JP2008298028A - Fuel injection control device of in cylinder injection type internal combustion engine - Google Patents

Fuel injection control device of in cylinder injection type internal combustion engine Download PDF

Info

Publication number
JP2008298028A
JP2008298028A JP2007147622A JP2007147622A JP2008298028A JP 2008298028 A JP2008298028 A JP 2008298028A JP 2007147622 A JP2007147622 A JP 2007147622A JP 2007147622 A JP2007147622 A JP 2007147622A JP 2008298028 A JP2008298028 A JP 2008298028A
Authority
JP
Japan
Prior art keywords
fuel injection
timing
valve
fuel
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007147622A
Other languages
Japanese (ja)
Inventor
Akinori Koda
晃典 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007147622A priority Critical patent/JP2008298028A/en
Publication of JP2008298028A publication Critical patent/JP2008298028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To reduce adhered fuel adhering to the top face of a piston and the inner wall face of a cylinder by preventing fluctuations of injection fuel due to an intake flow in a spray guide type in cylinder injection engine. <P>SOLUTION: The fuel injection timing of a fuel injection valve 19 is changed to the timing when the injection fuel is hardly affected by the intake flow in response to an intake valve timing (valve timing of air intake valve 35) which is changed owing to the operation of a variable valve timing device 36. Thereby even if conditions (timing of generation, strength or the like) for generating the intake flow in the cylinder are changed by a change in intake valve timing, the fuel injection timing is changed in response to the intake valve timing to set the fuel injection timing to the timing when the injection fuel is hardly affected by the intake flow (for example, after intake valve 35 closing timing). Thereby fluctuations in the injection shape of the injection fuel by the intake flow is prevented to effectively reduce the adhered fuel adhering to the top face 33 of the piston and the inner wall face 34 of the cylinder. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の燃焼室の略中心上方から燃料室内に燃料を直接噴射するスプレーガイド方式の筒内噴射式内燃機関の燃料噴射制御装置に関する発明である。   The present invention relates to a fuel injection control device for a spray guide type in-cylinder injection internal combustion engine that directly injects fuel into the fuel chamber from substantially above the center of the combustion chamber of the internal combustion engine.

従来の一般的な筒内噴射式内燃機関は、例えば、特許文献1(特開平9−280092号公報)に記載されているように、燃焼室の側方(吸気ポート近傍)から燃焼室内に燃料を直接噴射するように燃料噴射弁を配置し、この燃料噴射弁の噴射燃料をピストン頂面の凹部に衝突させて該凹部の内周壁によって噴射燃料をピストン上方へ案内するようにしている。このような噴射方式は、ウォールガイド方式と呼ばれている。   A conventional general in-cylinder internal combustion engine, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 9-280092), fuel is introduced into the combustion chamber from the side of the combustion chamber (near the intake port). The fuel injection valve is arranged so as to directly inject the fuel, and the fuel injected from the fuel injection valve collides with a recess on the top surface of the piston so that the injected fuel is guided upward by the inner peripheral wall of the recess. Such an injection method is called a wall guide method.

この特許文献1では、可変バルブタイミング装置の作動によって変化する吸気バルブのバルブタイミング(開閉タイミング)に応じて燃料噴射時期を変化させて、吸気バルブの閉弁タイミング付近よりも早く燃料噴射を終了させることで、吸気バルブの開弁期間中に吸気ポートから筒内に空気が吸入される際に発生する筒内の吸入空気流を利用して噴射燃料と吸入空気との混合を促進するようにしている。   In this patent document 1, the fuel injection timing is changed in accordance with the valve timing (opening / closing timing) of the intake valve that is changed by the operation of the variable valve timing device, and the fuel injection is terminated earlier than the vicinity of the intake valve closing timing. Therefore, the mixing of the injected fuel and the intake air is promoted by utilizing the intake air flow in the cylinder that is generated when the air is sucked into the cylinder from the intake port during the opening period of the intake valve. Yes.

ところで、燃料噴射弁の噴射燃料がピストン上面やシリンダ内壁面に付着すると、その付着燃料が未燃HCとして残留しやすくなるため、ピストン上面やシリンダ内壁面に付着する燃料(ウェット)が多いと、HC排出量が増加して排気エミッションが悪化する傾向がある。   By the way, when the fuel injected from the fuel injection valve adheres to the upper surface of the piston or the inner wall surface of the cylinder, the adhering fuel tends to remain as unburned HC. There is a tendency that exhaust emissions increase due to an increase in HC emissions.

