cylinder 3a are performed by the intake valve and the exhaust valve, respectively.

エンジン3の吸気通路4には、上流側から順に、スロットル弁機構5及び主燃料噴射弁6が設けられている。スロットル弁機構5は、スロットル弁5a及びこれを開閉駆動するTHアクチュエータ5bなどを備えている。スロットル弁5aは、吸気通路4の途中に回動自在に設けられており、当該回動に伴う開度の変化によりスロットル弁5aを通過する空気の流量を変化させる。   A throttle valve mechanism 5 and a main fuel injection valve 6 are provided in the intake passage 4 of the engine 3 in order from the upstream side. The throttle valve mechanism 5 includes a throttle valve 5a and a TH actuator 5b that opens and closes the throttle valve 5a. The throttle valve 5a is rotatably provided in the middle of the intake passage 4, and changes the flow rate of air passing through the throttle valve 5a by the change in the opening degree accompanying the rotation.

また、THアクチュエータ5bは、ECU2に接続されたモータにギヤ機構(いずれも図示せず)を組み合わせたものであり、ECU2によって制御されることにより、スロットル弁5aの開度を変化させる。それにより、吸気行程中、気筒3a内に吸入される空気量が変更される。   The TH actuator 5b is a combination of a motor connected to the ECU 2 and a gear mechanism (not shown), and is controlled by the ECU 2 to change the opening of the throttle valve 5a. Thereby, the amount of air sucked into the cylinder 3a is changed during the intake stroke.

一方、主燃料噴射弁6は、吸気通路4の吸気マニホールドに気筒3aごとに設けられており、ECU2に電気的に接続されているとともに、ECU2によって制御されることにより、燃料を吸気マニホールド内に噴射する。この主燃料噴射弁6から噴射された燃料は、吸気行程中の吸気弁の開弁に伴って、主燃焼室3c内に吸入され、混合気を生成する。   On the other hand, the main fuel injection valve 6 is provided in the intake manifold of the intake passage 4 for each cylinder 3a, is electrically connected to the ECU 2, and is controlled by the ECU 2 so that fuel is introduced into the intake manifold. Spray. The fuel injected from the main fuel injection valve 6 is sucked into the main combustion chamber 3c as the intake valve is opened during the intake stroke, and an air-fuel mixture is generated.

さらに、エンジン3の各気筒3aのピストン3bとシリンダヘッドとの間には、主燃焼室3c及び副燃焼室3dが形成されている。図1及び図2に示すように、副燃焼室3dは、主燃焼室3cの上側に設けられており、その上側には、副燃料噴射弁7及び点火プラグ8が配置されている。   Further, a main combustion chamber 3c and a sub-combustion chamber 3d are formed between the piston 3b of each cylinder 3a of the engine 3 and the cylinder head. As shown in FIGS. 1 and 2, the auxiliary combustion chamber 3d is provided on the upper side of the main combustion chamber 3c, and the auxiliary fuel injection valve 7 and the spark plug 8 are arranged on the upper side thereof.

副燃料噴射弁7(燃料噴射装置)は、その先端部の噴射口が副燃焼室3d内に臨むように設けられており、ECU2に電気的に接続されているとともに、ECU2によって制御されることにより、燃料を副燃焼室3d内に噴射する。それにより、混合気が副燃焼室3d内に生成される。   The auxiliary fuel injection valve 7 (fuel injection device) is provided such that the injection port at the tip thereof faces the auxiliary combustion chamber 3d, is electrically connected to the ECU 2, and is controlled by the ECU 2. Thus, the fuel is injected into the auxiliary combustion chamber 3d. Thereby, an air-fuel mixture is generated in the auxiliary combustion chamber 3d.

また、点火プラグ8は、その先端部の電極が副燃焼室3d内に臨むように設けられており、燃焼行程中、ECU2によって制御されることにより放電し、副燃焼室3d内の混合気を点火する。   The spark plug 8 is provided so that the electrode at the tip thereof faces the subcombustion chamber 3d. The spark plug 8 is discharged by being controlled by the ECU 2 during the combustion stroke, and the mixture in the subcombustion chamber 3d is discharged. Ignite.

