JP2013142305A - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP2013142305A
JP2013142305A JP2012002206A JP2012002206A JP2013142305A JP 2013142305 A JP2013142305 A JP 2013142305A JP 2012002206 A JP2012002206 A JP 2012002206A JP 2012002206 A JP2012002206 A JP 2012002206A JP 2013142305 A JP2013142305 A JP 2013142305A
Authority
JP
Japan
Prior art keywords
fuel
injection
intake passage
cycle
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012002206A
Other languages
Japanese (ja)
Inventor
Shinichi Mitani
信一 三谷
Eiji Murase
栄二 村瀬
Takahiro Tsukakoshi
崇博 塚越
Kazuhisa Matsuda
和久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012002206A priority Critical patent/JP2013142305A/en
Publication of JP2013142305A publication Critical patent/JP2013142305A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve air-fuel ratio controllability when starting, by simultaneously using intake passage injection by considering a characteristic of alcohol fuel, while securing startability by cylinder injection.SOLUTION: An ECU 50 injects fuel only from a cylinder injection valve 28 in at least a first cycle when starting an engine, and simultaneously uses fuel injection of an intake passage injection valve 26 on and after a second cycle. When an alcohol concentration in the fuel is a predetermined value or more, a portion of the fuel injected from the intake passage injection valve 26 in the second cycle, is injected from the intake passage injection valve 26 by moving up to the first cycle. Thus, even when the alcohol concentration in the fuel is high, a portion of an intake passage injection quantity of becoming excessive in the second cycle, is moved up to the first cycle, and this fuel can be burnt in the second cycle by a transport delay, and quantity of fuel to be burnt in the respective cycles can be properly controlled.

Description

本発明は、例えばFFV(Flexible-Fuel Vehicle)等の車両に搭載され、アルコール燃料を使用する内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine that is mounted on a vehicle such as an FFV (Flexible-Fuel Vehicle) and uses alcohol fuel.

従来技術として、例えば特許文献1(特開2006−214415号公報)に開示されているように、アルコール燃料を使用する内燃機関に適用され、吸気通路噴射弁から吸気通路(吸気ポート)に燃料を噴射する吸気通路噴射と、筒内噴射弁から燃焼室内(筒内)に燃料を噴射する筒内噴射とを実行する内燃機関の制御装置が知られている。従来技術では、始動時に筒内噴射を実行し、始動後には、運転状態に応じて吸気通路噴射と筒内噴射とを使い分ける噴き分け制御を実行する。筒内噴射によれば、吸気通路噴射と比較して始動を早く行うことができる。   As a conventional technique, for example, as disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-214415), it is applied to an internal combustion engine using alcohol fuel, and fuel is supplied from an intake passage injection valve to an intake passage (intake port). 2. Description of the Related Art There is known a control device for an internal combustion engine that executes intake passage injection for injection and in-cylinder injection for injecting fuel into a combustion chamber (in-cylinder) from an in-cylinder injection valve. In the prior art, in-cylinder injection is executed at the time of starting, and after starting, injection division control that selectively uses intake passage injection and in-cylinder injection is executed according to the operating state. According to the in-cylinder injection, the start can be performed earlier than the intake passage injection.

一方、他の従来技術として、特許文献2(特開2009−191806号公報)には、吸気通路噴射を行う場合に、噴射された燃料が筒内に達するまでの輸送遅れを考慮して、噴射燃料を増量する制御(輸送遅れ増量)が開示されている。この制御では、燃料中のアルコール濃度に応じて噴射燃料の増量値を設定する。   On the other hand, as another conventional technique, Patent Document 2 (Japanese Patent Laid-Open No. 2009-191806) discloses an injection in consideration of a transport delay until the injected fuel reaches the cylinder in the intake passage injection. Control for increasing the amount of fuel (increase in transport delay) is disclosed. In this control, an increase value of the injected fuel is set according to the alcohol concentration in the fuel.

特開2006−214415号公報JP 2006-214415 A 特開2009−191806号公報JP 2009-191806 A 特開2011−1848号公報JP 2011-1848 A

上述した従来技術では、機関始動時(始動時)に燃料中のアルコール濃度が高い場合、即ち、多量の燃料噴射が要求される場合に、筒内噴射のみでは燃料を噴射し切れないことがある。この状態を回避するためには、例えば各気筒において、気筒判別後の1サイクル目に筒内噴射を実行し、2サイクル目以降は吸気通路噴射を併用する方法が考えられる。しかし、始動時には、水温が低くてアルコール燃料が気化し難いので、吸気通路噴射を行う場合には、特許文献2に記載されているように、燃料中のアルコール濃度に応じて輸送遅れ増量を実行する必要がある。   In the above-described prior art, when the alcohol concentration in the fuel is high at the time of engine start (starting), that is, when a large amount of fuel injection is required, the fuel may not be completely injected by in-cylinder injection alone. . In order to avoid this state, for example, in each cylinder, in-cylinder injection is executed in the first cycle after cylinder discrimination, and intake passage injection is used together in the second and subsequent cycles. However, at the time of start-up, since the water temperature is low and the alcohol fuel is difficult to vaporize, when the intake passage injection is performed, the transportation delay increase is executed according to the alcohol concentration in the fuel as described in Patent Document 2. There is a need to.