この対策として、スプレーガイド方式の筒内噴射式内燃機関が開発されている。このスプレーガイド方式の筒内噴射式内燃機関は、特許文献2(特開2005−105877号公報)に記載されているように、燃焼室の略中心上方(点火プラグ近傍)から燃料室内に燃料を直接噴射するように燃料噴射弁を配置し、この燃料噴射弁の噴射燃料をピストン上面やシリンダ内壁面に衝突させないように燃料を緩やかに噴射することで、ピストン上面やシリンダ内壁面に付着する燃料を低減するようにしている。
特開平9−280092号公報 特開2005−105877号公報
As a countermeasure, a spray guide type in-cylinder internal combustion engine has been developed. As described in Patent Document 2 (Japanese Patent Laid-Open No. 2005-105877), this spray guide type in-cylinder injection internal combustion engine supplies fuel into the fuel chamber from substantially above the center of the combustion chamber (near the spark plug). Fuel adhering to the piston upper surface and cylinder inner wall surface by arranging the fuel injection valve so as to inject directly, and slowly injecting fuel so that the fuel injected from the fuel injection valve does not collide with the piston upper surface and cylinder inner wall surface Is trying to reduce.
JP-A-9-280092 JP 2005-105877 A

しかし、スプレーガイド方式の筒内噴射式内燃機関は、燃料噴射弁の噴射燃料がピストン上面やシリンダ内壁面に衝突しないように燃料の噴射力(貫徹力)が比較的弱く設定されているため、噴射燃料がピストン上面やシリンダ内壁面に衝突しないように燃料の噴霧角等が設定されていても、可変バルブタイミング装置の作動によって吸気バルブのバルブタイミング等が変化して燃料噴射期間中における筒内の吸入空気流が強くなると、その吸入空気流によって噴射燃料の噴霧形状が乱れてピストン上面やシリンダ内壁面に付着する燃料が増加して、排気エミッションが悪化してしまう可能性がある。   However, since the spray injection type in-cylinder internal combustion engine has a relatively low fuel injection force (penetration force) so that the fuel injected by the fuel injection valve does not collide with the piston upper surface or the cylinder inner wall surface, Even if the fuel spray angle is set so that the injected fuel does not collide with the upper surface of the piston or the inner wall surface of the cylinder, the valve timing of the intake valve changes due to the operation of the variable valve timing device. When the intake air flow becomes stronger, the spray shape of the injected fuel is disturbed by the intake air flow, and the fuel adhering to the upper surface of the piston or the inner wall surface of the cylinder may increase, and the exhaust emission may deteriorate.

尚、上記特許文献1の技術は、ウォールガイド方式の筒内噴射式内燃機関において、吸気バルブの閉弁タイミング付近よりも早く燃料噴射を終了させることで、吸気バルブの開弁期間中に発生する筒内の吸入空気流を利用して噴射燃料と吸入空気との混合を促進する技術であり、このウォールガイド方式の技術では、上述したスプレーガイド方式の筒内噴射式内燃機関における問題を解決することはできない。   The technique disclosed in Patent Document 1 occurs during the opening period of the intake valve in the wall guide type cylinder injection internal combustion engine by terminating the fuel injection earlier than the vicinity of the closing timing of the intake valve. This technique promotes the mixing of injected fuel and intake air by utilizing the intake air flow in the cylinder, and this wall guide technique solves the problems in the above-described spray guide type in-cylinder injection internal combustion engine. It is not possible.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、スプレーガイド方式の筒内噴射式内燃機関において、吸入空気流による噴射燃料の噴霧形状の乱れを防止することができて、付着燃料を効果的に低減することができる筒内噴射式内燃機関の燃料噴射制御装置を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is therefore to prevent the spray shape of the injected fuel from being disturbed by the intake air flow in a spray-guided direct injection internal combustion engine. An object of the present invention is to provide a fuel injection control device for a direct injection internal combustion engine that can reduce the amount of attached fuel effectively.

上記目的を達成するために、請求項1に係る発明は、内燃機関の吸気バルブ及び/又は排気バルブのバルブ開閉特性を変化させる可変バルブ装置と、燃焼室の略中心上方から燃料室内に燃料を直接噴射する燃料噴射弁とを備えたスプレーガイド方式の筒内噴射式内燃機関の燃料噴射制御装置において、燃料噴射時期制御手段によって可変バルブ装置の作動状態に応じて燃料噴射弁の燃料噴射時期を噴射燃料が吸入空気流の影響を受け難くなる時期に変化させるようにしたものである。   In order to achieve the above object, an invention according to claim 1 is directed to a variable valve device that changes the valve opening / closing characteristics of an intake valve and / or an exhaust valve of an internal combustion engine, and fuel to the fuel chamber from substantially above the center of the combustion chamber. In a fuel injection control device for a spray guide type in-cylinder injection internal combustion engine having a fuel injection valve for direct injection, the fuel injection timing of the fuel injection valve is determined by the fuel injection timing control means according to the operating state of the variable valve device. The injection fuel is changed at a time when it becomes difficult to be influenced by the intake air flow.

このようにすれば、可変バルブ装置の作動によるバルブ開閉特性の変化によって筒内の吸入空気流の発生状況(発生時期や強度等)が変化しても、バルブ開閉特性に応じて燃料噴射時期を変化させて、噴射燃料が吸入空気流の影響を受け難い時期に燃料噴射時期を設定することができる。これにより、吸入空気流による噴射燃料の噴霧形状の乱れを防止することができて、ピストン上面やシリンダ内壁面に付着する付着燃料を効果的に低減することができ、排気エミッションを向上させることができる。   In this way, even if the generation state (generation time, strength, etc.) of the intake air flow in the cylinder changes due to the change of the valve opening / closing characteristics due to the operation of the variable valve device, the fuel injection timing is set according to the valve opening / closing characteristics. By changing the fuel injection timing, it is possible to set the fuel injection timing when the injected fuel is hardly affected by the intake air flow. As a result, it is possible to prevent the spray shape of the injected fuel from being disturbed by the intake air flow, to effectively reduce the fuel adhering to the piston upper surface and the cylinder inner wall surface, and to improve the exhaust emission. it can.