さらに、副燃焼室3dの底壁部3eには、複数の連通孔3fが形成されており、これらの連通孔3fを介して、副燃焼室3dと主燃焼室3cは互いに連通している。それにより、上記のように、燃焼行程中、点火プラグ8によって副燃焼室3d内の混合気が点火された際、点火された混合気は、火種として連通孔3fを介して主燃焼室3c内に流入し、主燃焼室3c内の混合気を燃焼させる。   Further, a plurality of communication holes 3f are formed in the bottom wall portion 3e of the auxiliary combustion chamber 3d, and the auxiliary combustion chamber 3d and the main combustion chamber 3c communicate with each other through these communication holes 3f. Thus, as described above, when the air-fuel mixture in the sub-combustion chamber 3d is ignited by the spark plug 8 during the combustion stroke, the ignited air-fuel mixture flows into the main combustion chamber 3c via the communication hole 3f as a fire type. And the air-fuel mixture in the main combustion chamber 3c is combusted.

このエンジン3の場合、通常時は、気筒3a内の混合気全体の空燃比が理論空燃比よりもリーン側の値になるように制御され、リーンバーン運転されるとともに、高回転・高負荷域での運転中は、気筒3a内の混合気全体の空燃比が理論空燃比になるように制御され、ストイキ運転される。この場合、気筒3a内の混合気全体の空燃比とは、気筒3a内における総吸入空気量と、主燃料噴射弁6による燃料噴射量及び副燃料噴射弁7による燃料噴射量の総和との比を意味する。   In the case of this engine 3, during normal operation, the air-fuel ratio of the entire air-fuel mixture in the cylinder 3 a is controlled to be a value on the lean side of the stoichiometric air-fuel ratio, and lean burn operation is performed, and a high rotation / high load region During the operation, the air-fuel ratio of the entire air-fuel mixture in the cylinder 3a is controlled so as to become the stoichiometric air-fuel ratio, and the stoichiometric operation is performed. In this case, the air-fuel ratio of the entire air-fuel mixture in the cylinder 3a is the ratio between the total intake air amount in the cylinder 3a and the sum of the fuel injection amount by the main fuel injection valve 6 and the fuel injection amount by the sub fuel injection valve 7. Means.

一方、排気通路9には、触媒装置10が設けられている。この触媒装置10は、NOx浄化触媒と三元触媒を組み合わせたものであり、NOx浄化触媒は、排ガス中のNOxを酸化雰囲気下で捕捉するとともに、捕捉したNOxを還元雰囲気下で還元する。また、三元触媒は、ストイキ雰囲気下において、排ガス中のHC及びCOなどを酸化しかつNOxを還元することによって、排ガスを浄化する。   On the other hand, a catalyst device 10 is provided in the exhaust passage 9. The catalyst device 10 is a combination of a NOx purification catalyst and a three-way catalyst. The NOx purification catalyst captures NOx in exhaust gas under an oxidizing atmosphere and reduces the captured NOx under a reducing atmosphere. The three-way catalyst purifies the exhaust gas by oxidizing HC and CO in the exhaust gas and reducing NOx under a stoichiometric atmosphere.

また、ECU2には、クランク角センサ20、副噴射弁温センサ21及びアクセル開度センサ22が電気的に接続されている。   In addition, a crank angle sensor 20, a sub injection valve temperature sensor 21 and an accelerator opening sensor 22 are electrically connected to the ECU 2.

このクランク角センサ20は、マグネットロータ及びMREピックアップで構成されており、図示しないクランクシャフトの回転に伴い、いずれもパルス信号であるCRK信号及びTDC信号をECU2に出力する。   The crank angle sensor 20 includes a magnet rotor and an MRE pickup, and outputs a CRK signal and a TDC signal, which are pulse signals, to the ECU 2 as the crankshaft (not shown) rotates.

このCRK信号は、所定クランク角(例えば30゜)ごとに1パルスが出力され、ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。また、TDC信号は、各気筒3aのピストン3bが吸気行程のTDC位置よりも若干、手前の所定のクランク角位置にあることを表す信号であり、所定クランク角ごとに1パルスが出力される。   The CRK signal is output at one pulse every predetermined crank angle (for example, 30 °), and the ECU 2 calculates the engine speed NE (hereinafter referred to as “engine speed”) NE based on the CRK signal. The TDC signal is a signal indicating that the piston 3b of each cylinder 3a is at a predetermined crank angle position slightly before the TDC position of the intake stroke, and one pulse is output for each predetermined crank angle.

