JP5348012B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP5348012B2
JP5348012B2 JP2010035079A JP2010035079A JP5348012B2 JP 5348012 B2 JP5348012 B2 JP 5348012B2 JP 2010035079 A JP2010035079 A JP 2010035079A JP 2010035079 A JP2010035079 A JP 2010035079A JP 5348012 B2 JP5348012 B2 JP 5348012B2
Authority
JP
Japan
Prior art keywords
fuel
air
cylinder
injectors
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010035079A
Other languages
Japanese (ja)
Other versions
JP2011169273A (en
Inventor
勝彦 宮本
敬 川辺
清隆 細野
健敏 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010035079A priority Critical patent/JP5348012B2/en
Publication of JP2011169273A publication Critical patent/JP2011169273A/en
Application granted granted Critical
Publication of JP5348012B2 publication Critical patent/JP5348012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1483Proportional component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine capable of optimally improving air-fuel ratio feedback control, and capable of constantly maintaining reduction of fuel consumption, reduction of CO<SB>2</SB>emission, reduction of HC emission, and traveling performance and maneuverability of a vehicle in best conditions. <P>SOLUTION: An optimum value of a proportional correction factor Kp1 is learned while carrying out proportional correction of intake passage fuel injection and air-fuel ratio feedback control, and after completion of learning, an optimum value of an integral correction factor Ki2 of cylinder fuel injection is learned while carrying out proportional control of intake passage fuel injection, cylinder fuel injection, and intake passage fuel injection of air-fuel ratio feedback control, and integral control of cylinder fuel injection. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、一気筒に対し複数のインジェクタを有する内燃機関に関する。   The present invention relates to an internal combustion engine having a plurality of injectors for one cylinder.

筒内に直接的に燃料を噴射する筒内燃料噴射インジェクタ、および吸気路に燃料を噴射する吸気路燃料噴射インジェクタと複数のインジェクタを有する内燃機関では、筒内燃料噴射および吸気路燃料噴射をエンジン回転数や負荷に応じた所定の分担率で実行するとともに、噴射燃料と吸込み空気との混合気が理論空燃比となるよう空燃比フィードバック制御を行う(例えば特許文献1)。   An in-cylinder fuel injection injector that directly injects fuel into a cylinder, and an intake path fuel injection injector that injects fuel into an intake path and an internal combustion engine having a plurality of injectors, the in-cylinder fuel injection and the intake path fuel injection The air-fuel ratio feedback control is performed so that the air-fuel ratio of the injected fuel and the intake air becomes the stoichiometric air-fuel ratio while being executed at a predetermined sharing ratio according to the rotation speed and the load (for example, Patent Document 1).

特開2005−307756号公報JP 2005-307756 A

空燃比フィードバック制御の要素としてフィードバック補正係数があり、そのフィードバック補正係数が固定のままでは、車両状態や環境の変化などにより、最適な空燃比フィードバック制御が困難となる。結果として、燃費の悪化、CO(二酸化炭素)排出量の増加、HC(炭化水素)排出量の増加、車両の走行性および操縦性の悪化を招いてしまう。そこでインジェクタ毎のフィードバック補正係数を学習するため、各インジェクタを単独噴射させて学習の機会を設定する必要がある。しかしながら、フィードバックの補正係数を学習する運転状態が、各インジェクタの単独噴射に適切なものであるとは限らない。したがって、この学習のために一時的に燃費の悪化、CO(二酸化炭素)排出量の増加、HC(炭化水素)排出量の増加、車両の走行性および操縦性の悪化等を招いてしまうこととなる。 There is a feedback correction coefficient as an element of the air-fuel ratio feedback control. If the feedback correction coefficient remains fixed, optimal air-fuel ratio feedback control becomes difficult due to changes in the vehicle state and environment. As a result, fuel consumption is deteriorated, CO 2 (carbon dioxide) emission is increased, HC (hydrocarbon) emission is increased, and vehicle running performance and maneuverability are deteriorated. Therefore, in order to learn the feedback correction coefficient for each injector, it is necessary to set an opportunity for learning by individually injecting each injector. However, the operating state in which the correction coefficient for feedback is learned is not always appropriate for the single injection of each injector. Therefore, this learning may cause a temporary deterioration in fuel consumption, an increase in CO 2 (carbon dioxide) emissions, an increase in HC (hydrocarbon) emissions, a deterioration in driving performance and maneuverability of the vehicle, and the like. It becomes.

