JP2008101540A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2008101540A
JP2008101540A JP2006284808A JP2006284808A JP2008101540A JP 2008101540 A JP2008101540 A JP 2008101540A JP 2006284808 A JP2006284808 A JP 2006284808A JP 2006284808 A JP2006284808 A JP 2006284808A JP 2008101540 A JP2008101540 A JP 2008101540A
Authority
JP
Japan
Prior art keywords
fuel
air
amount
fuel ratio
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006284808A
Other languages
Japanese (ja)
Inventor
Rei Eiraku
玲 永楽
Masahiro Inoue
政広 井上
Naoki Kokubo
小久保  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2006284808A priority Critical patent/JP2008101540A/en
Publication of JP2008101540A publication Critical patent/JP2008101540A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine optimizing exhaust air-fuel ratio control by effectively utilizing blow-by and port injection during a valve overlap period in a control device for an internal combustion engine provided with a port injection valve and a cylinder injection valve. <P>SOLUTION: In this control device for the internal combustion engine, the internal combustion engine is provided with the port injection valve injecting fuel into an intake port and the cylinder injection valve injecting fuel into a combustion chamber, injecting fuel from the port injection valve and cylinder injection valve in accordance with operation conditions, and having the valve overlap period with both an intake valve and an exhaust valve opened, fuel is injected by at least the port injection valve during the valve overlap period within an engine operating region where intake pressure is higher than exhaust pressure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は内燃機関の制御装置に関し、特に、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、ポート噴射弁と筒内噴射弁とから運転状態に応じて燃料を噴射する内燃機関であって、吸気弁と排気弁とがともに開いているバルブオーバーラップ期間を有する内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and in particular, includes a port injection valve that injects fuel into an intake port and a cylinder injection valve that injects fuel into a combustion chamber, and includes a port injection valve and a cylinder injection valve. The present invention relates to a control device for an internal combustion engine that injects fuel according to an operating state and has a valve overlap period in which both an intake valve and an exhaust valve are open.

燃料を吸気ポートに噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、ポート噴射弁と筒内噴射弁とから運転状態に応じて定められた噴射比率で燃料を噴射するような内燃機関、すなわちダブル噴射型内燃機関が知られている。   A port injection valve that injects fuel into the intake port and an in-cylinder injection valve that injects fuel into the combustion chamber. The fuel is injected from the port injection valve and the in-cylinder injection valve at an injection ratio determined according to the operating state. 2. Description of the Related Art An internal combustion engine that performs injection, that is, a double injection internal combustion engine is known.

また、内燃機関の出力の向上を図るべく内燃機関に過給機を適用することは広く知られており、上記ダブル噴射型内燃機関においても、該内燃機関の出力の向上を図るべく過給機を備えた過給機付きダブル噴射型内燃機関の開発も展開されている。   Further, it is widely known that a supercharger is applied to an internal combustion engine in order to improve the output of the internal combustion engine. In the double injection type internal combustion engine as well, a supercharger is intended to improve the output of the internal combustion engine. Development of a double-injection type internal combustion engine with a supercharger equipped with the

特開2005−133632号公報JP 2005-133632 A 特開2003−106145号公報JP 2003-106145 A

ところで、レシプロ式の内燃機関では、体積効率の向上や燃焼ガスを効率よく掃気するなどの観点から、バルブオーバーラップすなわち吸気弁と排気弁とがともに開いている期間を設けることがある。このようなバルブオーバーラップ期間が設けられた場合、吸気管圧力と排気管圧力との圧力差に起因して、バルブオーバーラップ期間中に、吸気ポートから筒内に供給された空気や燃料の一部がそのまま、排気ポートに排出される現象(以下、「吹き抜け」と称す)がもたらされる場合がある。   By the way, in a reciprocating internal combustion engine, a valve overlap, that is, a period in which both an intake valve and an exhaust valve are open may be provided from the viewpoint of improving volumetric efficiency and scavenging combustion gas efficiently. When such a valve overlap period is provided, due to the pressure difference between the intake pipe pressure and the exhaust pipe pressure, one of the air and fuel supplied from the intake port into the cylinder during the valve overlap period is provided. There is a case where a phenomenon (hereinafter referred to as “blow-through”) is caused in which the portion is discharged to the exhaust port as it is.

内燃機関では一般的に、排気圧力に比べて吸気圧力が高い機関運転領域におけるバルブオーバーラップ期間中に「吹き抜け」がもたらされる。   In an internal combustion engine, a “blow-through” is generally produced during a valve overlap period in an engine operating region where the intake pressure is higher than the exhaust pressure.

上記ダブル噴射型内燃機関における一つの課題に、排気浄化触媒雰囲気の空燃比制御という観点で、上記「吹き抜け」を考慮した排気空燃比制御の最適化がある。   One problem with the double injection internal combustion engine is optimization of exhaust air / fuel ratio control in consideration of the above-mentioned “blow-through” from the viewpoint of air / fuel ratio control of the exhaust purification catalyst atmosphere.

排気浄化性能が触媒雰囲気の空燃比に依存するような排気浄化触媒が内燃機関の排気系に配設される場合、排気エミッションの悪化を抑制するためには、該排気浄化触媒に流入する排気の空燃比を精度よく制御し、該排気浄化触媒雰囲気の空燃比を所望の空燃比に制御する必要がある。このことは、ダブル噴射型内燃機関において、排気浄化性能が触媒雰囲気の空燃比に依存するような排気浄化触媒が排気系に配設される場合においても同様である。排気浄化触媒に流入する排気の空燃比は、「吹き抜け」状態の変動にともなって変動することが考えられる。   When an exhaust purification catalyst whose exhaust purification performance depends on the air-fuel ratio of the catalyst atmosphere is provided in the exhaust system of the internal combustion engine, in order to suppress the deterioration of exhaust emission, the exhaust gas flowing into the exhaust purification catalyst is suppressed. It is necessary to accurately control the air-fuel ratio and control the air-fuel ratio of the exhaust purification catalyst atmosphere to a desired air-fuel ratio. This also applies to the case where an exhaust purification catalyst whose exhaust purification performance depends on the air-fuel ratio of the catalyst atmosphere is disposed in the exhaust system in a double injection type internal combustion engine. It is conceivable that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst varies with the variation of the “blow-through” state.

例えば、排気浄化性能が触媒雰囲気の空燃比に依存する排気浄化触媒として三元触媒が知られている。該三元触媒は理論空燃比付近で浄化率が高く、排気系に三元触媒が配設された場合、排気エミッションの悪化を抑制するためには三元触媒雰囲気の空燃比を理論空燃比に維持する制御を行う必要がある。バルブオーバーラップ期間中、空気の吹き抜けがある場合、三元触媒に吹き抜け空気が流入し、三元触媒雰囲気の空燃比はリーン空燃比側へと移行されることになる。このような状況においても、三元触媒の排気浄化性能を維持すべく、燃焼室内の混合気の空燃比を調整することにより三元触媒雰囲気の空燃比を理論空燃比に維持する制御を行う場合においては、燃焼室内の混合気の空燃比をリッチ空燃比に制御して三元触媒に流入する排気の空燃比をリッチ空燃比にすることにより、三元触媒雰囲気の空燃比を理論空燃比に維持することが可能となる。しかしながら、バルブオーバーラップ期間中の空気の吹き抜け量が過度に多い場合、三元触媒雰囲気の空燃比は大きくリーン側へ移行され、三元触媒雰囲気の空燃比を理論空燃比に維持するためには、燃焼室の混合気の空燃比を過リッチ空燃比に制御する必要があり、このことは、燃費の悪化、更には、失火というような内燃機関性能上の問題をもたらす可能性がある。よって、バルブオーバーラップ期間を有するダブル噴射型内燃機関において、排気浄化性能が触媒雰囲気の空燃比に依存するような排気浄化触媒が排気系に配設される場合、排気浄化触媒雰囲気の空燃比制御という観点での、「吹き抜け」を考慮した排気空燃比制御の最適化を図ることが一つの課題となる。   For example, a three-way catalyst is known as an exhaust purification catalyst whose exhaust purification performance depends on the air-fuel ratio of the catalyst atmosphere. The three-way catalyst has a high purification rate near the stoichiometric air-fuel ratio, and when the three-way catalyst is disposed in the exhaust system, the air-fuel ratio of the three-way catalyst atmosphere is set to the stoichiometric air-fuel ratio in order to suppress the deterioration of exhaust emission. It is necessary to perform control to maintain. If there is air blow-off during the valve overlap period, the blow-through air flows into the three-way catalyst, and the air-fuel ratio of the three-way catalyst atmosphere is shifted to the lean air-fuel ratio side. Even in such a situation, in order to maintain the exhaust purification performance of the three-way catalyst, when performing control to maintain the air-fuel ratio of the three-way catalyst atmosphere at the stoichiometric air-fuel ratio by adjusting the air-fuel ratio of the air-fuel mixture in the combustion chamber In the combustion chamber, the air-fuel ratio of the three-way catalyst atmosphere is set to the stoichiometric air-fuel ratio by controlling the air-fuel ratio of the air-fuel mixture in the combustion chamber to a rich air-fuel ratio and setting the air-fuel ratio of the exhaust flowing into the three-way catalyst to a rich air-fuel ratio. Can be maintained. However, if the amount of air blown during the valve overlap period is excessively large, the air-fuel ratio of the three-way catalyst atmosphere is greatly shifted to the lean side, and in order to maintain the air-fuel ratio of the three-way catalyst atmosphere at the stoichiometric air-fuel ratio. Therefore, it is necessary to control the air-fuel ratio of the air-fuel mixture in the combustion chamber to an over-rich air-fuel ratio, which may lead to problems in internal combustion engine performance such as deterioration in fuel consumption and misfire. Therefore, in a double injection internal combustion engine having a valve overlap period, when an exhaust purification catalyst whose exhaust purification performance depends on the air / fuel ratio of the catalyst atmosphere is disposed in the exhaust system, the air / fuel ratio control of the exhaust purification catalyst atmosphere From this point of view, it is an issue to optimize the exhaust air / fuel ratio control in consideration of “blow-through”.