また、副噴射弁温センサ21は、副燃料噴射弁7の温度(以下「副噴射弁温」という)Tinjを検出して、それを表す検出信号をECU2に出力する。なお、本実施形態では、副噴射弁温センサ21が装置温度取得手段に相当し、副噴射弁温Tinjが装置温度に相当する。   Further, the sub injection valve temperature sensor 21 detects the temperature of the sub fuel injection valve 7 (hereinafter referred to as “sub injection valve temperature”) Tinj, and outputs a detection signal indicating it to the ECU 2. In the present embodiment, the sub injection valve temperature sensor 21 corresponds to the apparatus temperature acquisition means, and the sub injection valve temperature Tinj corresponds to the apparatus temperature.

さらに、アクセル開度センサ22は、車両の図示しないアクセルペダルの踏み込み量(以下「アクセル開度」という)APを検出して、それを表す検出信号をECU2に出力する。   Further, the accelerator opening sensor 22 detects a depression amount (hereinafter referred to as “accelerator opening”) AP of an accelerator pedal (not shown) of the vehicle, and outputs a detection signal indicating it to the ECU 2.

一方、ECU2(燃料噴射制御手段)は、CPU、RAM、ROM及びI/Oインターフェース(いずれも図示せず)などからなるマイクロコンピュータで構成されており、前述した各種のセンサ20〜22の検出信号などに応じて、エンジン3の運転状態を判別し、その運転状態に応じて、以下に述べるように、エンジン制御処理などを実行する。   On the other hand, the ECU 2 (fuel injection control means) is composed of a microcomputer comprising a CPU, RAM, ROM, an I / O interface (all not shown), and the detection signals of the various sensors 20 to 22 described above. In accordance with the above, the operating state of the engine 3 is determined, and an engine control process or the like is executed as described below in accordance with the operating state.

次に、図3を参照しながら、エンジン制御処理について説明する。このエンジン制御処理は、2つの燃料噴射弁6,7の燃料噴射量及び噴射時期と、点火プラグ8の点火時期を算出するものであり、ECU2によって、TDC信号の発生タイミングに同期して実行される。なお、以下の説明では、副燃焼室3d内の混合気の燃焼後に副燃料噴射弁7から副燃焼室3d内に燃料を噴射する動作を「燃焼後噴射」という。   Next, the engine control process will be described with reference to FIG. This engine control process calculates the fuel injection amount and injection timing of the two fuel injection valves 6 and 7 and the ignition timing of the spark plug 8, and is executed by the ECU 2 in synchronism with the generation timing of the TDC signal. The In the following description, the operation of injecting fuel from the auxiliary fuel injection valve 7 into the auxiliary combustion chamber 3d after combustion of the air-fuel mixture in the auxiliary combustion chamber 3d is referred to as “post-combustion injection”.

同図に示すように、まず、ステップ1(図では「S1」と略す。以下同じ)で、要求トルクTRQを算出する。この要求トルクTRQは、エンジン回転数NE及びアクセル開度APに応じて、図示しないマップを検索することにより算出される。   As shown in the figure, first, in step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the required torque TRQ is calculated. The required torque TRQ is calculated by searching a map (not shown) according to the engine speed NE and the accelerator pedal opening AP.

次いで、ステップ2に進み、エンジン回転数NE及び要求トルクTRQに応じて、図示しないマップを検索することにより、主噴射量QINJ1を算出する。この主噴射量QINJ1は、主燃料噴射弁6による燃料噴射量に相当する。   Next, the routine proceeds to step 2, and a main injection amount QINJ1 is calculated by searching a map (not shown) according to the engine speed NE and the required torque TRQ. The main injection amount QINJ1 corresponds to the fuel injection amount by the main fuel injection valve 6.

次に、ステップ3で、主噴射量QINJ1及びエンジン回転数NEに応じて、主噴射時期φINJ1を算出する。この主噴射時期φINJ1は、主燃料噴射弁6による主噴射量QINJ1の噴射終了タイミングであり、吸気行程中のタイミングに設定される。以上のように、主噴射量QINJ1及び主噴射時期φINJ1が算出されると、図示しない制御処理において、これらの値に基づき、主燃料噴射弁6による燃料噴射が実行され(図4(a)参照)、それにより、混合気が主燃焼室3c内に生成される。   Next, at step 3, the main injection timing φINJ1 is calculated according to the main injection amount QINJ1 and the engine speed NE. This main injection timing φINJ1 is an injection end timing of the main injection amount QINJ1 by the main fuel injection valve 6, and is set to a timing during the intake stroke. As described above, when the main injection amount QINJ1 and the main injection timing φINJ1 are calculated, the fuel injection by the main fuel injection valve 6 is executed based on these values in a control process (not shown) (see FIG. 4A). Thereby, an air-fuel mixture is generated in the main combustion chamber 3c.