この発明は、上記事情を考慮したもので、その目的は、各インジェクタの単独噴射を行わずとも空燃比フィードバック制御の学習を最適に行うことができ、これにより燃費の低減、CO排出量の削減、HC排出量の削減、車両の走行性および操縦性などの改善が図れる内燃機関を提供することである。 The present invention takes the above circumstances into consideration, and the object thereof is to optimize the learning of air-fuel ratio feedback control without performing individual injection of each injector, thereby reducing fuel consumption and reducing CO 2 emissions. It is an object of the present invention to provide an internal combustion engine that can achieve reductions, reductions in HC emissions, vehicle running performance and maneuverability.

請求項1に係る発明の内燃機関は、一気筒に対し燃料を供給する複数のインジェクタを備え、運転状態に応じて各インジェクタの燃料噴射量の分担率を変更するものであって、空燃比センサの出力に基づき燃料噴射量をフィードバック制御する制御手段を備える。この制御手段は、一部のインジェクタにて燃料を噴射する運転状態で少なくとも前記一部のインジェクタの空燃比フィードバック制御の比例補正係数の最適値を学習する第1学習手段と、全てのインジェクタにて燃料を噴射する運転状態で前記第1学習手段にて学習された比例補正係数の最適値に基づいて前記残りのインジェクタの空燃比フィードバック制御の積分補正係数の最適値を学習する第2学習手段と、を含む。 An internal combustion engine according to a first aspect of the present invention includes a plurality of injectors for supplying fuel to one cylinder, and changes a share ratio of a fuel injection amount of each injector according to an operation state. Control means for feedback-controlling the fuel injection amount based on the output of. The control means includes a first learning means for learning at least an optimal value of a proportional correction coefficient of the air-fuel ratio feedback control of some of the injectors in an operating state in which fuel is injected by some of the injectors, and all of the injectors. Second learning means for learning the optimum value of the integral correction coefficient for air-fuel ratio feedback control of the remaining injectors based on the optimum value of the proportional correction coefficient learned by the first learning means in the operating state in which fuel is injected ; ,including.

この発明の内燃機関によれば、一気筒に対し複数あるインジェクタの学習を特別な運転状態にすることなく行えるため、迅速にかつ燃費、CO2排出量、HC排出量等の抑制、または車両走行性または操縦性を低下させることなくフィードバック制御の学習を行える。   According to the internal combustion engine of the present invention, since learning of a plurality of injectors for one cylinder can be performed without making a special operation state, fuel consumption, CO2 emission amount, HC emission amount, etc. can be quickly suppressed, or vehicle running performance can be reduced. Alternatively, feedback control learning can be performed without degrading maneuverability.

一実施形態の構成を示す図。The figure which shows the structure of one Embodiment. 一実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of one Embodiment. 一実施形態におけるフィードバック補正係数の変化を示す図。The figure which shows the change of the feedback correction coefficient in one Embodiment.

以下、この発明の一実施形態について図面を参照しながら説明する。
図1において、1は内燃機関で、シリンダ2、ピストン3、点火プラグ4、吸気弁5、排気弁6を有し、ピストン3の下降により、シリンダ2内の燃焼室に、吸気ポート7および吸気弁5を通して空気を吸込む(吸気行程)。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes an internal combustion engine having a cylinder 2, a piston 3, a spark plug 4, an intake valve 5, and an exhaust valve 6, and when the piston 3 descends, an intake port 7 and an intake air are brought into the combustion chamber in the cylinder 2. Air is sucked through the valve 5 (intake stroke).

吸気ポート7には、吸気量を検知するエアーフローメータ21を設けるとともに、吸気量を決定するスロットル弁22を設けている。また、シリンダ2内の燃焼室に臨む状態に筒内噴射インジェクタ11を設けるとともに、吸気ポート7の吸気路に臨む状態に吸気路噴射インジェクタ12を設けている。筒内噴射インジェクタ11は、燃焼室に燃料を噴射する。吸気路噴射インジェクタ12は、吸気路内の吸気弁5に向けて燃料を噴射する。   The intake port 7 is provided with an air flow meter 21 for detecting the intake air amount and a throttle valve 22 for determining the intake air amount. Further, the in-cylinder injector 11 is provided so as to face the combustion chamber in the cylinder 2, and the intake passage injector 12 is provided so as to face the intake passage of the intake port 7. The in-cylinder injector 11 injects fuel into the combustion chamber. The intake passage injector 12 injects fuel toward the intake valve 5 in the intake passage.