本発明は、請求項2のように、バルブタイミングを変化させる可変バルブタイミング装置及び/又はバルブリフト量を変化させる可変バルブリフト装置を備えたシステムに適用すると良い。このようにすれば、可変バルブタイミング装置の作動によるバルブタイミングの変化や可変バルブリフト装置の作動によるバルブリフト量の変化によって吸入空気流の発生状況が変化しても、バルブタイミングやバルブリフト量に応じて燃料噴射時期を変化させて、噴射燃料が吸入空気流の影響を受け難い時期に燃料噴射時期を設定することができる。   The present invention is preferably applied to a system including a variable valve timing device that changes the valve timing and / or a variable valve lift device that changes the valve lift amount. In this way, even if the intake air flow is changed due to a change in the valve timing due to the operation of the variable valve timing device or a change in the valve lift amount due to the operation of the variable valve lift device, the valve timing or the valve lift amount is reduced. Accordingly, the fuel injection timing can be changed to set the fuel injection timing at a time when the injected fuel is hardly affected by the intake air flow.

また、可変バルブ装置の作動状態に応じて燃料噴射時期を変化させる際には、請求項3のように、燃料噴射開始時期が吸気バルブの閉弁タイミング以降になるように燃料噴射時期を設定するようにしても良い。このようにすれば、吸気バルブの閉弁後で筒内への空気の吸入が終了した後に燃料噴射を開始することができるため、噴射燃料が吸入空気流の影響をほとんど受けないようにすることができる。   Further, when the fuel injection timing is changed according to the operating state of the variable valve device, the fuel injection timing is set so that the fuel injection start timing is after the closing timing of the intake valve as in the third aspect. You may do it. In this way, since the fuel injection can be started after the intake of air into the cylinder is completed after the intake valve is closed, the injected fuel is hardly affected by the intake air flow. Can do.

尚、本発明は、燃料噴射開始時期が吸気バルブの閉弁タイミング以降になるように燃料噴射時期を設定するものに限定されず、噴射燃料が受ける吸入空気流の影響を無視できる程度に小さくできるのであれば、燃料噴射開始時期が吸気バルブの閉弁タイミングよりも少し早い時期になっても良い。   The present invention is not limited to setting the fuel injection timing so that the fuel injection start timing is after the intake valve closing timing, and can be made small enough to ignore the influence of the intake air flow received by the injected fuel. In this case, the fuel injection start timing may be slightly earlier than the intake valve closing timing.

また、本発明は、現在のバルブ開閉特性(バルブタイミングやバルブリフト量)をセンサ等で検出し、現在のバルブ開閉特性に応じて燃料噴射時期を算出するようにしても良いが、この場合、バルブ開閉特性が急速に変化する過渡時には、燃料噴射時期の演算タイミングから燃料噴射実行タイミングまでの間にバルブ開閉特性が変化するため、バルブ開閉特性の変化に応じた燃料噴射時期の制御に応答遅れが生じてしまう。   In the present invention, the current valve opening / closing characteristics (valve timing and valve lift amount) may be detected by a sensor or the like, and the fuel injection timing may be calculated according to the current valve opening / closing characteristics. When the valve opening / closing characteristics change rapidly, the valve opening / closing characteristics change between the calculation timing of the fuel injection timing and the fuel injection execution timing, so the response delays in controlling the fuel injection timing according to the change in the valve opening / closing characteristics. Will occur.

そこで、請求項4のように、可変バルブ装置の作動によって変化する将来のバルブ開閉特性をバルブ開閉特性予測手段により予測し、予測した将来のバルブ開閉特性に基づいて燃料噴射時期を算出するようにしても良い。このようにすれば、燃料噴射時期を演算する段階で、将来の燃料噴射実行時のバルブ開閉特性を予測して、その予測した燃料噴射実行時のバルブ開閉特性に応じた燃料噴射時期を算出することができるため、バルブ開閉特性が急速に変化する過渡時でも、バルブ開閉時期の変化に対して燃料噴射時期を応答良く変化させることができ、燃料噴射時期の制御精度を向上させることができる。   Therefore, as in claim 4, the future valve opening / closing characteristics that change due to the operation of the variable valve device are predicted by the valve opening / closing characteristics predicting means, and the fuel injection timing is calculated based on the predicted future valve opening / closing characteristics. May be. In this way, at the stage of calculating the fuel injection timing, the valve opening / closing characteristics at the time of future fuel injection execution are predicted, and the fuel injection timing according to the predicted valve opening / closing characteristics at the time of fuel injection execution is calculated. Therefore, even when the valve opening / closing characteristic changes rapidly, the fuel injection timing can be changed with good response to the change in the valve opening / closing timing, and the control accuracy of the fuel injection timing can be improved.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.