ステップ3に続くステップ4で、エンジン回転数NE及び要求トルクTRQに応じて、図示しないマップを検索することにより、副噴射量QINJ2を算出する。この副噴射量QINJ2は、副燃料噴射弁7による燃料噴射量に相当する。   In step 4 subsequent to step 3, a sub-injection amount QINJ2 is calculated by searching a map (not shown) according to the engine speed NE and the required torque TRQ. This sub injection amount QINJ2 corresponds to the fuel injection amount by the sub fuel injection valve 7.

次いで、ステップ5に進み、副噴射量QINJ2及びエンジン回転数NEに応じて、副噴射時期φINJ2を算出する。この副噴射時期φINJ2は、副燃料噴射弁7による副噴射量QINJ2の噴射終了タイミングであり、圧縮行程中のタイミングに設定される。以上のように、副噴射量QINJ2及び副噴射時期φINJ2が算出されると、図示しない制御処理において、これらの値に基づき、副燃料噴射弁7による燃料噴射が実行され(図4(b)参照)、それにより、混合気が副燃焼室3d内に生成される。   Next, the routine proceeds to step 5, where the sub injection timing φINJ2 is calculated according to the sub injection amount QINJ2 and the engine speed NE. This sub injection timing φINJ2 is the injection end timing of the sub injection amount QINJ2 by the sub fuel injection valve 7, and is set to the timing during the compression stroke. As described above, when the auxiliary injection amount QINJ2 and the auxiliary injection timing φINJ2 are calculated, fuel injection by the auxiliary fuel injection valve 7 is executed based on these values in a control process (not shown) (see FIG. 4B). Thereby, an air-fuel mixture is generated in the auxiliary combustion chamber 3d.

次に、ステップ6で、以下に述べるように、点火時期IGを算出する。まず、エンジン回転数NE及び要求トルクTRQに応じて、図示しないマップを検索することにより、点火時期のマップ値IGmapを算出する。次いで、エンジン水温などの各種のパラメータに応じて、総補正項IGcorを算出し、これをマップ値IGmapに加算することにより、点火時期IGを算出する。このように点火時期IGが算出されると、図示しない制御処理において、点火プラグ8により、この点火時期IGで副燃焼室3d内の混合気への点火が実行される(図4(c)参照)。   Next, at step 6, the ignition timing IG is calculated as described below. First, the map value IGmap of the ignition timing is calculated by searching a map (not shown) according to the engine speed NE and the required torque TRQ. Next, the ignition timing IG is calculated by calculating the total correction term IGcor according to various parameters such as the engine water temperature and adding it to the map value IGmap. When the ignition timing IG is calculated in this way, in the control process (not shown), the ignition plug 8 ignites the air-fuel mixture in the auxiliary combustion chamber 3d at the ignition timing IG (see FIG. 4C). ).

ステップ6に続くステップ7で、副噴射弁温のしきい値Trefを算出する。このしきい値Trefは、エンジン回転数NE及び要求トルクTRQなどの各種の運転状態パラメータに応じて算出される。   In step 7 following step 6, a sub-injection valve temperature threshold value Tref is calculated. This threshold value Tref is calculated according to various operating state parameters such as the engine speed NE and the required torque TRQ.

次いで、ステップ8に進み、下式(1)により、温度偏差DTを算出する。
DT=Tinj−Tref …… (1)
Next, the process proceeds to step 8 where the temperature deviation DT is calculated by the following equation (1).
DT = Tinj−Tref (1)

次に、ステップ9で、温度偏差DTが所定値α以上であるか否かを判別する。この所定値αは正値に設定されている。この判別結果がYESのときには、副噴射弁温Tinjを低下させる必要があると判定して、ステップ10に進み、燃焼後噴射量Qafterを算出する。この燃焼後噴射量Qafterは、副噴射弁温Tinjを低下させるために、燃焼後噴射時に副燃料噴射弁7から噴射される燃料量であり、具体的には、温度偏差DT、エンジン回転数NE及び要求トルクTRQなどに応じて算出される。   Next, in step 9, it is determined whether or not the temperature deviation DT is equal to or greater than a predetermined value α. The predetermined value α is set to a positive value. When the determination result is YES, it is determined that the sub-injection valve temperature Tinj needs to be decreased, and the process proceeds to step 10 to calculate the post-combustion injection amount QAfter. This post-combustion injection amount QAfter is the amount of fuel injected from the auxiliary fuel injection valve 7 at the time of post-combustion injection in order to reduce the auxiliary injection valve temperature Tinj. Specifically, the temperature deviation DT, the engine speed NE And calculated according to the required torque TRQ.