特許文献1においては、ポート噴射弁と筒内噴射弁とを有する内燃機関であって、バルブオーバーラップ期間中においては、ポート噴射弁による燃料噴射(以下、ポート噴射と称す)を禁止して筒内噴射弁による燃料噴射(以下、筒内噴射と称す)をさせるとともに、排気弁が閉じる時期以降に筒内噴射させる内燃機関の制御装置が開示されている。そして、このような構成により、バルブオーバーラップ期間中の「吹き抜け」に起因する燃料の吹き抜けを低減し、燃料消費量を抑制することが記載されている。しかしながら、特許文献1においては、内燃機関の排気浄化触媒雰囲気の空燃比制御を目的とし、「吹き抜け」を考慮した排気空燃比の制御手段については、開示されていない。   In Patent Document 1, an internal combustion engine having a port injection valve and an in-cylinder injection valve, and during the valve overlap period, fuel injection by the port injection valve (hereinafter referred to as port injection) is prohibited. A control device for an internal combustion engine that performs fuel injection by an internal injection valve (hereinafter referred to as in-cylinder injection) and performs in-cylinder injection after the exhaust valve is closed is disclosed. In addition, it is described that such a configuration reduces the fuel blow-through caused by the “blow-off” during the valve overlap period and suppresses the fuel consumption. However, Patent Document 1 does not disclose exhaust air / fuel ratio control means that considers “blow-through” for the purpose of air / fuel ratio control of the exhaust purification catalyst atmosphere of the internal combustion engine.

また、上記ダブル噴射型内燃機関においても、一般的な内燃機関と同様に、更なる加速性能の向上の要求がある。特許文献2においては、筒内噴射弁を有する過給機付き内燃機関において、排気系に点火補助装置を配設し、バルブオーバーラップ期間中に筒内噴射により排気系で燃焼可能な空気/燃料混合物を形成し、すなわち筒内噴射により排気空燃比を燃焼可能な所望の空燃比に制御し、該混合物を点火補助装置により燃焼させることで、過給圧を上昇させ加速性能を向上させる過給機付き内燃機関が開示されている。   Also in the double injection type internal combustion engine, there is a demand for further improvement in acceleration performance, as in a general internal combustion engine. In Patent Document 2, in an internal combustion engine with a supercharger having an in-cylinder injection valve, an air / fuel that is provided with an ignition auxiliary device in an exhaust system and can be combusted in the exhaust system by in-cylinder injection during a valve overlap period. Supercharging that increases the supercharging pressure and improves acceleration performance by forming a mixture, that is, by controlling the exhaust air / fuel ratio to a desired combustible air / fuel ratio by in-cylinder injection, and combusting the mixture by an ignition assist device An internal combustion engine with a machine is disclosed.

しかしながら、特許文献2において開示された過給機付き内燃機関はポート噴射弁を有していない内燃機関であり、ポート噴射弁と筒内噴射弁とを有する過給機付き内燃機関における、排気系で燃焼可能な空気/燃料混合物を形成する際の、すなわち、排気空燃比を所望の空燃比に制御する際のポート噴射の有効な利用手段については開示されていない。よって、バルブオーバーラップ期間を有するダブル噴射型内燃機関において、例えば燃料を排気管で燃焼させて過給圧を向上させるシステムが備えられているような場合、加速性能の向上という観点での、ポート噴射を有効に利用した排気空燃比制御の最適化を図ることが課題の一つとなる。   However, the internal combustion engine with a supercharger disclosed in Patent Document 2 is an internal combustion engine that does not have a port injection valve, and an exhaust system in the internal combustion engine with a supercharger that has a port injection valve and an in-cylinder injection valve. No effective utilization means of port injection in forming a combustible air / fuel mixture at the same time, that is, in controlling the exhaust air / fuel ratio to a desired air / fuel ratio is not disclosed. Therefore, in a double injection type internal combustion engine having a valve overlap period, for example, when a system for improving the supercharging pressure by combusting fuel in an exhaust pipe is provided, the port is improved in terms of improving acceleration performance. One of the problems is to optimize the exhaust air-fuel ratio control that effectively uses the injection.

本発明は上記課題に鑑み、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、ポート噴射弁と筒内噴射弁とから運転状態に応じて燃料を噴射する内燃機関であって、吸気弁と排気弁とがともに開いているバルブオーバーラップ期間を有する内燃機関の制御装置において、内燃機関の排気浄化触媒雰囲気の空燃比制御や加速性能の向上という観点で、バルブオーバーラップ期間中の「吹き抜け」及びポート噴射を有効に利用して排気空燃比制御の最適化を図ることが可能な内燃機関の制御装置を提供することを目的とする。   In view of the above problems, the present invention includes a port injection valve that injects fuel into an intake port and an in-cylinder injection valve that injects fuel into a combustion chamber. An internal combustion engine that injects fuel and has a valve overlap period in which both an intake valve and an exhaust valve are open. From the viewpoint of improvement, an object of the present invention is to provide a control device for an internal combustion engine capable of optimizing exhaust air-fuel ratio control by effectively utilizing “blow-through” and port injection during a valve overlap period.

請求項1に記載の発明によれば、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、前記ポート噴射弁と前記筒内噴射弁とから運転状態に応じて燃料を噴射する内燃機関であって、吸気弁と排気弁とがともに開いているバルブオーバーラップ期間を有する内燃機関の制御装置において、排気圧力に比べて吸気圧力が高い機関運転領域における前記バルブオーバーラップ期間中に、少なくとも前記ポート噴射弁により燃料を噴射する、ことを特徴とする内燃機関の制御装置が提供される。   According to the first aspect of the present invention, a port injection valve that injects fuel into the intake port and a cylinder injection valve that injects fuel into the combustion chamber, the port injection valve, the cylinder injection valve, An internal combustion engine that injects fuel in accordance with the operating state, and has a valve overlap period in which both the intake valve and the exhaust valve are open. A control device for an internal combustion engine is provided, wherein fuel is injected at least by the port injection valve during the valve overlap period in an operation region.

内燃機関では、排気圧力に比べ吸気圧力が高くなる領域がある。該領域におけるバルブオーバーラップ期間中においては、吸気ポートから供給された燃料の一部が燃焼に寄与することなく、そのまま排気系に排出される「吹き抜け」がもたらされる。このような「吹き抜け」があるバルブオーバーラップ期間中にポート噴射が実行されると、ポート噴射された燃料の一部が燃焼に寄与することなく排気系に排出され燃費の悪化をもたらすことになる。そこで、従来技術の一実施形態においては、燃費の悪化の防止という観点から、吹き抜けのあるバルブオーバーラップ期間中においては、ポート噴射を禁止する制御がなされている。   In the internal combustion engine, there is a region where the intake pressure is higher than the exhaust pressure. During the valve overlap period in this region, a part of the fuel supplied from the intake port does not contribute to combustion, and “blow-through” is directly discharged to the exhaust system. When port injection is executed during a valve overlap period where there is such a “blow-through”, a portion of the port injected fuel is discharged into the exhaust system without contributing to combustion, resulting in deterioration of fuel consumption. . Therefore, in one embodiment of the prior art, control for prohibiting port injection is performed during a valve overlap period in which there is a blow-through from the viewpoint of preventing deterioration in fuel consumption.

これに対して、請求項1の発明では、排気空燃比制御の観点から、排気圧力に比べて吸気圧力が高い機関運転領域におけるバルブオーバーラップ期間中に、すなわち吹き抜けのあるバルブオーバーラップ期間中に、敢えてポート噴射を実行することを特徴とします。これにより、バルブオーバーラップ期間中にもたらされる「吹き抜け」を利用して、ポート噴射された燃料の一部の燃料であって燃焼に寄与しない燃料を排気系に供給することができ、該燃料を利用して、排気空燃比を所定の空燃比に制御することを可能とします。   On the other hand, in the invention of claim 1, from the viewpoint of exhaust air / fuel ratio control, during the valve overlap period in the engine operation region where the intake pressure is higher than the exhaust pressure, that is, during the valve overlap period where there is a blow-through. , Dare to carry out port injection. This makes it possible to supply fuel that is part of the port-injected fuel and does not contribute to combustion to the exhaust system by utilizing the “blow-off” that occurs during the valve overlap period. Utilizing this makes it possible to control the exhaust air-fuel ratio to a predetermined air-fuel ratio.

ここで所定の空燃比とは、内燃機関の運転状態や制御目的に応じて適宜設定されるものである。例えば、排気系に排気浄化触媒として三元触媒が配設された場合においては、三元触媒雰囲気の空燃比が理論空燃比に制御されるような空燃比に所定の空燃比を設定し、三元触媒雰囲気の空燃比を理論空燃比に制御することで、排気エミッションの悪化を抑制することが可能となる。また、燃料を排気管で燃焼させて過給圧を向上させるシステムが備えられている場合においては、所定の空燃比を排気管で燃料が燃焼可能な空燃比に設定することで過給圧の向上を確実に図ることが可能となる。   Here, the predetermined air-fuel ratio is appropriately set according to the operating state of the internal combustion engine and the control purpose. For example, when a three-way catalyst is provided as an exhaust purification catalyst in the exhaust system, a predetermined air-fuel ratio is set to an air-fuel ratio such that the air-fuel ratio of the three-way catalyst atmosphere is controlled to the stoichiometric air-fuel ratio. By controlling the air-fuel ratio of the original catalyst atmosphere to the stoichiometric air-fuel ratio, it becomes possible to suppress the deterioration of exhaust emission. In addition, when a system for improving the supercharging pressure by combusting fuel in the exhaust pipe is provided, the supercharging pressure can be reduced by setting the predetermined air-fuel ratio to an air-fuel ratio in which the fuel can be combusted in the exhaust pipe. Improvements can be made reliably.