筒内噴射式の内燃機関である筒内噴射式エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、モータ14によって開度調節されるスロットルバルブ15が設けられている。更に、スロットルバルブ15の下流側には、サージタンク16が設けられ、このサージタンク16には、吸気管圧力を検出する吸気管圧力センサ17が設けられている。また、サージタンク16には、エンジン11の各気筒に空気を導入する吸気マニホールド18が設けられている。   An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the cylinder injection engine 11 which is a cylinder injection internal combustion engine, and a throttle valve whose opening degree is adjusted by a motor 14 on the downstream side of the air cleaner 13. 15 is provided. Further, a surge tank 16 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 17 for detecting the intake pipe pressure is provided in the surge tank 16. The surge tank 16 is provided with an intake manifold 18 that introduces air into each cylinder of the engine 11.

エンジン11のシリンダヘッドには、各気筒毎にそれぞれ燃料を筒内に直接噴射する燃料噴射弁19が取り付けられている。高圧燃料ポンプ21から吐出された燃料は、高圧燃料配管22を通してデリバリパイプ23に送られ、このデリバリパイプ23から各気筒の燃料噴射弁19に高圧の燃料が分配される。デリバリパイプ23には、燃料噴射弁19に供給される燃料の圧力を検出する燃圧センサ24が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎にそれぞれ点火プラグ20(図2参照)が取り付けられ、各点火プラグ20の火花放電によって筒内の混合気に着火される。   The cylinder head of the engine 11 is provided with a fuel injection valve 19 that directly injects fuel into the cylinder for each cylinder. The fuel discharged from the high-pressure fuel pump 21 is sent to the delivery pipe 23 through the high-pressure fuel pipe 22, and the high-pressure fuel is distributed from the delivery pipe 23 to the fuel injection valve 19 of each cylinder. A fuel pressure sensor 24 that detects the pressure of the fuel supplied to the fuel injection valve 19 is attached to the delivery pipe 23. Further, a spark plug 20 (see FIG. 2) is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 20.

図2に示すように、本実施例の筒内噴射式エンジン11は、スプレーガイド方式の筒内噴射式エンジンであり、燃焼室32の略中心上方(点火プラグ20の近傍)に配置れた燃料噴射弁19から燃料室32内に燃料を直接噴射し、この燃料噴射弁19の噴射燃料をピストン上面33やシリンダ内壁面34に衝突させないように燃料を緩やかに噴射することで、ピストン上面33やシリンダ内壁面34に付着する燃料を低減するようにしている。更に、筒内噴射式エンジン11には、吸気バルブ35のバルブタイミング(開閉タイミング)を変化させる可変バルブタイミング装置36が設けられている。   As shown in FIG. 2, the in-cylinder injection engine 11 of this embodiment is a spray-guided in-cylinder injection engine, and is a fuel disposed approximately above the center of the combustion chamber 32 (near the spark plug 20). By directly injecting fuel into the fuel chamber 32 from the injection valve 19 and slowly injecting the fuel from the fuel injection valve 19 so as not to collide with the piston upper surface 33 or the cylinder inner wall surface 34, the piston upper surface 33 or The fuel adhering to the cylinder inner wall surface 34 is reduced. Further, the in-cylinder injection engine 11 is provided with a variable valve timing device 36 that changes the valve timing (opening / closing timing) of the intake valve 35.

一方、図1に示すように、エンジン11の排気管25には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ26(空燃比センサ、酸素センサ等)が設けられている。排気管25のうちの排出ガスセンサ26の上流側と吸気管12のうちのスロットルバルブ15の下流側のサージタンク16との間に、排出ガスの一部を吸気側に還流させるためのEGR配管27が接続され、このEGR配管27の途中に排出ガス還流量(EGR量)を調整するEGR弁28が設けられている。   On the other hand, as shown in FIG. 1, the exhaust pipe 25 of the engine 11 is provided with an exhaust gas sensor 26 (an air-fuel ratio sensor, an oxygen sensor, or the like) that detects an air-fuel ratio or rich / lean of the exhaust gas. Between the upstream side of the exhaust gas sensor 26 in the exhaust pipe 25 and the surge tank 16 on the downstream side of the throttle valve 15 in the intake pipe 12, an EGR pipe 27 for returning a part of the exhaust gas to the intake side. And an EGR valve 28 for adjusting the exhaust gas recirculation amount (EGR amount) is provided in the middle of the EGR pipe 27.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ29や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ30が取り付けられている。このクランク角センサ30の出力信号に基づいてクランク角やエンジン回転速度が検出される。また、アクセルセンサ31によってアクセル操作量(アクセルペダルの踏込量)が検出される。   A cooling water temperature sensor 29 that detects the cooling water temperature and a crank angle sensor 30 that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 30, the crank angle and the engine speed are detected. Further, the accelerator operation amount (depressed amount of the accelerator pedal) is detected by the accelerator sensor 31.

これら各種センサの出力は、制御回路(以下「ECU」と表記する)37に入力される。このECU37は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁19の燃料噴射量や点火プラグ20の点火時期を制御する。   Outputs of these various sensors are input to a control circuit (hereinafter referred to as “ECU”) 37. The ECU 37 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 19 according to the engine operating state. The ignition timing of the spark plug 20 is controlled.