次いで、ステップ11に進み、燃焼後噴射量Qafter、エンジン回転数NE及び総補正項IGcorなどに応じて、燃焼後噴射時期φafterを算出する。この燃焼後噴射時期φafterは、副燃料噴射弁7による燃焼後噴射量Qafterの噴射終了タイミングであり、副燃焼室3d内の混合気の燃焼後における、膨張行程から吸気行程の開始前までの間の最適なタイミングに設定される。以上のように、燃焼後噴射量Qafter及び燃焼後噴射時期φafterが算出されると、図示しない制御処理において、これらの値に基づき、副燃料噴射弁7により、燃焼後噴射が実行される(図4(b)参照)。この燃焼後噴射による副燃料噴射弁7の温度上昇の抑制効果については後述する。   Next, the routine proceeds to step 11 where the post-combustion injection timing φafter is calculated according to the post-combustion injection amount QAfter, the engine speed NE, the total correction term IGcor, and the like. This post-combustion injection timing φafter is the injection end timing of the post-combustion injection amount Qafter by the auxiliary fuel injection valve 7, and is from the expansion stroke to the start of the intake stroke after the combustion of the air-fuel mixture in the auxiliary combustion chamber 3d. Is set to the optimal timing. As described above, when the post-combustion injection amount Qafter and the post-combustion injection timing φafter are calculated, the post-combustion injection is executed by the auxiliary fuel injection valve 7 based on these values in a control process (not shown) (FIG. 4 (b)). The effect of suppressing the temperature rise of the auxiliary fuel injection valve 7 due to the post-combustion injection will be described later.

以上のように、ステップ11で、燃焼後噴射時期φafterを算出した後、本処理を終了する。   As described above, after calculating the post-combustion injection timing φafter in step 11, the present process is terminated.

一方、前述したステップ9の判別結果がNOで、DT<αが成立しているときには、副噴射弁温Tinjを低下させる必要がないと判定して、ステップ12に進み、燃焼後噴射量Qafterを値0に設定した後、本処理を終了する。それにより、燃焼後噴射が中止される。   On the other hand, if the determination result in step 9 is NO and DT <α is established, it is determined that there is no need to decrease the sub-injection valve temperature Tinj, and the routine proceeds to step 12 where the post-combustion injection amount QAfter is set. After setting the value to 0, this process is terminated. Thereby, the post-combustion injection is stopped.

次に、図4を参照しながら、以上のエンジン制御処理における燃焼後噴射を実行したときの副噴射弁温Tinjの温度上昇の抑制効果について説明する。同図4(e)に示す副燃焼室3d内のガス温度において、実線で示すデータは、DT≧αが成立し、前述した燃焼後噴射を実行したときのものであり、破線で示すデータは、比較のために、DT≧αが成立しているにもかかわらず、燃焼後噴射を中止したときのものである。   Next, the effect of suppressing the temperature rise of the sub-injection valve temperature Tinj when the post-combustion injection in the above engine control process is executed will be described with reference to FIG. At the gas temperature in the auxiliary combustion chamber 3d shown in FIG. 4 (e), the data indicated by the solid line is obtained when DT ≧ α is established and the post-combustion injection described above is executed, and the data indicated by the broken line is For comparison, this is the case when post-combustion injection is stopped even though DT ≧ α is established.