さらに、各気筒における最初の吸気通路噴射では、吸気ポートの壁面に付着する燃料(ポートウェット燃料)の分だけ筒内に到達する燃料の量が減少するので、燃料噴射量をポートウェット燃料の分だけ増量することも必要となる。これらの要因により、燃料中のアルコール濃度が高い状態で始動時の吸気通路噴射を行う場合には、特に初回の燃料噴射量が増大するので、必要量の燃料を噴射し切れない状態や、気筒間で燃料噴射量が大きく異なる状態が発生し、空燃比の制御性が悪化するという問題がある。   Further, in the first intake passage injection in each cylinder, the amount of fuel that reaches the cylinder is reduced by the amount of fuel (port wet fuel) adhering to the wall surface of the intake port. It is also necessary to increase the amount only. Due to these factors, when the intake passage injection at the time of starting is performed in a state where the alcohol concentration in the fuel is high, the initial fuel injection amount increases, so that the required amount of fuel cannot be injected, There is a problem that the fuel injection amount varies greatly between the two, and the controllability of the air-fuel ratio deteriorates.

本発明は、上述のような課題を解決するためになされたもので、本発明の目的は、アルコール燃料を用いる内燃機関において、筒内噴射により始動性を確保しつつ、燃料の輸送遅れや壁面付着分を考慮して吸気通路噴射を適切に併用し、始動時の空燃比制御性を向上させることが可能な内燃機関の制御装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to prevent fuel transportation delay and wall surface while ensuring startability by in-cylinder injection in an internal combustion engine using alcohol fuel. An object of the present invention is to provide a control device for an internal combustion engine that can improve air-fuel ratio controllability at the time of starting by appropriately using intake passage injection in consideration of the amount of adhesion.

第1の発明は、ガソリン及びアルコール燃料を使用する内燃機関の複数気筒に搭載され、各気筒の吸気通路に燃料をそれぞれ噴射する吸気通路噴射弁と、
前記各気筒に搭載され、筒内に燃料をそれぞれ噴射する筒内噴射弁と、
燃料中のアルコール濃度を取得するアルコール濃度取得手段と、
機関始動時の少なくとも1サイクル目において、前記筒内噴射弁から燃料を噴射する第1の噴射制御手段と、
機関始動時の2サイクル目以降において、前記吸気通路噴射弁と前記筒内噴射弁の両方から燃料を噴射する第2の噴射制御手段と、
燃料中のアルコール濃度が所定値以上の場合に、前記2サイクル目に前記吸気通路噴射弁から噴射する燃料の一部を前記1サイクル目に前記吸気通路噴射弁から噴射する早期噴射併用手段と、
を備えることを特徴とする。
The first invention is mounted on a plurality of cylinders of an internal combustion engine that uses gasoline and alcohol fuel, and an intake passage injection valve that injects fuel into the intake passage of each cylinder,
In-cylinder injection valves that are mounted on the cylinders and inject fuel into the cylinders;
Alcohol concentration acquisition means for acquiring the alcohol concentration in the fuel;
A first injection control means for injecting fuel from the in-cylinder injection valve in at least a first cycle when the engine is started;
A second injection control means for injecting fuel from both the intake passage injection valve and the in-cylinder injection valve after the second cycle at the time of engine start;
An early injection combined means for injecting a part of the fuel injected from the intake passage injection valve in the second cycle from the intake passage injection valve in the first cycle when the alcohol concentration in the fuel is a predetermined value or more;
It is characterized by providing.

第2の発明は、前記吸気通路噴射弁から噴射すべき基本噴射量を算出する基本噴射量算出手段と、
前記吸気通路の壁面に付着する分の燃料を補償するための壁面付着燃料量を算出する壁面付着燃料量手段と、を備え、
前記第2の噴射制御手段は、前記2サイクル目において、前記基本噴射量と前記壁面付着燃料量とを加算した量の燃料を前記吸気通路噴射弁から噴射する構成としている。
The second invention is a basic injection amount calculating means for calculating a basic injection amount to be injected from the intake passage injection valve;
A wall surface attached fuel amount means for calculating a wall surface attached fuel amount for compensating for fuel adhering to the wall surface of the intake passage,
In the second cycle, the second injection control means is configured to inject an amount of fuel obtained by adding the basic injection amount and the wall surface attached fuel amount from the intake passage injection valve.