請求項2に記載の発明によれば、前記バルブオーバーラップ期間中に前記燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量を算出する推定吹き抜け量算出手段を有し、前記推定吹き抜け量算出手段により算出された推定吹き抜け量が所定値未満の場合には、前記バルブオーバーラップ期間中に前記ポート噴射弁により燃料を噴射することを禁止する、ことを特徴とする請求項1に記載の内燃機関の制御装置が提供される。   According to the second aspect of the present invention, the estimated blow-through amount that is the amount of fuel that blows through the exhaust system without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period is calculated. When the estimated blow-through amount calculated by the estimated blow-through amount calculation means is less than a predetermined value, it is prohibited to inject fuel by the port injection valve during the valve overlap period. A control device for an internal combustion engine according to claim 1 is provided.

先に述べたように、例えば排気系に三元触媒が配設された場合であって、三元触媒の排気浄化性能を維持すべく、燃焼室内の混合気の空燃比を調整することにより三元触媒雰囲気の空燃比を理論空燃比に維持する制御を行う場合においては、バルブオーバーラップ期間中、空気の吹き抜けがある場合、燃焼室内の混合気の空燃比をリッチ空燃比に制御することにより、三元触媒雰囲気の空燃比を理論空燃比に維持することが可能となるが、バルブオーバーラップ期間中の空気の吹き抜け量が過度に多い場合には、三元触媒雰囲気の空燃比を理論空燃比に維持するために、燃焼室の混合気の空燃比を過リッチ空燃比に制御する必要があり、このことは、燃費の悪化、更には、失火というような内燃機関性能上の問題をもたらす可能性がある。   As described above, for example, when a three-way catalyst is disposed in the exhaust system, the three-way catalyst can be maintained by adjusting the air-fuel ratio of the air-fuel mixture in the combustion chamber in order to maintain the exhaust purification performance of the three-way catalyst. When performing control to maintain the air-fuel ratio of the original catalyst atmosphere at the stoichiometric air-fuel ratio, if there is air blow-off during the valve overlap period, the air-fuel ratio of the air-fuel mixture in the combustion chamber is controlled to be rich air-fuel ratio. It is possible to maintain the air-fuel ratio of the three-way catalyst atmosphere at the stoichiometric air-fuel ratio, but if the air blow-off amount during the valve overlap period is excessively large, the air-fuel ratio of the three-way catalyst atmosphere is reduced to the stoichiometric air-fuel ratio. In order to maintain the fuel ratio, it is necessary to control the air-fuel ratio of the air-fuel mixture in the combustion chamber to an over-rich air-fuel ratio, which leads to problems in internal combustion engine performance such as deterioration in fuel consumption and further misfire. there is a possibility.

請求項1の発明によれば、排気圧力に比べて吸気圧力が高い機関運転領域におけるバルブオーバーラップ期間中にポート噴射を実行し、「吹き抜け」を利用して、燃料を排気系に供給して排気空燃比を所定の空燃比に制御することができ、バルブオーバーラップ期間中の空気の吹き抜け量が過度に多い場合であっても、燃焼室内の混合気を過リッチ空燃比状態に制御することなく、触媒雰囲気の空燃比を所定の空燃比に制御することが可能となる。   According to the first aspect of the present invention, the port injection is performed during the valve overlap period in the engine operation region in which the intake pressure is higher than the exhaust pressure, and fuel is supplied to the exhaust system by using “blow-through”. The exhaust air-fuel ratio can be controlled to a predetermined air-fuel ratio, and the air-fuel mixture in the combustion chamber can be controlled to an over-rich air-fuel ratio state even when the amount of air blown during the valve overlap period is excessively large Instead, the air-fuel ratio of the catalyst atmosphere can be controlled to a predetermined air-fuel ratio.

ところで、バルブオーバーラップ期間中の燃料の吹き抜け量が少ない場合、すなわち、バルブオーバーラップ期間中の空気の吹き抜け量が少ない場合には、空気の吹き抜けに起因して触媒雰囲気の空燃比がリーン空燃比側に大きく移行されることはない。よって、三元触媒の排気浄化性能を維持すべく、燃焼室内の混合気の空燃比を調整することのみにより三元触媒雰囲気の空燃比を理論空燃比に維持するように制御したとしても、失火をもたらすことがないような適度なリッチ空燃比に燃焼室内の混合気の空燃比を調整することで三元触媒雰囲気の空燃比を理論空燃比に維持することが可能である。つまり、吹き抜け量が少ない場合には、燃焼室内の混合気の空燃比を調整することのみにより三元触媒雰囲気の空燃比を理論空燃比に維持するように制御したとしても、燃焼室内の混合気の空燃比を過リッチ空燃比に制御することなく、三元触媒雰囲気の空燃比を理論空燃比に維持することが可能である。   By the way, when the amount of fuel blown during the valve overlap period is small, that is, when the amount of air blown during the valve overlap period is small, the air-fuel ratio of the catalyst atmosphere is reduced to the lean air-fuel ratio due to the air blow-through. There is no significant shift to the side. Therefore, in order to maintain the exhaust purification performance of the three-way catalyst, even if the air-fuel ratio of the three-way catalyst atmosphere is controlled to be maintained at the stoichiometric air-fuel ratio only by adjusting the air-fuel ratio of the air-fuel mixture in the combustion chamber, It is possible to maintain the air-fuel ratio of the three-way catalyst atmosphere at the stoichiometric air-fuel ratio by adjusting the air-fuel ratio of the air-fuel mixture in the combustion chamber to an appropriate rich air-fuel ratio that does not cause the air-fuel ratio. That is, when the blow-through amount is small, even if the air-fuel ratio of the three-way catalyst atmosphere is controlled to be maintained at the stoichiometric air-fuel ratio only by adjusting the air-fuel ratio of the air-fuel mixture in the combustion chamber, It is possible to maintain the air-fuel ratio of the three-way catalyst atmosphere at the stoichiometric air-fuel ratio without controlling the air-fuel ratio of the air-fuel ratio to the rich air-fuel ratio.

そこで、請求項2の発明では、バルブオーバーラップ期間中に燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量が所定値未満の場合には、バルブオーバーラップ期間中にポート噴射弁により燃料を噴射することを禁止し、バルブオーバーラップ期間中のポート噴射による排気系への燃料供給を禁止する。これにより、バルブオーバーラップ期間中のポート噴射による過剰な排気系への燃料供給を低減でき、燃料消費の向上を図ることが可能となる。   Accordingly, in the invention of claim 2, when the estimated blow-through amount, which is the amount of fuel blown into the exhaust system without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period, is less than a predetermined value, The fuel injection by the port injection valve during the valve overlap period is prohibited, and the fuel supply to the exhaust system by the port injection during the valve overlap period is prohibited. As a result, excessive fuel supply to the exhaust system due to port injection during the valve overlap period can be reduced, and fuel consumption can be improved.

請求項3に記載の発明によれば、前記バルブオーバーラップ期間中に前記燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量を算出する推定吹き抜け量算出手段と、前記バルブオーバーラップ期間中に前記燃焼室に供給された燃料のうちで燃焼に寄与することなく実際に吹き抜けた燃料量となる実吹き抜け量を算出する実吹き抜け量算出手段とを有し、前記推定吹き抜け量算出手段により算出された推定吹き抜け量と前記実吹き抜け量算出手段により算出された実吹き抜け量との差に基づいて、前記筒内噴射弁により燃料を噴射する筒内噴射による補正燃料噴射が実行される、ことを特徴とする請求項1または請求項2に記載の内燃機関の制御装置が提供される。   According to the third aspect of the present invention, the estimated blow-through amount that is the amount of fuel that blows into the exhaust system without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period is calculated. A blow-through amount calculating means; and an actual blow-through amount calculating means for calculating an actual blow-through amount that is the amount of fuel actually blown out without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period; A cylinder that injects fuel by the in-cylinder injection valve based on a difference between the estimated blow-through amount calculated by the estimated blow-through amount calculation means and the actual blow-through amount calculated by the actual blow-through amount calculation means 3. The control apparatus for an internal combustion engine according to claim 1, wherein the corrected fuel injection by the injection is executed.

ポート噴射により噴射する燃料量は、実際に燃料が噴射されるタイミングの前に算出され設定されることが一般的である。   In general, the amount of fuel injected by port injection is calculated and set before the timing of actual fuel injection.

そのために、噴射燃料量が算出された際の運転状態と、実際に燃料噴射された際の運転状態とが異なる場合があり、ポート噴射により噴射する燃料量を算出する際に使用された推定吹き抜け量と実際の実吹き抜け量とに差がある場合がある。   For this reason, the operation state when the injected fuel amount is calculated may differ from the operation state when the fuel is actually injected, and the estimated blow-through used when calculating the fuel amount injected by the port injection. There may be a difference between the amount and the actual actual blow-through amount.

請求項3の発明によれば、ポート噴射により噴射する燃料量を算出する際に使用された推定吹き抜け量と実際の実吹き抜け量との差に基づいて、筒内噴射による補正燃料噴射制御が実行される。これにより、ポート噴射により噴射する燃料量を算出する際に使用された推定吹き抜け量と実際の実吹き抜け量との差があり、バルブオーバーラップ期間中の吹き抜けを利用したポート噴射による排気系への燃料供給量が排気空燃比を所定の空燃比にするために必要な所望の量よりも不足した場合でも、その不足分を筒内噴射弁による補正燃料噴射により補うことができ、排気空燃比を精度良く所定の空燃比に制御することが可能となる。   According to the invention of claim 3, the corrected fuel injection control by the in-cylinder injection is executed based on the difference between the estimated blow-through amount used when calculating the fuel amount injected by the port injection and the actual actual blow-through amount. Is done. As a result, there is a difference between the estimated blow-through amount used when calculating the amount of fuel injected by port injection and the actual actual blow-through amount, and the exhaust to the exhaust system by port injection using the blow-through during the valve overlap period. Even if the fuel supply amount is less than the desired amount required to bring the exhaust air / fuel ratio to the predetermined air / fuel ratio, the shortage can be compensated for by corrected fuel injection by the in-cylinder injection valve, and the exhaust air / fuel ratio can be reduced. It becomes possible to control to a predetermined air-fuel ratio with high accuracy.