同図4(e)に破線で示すように、燃焼後噴射を中止した場合には、燃焼行程中、ガス温度がほとんど低下しない状態となり、副燃料噴射弁7における燃焼ガスからの受熱量が増大することになる。これに対して、同図4(e)に実線で示すように、燃焼後噴射を実行した場合には、燃焼行程の開始直後のタイミングでの、副燃料噴射弁7による燃料噴射に伴って、副燃焼室3d内のガス温度が急低下することになる。それにより、燃焼後噴射を実行した場合、中止した場合と比べて、副燃料噴射弁7における燃焼ガスからの受熱量を効果的に低減することができ、副燃料噴射弁7の温度上昇を効果的に抑制できることになる。また、燃焼後噴射を実行することにより、燃料が副燃料噴射弁7内を通過することで、その分、副燃料噴射弁7の温度上昇を抑制できることになる。   As shown by the broken line in FIG. 4 (e), when the post-combustion injection is stopped, the gas temperature hardly decreases during the combustion stroke, and the amount of heat received from the combustion gas in the auxiliary fuel injection valve 7 increases. Will do. On the other hand, as shown by the solid line in FIG. 4 (e), when the post-combustion injection is executed, along with the fuel injection by the auxiliary fuel injection valve 7 at the timing immediately after the start of the combustion stroke, The gas temperature in the auxiliary combustion chamber 3d is suddenly lowered. As a result, when post-combustion injection is performed, the amount of heat received from the combustion gas in the auxiliary fuel injection valve 7 can be effectively reduced compared to when the injection is stopped, and the temperature rise of the auxiliary fuel injection valve 7 is effective. Can be suppressed. In addition, by performing post-combustion injection, the fuel passes through the auxiliary fuel injection valve 7, and accordingly, the temperature rise of the auxiliary fuel injection valve 7 can be suppressed.

また、燃焼後噴射制御処理を実行する場合、副燃焼室3d内の混合気の燃焼終了タイミングから燃焼後噴射の実行タイミングまでのクランク角CAafterと、副噴射弁温Tinjとの関係は、図5に示すものとなる。すなわち、クランク角CAafterが小さいほど、燃焼ガス温度をより迅速に低下させることができることで、副噴射弁温Tinjを抑制できることになる。同じ理由により、燃焼後噴射量Qafterが多いほど、燃焼ガス温度をより早く低下させることができることで、副噴射弁温Tinjを抑制できることになる。   When the post-combustion injection control process is executed, the relationship between the crank angle CAafter from the combustion end timing of the air-fuel mixture in the sub-combustion chamber 3d to the execution timing of post-combustion injection and the sub injection valve temperature Tinj is shown in FIG. It will be shown in That is, the smaller the crank angle CAafter, the more quickly the combustion gas temperature can be reduced, thereby suppressing the sub injection valve temperature Tinj. For the same reason, as the post-combustion injection amount QAfter is larger, the combustion gas temperature can be lowered more quickly, whereby the sub-injection valve temperature Tinj can be suppressed.

以上のように、本実施形態の制御装置1によれば、副燃料噴射弁7による燃料噴射が圧縮行程中に1回実行される。さらに、温度偏差DTが所定値α以上のとき、すなわち副噴射弁温Tinjがしきい値Trefよりも所定値α以上高いときには、燃焼後噴射が1回実行される。この燃焼後噴射は、副燃焼室3d内の混合気の燃焼後に実行されるので、副燃焼室3d内のガス温度を効果的に低下させることができ、副燃料噴射弁7における燃焼ガスからの受熱量を効果的に低減することができる。これに加えて、燃焼後噴射を実行した際、燃料が副燃料噴射弁7内を通過するので、その際の熱交換によって、副燃料噴射弁7の温度を低下させることができる。以上により、副燃料噴射弁7の温度を効果的に低下させることができ、副燃料噴射弁7におけるデポジットの発生を抑制することができる。それにより、燃料噴射の制御精度を向上させることができ、商品性を向上させることができる。   As described above, according to the control device 1 of the present embodiment, fuel injection by the auxiliary fuel injection valve 7 is executed once during the compression stroke. Further, when the temperature deviation DT is equal to or higher than the predetermined value α, that is, when the sub-injection valve temperature Tinj is higher than the threshold value Tref by the predetermined value α, the post-combustion injection is executed once. Since this post-combustion injection is executed after the combustion of the air-fuel mixture in the sub-combustion chamber 3d, the gas temperature in the sub-combustion chamber 3d can be effectively reduced, and the combustion gas from the combustion gas in the sub-fuel injection valve 7 can be reduced. The amount of heat received can be effectively reduced. In addition, when the post-combustion injection is executed, the fuel passes through the auxiliary fuel injection valve 7, so that the temperature of the auxiliary fuel injection valve 7 can be lowered by heat exchange at that time. Thus, the temperature of the auxiliary fuel injection valve 7 can be effectively reduced, and the generation of deposits in the auxiliary fuel injection valve 7 can be suppressed. Thereby, the control accuracy of fuel injection can be improved, and the merchantability can be improved.