筒内噴射インジェクタ11が噴射する燃料は、燃焼室内で、吸気路および吸気弁5からの吸込み空気と混合される。吸気路噴射インジェクタ12が噴射する燃料は吸気路内の吸込み空気と混合され、その混合気が吸気弁5を介して燃焼室内に供給される。   The fuel injected by the in-cylinder injector 11 is mixed with the intake air from the intake passage and the intake valve 5 in the combustion chamber. The fuel injected by the intake passage injector 12 is mixed with the intake air in the intake passage, and the mixture is supplied into the combustion chamber via the intake valve 5.

これら混合気はピストン3の上昇によって圧縮され(圧縮行程)、その圧縮混合気が点火プラグ4の火花により着火して燃焼・爆発する(燃焼行程)。この燃焼・爆発によってピストン3が再び下降し、上記動作が繰り返される。燃焼・爆発によって生じるガスは、排気弁6および排気ポート8を通って排出される(排気行程)。   The air-fuel mixture is compressed by the ascending of the piston 3 (compression stroke), and the compressed air-fuel mixture is ignited by the spark of the spark plug 4 to burn and explode (combustion stroke). The piston 3 descends again by this combustion / explosion, and the above operation is repeated. The gas generated by the combustion / explosion is discharged through the exhaust valve 6 and the exhaust port 8 (exhaust stroke).

排気ポート8には、排気弁6を経た排出ガスの空燃比を検知する空燃比センサ23を設けるとともに、その排出ガスを浄化する触媒24を設けている。   The exhaust port 8 is provided with an air-fuel ratio sensor 23 that detects the air-fuel ratio of the exhaust gas that has passed through the exhaust valve 6 and a catalyst 24 that purifies the exhaust gas.

30は燃料タンクで、燃料を送り出すためのフィードポンプ31を有する。このフィードポンプ31から燃料パイプ32に燃料が送り出され、その燃料が燃料パイプ32、分岐パイプ32a、およびその分岐パイプ32a上の高圧ポンプ33によって筒内噴射インジェクタ11に供給される。また、燃料パイプ32内の燃料が分岐パイプ32bによって筒内噴射インジェクタ11に供給される。   Reference numeral 30 denotes a fuel tank having a feed pump 31 for sending out fuel. Fuel is sent from the feed pump 31 to the fuel pipe 32, and the fuel is supplied to the in-cylinder injector 11 by the fuel pipe 32, the branch pipe 32a, and the high-pressure pump 33 on the branch pipe 32a. Further, the fuel in the fuel pipe 32 is supplied to the in-cylinder injector 11 by the branch pipe 32b.

一方、制御部であるECU40に、インジェクタ11,12、上記エアーフローメータ21、スロットル弁22、空燃比センサ23、フィードポンプ31、高圧ポンプ33、点火コイル41、クランク角センサ42、冷却水温センサ43、アクセル開度センサ44などが接続される。   On the other hand, the ECU 40 serving as a control unit is connected to the injectors 11 and 12, the air flow meter 21, the throttle valve 22, the air / fuel ratio sensor 23, the feed pump 31, the high pressure pump 33, the ignition coil 41, the crank angle sensor 42, and the cooling water temperature sensor 43. The accelerator opening sensor 44 is connected.

点火コイル41は、上記点火プラグ4に点火用の駆動電圧を供給する。クランク角センサ42は、上記ピストン3の上下動に連動するクランクの角度を検知する。冷却水温センサ43は、内燃機関1の冷却水温度を検知する。アクセル開度センサ44は、アクセル開度(アクセルペダルの踏込み量)を検知する。   The ignition coil 41 supplies a driving voltage for ignition to the ignition plug 4. The crank angle sensor 42 detects a crank angle that is linked to the vertical movement of the piston 3. The cooling water temperature sensor 43 detects the cooling water temperature of the internal combustion engine 1. The accelerator opening sensor 44 detects the accelerator opening (the amount by which the accelerator pedal is depressed).

そして、ECU40は、内燃機関1の制御に関する主要な機能として次の(1)〜(7)の手段を有する。
(1)クランク角センサ42の検知角度から内燃機関1の回転数Neを検出(算出)する回転数検出手段。
The ECU 40 has the following means (1) to (7) as main functions related to the control of the internal combustion engine 1.
(1) A rotational speed detection means for detecting (calculating) the rotational speed Ne of the internal combustion engine 1 from the detection angle of the crank angle sensor 42.