各請求項の記載によれば、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、ポート噴射弁と筒内噴射弁とから運転状態に応じて燃料を噴射する内燃機関であって、吸気弁と排気弁とがともに開いているバルブオーバーラップ期間を有する内燃機関の制御装置において、内燃機関の排気浄化触媒雰囲気の空燃比制御や加速性能の向上という観点で、バルブオーバーラップ期間中の「吹き抜け」及びポート噴射を有効に利用して排気空燃比制御の最適化を図ることが可能となる共通の効果を奏する。   According to the description of each claim, a port injection valve that injects fuel into the intake port and an in-cylinder injection valve that injects fuel into the combustion chamber, the port injection valve and the in-cylinder injection valve are brought into an operating state. In accordance with an internal combustion engine that injects fuel in response and has a valve overlap period in which both an intake valve and an exhaust valve are open, air-fuel ratio control and acceleration performance of the exhaust purification catalyst atmosphere of the internal combustion engine From the viewpoint of improving the air-fuel ratio, there is a common effect that the exhaust air-fuel ratio control can be optimized by effectively utilizing the “blow-through” and the port injection during the valve overlap period.

以下、添付の図面を参照して本発明の実施の形態を説明する。図1は本発明の各実施の形態に共通のハード構成を示す図である。
図1において、1は火花点火式の内燃機関を示し、内燃機関1はシリンダヘッド1aとシリンダブロック1bとを備える。シリンダヘッド1aは吸気ポート5、排気ポート6、吸気弁7、排気弁8、および、点火栓40を備え、点火栓40には点火コイル41から高圧電流が供給される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing a hardware configuration common to the embodiments of the present invention.
In FIG. 1, reference numeral 1 denotes a spark ignition type internal combustion engine, and the internal combustion engine 1 includes a cylinder head 1a and a cylinder block 1b. The cylinder head 1 a includes an intake port 5, an exhaust port 6, an intake valve 7, an exhaust valve 8, and an ignition plug 40, and a high voltage current is supplied to the ignition plug 40 from an ignition coil 41.

シリンダブロック1b内をクランク軸3と連結されているピストン2が往復動し、ピストン2とシリンダヘッド1aの間に燃焼室1cが形成される。また、シリンダブロック1bにはクランク角センサ52が取付けられていて、機関回転数はこのクランク角センサ52からの信号に基づいて算出される。また、シリンダブロック1bには冷却水温を検出する水温センサ53が取付けられている。   The piston 2 connected to the crankshaft 3 reciprocates in the cylinder block 1b, and a combustion chamber 1c is formed between the piston 2 and the cylinder head 1a. A crank angle sensor 52 is attached to the cylinder block 1b, and the engine speed is calculated based on a signal from the crank angle sensor 52. A water temperature sensor 53 for detecting the cooling water temperature is attached to the cylinder block 1b.

吸気弁7の開弁期間の位相を運転条件にあわせて調整する吸気弁タイミング調整装置70が吸気カム7cに取付けられている。同様に、排気弁8の開弁期間の位相を運転条件にあわせて調整する排気弁タイミング調整装置80が排気カム8cに取り付けられている。   An intake valve timing adjustment device 70 that adjusts the phase of the valve opening period of the intake valve 7 in accordance with operating conditions is attached to the intake cam 7c. Similarly, an exhaust valve timing adjusting device 80 that adjusts the phase of the valve opening period of the exhaust valve 8 in accordance with operating conditions is attached to the exhaust cam 8c.

図1において、吸気ポート5内に燃料を噴射するためのポート噴射弁31と燃焼室1c内に燃料を噴射するための筒内噴射弁32がそれぞれシリンダヘッド1aに取付けられている。ポート噴射弁31および筒内噴射弁32には燃料タンク(図示せず)から燃料ポンプ(図示せず)により燃料パイプ(図示せず)を介して燃料が送給される。   In FIG. 1, a port injection valve 31 for injecting fuel into the intake port 5 and an in-cylinder injection valve 32 for injecting fuel into the combustion chamber 1c are attached to the cylinder head 1a. The port injection valve 31 and the in-cylinder injection valve 32 are supplied with fuel from a fuel tank (not shown) by a fuel pump (not shown) via a fuel pipe (not shown).

吸気ポート5には吸気管10が接続され、吸気管10の上流端にはエアクリーナ11が取付けられている。エアクリーナ11の直下流には吸入空気量を検出するエアフローメータ51が配置されている。エアフローメータ51の下流にはスロットルバルブ12が配置されている。スロットルバルブ12はスロットルモータ13で駆動される。一方、アクセルペダル14にアクセルペダル14の踏み込み量を検出するアクセルペダルセンサ50が付設されていて、アクセルペダルセンサ50が検出したアクセルペダル14の踏み込み量に対応して、スロットルモータ13によりスロットルバルブ12の開度が変更せしめられる。   An intake pipe 10 is connected to the intake port 5, and an air cleaner 11 is attached to the upstream end of the intake pipe 10. An air flow meter 51 for detecting the intake air amount is disposed immediately downstream of the air cleaner 11. A throttle valve 12 is disposed downstream of the air flow meter 51. The throttle valve 12 is driven by a throttle motor 13. On the other hand, an accelerator pedal sensor 50 for detecting the depression amount of the accelerator pedal 14 is attached to the accelerator pedal 14, and the throttle valve 12 is operated by the throttle motor 13 in accordance with the depression amount of the accelerator pedal 14 detected by the accelerator pedal sensor 50. The degree of opening is changed.

排気ポート6には排気管20が接続され、排気管20には三元触媒21が配設されている。三元触媒21の上流側近傍には第1空燃比センサ22が配設され、三元触媒21の下流側近傍には第2空燃比センサ23が配設されている。燃焼室1cで発生した排気ガスは排気弁8で流路が開閉される排気ポート6を経て、排気管20に導かれ三元触媒21によって浄化されてから排出される。第1空燃比センサ22と第2空燃比センサ23の出力に基づいて所定の空燃比が得られるようにポート噴射弁31、筒内噴射弁32から噴射される燃料噴射量がフィードバック制御される。   An exhaust pipe 20 is connected to the exhaust port 6, and a three-way catalyst 21 is disposed in the exhaust pipe 20. A first air-fuel ratio sensor 22 is disposed near the upstream side of the three-way catalyst 21, and a second air-fuel ratio sensor 23 is disposed near the downstream side of the three-way catalyst 21. The exhaust gas generated in the combustion chamber 1c is led to the exhaust pipe 20 through the exhaust port 6 whose flow path is opened and closed by the exhaust valve 8, is purified by the three-way catalyst 21, and is discharged. Based on the outputs of the first air-fuel ratio sensor 22 and the second air-fuel ratio sensor 23, the fuel injection amount injected from the port injection valve 31 and the in-cylinder injection valve 32 is feedback-controlled so that a predetermined air-fuel ratio is obtained.

吸気通路には、吸気圧力を測定するための吸気圧センサ54が取り付けられており、排気通路には排気圧力を測定するための排気圧センサ55が取り付けられている。   An intake pressure sensor 54 for measuring the intake pressure is attached to the intake passage, and an exhaust pressure sensor 55 for measuring the exhaust pressure is attached to the exhaust passage.

吸気管10には過給機90のコンプレッサ90Bが配設されている。また、排気管20には、過給機90の排気タービン90Aが配設されており、各気筒の燃焼室1cでの燃焼により生じた排気ガスが排気マニホルドを通じて過給機90の排気タービン90Aに導入される。そして、この導入された排気の流勢によって排気タービン90Aが作動すると吸気管側のコンプレッサ90Bが連動して作動し、吸気管側においてガスの圧縮が行われる。そして、このガスの圧縮により吸気管10の圧力が高められ、その圧力により燃焼室内に対してガスが効率よく充填されるようになっている。   The intake pipe 10 is provided with a compressor 90B of the supercharger 90. Further, the exhaust pipe 20 is provided with an exhaust turbine 90A of the supercharger 90, and exhaust gas generated by combustion in the combustion chamber 1c of each cylinder passes through the exhaust manifold to the exhaust turbine 90A of the supercharger 90. be introduced. When the exhaust turbine 90A is operated by the flow of the introduced exhaust, the compressor 90B on the intake pipe side operates in conjunction with the gas, and gas compression is performed on the intake pipe side. The pressure of the intake pipe 10 is increased by the compression of the gas, and the gas is efficiently filled into the combustion chamber by the pressure.

また、排気系内で過給機90の排気タービン90Aの手前に、追加点火補助装置43が配設される。該追加点火補助装置43は、燃料を排気管で燃焼させることで、過給圧を上昇させ加速性能を向上させる役割を果すものである。   Further, an additional ignition auxiliary device 43 is disposed in front of the exhaust turbine 90A of the supercharger 90 in the exhaust system. The additional ignition auxiliary device 43 plays the role of increasing the supercharging pressure and improving the acceleration performance by burning the fuel in the exhaust pipe.

電子制御ユニット(以下、ECUという)100は入力ポート101、出力ポート102、CPU103、ROM104、RAM105等を共通バスで相互に接続してなる。ECU100には各センサの検出した信号が入力され、本発明に関わる制御をおこなう制御信号が各アクチュエータ類に送出される。   An electronic control unit (hereinafter referred to as ECU) 100 is formed by connecting an input port 101, an output port 102, a CPU 103, a ROM 104, a RAM 105, and the like with a common bus. A signal detected by each sensor is input to the ECU 100, and a control signal for performing control related to the present invention is sent to each actuator.

以下、上記のような基本的なハード構成を有する本発明の各実施の形態において実行される、排気空燃比を所定の空燃比に制御するための燃料噴射制御について説明する。   Hereinafter, fuel injection control for controlling the exhaust air-fuel ratio to a predetermined air-fuel ratio, which is executed in each embodiment of the present invention having the basic hardware configuration as described above, will be described.