なお、実施形態は、燃料噴射装置として、副燃料噴射弁7を用いた例であるが、本発明の燃料噴射装置はこれに限らず、副燃焼室3d内に燃料を噴射できるものであればよい。   The embodiment is an example in which the auxiliary fuel injection valve 7 is used as the fuel injection device. However, the fuel injection device of the present invention is not limited to this, and any fuel injection device can be used as long as it can inject fuel into the auxiliary combustion chamber 3d. Good.

また、実施形態は、副燃料噴射弁7による燃焼後噴射を1回のみ実行した例であるが、燃焼後噴射を2回以上に分割して実行してもよい。さらに、実施形態は、副燃料噴射弁7による、燃焼後噴射以外の通常の燃料噴射を1回のみ実行した例であるが、通常の燃料噴射を2回以上に分割して実行してもよい。   Further, the embodiment is an example in which the post-combustion injection by the auxiliary fuel injection valve 7 is executed only once, but the post-combustion injection may be executed by dividing it into two or more times. Further, the embodiment is an example in which the normal fuel injection other than the post-combustion injection by the auxiliary fuel injection valve 7 is executed only once, but the normal fuel injection may be divided into two or more times and executed. .

一方、実施形態は、装置温度取得手段として、副噴射弁温センサ21を用いた例であるが、本発明の装置温度取得手段はこれに限らず、燃料噴射装置の温度を取得できるものであればよい。例えば、ECU2において、エンジン回転数NE、要求トルクTRQ及び吸気温度などの各種のパラメータに応じて、装置温度を推定/算出するように構成してもよい。   On the other hand, the embodiment is an example in which the sub-injection valve temperature sensor 21 is used as the apparatus temperature acquisition means. However, the apparatus temperature acquisition means of the present invention is not limited to this, and can acquire the temperature of the fuel injection apparatus. That's fine. For example, the ECU 2 may be configured to estimate / calculate the device temperature according to various parameters such as the engine speed NE, the required torque TRQ, and the intake air temperature.

また、実施形態は、本発明の制御装置を車両用の内燃機関に適用した例であるが、本発明の制御装置は、これに限らず、船舶用の内燃機関や、他の産業機器用の内燃機関にも適用可能である。   In addition, the embodiment is an example in which the control device of the present invention is applied to an internal combustion engine for a vehicle. However, the control device of the present invention is not limited to this, and is used for an internal combustion engine for ships or other industrial equipment. It can also be applied to an internal combustion engine.

1 制御装置
2 ECU(燃料噴射制御手段)
3 内燃機関
3a 気筒
3c 主燃焼室
3d 副燃焼室
7 副燃料噴射弁(燃料噴射装置)
21 副噴射弁温センサ(装置温度取得手段)
Tinj 副噴射弁温(装置温度)
α 所定値
1 control device 2 ECU (fuel injection control means)
3 Internal combustion engine 3a Cylinder 3c Main combustion chamber 3d Sub combustion chamber 7 Sub fuel injection valve (fuel injection device)
21 Sub-injection valve temperature sensor (device temperature acquisition means)
Tinj Sub-injection valve temperature (equipment temperature)
α Predetermined value

Claims (2)

互いに連通する主燃焼室及び副燃焼室と、当該副燃焼室への燃料噴射によって混合気を当該副燃焼室内に生成する燃料噴射装置とが気筒ごとに設けられた内燃機関の制御装置であって、
前記副燃焼室への燃料噴射を1燃焼サイクル中に複数回に分割して実行するとともに、当該複数回の燃料噴射のうちの1回以上を前記副燃焼室内の混合気の燃焼後に実行するように、前記燃料噴射装置を制御する燃料噴射制御手段を備えることを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine in which a main combustion chamber and a sub-combustion chamber communicating with each other, and a fuel injection device that generates an air-fuel mixture in the sub-combustion chamber by fuel injection into the sub-combustion chamber are provided for each cylinder. ,
The fuel injection into the sub-combustion chamber is performed in a plurality of times during one combustion cycle, and at least one of the plurality of fuel injections is performed after combustion of the air-fuel mixture in the sub-combustion chamber. And a fuel injection control means for controlling the fuel injection device.
前記燃料噴射装置の温度である装置温度を取得する装置温度取得手段をさらに備え、
前記燃料噴射制御手段は、当該装置温度が所定値以上のときに、前記副燃焼室内の混合気の燃焼後における前記1回以上の燃料噴射を実行するように、前記燃料噴射装置を制御することを特徴とする請求項1に記載の内燃機関の制御装置。
A device temperature acquisition means for acquiring a device temperature that is a temperature of the fuel injection device;
The fuel injection control means controls the fuel injection device to execute the one or more fuel injections after combustion of the air-fuel mixture in the auxiliary combustion chamber when the device temperature is equal to or higher than a predetermined value. The control device for an internal combustion engine according to claim 1.
JP2016236680A 2016-12-06 2016-12-06 Controller of internal combustion engine Pending JP2018091267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236680A JP2018091267A (en) 2016-12-06 2016-12-06 Controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236680A JP2018091267A (en) 2016-12-06 2016-12-06 Controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018091267A true JP2018091267A (en) 2018-06-14