(2)アクセル開度センサ44の検知開度およびエアーフローメータ21の検知量から内燃機関1の負荷Lを検出する負荷検出手段。   (2) Load detection means for detecting the load L of the internal combustion engine 1 from the detected opening of the accelerator opening sensor 44 and the detected amount of the air flow meter 21.

(3)筒内噴射インジェクタ11の筒内燃料噴射と吸気路噴射インジェクタ12の吸気路燃料噴射の分担率を上記検出される回転数Neおよび負荷Lに応じて決定する分担率決定手段。   (3) A sharing rate determining means for determining a sharing rate between the in-cylinder fuel injection of the in-cylinder injector 11 and the intake channel fuel injection of the intake channel injector 12 according to the detected rotation speed Ne and the load L.

(4)上記検出される回転数Neおよび負荷Lが予め定められた空燃比フィードバック制御域に入っているか否かを判定する判定手段。   (4) Determination means for determining whether or not the detected rotation speed Ne and load L are within a predetermined air-fuel ratio feedback control range.

(5)上記判定手段の判定結果が肯定の場合に、空燃比センサ23で検知される空燃比が理論空燃比となるよう、インジェクタ11,12の一方または両方の燃料噴射量を制御する空燃比フィードバック制御を実行する空燃比フィードバック制御手段。   (5) The air-fuel ratio for controlling the fuel injection amount of one or both of the injectors 11 and 12 so that the air-fuel ratio detected by the air-fuel ratio sensor 23 becomes the stoichiometric air-fuel ratio when the determination result of the determination means is affirmative. Air-fuel ratio feedback control means for executing feedback control.

(6)上記判定手段の判定結果が肯定の場合に、かつ所定の学習タイミングに際し、吸気路噴射インジェクタ12の吸気路燃料噴射のみを行い空燃比フィードバック制御の比例補正(P1)と積分補正(I1)を実行しながら、その比例補正係数Kp1と積分補正係数Ki1の最適値を学習して更新記憶する第1学習手段。所定の学習タイミングとは、例えば、予め定められている一定時間のことである。   (6) Proportional correction (P1) and integral correction (I1) of air-fuel ratio feedback control by performing only the intake path fuel injection of the intake path injection injector 12 when the determination result of the determination means is affirmative and at a predetermined learning timing. The first learning means that learns and updates and stores the optimal values of the proportional correction coefficient Kp1 and the integral correction coefficient Ki1. The predetermined learning timing is, for example, a predetermined time.

(7)上記の第1学習手段の学習が完了した後、吸気路噴射インジェクタ12の吸気路燃料噴射および筒内噴射インジェクタ11の筒内燃料噴射を行い、吸気路噴射インジェクタ12を第1学習手段で学習した比例補正係数Kp1で空燃比フィードバック制御し、かつ筒内噴射インジェクタ11の空燃比フィードバック制御の積分補正(I2)を実行しながら、その積分補正係数Ki2の最適値を学習して更新記憶する第2学習手段。   (7) After the learning of the first learning means is completed, the intake path fuel injection of the intake path injector 12 and the in-cylinder fuel injection of the in-cylinder injector 11 are performed, and the intake path injector 12 is made the first learning means. While performing the air-fuel ratio feedback control with the proportional correction coefficient Kp1 learned in step 1 and executing the integral correction (I2) of the air-fuel ratio feedback control of the in-cylinder injector 11, the optimum value of the integral correction coefficient Ki2 is learned and updated and stored. Second learning means.