初めに第一の実施形態について説明する。この第一の実施形態では、バルブオーバーラップ期間中の推定吹き抜け量を算出し、算出された推定吹き抜け量に基づいてポート噴射弁31によるポート噴射を実行するか否かを判定し、算出された推定吹き抜け量が所定値以上の場合にバルブオーバーラップ期間中のポート噴射による排気空燃比制御を実行するものである。また、本第一の実施形態においては、排気浄化触媒に流入する排気の空燃比を所定の空燃比に制御するものであるが、これに限られることはなく、例えば、燃料を排気管で燃焼させることが可能な所定の空燃比に、排気空燃比を制御するものとされてもよい。   First, the first embodiment will be described. In the first embodiment, the estimated blow-through amount during the valve overlap period is calculated, and it is determined whether or not to perform port injection by the port injection valve 31 based on the calculated estimated blow-through amount. Exhaust air / fuel ratio control by port injection during the valve overlap period is executed when the estimated blow-through amount is a predetermined value or more. In the first embodiment, the air-fuel ratio of the exhaust flowing into the exhaust purification catalyst is controlled to a predetermined air-fuel ratio. However, the present invention is not limited to this. For example, fuel is burned in the exhaust pipe. The exhaust air / fuel ratio may be controlled to a predetermined air / fuel ratio that can be controlled.

図2は、排気空燃比を所定の空燃比に制御するための第一の実施形態の燃料噴射制御のフローチャートである。
まず、ステップ201において、ポート噴射により噴射する燃料量を算出する際に使用される、吹き抜け量すなわちバルブオーバーラップ期間中に燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量が算出される。
FIG. 2 is a flowchart of fuel injection control according to the first embodiment for controlling the exhaust air-fuel ratio to a predetermined air-fuel ratio.
First, in step 201, out of the amount of fuel supplied to the combustion chamber during the valve overlap period, which is used when calculating the amount of fuel injected by port injection, the exhaust system is not contributed to combustion. An estimated blow-through amount that is the amount of fuel blown through is calculated.

第一の実施形態においては、推定吹き抜け量は、吸気圧力、排気圧力、機関回転数、吸入空気量およびバルブオーバーラップ期間などに基づいて吹き抜け量を算出するマップであって、予め実験や解析評価などのデータに基づいて作成された吹き抜け量マップを使用してECU100により算出される。尚、該マップは、ECU100のメモリーなどに格納されて使用される。   In the first embodiment, the estimated blow-through amount is a map for calculating the blow-through amount based on the intake pressure, exhaust pressure, engine speed, intake air amount, valve overlap period, etc. It is calculated by the ECU 100 using a blow-through amount map created based on such data. The map is used by being stored in the memory of the ECU 100 or the like.

吸気圧力は吸気圧センサ54から検出され、排気圧力は排気圧センサ55から検出され、吸入空気量はエアフローメータ51から検出される。また、バルブオーバーラップ期間は、吸気弁タイミング調整装置70および排気弁タイミング調整装置80のそれぞれの吸排気弁の開閉制御タイミングに基づいてECU100により算出される。更に、機関回転数はクランク角センサ52からの信号に基づいて算出される。   The intake pressure is detected from the intake pressure sensor 54, the exhaust pressure is detected from the exhaust pressure sensor 55, and the intake air amount is detected from the air flow meter 51. Further, the valve overlap period is calculated by the ECU 100 based on the intake / exhaust valve opening / closing control timings of the intake valve timing adjusting device 70 and the exhaust valve timing adjusting device 80. Further, the engine speed is calculated based on a signal from the crank angle sensor 52.

このように、第一の実施形態においては、ポート噴射により噴射する燃料量を算出する際に使用される、吹き抜け量すなわちバルブオーバーラップ期間中に燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量を算出する推定吹き抜け量算出手段は、エアフローメータ51、クランク角センサ52、吸気圧センサ54、排気圧センサ55、吸気弁タイミング調整装置70、排気弁タイミング調整装置80、吹き抜け量算出マップおよびECU100を有して構成される。   As described above, in the first embodiment, it contributes to combustion among the fuel supplied to the combustion chamber during the blow-through amount, that is, the valve overlap period, used when calculating the amount of fuel injected by port injection. The estimated blow-through amount calculation means for calculating the estimated blow-through amount that is the amount of fuel that blows through the exhaust system without performing the operation is an air flow meter 51, a crank angle sensor 52, an intake pressure sensor 54, an exhaust pressure sensor 55, an intake valve timing adjustment device 70, The exhaust valve timing adjustment device 80, the blow-through amount calculation map, and the ECU 100 are included.

ステップ201において推定吹き抜け量が算出されると、続くステップ202に進み、算出された推定吹き抜け量が所定値以上であるか否かがECU100により判定される。尚、ここで所定値とは、運転状態や設計仕様により適宜決定されるものである。算出された推定吹き抜け量が所定値以上であると判定されると、続くステップ203に進む。   When the estimated blow-through amount is calculated in step 201, the process proceeds to the subsequent step 202, and ECU 100 determines whether or not the calculated estimated blow-through amount is equal to or greater than a predetermined value. Here, the predetermined value is appropriately determined depending on the operating state and design specifications. If it is determined that the calculated estimated blow-by amount is equal to or greater than a predetermined value, the process proceeds to step 203.

三元触媒21は理論空燃比付近で浄化率が高く、排気エミッションの悪化を抑制するためには、三元触媒雰囲気の空燃比を理論空燃比に制御する必要がある。先に述べたように、バルブオーバーラップ期間中の空気の吹き抜け量が過度に多い場合であって、三元触媒21の排気浄化性能を維持すべく、燃焼室内の混合気の空燃比を調整することのみにより三元触媒雰囲気の空燃比を理論空燃比に維持するように制御する場合においては、燃焼室の混合気が過リッチ空燃比に制御されることになり、このことは、燃費の悪化、更には、失火というような内燃機関性能上の問題をもたらす可能性がある。   The three-way catalyst 21 has a high purification rate in the vicinity of the stoichiometric air-fuel ratio, and it is necessary to control the air-fuel ratio of the three-way catalyst atmosphere to the stoichiometric air-fuel ratio in order to suppress the deterioration of exhaust emission. As described above, the air-fuel ratio in the combustion chamber is adjusted in order to maintain the exhaust purification performance of the three-way catalyst 21 when the amount of air blown during the valve overlap period is excessively large. In the case where the air-fuel ratio of the three-way catalyst atmosphere is controlled to be maintained at the stoichiometric air-fuel ratio only by this, the air-fuel ratio in the combustion chamber is controlled to an over-rich air-fuel ratio. Furthermore, there is a possibility of causing an internal combustion engine performance problem such as misfire.

このことに基づいて、ステップ203においては、算出された推定吹き抜け量が所定値以上であると判定され場合、すなわちバルブオーバーラップ期間中に燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量が多いと判定された場合には、算出された推定吹き抜け量に基づいて、三元触媒雰囲気の空燃比を理論空燃比に制御しうる所定の空燃比に排気空燃比を制御するのに必要なバルブオーバーラップ期間中のポート噴射によるポート噴射燃料量が算出され、三元触媒雰囲気の空燃比を理論空燃比に制御するためのバルブオーバーラップ期間中のポート噴射が実行される。これにより、バルブオーバーラップ期間中の「吹き抜け」を利用してポート噴射弁から噴射された燃料を排気系に供給することができ、バルブオーバーラップ期間中の空気の吹き抜け量が過度に多い場合であっても燃焼室の混合気を過リッチ空燃比状態に制御することなく、三元触媒雰囲気の空燃比を理論空燃比に制御することが可能となる。   Based on this, in step 203, when it is determined that the calculated estimated blow-through amount is equal to or greater than a predetermined value, that is, among the fuel supplied to the combustion chamber during the valve overlap period, it contributes to combustion. If it is determined that the amount of fuel blown through the exhaust system is large, the exhaust air-fuel ratio is set to a predetermined air-fuel ratio that can control the air-fuel ratio of the three-way catalyst atmosphere to the stoichiometric air-fuel ratio based on the calculated estimated blow-through amount. Port injection fuel amount by port injection during valve overlap period required to control the engine is calculated, and port injection during valve overlap period is executed to control the air-fuel ratio of the three-way catalyst atmosphere to the theoretical air-fuel ratio Is done. As a result, the fuel injected from the port injection valve can be supplied to the exhaust system using “blow-off” during the valve overlap period, and the amount of air blow-off during the valve overlap period is excessively large. Even in such a case, the air-fuel ratio of the three-way catalyst atmosphere can be controlled to the stoichiometric air-fuel ratio without controlling the air-fuel mixture in the combustion chamber to the over-rich air-fuel ratio state.

好適には、燃焼室内の混合気の空燃比は、筒内噴射弁32による筒内噴射により最も燃料効率の良い空燃比に制御される。   Preferably, the air-fuel ratio of the air-fuel mixture in the combustion chamber is controlled to the most fuel-efficient air-fuel ratio by in-cylinder injection by the in-cylinder injection valve 32.