Family

ID=62564616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236680A Pending JP2018091267A (en) 2016-12-06 2016-12-06 Controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018091267A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065551A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in micron-sized particles of gasoline engine
CN112065544A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in micron-sized particles of diesel engine
CN112065545A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in nano-scale particles of diesel engine
CN112065546A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in micron-sized particles of diesel engine
CN112065550A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in gasoline engine nano-scale particles
CN112065547A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in nano-scale particles of diesel engine
CN112065548A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of nano-scale particulate monocyclic aromatic hydrocarbon substances of gasoline engine
CN112065549A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in micron-sized particles of gasoline engine
WO2020255647A1 (en) * 2019-06-19 2020-12-24 Hitachi Automotive Systems, Ltd. Device and method for controlling a temperature of a prechamber included in an ignition device of an internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255647A1 (en) * 2019-06-19 2020-12-24 Hitachi Automotive Systems, Ltd. Device and method for controlling a temperature of a prechamber included in an ignition device of an internal combustion engine
CN113939646B (en) * 2019-06-19 2023-09-05 日立安斯泰莫株式会社 Device and method for controlling the temperature of a prechamber included in an ignition device of an internal combustion engine
JP7225438B2 (en) 2019-06-19 2023-02-20 日立Astemo株式会社 Temperature control device and control method for auxiliary combustion chamber included in ignition device for internal combustion engine
JP2022538012A (en) * 2019-06-19 2022-08-31 日立Astemo株式会社 Temperature control device and control method for auxiliary combustion chamber included in ignition device for internal combustion engine
CN113939646A (en) * 2019-06-19 2022-01-14 日立安斯泰莫株式会社 Device and method for controlling the temperature of a prechamber included in an ignition device of an internal combustion engine
CN112065546A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in micron-sized particles of diesel engine
CN112065547A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in nano-scale particles of diesel engine
CN112065545A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in nano-scale particles of diesel engine
CN112065544A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in micron-sized particles of diesel engine
CN112065548A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of nano-scale particulate monocyclic aromatic hydrocarbon substances of gasoline engine
CN112065549A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in micron-sized particles of gasoline engine
CN112065550A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in gasoline engine nano-scale particles
CN112065551A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in micron-sized particles of gasoline engine

Similar Documents

Publication Publication Date Title
JP2018091267A (en) Controller of internal combustion engine
JP6669124B2 (en) Internal combustion engine
JP5548029B2 (en) Control device for internal combustion engine
JP4848396B2 (en) Ignition timing control device for internal combustion engine
JP6167700B2 (en) In-cylinder injection engine control device
WO2013030926A1 (en) Control device for internal combustion engine
WO2013030924A1 (en) Control device for internal combustion engine
JP2017180140A (en) Control device of internal combustion engine
JP4840515B2 (en) Fuel injection control device for internal combustion engine
JP2007231883A (en) Air fuel ratio control device for internal combustion engine
WO2012176746A1 (en) Control device for cylinder-injection-type internal combustion engine
JP2008163815A (en) Fuel injection control device for internal combustion engine
JP2018105171A (en) Control device of internal combustion engine
JP6361537B2 (en) Fuel property discrimination device
JP2010007581A (en) Air fuel ratio control device
JP5273310B2 (en) Control device for internal combustion engine
JP2010196581A (en) Fuel injection control device of internal combustion engine
JP5282636B2 (en) Control device for internal combustion engine
JP2007040219A (en) Control device of internal combustion engine
JP2010216326A (en) Method for controlling switching of combustion method of internal combustion engine
JP4792453B2 (en) Intake air amount detection device
JP4730252B2 (en) Gas fuel internal combustion engine
JP5514635B2 (en) Control device for internal combustion engine
JP2011236802A (en) Internal combustion engine control apparatus
JP5400700B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190917