つぎに、図2のフローチャートを参照しながら作用について説明する。
クランク角センサ42の検知角度から回転数Neが検出され(ステップ101)、アクセル開度センサ44の検知開度およびエアーフローメータ21の検知量から負荷Lが検出される(ステップ102)。そして、筒内噴射インジェクタ11の筒内燃料噴射と吸気路噴射インジェクタ12の吸気路燃料噴射の分担率が、上記検出された回転数Neおよび負荷Lに応じて決定される(ステップ103)。この場合、分担率決定用の条件データがECU40の内部メモリに格納されており、その条件データが回転数Neおよび負荷Lに基づいて参照されることにより、分担率が決定される。基本的には、低負荷では吸気路噴射インジェクタ12の吸気路燃料噴射を行い、高負荷では筒内噴射インジェクタ11の筒内燃料噴射と吸気路噴射インジェクタ12の吸気路燃料噴射の両方を行う。これは、筒内噴射インジェクタ11から噴射された燃料が吸気路に付着することなく空気中の熱により気化するため充填効率が向上して高負荷運転に有利となる。
Next, the operation will be described with reference to the flowchart of FIG.
The rotational speed Ne is detected from the detection angle of the crank angle sensor 42 (step 101), and the load L is detected from the detection opening of the accelerator opening sensor 44 and the detection amount of the air flow meter 21 (step 102). Then, the share ratio between the in-cylinder fuel injection of the in-cylinder injector 11 and the intake passage fuel injection of the intake passage injector 12 is determined according to the detected rotation speed Ne and the load L (step 103). In this case, the condition data for determining the sharing rate is stored in the internal memory of the ECU 40, and the sharing rate is determined by referring to the condition data based on the rotational speed Ne and the load L. Basically, the intake passage fuel injection of the intake passage injector 12 is performed at a low load, and both the in-cylinder fuel injection of the in-cylinder injector 11 and the intake passage fuel injection of the intake passage injection injector 12 are performed at a high load. This is because fuel injected from the in-cylinder injector 11 is vaporized by heat in the air without adhering to the intake passage, so that the charging efficiency is improved, which is advantageous for high-load operation.

また、回転数Neおよび負荷Lが予め定められた空燃比フィードバック制御域に入っているか否かが判定される(ステップ105)。この判定結果が否定であれば(ステップ105のNO)、インジェクタ11,12の一方または両方の燃料噴射に関わる空燃比のオープンループ制御が実行される(ステップ106)。つまり、空燃比フィードバック制御は実行されない。   Further, it is determined whether or not the rotational speed Ne and the load L are within a predetermined air-fuel ratio feedback control range (step 105). If this determination result is negative (NO in step 105), open-loop control of the air-fuel ratio related to fuel injection of one or both of the injectors 11 and 12 is executed (step 106). That is, the air-fuel ratio feedback control is not executed.

上記判定結果が肯定であれば(ステップ105のYES)、つまり回転数Neおよび負荷Lが空燃比フィードバック制御域に入っていれば、空燃比センサ23で検知される空燃比が理論空燃比となるよう、インジェクタ11,12の一方または両方の燃料噴射量を制御する空燃比フィードバック制御が実行される(ステップ107)。   If the determination result is affirmative (YES in step 105), that is, if the rotational speed Ne and the load L are within the air-fuel ratio feedback control region, the air-fuel ratio detected by the air-fuel ratio sensor 23 becomes the stoichiometric air-fuel ratio. Thus, air-fuel ratio feedback control for controlling the fuel injection amount of one or both of the injectors 11 and 12 is executed (step 107).

この筒内噴射インジェクタ11と吸気路噴射インジェクタ12の両方のインジェクタで燃料噴射を行う際の空燃比フィードバック制御のフィードバック補正係数Kの変化を図3に示す。すなわち、吸気路噴射インジェクタ12の燃料噴射に際しては空燃比フィードバック制御の比例補正(P1)が実行され、空燃比がリッチからリーンに反転した際に、フィードバック補正係数Kが比例補正係数Kp1の分だけ増加される。空燃比がリーンからリッチに反転すると、フィードバック補正係数Kが比例補正係数Kp1の分だけ減少される。   FIG. 3 shows changes in the feedback correction coefficient K of the air-fuel ratio feedback control when fuel is injected by both the in-cylinder injector 11 and the intake passage injector 12. That is, the proportional correction (P1) of the air-fuel ratio feedback control is executed at the time of fuel injection of the intake passage injector 12, and when the air-fuel ratio is reversed from rich to lean, the feedback correction coefficient K is equal to the proportional correction coefficient Kp1. Will be increased. When the air-fuel ratio is reversed from lean to rich, the feedback correction coefficient K is decreased by the proportional correction coefficient Kp1.

一方、筒内噴射インジェクタ11の燃料噴射に際しては空燃比フィードバック制御の積分補正(I)が実行され、空燃比がリッチの場合に、フィードバック補正係数Kが積分補正係数Nxの分だけ減少される。空燃比がリーンであれば、フィードバック補正係数Kが積分補正係数Nxの分だけ増加される。   On the other hand, when fuel is injected from the in-cylinder injector 11, integral correction (I) of air-fuel ratio feedback control is executed. When the air-fuel ratio is rich, the feedback correction coefficient K is decreased by the integral correction coefficient Nx. If the air-fuel ratio is lean, the feedback correction coefficient K is increased by the integral correction coefficient Nx.