ステップ202において、算出された推定吹き抜け量が所定値未満であり所定値以上にないと判定された場合には、すなわちバルブオーバーラップ期間中に燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量が少ないと判定された場合には、バルブオーバーラップ期間中の空気の吹き抜け量が少なく、三元触媒の排気浄化性能を維持すべく、燃焼室内の混合気の空燃比を調整することのみにより三元触媒雰囲気の空燃比を理論空燃比に維持するように制御したとしても、失火をもたらすことがないような適度なリッチ空燃比に燃焼室内の混合気の空燃比を調整することで三元触媒雰囲気の空燃比を理論空燃比に維持することが可能である。つまり、吹き抜け量が少ない場合には、燃焼室内の混合気の空燃比を調整することのみにより三元触媒雰囲気の空燃比を理論空燃比に維持するように制御したとしても、燃焼室内の混合気の空燃比を過リッチ空燃比に制御することなく、三元触媒雰囲気の空燃比を理論空燃比に制御しうる。   In step 202, when it is determined that the calculated estimated blow-through amount is less than the predetermined value and not more than the predetermined value, that is, among the fuel supplied to the combustion chamber during the valve overlap period, it contributes to combustion. When it is determined that the amount of fuel blown through the exhaust system is small, the air blow-off amount during the valve overlap period is small, and the air-fuel mixture in the combustion chamber is emptied to maintain the exhaust purification performance of the three-way catalyst. Even if the air-fuel ratio of the three-way catalyst atmosphere is maintained at the stoichiometric air-fuel ratio only by adjusting the fuel ratio, the air-fuel ratio of the air-fuel mixture in the combustion chamber is set to an appropriate rich air-fuel ratio that does not cause misfire. By adjusting the air-fuel ratio, it is possible to maintain the air-fuel ratio of the three-way catalyst atmosphere at the stoichiometric air-fuel ratio. That is, when the blow-through amount is small, even if the air-fuel ratio of the three-way catalyst atmosphere is controlled to be maintained at the stoichiometric air-fuel ratio only by adjusting the air-fuel ratio of the air-fuel mixture in the combustion chamber, It is possible to control the air-fuel ratio of the three-way catalyst atmosphere to the stoichiometric air-fuel ratio without controlling the air-fuel ratio to an over-rich air-fuel ratio.

そこで、ステップ202において、算出された推定吹き抜け量が所定値以上にないと判定された場合には、すなわち、算出された推定吹き抜け量が所定値未満であると判定された場合には、ステップ204に進み、バルブオーバーラップ期間中の吹き抜けを利用した排気系への燃料供給のためのポート噴射が禁止される。これにより、オーバーラップ期間中のポート噴射による過剰な排気系への燃料供給を低減でき、燃料消費の向上を図ることが可能となる。   Therefore, if it is determined in step 202 that the calculated estimated blow-through amount is not greater than or equal to the predetermined value, that is, if it is determined that the calculated estimated blow-through amount is less than the predetermined value, step 204 Then, port injection for fuel supply to the exhaust system using the blow-through during the valve overlap period is prohibited. As a result, excessive fuel supply to the exhaust system due to port injection during the overlap period can be reduced, and fuel consumption can be improved.

次に、図1に示された基本的なハード構成を有する本発明の実施の形態において、排気空燃比を所定の空燃比に制御するための燃料噴射制御の第二の実施形態について説明する。第二の実施形態は、排気空燃比を、過給圧を上昇させ加速性能を向上させるべく追加点火補助装置43により燃料を排気管で燃焼させることが可能な所定の空燃比に制御するものであるが、これに限られることはなく、例えば、排気浄化触媒に流入する排気の空燃比を所定の空燃比に制御するものとされてもよい。   Next, a second embodiment of the fuel injection control for controlling the exhaust air-fuel ratio to a predetermined air-fuel ratio in the embodiment of the present invention having the basic hardware configuration shown in FIG. 1 will be described. In the second embodiment, the exhaust air-fuel ratio is controlled to a predetermined air-fuel ratio that allows the fuel to be burned in the exhaust pipe by the additional ignition auxiliary device 43 in order to increase the boost pressure and improve the acceleration performance. However, the present invention is not limited to this. For example, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst may be controlled to a predetermined air-fuel ratio.

ポート噴射により噴射する燃料量は、実際に燃料が噴射されるタイミングの前に算出されることが一般的である。そのために、ポート噴射により噴射する燃料量が算出された際の運転状態と、実際に燃料噴射された際の運転状態とが異なる場合があり、ポート噴射により噴射する燃料量を算出する際に使用された吹き抜け量となる推定吹き抜け量と、実際にポート噴射が実行された際の実際の吹き抜け量となる実吹き抜け量とに差がある場合がある。   In general, the amount of fuel injected by port injection is calculated before the timing of actual fuel injection. For this reason, the operating state when the amount of fuel injected by port injection is calculated may differ from the operating state when the fuel is actually injected, and is used when calculating the amount of fuel injected by port injection. There may be a difference between the estimated blow-through amount that is the blow-through amount and the actual blow-through amount that is the actual blow-through amount when the port injection is actually executed.

このことに基づいて、第二の実施形態では、ポート噴射により噴射する燃料量を算出する際に使用される、バルブオーバーラップ期間中に燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量と、バルブオーバーラップ期間中に燃焼室に供給された燃料のうちで燃焼に寄与することなく実際に吹き抜けた燃料量となる実吹き抜け量との差に基づいて、筒内噴射による補正燃料噴射が実行される。   Based on this, the second embodiment contributes to combustion among the fuel supplied to the combustion chamber during the valve overlap period used when calculating the amount of fuel injected by port injection. The difference between the estimated blow-through amount, which is the amount of fuel blown into the exhaust system without any difference, and the actual blow-through amount, which is the amount of fuel actually blown out without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period Based on the above, corrected fuel injection by in-cylinder injection is executed.

これにより、ポート噴射により噴射する燃料量を算出する際に使用された推定吹き抜け量と実際の実吹き抜け量との差があり、バルブオーバーラップ期間中の吹き抜けを利用したポート噴射による排気系への燃料供給量が、過給圧を上昇させ加速性能を向上させるべく追加点火補助装置43により燃料を排気管で燃焼させることが可能な所定の空燃比に排気空燃比を制御するために必要な所望の量よりも不足した場合でも、その不足分を筒内噴射による補正燃料噴射により補うことができ、排気空燃比を精度良く所定の空燃比に制御することが可能となる。   As a result, there is a difference between the estimated blow-through amount used when calculating the amount of fuel injected by port injection and the actual actual blow-through amount, and the exhaust to the exhaust system by port injection using the blow-through during the valve overlap period. Desired necessary for controlling the exhaust air / fuel ratio to a predetermined air / fuel ratio at which the fuel can be burned in the exhaust pipe by the additional ignition auxiliary device 43 in order to increase the boost pressure and improve the acceleration performance. Even when the amount is insufficient, the shortage can be compensated by correction fuel injection by in-cylinder injection, and the exhaust air-fuel ratio can be accurately controlled to a predetermined air-fuel ratio.

尚、推定吹き抜け量は、排気空燃比が所定の空燃比よりもリーン側に制御されるべく、算出されるように設定されてもよい。筒内噴射による補正燃料噴射においては、所定の空燃比よりもリーン側にある排気空燃比を排気中に燃料を供給することにより所定の空燃比に制御することは可能であるが、所定の空燃比よりもリッチ側にある排気空燃比を所定の空燃比に制御することはできない。推定吹き抜け量が、排気空燃比が所定の空燃比よりもリーン側に制御されるべく、算出されるように設定される場合には、排気空燃比は、所定の空燃比よりもリッチ側に制御されることはなく、常に所定の空燃比よりもリーン側に制御されることになるため、筒内噴射による補正燃料噴射を常に有効に利用することができ、より確実に排気空燃比を所定の空燃比に維持する制御が可能となる。   The estimated blow-through amount may be set so as to be calculated so that the exhaust air-fuel ratio is controlled to be leaner than the predetermined air-fuel ratio. In corrected fuel injection by in-cylinder injection, the exhaust air / fuel ratio that is leaner than the predetermined air / fuel ratio can be controlled to a predetermined air / fuel ratio by supplying fuel into the exhaust gas. The exhaust air-fuel ratio that is richer than the fuel ratio cannot be controlled to a predetermined air-fuel ratio. When the estimated blow-through amount is set to be calculated so that the exhaust air-fuel ratio is controlled to be leaner than the predetermined air-fuel ratio, the exhaust air-fuel ratio is controlled to be richer than the predetermined air-fuel ratio. Therefore, the corrected fuel injection by the in-cylinder injection can always be effectively used, and the exhaust air / fuel ratio can be more reliably set to the predetermined air / fuel ratio. Control to maintain the air-fuel ratio becomes possible.

図3は、排気空燃比を所定の空燃比に制御するための第二の実施形態の燃料噴射制御のフローチャートである。   FIG. 3 is a flowchart of the fuel injection control according to the second embodiment for controlling the exhaust air-fuel ratio to a predetermined air-fuel ratio.

まず、ステップ301において、ポート噴射により噴射する燃料量を算出する際に使用される、吹き抜け量すなわちバルブオーバーラップ期間中に燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量が算出される。該推定吹き抜け量の算出にあっては、図2に示す第一の実施形態のフローチャートのステップ201の説明の中で述べたのと同様の推定吹き抜け量算出手段により算出される。よって、ここでの推定吹き抜け量の算出方法についての説明は省略する。   First, in step 301, the amount of fuel to be injected by port injection, which is used when calculating the amount of fuel blown through, that is, the fuel supplied to the combustion chamber during the valve overlap period, is made into the exhaust system without contributing to combustion. An estimated blow-through amount that is the amount of fuel blown through is calculated. The estimated blow-through amount is calculated by an estimated blow-through amount calculation unit similar to that described in the description of step 201 in the flowchart of the first embodiment shown in FIG. Therefore, the description about the calculation method of the estimated blow-through amount here is abbreviate | omitted.

ステップ301において推定吹き抜け量が算出されると、続くステップ302に進む。ステップ302においては、算出された推定吹き抜け量に基づいて、過給圧を上昇させ加速性能を向上させるべく追加点火補助装置43により燃料を排気管で燃焼させることが可能な所定の空燃比に排気空燃比を制御するために必要なバルブオーバーラップ期間中のポート噴射によるポート噴射燃料量が算出され、バルブオーバーラップ期間中のポート噴射による排気空燃比制御が実行される。ステップ302においてポート噴射が実行されると、続くステップ303に進む。   When the estimated blow-through amount is calculated in step 301, the process proceeds to subsequent step 302. In step 302, based on the calculated estimated blow-through amount, the additional ignition auxiliary device 43 exhausts the fuel to a predetermined air-fuel ratio that can be burned in the exhaust pipe in order to increase the boost pressure and improve the acceleration performance. A port injection fuel amount by port injection during the valve overlap period necessary for controlling the air-fuel ratio is calculated, and exhaust air-fuel ratio control by port injection during the valve overlap period is executed. When port injection is executed at step 302, the routine proceeds to the subsequent step 303.