その際、ECU37は、エンジン運転状態(エンジン回転速度や要求トルク等)に応じて燃焼モードを成層燃焼モードと均質燃焼モードとの間で切り換える。成層燃焼モードでは、少量の燃料を圧縮行程で筒内に直接噴射して点火プラグ20の近傍に成層混合気を形成して成層燃焼(リーン燃焼)させることで、燃費を向上させる。一方、均質燃焼モードでは、燃料噴射量を増量して吸気行程で筒内に燃料を直接噴射して均質混合気を形成して均質燃焼(ストイキ又はリッチ燃焼)させることで、エンジン出力を高める。   At that time, the ECU 37 switches the combustion mode between the stratified combustion mode and the homogeneous combustion mode according to the engine operating state (engine rotational speed, required torque, etc.). In the stratified combustion mode, a small amount of fuel is directly injected into the cylinder in the compression stroke, and a stratified mixture is formed in the vicinity of the spark plug 20 for stratified combustion (lean combustion), thereby improving fuel efficiency. On the other hand, in the homogeneous combustion mode, the engine output is increased by increasing the fuel injection amount and directly injecting fuel into the cylinder during the intake stroke to form a homogeneous mixture and performing homogeneous combustion (stoichiometric or rich combustion).

また、ECU37は、図示しないバルブタイミング制御ルーチンを実行することで、エンジン運転状態(エンジン回転速度や要求トルク等)に基づいて吸気バルブ35の目標バルブタイミング(基準位置からの目標進角量)を算出し、吸気バルブ35の実バルブタイミング(基準位置からの実進角量)を目標バルブタイミングに一致させるように可変バルブタイミング装置36を制御する。   Further, the ECU 37 executes a valve timing control routine (not shown) to set the target valve timing (target advance angle from the reference position) of the intake valve 35 based on the engine operating state (engine speed, required torque, etc.). The variable valve timing device 36 is controlled so as to make the actual valve timing (actual advance angle amount from the reference position) of the intake valve 35 coincide with the target valve timing.

ところで、スプレーガイド方式の筒内噴射式エンジン11は、燃料噴射弁19の噴射燃料がピストン上面33やシリンダ内壁面34に衝突しないように燃料の噴射力(貫徹力)が比較的弱く設定されているため、噴射燃料がピストン上面33やシリンダ内壁面34に衝突しないように燃料の噴霧角等が設定されていても、可変バルブタイミング装置36の作動によって吸気バルブタイミング(吸気バルブ35のバルブタイミング)が変化して燃料噴射期間中における筒内の吸入空気流が強くなると、その吸入空気流によって燃料の噴霧形状が乱れてピストン上面33やシリンダ内壁面34に付着する付着燃料が増加する可能性がある。特に、圧縮行程で燃料を噴射する成層燃焼モードでは、燃料噴射から点火までの期間が均質燃焼モードよりも短いため、付着燃料が気化できずに未燃HCとして残留しやすく、付着燃料が増加すると、HC排出量が増加して排気エミッションが悪化する可能性がある。   By the way, in the in-cylinder injection engine 11 of the spray guide system, the fuel injection force (penetration force) is set relatively weak so that the fuel injected from the fuel injection valve 19 does not collide with the piston upper surface 33 or the cylinder inner wall surface 34. Therefore, even if the fuel spray angle is set so that the injected fuel does not collide with the piston upper surface 33 or the cylinder inner wall surface 34, the intake valve timing (valve timing of the intake valve 35) is activated by the operation of the variable valve timing device 36. If the intake air flow in the cylinder during the fuel injection period becomes strong and the spray shape of the fuel is disturbed by the intake air flow, the attached fuel adhering to the piston upper surface 33 or the cylinder inner wall surface 34 may increase. is there. In particular, in the stratified combustion mode in which fuel is injected in the compression stroke, since the period from fuel injection to ignition is shorter than in the homogeneous combustion mode, the attached fuel cannot be vaporized and tends to remain as unburned HC, and the attached fuel increases. HC emissions may increase and exhaust emissions may deteriorate.

この対策として、本実施例では、後述する図3の燃料噴射時期制御ルーチンを実行することで、可変バルブタイミング装置36の作動によって変化する吸気バルブタイミングに応じて燃料噴射弁19の燃料噴射時期を噴射燃料が吸入空気流の影響を受け難くなる時期に変化させるようにしている。これにより、吸気バルブタイミングの変化によって筒内の吸入空気流の発生状況(発生時期や強度等)が変化しても、吸気バルブタイミングに応じて燃料噴射時期を変化させて、噴射燃料が吸入空気流の影響を受け難い時期に燃料噴射時期を設定する。   As a countermeasure, in this embodiment, the fuel injection timing of the fuel injection valve 19 is changed according to the intake valve timing which is changed by the operation of the variable valve timing device 36 by executing a fuel injection timing control routine of FIG. The injection fuel is changed at a time when it becomes difficult to be influenced by the intake air flow. As a result, even if the generation state (generation timing, strength, etc.) of the intake air flow in the cylinder changes due to a change in the intake valve timing, the fuel injection timing is changed according to the intake valve timing, and the injected fuel is drawn into the intake air. The fuel injection timing is set at a time that is not easily affected by the flow.

この吸気バルブタイミングに応じた燃料噴射時期の制御は、成層燃焼モードのみで実行するようにしても良いが、成層燃焼モードと均質燃焼モードの両方で実行するようにしても良い。   The control of the fuel injection timing according to the intake valve timing may be executed only in the stratified combustion mode, but may be executed in both the stratified combustion mode and the homogeneous combustion mode.