空燃比フィードバック制御域に入っていて(ステップ105のYES)かつ所定の学習タイミングが巡ってくると(ステップ108のYES)、吸気路噴射インジェクタ12の吸気路燃料噴射のみ実行され(ステップ109)、その吸気路燃料噴射に関わる空燃比フィードバック制御の比例補正(P1)と積分補正(K1)が実行される(ステップ100)。そして、この吸気路燃料噴射および比例補正(P1),積分補正(K1)が実行された状態で、比例補正(P1)の比例補正係数Kp1の最適値と積分補正(K1)の積分補正係数Ki1が学習される(ステップ111)。   When the air-fuel ratio feedback control range is entered (YES in step 105) and a predetermined learning timing is reached (YES in step 108), only the intake passage fuel injection of the intake passage injector 12 is executed (step 109). Proportional correction (P1) and integral correction (K1) of air-fuel ratio feedback control related to the intake passage fuel injection are executed (step 100). Then, in a state where the intake passage fuel injection, proportional correction (P1), and integral correction (K1) are executed, the optimum value of the proportional correction coefficient Kp1 of the proportional correction (P1) and the integral correction coefficient Ki1 of the integral correction (K1). Is learned (step 111).

比例補正係数Kp1と積分補正係数Ki1の最適値の学習が完了すると(ステップ112のYES)、その最適値が吸気路噴射インジェクタ12の吸気路燃料噴射および筒内噴射インジェクタ11の筒内燃料噴射の両方が実行されるときの吸気路噴射インジェクタ12の比例補正係数Kp1としてECU40内の内部メモリに更新記憶される(ステップ113)。   When learning of the optimum values of the proportional correction coefficient Kp1 and the integral correction coefficient Ki1 is completed (YES in step 112), the optimum values are determined for the intake passage fuel injection of the intake passage injector 12 and the in-cylinder fuel injection of the in-cylinder injector 11. The proportional correction coefficient Kp1 of the intake manifold injector 12 when both are executed is updated and stored in the internal memory in the ECU 40 (step 113).

続いて、吸気路噴射インジェクタ12の吸気路燃料噴射および筒内噴射インジェクタ11の筒内燃料噴射の両方が実行される(ステップ114)。これに伴い、吸気路燃料噴射に関わる空燃比フィードバック制御の比例補正(P1)が実行されるとともに(ステップ115)、筒内噴射インジェクタ11の筒内燃料噴射に関わる空燃比フィードバック制御の積分補正(I2)が実行される(ステップ116)。   Subsequently, both the intake passage fuel injection of the intake passage injector 12 and the in-cylinder fuel injection of the in-cylinder injector 11 are executed (step 114). Along with this, proportional correction (P1) of air-fuel ratio feedback control related to intake-path fuel injection is executed (step 115), and integral correction of air-fuel ratio feedback control related to in-cylinder fuel injection of in-cylinder injector 11 ( I2) is executed (step 116).

この状態で、積分補正(I2)の積分補正係数Ki2の平均値が算出される(ステップ118)。そして、この平均値の算出に必要な所定時間が経過すると、算出完了との判断の下に(ステップ117のYES)、算出された平均値から、積分補正係数Ki2の最適値が求められる(ステップ119)。求められた最適値は、吸気路噴射インジェクタ12の吸気路燃料噴射および筒内噴射インジェクタ11の筒内燃料噴射の両方が実行されるときの筒内噴射インジェクタ11の積分補正係数Ki2としてECU40内の内部メモリに更新記憶される(ステップ120)。   In this state, the average value of the integral correction coefficient Ki2 for the integral correction (I2) is calculated (step 118). Then, when a predetermined time necessary for calculating the average value has elapsed, an optimum value of the integral correction coefficient Ki2 is obtained from the calculated average value under the determination that the calculation is complete (YES in Step 117) (Step S1). 119). The obtained optimum value is an integral correction coefficient Ki2 of the in-cylinder injector 11 when both the intake passage fuel injection of the intake passage injector 12 and the in-cylinder fuel injection of the in-cylinder injector 11 are executed. It is updated and stored in the internal memory (step 120).