ステップ303においては、バルブオーバーラップ期間中に燃焼室に供給された燃料のうちで燃焼に寄与することなく実際に吹き抜けた燃料量となる実吹き抜け量が算出される。該実吹き抜け量は、推定吹き抜け量を算出する推定吹き抜け量算出手段と同様に、吸気圧力、排気圧力、機関回転数、吸入空気量およびバルブオーバーラップ期間などに基づいて吹き抜け量を算出するマップであって、予め実験や解析評価などのデータに基づいて作成された吹き抜け量マップを使用してECU100により算出される。   In step 303, an actual blow-through amount that is the amount of fuel actually blown out without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period is calculated. The actual blow-through amount is a map for calculating the blow-through amount based on the intake pressure, the exhaust pressure, the engine speed, the intake air amount, the valve overlap period, and the like, similarly to the estimated blow-through amount calculating means for calculating the estimated blow-through amount. Thus, the ECU 100 uses the blow-through amount map created in advance based on data such as experiments and analysis evaluations.

従って、バルブオーバーラップ期間中に燃焼室に供給された燃料のうちで燃焼に寄与することなく実際に吹き抜けた燃料量となる実吹き抜け量を算出する実吹き抜け量算出手段は、推定吹き抜け量算出手段と略同様のものとなる。つまり、実吹き抜け量算出手段は、エアフローメータ51、クランク角センサ52、吸気圧センサ54、排気圧センサ55、吸気弁タイミング調整装置70、排気弁タイミング調整装置80、吹き抜け量算出マップおよびECU100を有して構成される。   Therefore, the actual blow-through amount calculating means for calculating the actual blow-through amount that is the amount of fuel actually blown out without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period is the estimated blow-through amount calculation means. It will be almost the same. That is, the actual blow-through amount calculation means includes the air flow meter 51, the crank angle sensor 52, the intake pressure sensor 54, the exhaust pressure sensor 55, the intake valve timing adjustment device 70, the exhaust valve timing adjustment device 80, the blow-through amount calculation map, and the ECU 100. Configured.

但し、推定吹き抜け量はポート噴射により噴射する燃料量を算出する際の吸気圧力や排気圧力などに基づいて算出されるのに対して、実吹き抜け量は、実際にポート噴射された際の吸気圧力や排気圧力などに基づいて算出されることになる点で異なる構成となる。   However, the estimated blow-through amount is calculated based on the intake pressure or exhaust pressure when calculating the amount of fuel injected by port injection, whereas the actual blow-through amount is the intake pressure when actually performing port injection. It is different in that it is calculated based on the exhaust pressure or the like.

ステップ303において実吹き抜け量が算出されると、続くステップ304に進む。ステップ304においては、推定吹き抜け量と実吹き抜け量との差に基づいて、筒内噴射による補正燃料噴射が実行される。   When the actual blow-through amount is calculated in step 303, the process proceeds to subsequent step 304. In step 304, correction fuel injection by in-cylinder injection is executed based on the difference between the estimated blow-through amount and the actual blow-through amount.

図4は、筒内噴射による補正燃料噴射の一実施形態を示すタイムチャート図である。図4に示される実施形態においては便宜上、4気筒内燃機関に本発明の制御装置を適用した場合について説明するが、本発明は6気筒あるいは8気筒などの多気筒内燃機関にも適用可能である。また、図4に示される実施形態においては、♯1気筒、♯3気筒、♯4気筒、♯2気筒の順に吸気行程が行われ場合の実施形態が示されているが、これに限定されることはない。   FIG. 4 is a time chart showing one embodiment of corrected fuel injection by in-cylinder injection. In the embodiment shown in FIG. 4, the case where the control device of the present invention is applied to a four-cylinder internal combustion engine will be described for convenience. However, the present invention can also be applied to a multi-cylinder internal combustion engine such as a six-cylinder or an eight-cylinder. . In the embodiment shown in FIG. 4, an embodiment in which the intake stroke is performed in the order of the # 1, # 3, # 4, and # 2 cylinders is shown, but the embodiment is limited to this. There is nothing.

図4に示される実施形態においては、まず、第1気筒のバルブオーバーラップ期間にかかる前の排気行程の所定の時点で、バルブオーバーラップ期間中の推定吹き抜け量が算出され、該推定吹き抜け量に基づいてバルブオーバーラップ期間中に噴射されるポート噴射燃料量が算出される。次に、第1気筒がバルブオーバーラップ期間に入ると、算出されたポート噴射燃料量の燃料がポート噴射により噴射される。次に、実際にポート噴射された際の吸気圧力や排気圧力などに基づいて実吹き抜け量が算出される。そして、推定吹き抜け量と実吹き抜け量との差に基づいて、排気行程中にある第3気筒における筒内噴射による補正燃料噴射が実行される。   In the embodiment shown in FIG. 4, first, at a predetermined point in the exhaust stroke before the valve overlap period of the first cylinder, the estimated blow-through amount during the valve overlap period is calculated, and the estimated blow-through amount is calculated. Based on this, the amount of port injection fuel injected during the valve overlap period is calculated. Next, when the first cylinder enters the valve overlap period, fuel of the calculated port injection fuel amount is injected by port injection. Next, the actual blow-through amount is calculated based on the intake pressure, the exhaust pressure, etc. when the port injection is actually performed. Based on the difference between the estimated blow-through amount and the actual blow-through amount, the corrected fuel injection is performed by in-cylinder injection in the third cylinder in the exhaust stroke.

第3気筒は、第1気筒が吸気行程にある際に排気行程にあり、該排気行程において筒内噴射を実行することにより、排気系に燃料を供給することでき、推定吹き抜け量と実吹き抜け量との差があった場合においても、排気空燃比を所定の空燃比に制御することが可能となる。   The third cylinder is in the exhaust stroke when the first cylinder is in the intake stroke, and by performing in-cylinder injection in the exhaust stroke, fuel can be supplied to the exhaust system, and the estimated blow-through amount and the actual blow-through amount Even if there is a difference, the exhaust air-fuel ratio can be controlled to a predetermined air-fuel ratio.

尚、図4に示された一実施形態においは、第3気筒の排気行程で補正燃料噴射を実行することが示されているが膨張行程で補正燃料噴射が実行されてもよい。また、バルブオーバーラップ期間後の第1気筒の吸気行程においては、筒内噴射により最も燃焼効率の良い空燃比に燃焼室内の混合気の空燃比が制御される。   In the embodiment shown in FIG. 4, it is shown that the corrected fuel injection is executed in the exhaust stroke of the third cylinder, but the corrected fuel injection may be executed in the expansion stroke. Further, in the intake stroke of the first cylinder after the valve overlap period, the air-fuel ratio of the air-fuel mixture in the combustion chamber is controlled to the air-fuel ratio with the best combustion efficiency by in-cylinder injection.

次に、図1に示された基本的なハード構成を有する本発明の実施の形態において、排気空燃比を所定の空燃比に制御するための燃料噴射制御の第三の実施形態について説明する。   Next, a third embodiment of the fuel injection control for controlling the exhaust air-fuel ratio to a predetermined air-fuel ratio in the embodiment of the present invention having the basic hardware configuration shown in FIG. 1 will be described.

図5は、排気空燃比を所定の空燃比に制御するための第三の実施形態の燃料噴射制御のフローチャートである。図5に示されたフローチャートにおけるステップ401からステップ404のそれぞれは、図2に示されたステップ201からステップ204に対応する。また、ステップ405およびステップ406のそれぞれは、図3に示されたフローチャートに示されたステップ303およびステップ304に対応する。   FIG. 5 is a flowchart of fuel injection control of the third embodiment for controlling the exhaust air-fuel ratio to a predetermined air-fuel ratio. Each of step 401 to step 404 in the flowchart shown in FIG. 5 corresponds to step 201 to step 204 shown in FIG. Step 405 and step 406 respectively correspond to step 303 and step 304 shown in the flowchart shown in FIG.

図5に示された排気空燃比を所定の空燃比に制御するための第三の実施形態の燃料噴射制御では、排気空燃比を所定の空燃比に制御するために、バルブオーバーラップ期間中の推定吹き抜け量に基づいてポート噴射を実行するか否かを決定し、且つ、推定吹き抜け量と実吹き抜け量との差に基づいて筒内噴射による補正燃料噴射が実行されるものである。
これにより、バルブオーバーラップ期間中の「吹き抜け」を利用してポート噴射弁から噴射された燃料を排気系に供給することができ、バルブオーバーラップ期間中の空気の吹き抜け量が過度に多い場合であっても燃焼室の混合気を過リッチ空燃比状態に制御することなく、三元触媒雰囲気の空燃比を理論空燃比に制御することが可能となる。また、オーバーラップ期間中のポート噴射による過剰な排気系への燃料供給を低減でき、燃料消費の向上を図ることが可能となる。更に、ポート噴射により噴射する燃料量を算出する際に使用された吹き抜け量と実際の吹き抜け量との差があった場合でも、筒内噴射による補正燃料噴射を実行することで、所定の空燃比に排気空燃比を精度良く制御することが可能となる。
In the fuel injection control of the third embodiment for controlling the exhaust air-fuel ratio shown in FIG. 5 to a predetermined air-fuel ratio, in order to control the exhaust air-fuel ratio to a predetermined air-fuel ratio, during the valve overlap period Whether or not to perform port injection is determined based on the estimated blow-through amount, and corrected fuel injection by in-cylinder injection is performed based on the difference between the estimated blow-through amount and the actual blow-through amount.
As a result, the fuel injected from the port injection valve can be supplied to the exhaust system using “blow-off” during the valve overlap period, and the amount of air blow-off during the valve overlap period is excessively large. Even in such a case, it is possible to control the air-fuel ratio of the three-way catalyst atmosphere to the stoichiometric air-fuel ratio without controlling the air-fuel mixture in the combustion chamber to the over-rich air-fuel ratio state. Further, it is possible to reduce the fuel supply to the exhaust system due to the port injection during the overlap period, and to improve the fuel consumption. Further, even when there is a difference between the blow-through amount used when calculating the fuel amount to be injected by the port injection and the actual blow-through amount, the corrected fuel injection by the in-cylinder injection is executed, so that a predetermined air-fuel ratio is obtained. In addition, the exhaust air / fuel ratio can be accurately controlled.