以下、ECU37が実行する図3の燃料噴射時期制御ルーチンの処理内容を説明する。 図3に示す燃料噴射時期制御ルーチンは、ECU37の電源オン中に所定周期で実行され、特許請求の範囲でいう燃料噴射時期制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、クランク角センサ30で検出したエンジン回転速度Ne を読み込んだ後、ステップ102に進み、アクセル操作量等に基づいて設定した要求トルクを読み込む。   Hereinafter, the processing contents of the fuel injection timing control routine of FIG. 3 executed by the ECU 37 will be described. The fuel injection timing control routine shown in FIG. 3 is executed at a predetermined cycle while the ECU 37 is powered on, and serves as fuel injection timing control means in the claims. When this routine is started, first, at step 101, the engine rotational speed Ne detected by the crank angle sensor 30 is read, and then the routine proceeds to step 102 where the required torque set based on the accelerator operation amount or the like is read.

この後、ステップ103に進み、目標吸気バルブタイミングTVVT(吸気バルブ35の目標バルブタイミング)のマップを参照して、現在のエンジン運転状態(例えばエンジン回転速度Ne と要求トルク)に応じた吸気バルブ35の目標バルブタイミングTVVTを算出する。これにより、実吸気バルブタイミング(吸気バルブ35の実バルブタイミング)を目標吸気バルブタイミングTVVTに一致させるように可変バルブタイミング装置36が制御される。   Thereafter, the process proceeds to step 103, and a reference is made to a map of the target intake valve timing TVVT (target valve timing of the intake valve 35), and the intake valve 35 corresponding to the current engine operating state (for example, the engine speed Ne and the required torque). Target valve timing TVVT is calculated. Thereby, the variable valve timing device 36 is controlled so that the actual intake valve timing (actual valve timing of the intake valve 35) matches the target intake valve timing TVVT.

この後、ステップ104に進み、目標燃料噴射時期TSOIのマップをを参照して、現在のエンジン運転状態(例えばエンジン回転速度Ne と要求トルク)に応じた目標燃料噴射時期TSOIを算出する。   Thereafter, the routine proceeds to step 104, where the target fuel injection timing TSOI corresponding to the current engine operating state (for example, engine speed Ne and required torque) is calculated with reference to the map of the target fuel injection timing TSOI.

この後、ステップ105に進み、現在のエンジン回転速度Ne と燃料噴射時期SOIとに基づいて燃料噴射実行時の吸気バルブタイミングPVVTをマップ又は数式等により予測する。このステップ105の処理が特許請求の範囲でいうバルブ開閉特性予測手段としての役割を果たす。   Thereafter, the routine proceeds to step 105, where the intake valve timing PVVT at the time of executing the fuel injection is predicted based on the current engine speed Ne and the fuel injection timing SOI by a map or a mathematical formula. The process of step 105 serves as valve opening / closing characteristic prediction means in the claims.

この後、ステップ106に進み、予測した燃料噴射実行時の吸気バルブタイミングPVVTと目標燃料噴射時期TSOIとに基づいて最終的な燃料噴射時期SOIをマップ又は数式等により算出することで、予測した燃料噴射実行時の吸気バルブタイミングPVVTに応じて燃料噴射時期SOIを噴射燃料が吸入空気流の影響を受け難くなる時期に変化させる。   Thereafter, the routine proceeds to step 106, where the final fuel injection timing SOI is calculated by a map or a mathematical formula based on the predicted intake valve timing PVVT at the time of fuel injection execution and the target fuel injection timing TSOI. The fuel injection timing SOI is changed according to the intake valve timing PVVT at the time of executing the injection to a time when the injected fuel is hardly affected by the intake air flow.

例えば、成層燃焼モードの場合には、燃料噴射開始時期が吸気バルブ35の閉弁タイミング以降になるように燃料噴射時期SOIを設定する。これにより、吸気バルブ35の閉弁後で筒内への空気の吸入が終了した後に燃料噴射を開始することができるため、噴射燃料が吸入空気流の影響をほとんど受けないようにすることができる。   For example, in the stratified combustion mode, the fuel injection timing SOI is set so that the fuel injection start timing is after the valve closing timing of the intake valve 35. As a result, fuel injection can be started after the intake of air into the cylinder is completed after the intake valve 35 is closed, so that the injected fuel can be hardly affected by the intake air flow. .

しかしながら、噴射燃料が受ける吸入空気流の影響を無視できる程度に小さくできるのであれば、燃料噴射開始時期が吸気バルブ35の閉弁タイミングよりも少し早い時期になっても良い。   However, the fuel injection start timing may be slightly earlier than the closing timing of the intake valve 35 as long as the influence of the intake air flow received by the injected fuel can be made small enough to be ignored.