以上のように、単独で燃料噴射を行う吸気路噴射インジェクタ12の比例補正係数Kp1と積分補正係数Ki1の最適値を学習し、続いて吸気路噴射インジェクタ12および筒内噴射インジェクタ11で燃料噴射を行う際に吸気路噴射インジェクタ12の空燃比フィードバック制御を比例補正係数Kp1で行い、筒内噴射インジェクタ11の積分補正係数Ki2の最適値を学習することにより、低負荷時の吸気路噴射インジェクタ12による燃料噴射では学習された比例補正係数Kp1と積分補正係数Ki1、高負荷時の吸気路噴射インジェクタ12および筒内噴射インジェクタ11の燃料噴射では学習された比例補正係数Kp1と積分補正係数Ki2で空燃比フィードバック制御を車両状態や環境の変化などにかかわらず常に最適な状態に維持することができる。よって、燃費の低減、CO排出量の削減、HC排出量の削減、車両の走行性および操縦性などの改善が図れる。 As described above, the optimum values of the proportional correction coefficient Kp1 and the integral correction coefficient Ki1 of the intake path injection injector 12 that performs fuel injection alone are learned, and then fuel injection is performed by the intake path injection injector 12 and the in-cylinder injection injector 11. When performing, the air-fuel ratio feedback control of the intake manifold injector 12 is performed with the proportional correction coefficient Kp1, and the optimum value of the integral correction coefficient Ki2 of the in-cylinder injector 11 is learned, whereby the intake manifold injector 12 at low load is used. The air-fuel ratio is obtained by the proportional correction coefficient Kp1 and the integral correction coefficient Ki1 learned in the fuel injection, and the proportional correction coefficient Kp1 and the integral correction coefficient Ki2 learned in the fuel injection of the intake passage injector 12 and the in-cylinder injector 11 at the time of high load. Feedback control is always optimal regardless of vehicle conditions and environmental changes It is possible to equity. Therefore, it is possible to improve fuel consumption, CO 2 emissions, HC emissions, vehicle running performance and maneuverability.

また、学習のために筒内噴射インジェクタ11の単独での燃料噴射を行わなくてもよいので、筒内噴射インジェクタ11を吸気路噴射インジェクタ12のアシストとして使用する内燃機関においては、筒内噴射インジェクタ11の単独燃料噴射という特別な運転状態を設定する必要がなく、車両走行性または操縦性を低下させることなくフィードバック制御の学習を行える。   In addition, since the in-cylinder injector 11 does not have to perform fuel injection alone for learning, an in-cylinder injector is used in an internal combustion engine that uses the in-cylinder injector 11 as an assist for the intake manifold injector 12. Therefore, it is not necessary to set a special driving state of 11 individual fuel injections, and feedback control learning can be performed without deteriorating the vehicle running performance or the maneuverability.

なお、1つのシリンダについてのみ説明したが、複数のシリンダを有する場合にも同様に実施可能である。その他、この発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。   Although only one cylinder has been described, the present invention can be similarly applied to a case having a plurality of cylinders. In addition, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

1…内燃機関、2…シリンダ、3…ピストン、4…点火プラグ、5…吸気弁、6…排気弁、7…吸気ポート、8…排気ポート、11…筒内噴射インジェクタ、12…吸気路噴射インジェクタ、21…エアーフローメータ、22…スロットル弁、23…空燃比センサ、24…触媒、40…ECU(制御部)、41…点火コイル、42…クランク角センサ、43…冷却水温センサ、44…アクセル開度センサ   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Cylinder, 3 ... Piston, 4 ... Spark plug, 5 ... Intake valve, 6 ... Exhaust valve, 7 ... Intake port, 8 ... Exhaust port, 11 ... In-cylinder injector, 12 ... Intake path injection Injector, 21 ... Air flow meter, 22 ... Throttle valve, 23 ... Air-fuel ratio sensor, 24 ... Catalyst, 40 ... ECU (control unit), 41 ... Ignition coil, 42 ... Crank angle sensor, 43 ... Cooling water temperature sensor, 44 ... Accelerator position sensor

Claims (3)