以上、本発明の内燃機関の制御装置においては、排気圧力に比べて吸気圧力が高い機関運転領域におけるバルブオーバーラップ期間中にポート噴射弁から燃料を噴射し、該バルブオーバーラップ期間にもたらされる「吹き抜け」を利用して、噴射された燃料を排気系に供給し、排気空燃比を所定の空燃比に制御することを主たる特徴とする。   As described above, in the control apparatus for an internal combustion engine according to the present invention, fuel is injected from the port injection valve during the valve overlap period in the engine operation region where the intake pressure is higher than the exhaust pressure, and is brought about during the valve overlap period. The main feature is that the injected fuel is supplied to the exhaust system using the “blow-through”, and the exhaust air-fuel ratio is controlled to a predetermined air-fuel ratio.

本発明の各実施の形態に共通のハード構成を示す図である。It is a figure which shows the hardware constitutions common to each embodiment of this invention. 排気空燃比を所定の空燃比に制御するための第一の実施形態の燃料噴射制御のフローチャートである。3 is a flowchart of fuel injection control according to the first embodiment for controlling the exhaust air-fuel ratio to a predetermined air-fuel ratio. 排気空燃比を所定の空燃比に制御するための第二の実施形態の燃料噴射制御のフローチャートである。6 is a flowchart of fuel injection control according to a second embodiment for controlling an exhaust air-fuel ratio to a predetermined air-fuel ratio. 筒内噴射による補正燃料噴射の一実施形態を示すタイムチャート図である。It is a time chart figure showing one embodiment of correction fuel injection by in-cylinder injection. 排気空燃比を所定の空燃比に制御するための第三の実施形態の燃料噴射制御のフローチャートである。It is a flowchart of fuel injection control of 3rd embodiment for controlling an exhaust air fuel ratio to a predetermined air fuel ratio.

符号の説明Explanation of symbols

5 吸気ポート
6 排気ポート
7 吸気弁
8 排気弁
10 吸気管
20 排気管
21 三元触媒
31 ポート噴射弁
32 筒内噴射弁
40 点火栓
51 エアフローメータ
52 クランク角センサ
54 吸気圧センサ
55 排気圧センサ
70 吸気弁タイミング調整装置
80 排気弁タイミング調整装置
90 過給機
100 ECU
DESCRIPTION OF SYMBOLS 5 Intake port 6 Exhaust port 7 Intake valve 8 Exhaust valve 10 Intake pipe 20 Exhaust pipe 21 Three way catalyst 31 Port injection valve 32 In-cylinder injection valve 40 Spark plug 51 Air flow meter 52 Crank angle sensor 54 Intake pressure sensor 55 Exhaust pressure sensor 70 Intake valve timing adjustment device 80 Exhaust valve timing adjustment device 90 Supercharger 100 ECU

Claims (3)

燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、前記ポート噴射弁と前記筒内噴射弁とから運転状態に応じて燃料を噴射する内燃機関であって、吸気弁と排気弁とがともに開いているバルブオーバーラップ期間を有する内燃機関の制御装置において、
排気圧力に比べて吸気圧力が高い機関運転領域における前記バルブオーバーラップ期間中に、少なくとも前記ポート噴射弁により燃料を噴射する、
ことを特徴とする内燃機関の制御装置。
An internal combustion engine that includes a port injection valve that injects fuel into an intake port and an in-cylinder injection valve that injects fuel into a combustion chamber, and injects fuel from the port injection valve and the in-cylinder injection valve in accordance with an operating state. In a control device for an internal combustion engine having a valve overlap period in which an intake valve and an exhaust valve are both open,
Fuel is injected by at least the port injection valve during the valve overlap period in the engine operation region where the intake pressure is higher than the exhaust pressure.
A control device for an internal combustion engine.
前記バルブオーバーラップ期間中に前記燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量を算出する推定吹き抜け量算出手段を有し、
前記推定吹き抜け量算出手段により算出された推定吹き抜け量が所定値未満の場合には、前記バルブオーバーラップ期間中に前記ポート噴射弁により燃料を噴射することを禁止する、
ことを特徴とする請求項1に記載の内燃機関の制御装置。
An estimated blow-through amount calculating means for calculating an estimated blow-through amount that is the amount of fuel blown into the exhaust system without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period;
When the estimated blow-through amount calculated by the estimated blow-through amount calculating means is less than a predetermined value, it is prohibited to inject fuel by the port injection valve during the valve overlap period.
The control apparatus for an internal combustion engine according to claim 1.
前記バルブオーバーラップ期間中に前記燃焼室に供給される燃料のうちで燃焼に寄与することなく排気系に吹き抜ける燃料量となる推定吹き抜け量を算出する推定吹き抜け量算出手段と、
前記バルブオーバーラップ期間中に前記燃焼室に供給された燃料のうちで燃焼に寄与することなく実際に吹き抜けた燃料量となる実吹き抜け量を算出する実吹き抜け量算出手段とを有し、
前記推定吹き抜け量算出手段により算出された推定吹き抜け量と前記実吹き抜け量算出手段により算出された実吹き抜け量との差に基づいて、前記筒内噴射弁により燃料を噴射する筒内噴射による補正燃料噴射が実行される、ことを特徴とする請求項1または請求項2に記載の内燃機関の制御装置。
Estimated blow-through amount calculating means for calculating an estimated blow-through amount that becomes the amount of fuel blown into the exhaust system without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period;
An actual blow-through amount calculating means for calculating an actual blow-through amount that is the amount of fuel actually blown out without contributing to combustion among the fuel supplied to the combustion chamber during the valve overlap period;
Corrected fuel by in-cylinder injection in which fuel is injected by the in-cylinder injection valve based on the difference between the estimated blow-through amount calculated by the estimated blow-through amount calculation means and the actual blow-through amount calculated by the actual blow-through amount calculation means The control apparatus for an internal combustion engine according to claim 1 or 2, wherein injection is performed.
JP2006284808A 2006-10-19 2006-10-19 Control device for internal combustion engine Pending JP2008101540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284808A JP2008101540A (en) 2006-10-19 2006-10-19 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284808A JP2008101540A (en) 2006-10-19 2006-10-19 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008101540A true JP2008101540A (en) 2008-05-01

Family

ID=39436059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284808A Pending JP2008101540A (en) 2006-10-19 2006-10-19 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008101540A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080362A1 (en) * 2011-12-01 2013-06-06 トヨタ自動車株式会社 Control device for internal combustion engine
JP2013189951A (en) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd Control device for internal combustion engine
EP2781726A4 (en) * 2011-11-18 2016-05-25 Mitsubishi Motors Corp Internal combustion engine control device
JP5967296B2 (en) * 2013-04-09 2016-08-10 トヨタ自動車株式会社 Control device for internal combustion engine
JP2017057760A (en) * 2015-09-15 2017-03-23 トヨタ自動車株式会社 Internal combustion engine control device
WO2017097615A1 (en) * 2015-12-10 2017-06-15 Robert Bosch Gmbh Method for operating an internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781726A4 (en) * 2011-11-18 2016-05-25 Mitsubishi Motors Corp Internal combustion engine control device
US9574513B2 (en) 2011-11-18 2017-02-21 Mitsubishi Jisdosha Kogyo Kabushiki Kaisha Control unit for internal combustion engine
WO2013080362A1 (en) * 2011-12-01 2013-06-06 トヨタ自動車株式会社 Control device for internal combustion engine
JP2013189951A (en) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd Control device for internal combustion engine
JP5967296B2 (en) * 2013-04-09 2016-08-10 トヨタ自動車株式会社 Control device for internal combustion engine
JP2017057760A (en) * 2015-09-15 2017-03-23 トヨタ自動車株式会社 Internal combustion engine control device
WO2017097615A1 (en) * 2015-12-10 2017-06-15 Robert Bosch Gmbh Method for operating an internal combustion engine
CN108291492A (en) * 2015-12-10 2018-07-17 罗伯特·博世有限公司 Method for running internal combustion engine
US10519892B2 (en) 2015-12-10 2019-12-31 Robert Bosch Gmbh Method for operating an internal combustion engine
CN108291492B (en) * 2015-12-10 2022-04-26 罗伯特·博世有限公司 Method for operating an internal combustion engine

Similar Documents

Publication Publication Date Title
JP4475221B2 (en) engine
JP4244198B2 (en) Fuel injection control method for internal combustion engine
JP4085900B2 (en) Fuel injection control device for in-cylinder direct injection spark ignition engine
JP4706618B2 (en) Internal combustion engine
WO2019230406A1 (en) Control device of internal combustion engine and control method of internal combustion engine
JP2002089324A (en) Fuel injection control device of cylinder injection engine
JP2008101540A (en) Control device for internal combustion engine
JP4605512B2 (en) Control device for internal combustion engine
JP2008101502A (en) Control device of internal combustion engine with supercharger
US20160348606A1 (en) Control apparatus for internal combustion engine
JP5514601B2 (en) Control device for internal combustion engine
JP2006299992A (en) Control system of internal combustion engine
JP5867441B2 (en) Control device for internal combustion engine
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
JP4412216B2 (en) Engine control apparatus and control method
JP4930726B2 (en) Fuel injection device for internal combustion engine
JP2008297922A (en) Internal combustion engine controlling device
JP4438575B2 (en) Ignition timing control device for internal combustion engine
JP2009275694A (en) Control device for internal combustion engine
JP5348012B2 (en) Internal combustion engine
JP3189733B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
JP2010138720A (en) Ignition control device for engine
JP2006009704A (en) Fuel injection control device for cylinder injection internal combustion engine
JP2005188334A (en) Fuel injection control device for engine