以上説明した本実施例では、可変バルブタイミング装置36の作動によって変化する吸気バルブタイミングに応じて燃料噴射弁19の燃料噴射時期を噴射燃料が吸入空気流の影響を受け難くなる時期に変化させるようにしたので、吸気バルブタイミングの変化によって筒内の吸入空気流の発生状況(発生時期や強度等)が変化しても、吸気バルブタイミングに応じて燃料噴射時期を変化させて、噴射燃料が吸入空気流の影響を受け難い時期に燃料噴射時期を設定することができる。これにより、吸入空気流による噴射燃料の噴霧形状の乱れを防止することができて、ピストン上面33やシリンダ内壁面34に付着する付着燃料を効果的に低減することができ、排気エミッションを向上させることができる。   In the present embodiment described above, the fuel injection timing of the fuel injection valve 19 is changed to a time when the injected fuel is hardly affected by the intake air flow in accordance with the intake valve timing that is changed by the operation of the variable valve timing device 36. Therefore, even if the intake air flow generation situation (occurrence timing, strength, etc.) changes due to changes in the intake valve timing, the fuel injection timing is changed according to the intake valve timing, and the injected fuel is sucked The fuel injection timing can be set at a time that is not easily affected by the air flow. Thereby, the disturbance of the spray shape of the injected fuel due to the intake air flow can be prevented, the attached fuel adhering to the piston upper surface 33 and the cylinder inner wall surface 34 can be effectively reduced, and the exhaust emission is improved. be able to.

しかも、本実施例では、燃料噴射時期を演算する段階で、将来の燃料噴射実行時の吸気バルブタイミングを予測して、その予測した燃料噴射実行時の吸気バルブタイミングに応じた燃料噴射時期を算出するようにしたので、吸気バルブタイミングが急速に変化する過渡時でも、吸気バルブタイミングの変化に対して燃料噴射時期を応答良く変化させることができ、燃料噴射時期の制御精度を向上させることができる。   In addition, in this embodiment, at the stage of calculating the fuel injection timing, the intake valve timing at the time of executing the future fuel injection is predicted, and the fuel injection timing corresponding to the predicted intake valve timing at the time of executing the fuel injection is calculated. As a result, even when the intake valve timing changes rapidly, the fuel injection timing can be changed with good response to the change of the intake valve timing, and the control accuracy of the fuel injection timing can be improved. .

しかしながら、現在の吸気バルブタイミングをセンサ等で検出し、現在の吸気バルブタイミングに応じて燃料噴射時期を算出するようにしても良く、この場合でも、吸気バルブタイミングの変化が比較的緩やかであれば、吸気バルブタイミングに応じて燃料噴射時期を噴射燃料が吸入空気流の影響を受け難くなる時期に変化させることができる。   However, the current intake valve timing may be detected by a sensor or the like, and the fuel injection timing may be calculated according to the current intake valve timing. Even in this case, if the change in the intake valve timing is relatively gradual, The fuel injection timing can be changed according to the intake valve timing to a time when the injected fuel becomes less susceptible to the intake air flow.

また、上記実施例では、可変バルブタイミング装置36の作動によって変化する吸気バルブタイミングに応じて燃料噴射時期を変化させるようにしたが、可変バルブタイミング装置36の作動状態の情報(例えば、油圧式の場合には油圧指令値、電動式の場合には電流指令値)に応じて燃料噴射時期を変化させるようにしても良い。   Further, in the above embodiment, the fuel injection timing is changed according to the intake valve timing which is changed by the operation of the variable valve timing device 36, but information on the operating state of the variable valve timing device 36 (for example, hydraulic type In this case, the fuel injection timing may be changed in accordance with a hydraulic pressure command value, and in the case of an electric type, a current command value.

また、上記実施例では、吸気バルブ35のバルブタイミングを変化させる可変バルブタイミング装置36を備えたシステムに本発明を適用したが、排気バルブのバルブタイミングを変化させる可変バルブタイミング装置を備えたシステムに本発明を適用しても良い。更に、吸気バルブのバルブリフト量を変化させる可変バルブリフト装置や排気バルブのバルブリフト量を変化させる可変バルブリフト装置を備えたシステムに本発明を適用しても良い。   In the above embodiment, the present invention is applied to a system including the variable valve timing device 36 that changes the valve timing of the intake valve 35. However, the system includes a variable valve timing device that changes the valve timing of the exhaust valve. The present invention may be applied. Furthermore, the present invention may be applied to a system including a variable valve lift device that changes the valve lift amount of the intake valve and a variable valve lift device that changes the valve lift amount of the exhaust valve.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. 燃料噴射弁及びその周辺部の縦断面図である。It is a longitudinal cross-sectional view of a fuel injection valve and its peripheral part. 燃料噴射時期制御ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of a fuel injection timing control routine.

符号の説明Explanation of symbols

11…筒内噴射式エンジン(筒内噴射式内燃機関)、12…吸気管、15…スロットルバルブ、19…燃料噴射弁、20…点火プラグ、25…排気管、32…燃焼室、35…吸気バルブ、36…可変バルブタイミング装置、37…ECU(燃料噴射時期制御手段,バルブ開閉特性予測手段)   DESCRIPTION OF SYMBOLS 11 ... Cylinder injection type engine (cylinder injection type internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 19 ... Fuel injection valve, 20 ... Spark plug, 25 ... Exhaust pipe, 32 ... Combustion chamber, 35 ... Intake Valve, 36 ... variable valve timing device, 37 ... ECU (fuel injection timing control means, valve opening / closing characteristic prediction means)

Claims (4)