一気筒に対し燃料を供給する複数のインジェクタを備え、運転状態に応じて各インジェクタの燃料噴射量の分担率を変更する内燃機関において、
空燃比センサの出力に基づき燃料噴射量をフィードバック制御する制御手段を備え、
前記制御手段は、
一部のインジェクタにて燃料を噴射する運転状態で少なくとも前記一部のインジェクタの空燃比フィードバック制御の比例補正係数の最適値を学習する第1学習手段と、
全てのインジェクタにて燃料を噴射する運転状態で前記第1学習手段にて学習された比例補正係数の最適値に基づいて前記残りのインジェクタの空燃比フィードバック制御の積分補正係数の最適値を学習する第2学習手段と、
を含む、
ことを特徴とする内燃機関。
In an internal combustion engine that includes a plurality of injectors that supply fuel to one cylinder and changes the share of the fuel injection amount of each injector according to the operating state,
A control means for feedback-controlling the fuel injection amount based on the output of the air-fuel ratio sensor;
The control means includes
First learning means for learning an optimum value of a proportional correction coefficient of air-fuel ratio feedback control of at least some of the injectors in an operation state in which fuel is injected by some of the injectors ;
Based on the optimum value of the proportional correction coefficient learned by the first learning means in the operation state in which fuel is injected by all the injectors, the optimum value of the integral correction coefficient of the air-fuel ratio feedback control of the remaining injectors is learned. A second learning means;
including,
An internal combustion engine characterized by that.
前記一部のインジェクタは、吸気路に燃料を噴射する吸気路噴射インジェクタであり、前記残りのインジェクタは、筒内に燃料を噴射する筒内噴射インジェクタである、
ことを特徴とする請求項1に記載の内燃機関。
The partial injectors are intake passage injectors that inject fuel into an intake passage, and the remaining injectors are in-cylinder injectors that inject fuel into a cylinder.
The internal combustion engine according to claim 1 .
前記内燃機関の低負荷運転時には前記吸気路噴射インジェクタで噴射し、高負荷運転時には前記吸気路噴射インジェクタと前記筒内噴射インジェクタの両方で噴射することを特徴とする請求項2に記載の内燃機関。 3. The internal combustion engine according to claim 2 , wherein the internal combustion engine is injected by the intake passage injector during low load operation, and is injected by both the intake passage injector and the in-cylinder injector during high load operation. .
JP2010035079A 2010-02-19 2010-02-19 Internal combustion engine Active JP5348012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035079A JP5348012B2 (en) 2010-02-19 2010-02-19 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035079A JP5348012B2 (en) 2010-02-19 2010-02-19 Internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013079834A Division JP5867441B2 (en) 2013-04-05 2013-04-05 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011169273A JP2011169273A (en) 2011-09-01
JP5348012B2 true JP5348012B2 (en) 2013-11-20

Family

ID=44683634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035079A Active JP5348012B2 (en) 2010-02-19 2010-02-19 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP5348012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914264B2 (en) * 2016-06-23 2021-02-09 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and method for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048730A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Air fuel ratio control device of internal combustion engine
JP2006138249A (en) * 2004-11-11 2006-06-01 Toyota Motor Corp Control device for internal combustion engine
JP2007032328A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Controller of internal combustion engine
JP2009030615A (en) * 2008-11-10 2009-02-12 Toyota Motor Corp Method of controlling learning of air-fuel ratio of dual-injection internal combustion engine on vehicle

Also Published As

Publication number Publication date
JP2011169273A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP4450083B2 (en) Cetane number estimation method
US7747379B2 (en) Control device of direct injection internal combustion engine
RU2623352C2 (en) Method of tank emptying (options)
JP2008309036A (en) Fuel estimation device
JP2018091267A (en) Controller of internal combustion engine
US20080060616A1 (en) Control System for Internal Combustion Engine
JP6582067B2 (en) Engine control device
US7363906B2 (en) Control system for internal combustion engine
JP5867441B2 (en) Control device for internal combustion engine
JP2008101540A (en) Control device for internal combustion engine
US20130151118A1 (en) Air-fuel ratio control apparatus, and control method, of hybrid power unit
JP5348012B2 (en) Internal combustion engine
JP4968206B2 (en) INTERNAL COMBUSTION ENGINE AND FUEL INJECTION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP5477498B2 (en) Control device for internal combustion engine
JP2010144573A (en) Fuel injection control device for internal combustion engine
JP2007100530A (en) Control device for internal combustion engine
JP4211700B2 (en) Fuel injection control device for internal combustion engine
JP2008298028A (en) Fuel injection control device of in cylinder injection type internal combustion engine
JP2005163609A (en) Operation control device for internal combustion engine and operation control method for internal combustion engine
JP2009264280A (en) Control device of cylinder fuel injection engine
WO2014087596A1 (en) Fuel supply device
WO2012137237A1 (en) Method of controlling operation of internal combustion engine
JP2004346868A (en) Control device for cylinder injection type internal combustion engine
JP6003770B2 (en) Control device for spark ignition engine
JP4297893B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R151 Written notification of patent or utility model registration

Ref document number: 5348012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350