内燃機関の吸気バルブ及び/又は排気バルブのバルブ開閉特性を変化させる可変バルブ装置と、燃焼室の略中心上方から燃料室内に燃料を直接噴射する燃料噴射弁とを備えたスプレーガイド方式の筒内噴射式内燃機関の燃料噴射制御装置において、
前記可変バルブ装置の作動状態に応じて前記燃料噴射弁の燃料噴射時期を噴射燃料が吸入空気流の影響を受け難くなる時期に変化させる燃料噴射時期制御手段を備えていることを特徴とする筒内噴射式内燃機関の燃料噴射制御装置。
A spray guide type in-cylinder having a variable valve device that changes valve opening / closing characteristics of an intake valve and / or an exhaust valve of an internal combustion engine, and a fuel injection valve that directly injects fuel into the fuel chamber from substantially above the center of the combustion chamber In a fuel injection control device for an injection internal combustion engine,
A cylinder comprising fuel injection timing control means for changing the fuel injection timing of the fuel injection valve to a timing at which the injected fuel is hardly affected by the intake air flow in accordance with the operating state of the variable valve device. A fuel injection control device for an internal injection internal combustion engine.
前記可変バルブ装置は、前記バルブ開閉特性としてバルブタイミングを変化させる可変バルブタイミング装置及び/又は前記バルブ開閉特性としてバルブリフト量を変化させる可変バルブリフト装置であることを特徴とする請求項1に記載の筒内噴射式内燃機関の燃料噴射制御装置。   The variable valve device is a variable valve timing device that changes a valve timing as the valve opening / closing characteristic and / or a variable valve lift device that changes a valve lift amount as the valve opening / closing characteristic. A fuel injection control device for an in-cylinder internal combustion engine. 前記燃料噴射時期制御手段は、前記燃料噴射弁の燃料噴射開始時期が前記吸気バルブの閉弁タイミング以降になるように前記燃料噴射時期を設定することを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の燃料噴射制御装置。   3. The fuel injection timing control unit according to claim 1, wherein the fuel injection timing control unit sets the fuel injection timing so that a fuel injection start timing of the fuel injection valve is after a closing timing of the intake valve. 4. A fuel injection control device for a cylinder injection internal combustion engine. 前記可変バルブ装置の作動によって変化する将来のバルブ開閉特性を予測するバルブ開閉特性予測手段を備え、
前記燃料噴射時期制御手段は、前記バルブ開閉特性予測手段で予測した将来のバルブ開閉特性に基づいて前記燃料噴射時期を算出することを特徴とする請求項1乃至3のいずれかに記載の筒内噴射式内燃機関の燃料噴射制御装置。
A valve opening / closing characteristic predicting means for predicting a future valve opening / closing characteristic that changes due to the operation of the variable valve device;
The in-cylinder engine according to any one of claims 1 to 3, wherein the fuel injection timing control means calculates the fuel injection timing based on a future valve opening / closing characteristic predicted by the valve opening / closing characteristic prediction means. A fuel injection control device for an injection type internal combustion engine.
JP2007147622A 2007-06-04 2007-06-04 Fuel injection control device of in cylinder injection type internal combustion engine Pending JP2008298028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147622A JP2008298028A (en) 2007-06-04 2007-06-04 Fuel injection control device of in cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147622A JP2008298028A (en) 2007-06-04 2007-06-04 Fuel injection control device of in cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008298028A true JP2008298028A (en) 2008-12-11

Family

ID=40171760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147622A Pending JP2008298028A (en) 2007-06-04 2007-06-04 Fuel injection control device of in cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008298028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281240A (en) * 2009-06-03 2010-12-16 Toyota Motor Corp Control device of internal combustion engine
CN103470381A (en) * 2012-06-06 2013-12-25 通用汽车环球科技运作有限责任公司 Valve control systems and methods for homogenous charge compression ignition operation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281240A (en) * 2009-06-03 2010-12-16 Toyota Motor Corp Control device of internal combustion engine
CN103470381A (en) * 2012-06-06 2013-12-25 通用汽车环球科技运作有限责任公司 Valve control systems and methods for homogenous charge compression ignition operation
CN103470381B (en) * 2012-06-06 2017-12-12 通用汽车环球科技运作有限责任公司 Valve control systems and methods for homogenous charge compression ignition operation

Similar Documents

Publication Publication Date Title
JP4148233B2 (en) Engine fuel injection control device
US7747379B2 (en) Control device of direct injection internal combustion engine
JP4483684B2 (en) Fuel injection control device for in-cylinder internal combustion engine
US7168409B2 (en) Controller for direct injection internal combustion engine
US7412967B2 (en) Engine controller
JP6424067B2 (en) Engine control device
JP2009185741A (en) Fuel injection control device of internal combustion engine
KR20090003312A (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP4479822B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2009024682A (en) Control device for spray guide type cylinder injection internal combustion engine
JP4135643B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JP2009041540A (en) Control device of gasoline engine
JP5273310B2 (en) Control device for internal combustion engine
JP3847052B2 (en) Fuel injection control device for internal combustion engine
JP5867441B2 (en) Control device for internal combustion engine
JP2008298028A (en) Fuel injection control device of in cylinder injection type internal combustion engine
JP4816151B2 (en) Combustion control device for internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2010248948A (en) Control device for internal combustion engine
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP5348012B2 (en) Internal combustion engine
JP2007071095A (en) Starting control device of cylinder injection type internal combustion engine
WO2016075784A1 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP2017002855A (en) Internal combustion engine control device