第3の発明は、前記複数気筒のうち前記1サイクル目に前記早期噴射併用手段が作動していない気筒に対して、3サイクル目における前記吸気通路噴射弁の燃料噴射量を増量する噴射量整合手段を備える。   A third aspect of the invention relates to injection amount matching for increasing the fuel injection amount of the intake passage injection valve in the third cycle with respect to the cylinder in which the early injection combined means is not operated in the first cycle among the plurality of cylinders. Means.

第1の発明によれば、機関始動時に燃料中のアルコール濃度が高く、燃料噴射量が多い場合でも、2サイクル目で過大となった吸気通路噴射量の一部を1サイクル目に前倒しすることができる。そして、この前倒しした燃料を輸送遅れにより2サイクル目で燃焼させることができ、各サイクルで燃焼させる燃料の量を適切に制御することができる。従って、アルコール燃料を用いる内燃機関において、筒内噴射により始動性を確保しつつ、燃料の輸送遅れや壁面付着分を考慮して吸気通路噴射を適切に併用することができ、始動時の空燃比制御性を向上させることができる。   According to the first invention, even when the alcohol concentration in the fuel is high at the time of engine start and the fuel injection amount is large, a part of the intake passage injection amount that has become excessive in the second cycle is moved forward in the first cycle. Can do. Then, this advanced fuel can be burned in the second cycle due to transport delay, and the amount of fuel burned in each cycle can be controlled appropriately. Therefore, in an internal combustion engine using alcohol fuel, it is possible to appropriately use the intake passage injection in consideration of fuel transportation delay and wall adhesion while ensuring startability by in-cylinder injection. Controllability can be improved.

第2の発明によれば、第2の噴射制御手段は、2サイクル目において、基本噴射量と壁面付着燃料量とを加算した量の燃料を吸気通路噴射弁から噴射することができる。これにより、噴射燃料の一部が吸気通路の壁面に付着しても、筒内に流入する燃料の量を適切に制御することができる。   According to the second invention, in the second cycle, the second injection control means can inject an amount of fuel obtained by adding the basic injection amount and the wall surface attached fuel amount from the intake passage injection valve. Thereby, even if a part of the injected fuel adheres to the wall surface of the intake passage, the amount of fuel flowing into the cylinder can be appropriately controlled.

第3の発明によれば、噴射量整合手段は、1サイクル目に早期噴射併用手段が作動していない気筒に対して、3サイクル目における吸気通路噴射弁の燃料噴射量を増量することができる。これにより、1〜3サイクル目を通して、各気筒の燃料噴射量を整合させる(揃える)ことができ、気筒間の空燃比ばらつきを抑制することができる。   According to the third invention, the injection amount matching means can increase the fuel injection amount of the intake passage injection valve in the third cycle with respect to the cylinder in which the early injection combination means is not operated in the first cycle. . Thereby, the fuel injection amount of each cylinder can be matched (equalized) through the first to third cycles, and variation in the air-fuel ratio among the cylinders can be suppressed.

本発明の実施の形態1のシステム構成を説明するための全体構成図である。It is a whole block diagram for demonstrating the system configuration | structure of Embodiment 1 of this invention. アルコール濃度が零の燃料(ガソリン)を使用した場合について、各気筒の燃料噴射状態を示す説明図である。It is explanatory drawing which shows the fuel-injection state of each cylinder about the case where the alcohol (gasoline) with zero alcohol concentration is used. 機関始動時における各気筒の燃料噴射状態を示す説明図である。It is explanatory drawing which shows the fuel-injection state of each cylinder at the time of engine starting. 機関始動時及び始動後における各気筒の燃料噴射状態を示す説明図である。It is explanatory drawing which shows the fuel-injection state of each cylinder at the time of engine starting and after starting. 本発明の実施の形態1において、ECUにより実行される制御のフローチャートである。In Embodiment 1 of this invention, it is a flowchart of the control performed by ECU.

実施の形態1.
[実施の形態1の構成]
以下、図1乃至図5を参照して、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1のシステム構成を説明するための全体構成図である。本実施の形態のシステムは、FFV等の車両に搭載される内燃機関として多気筒型のエンジン10を備えている。エンジン10は、例えばメタノール、エタノール等を含むアルコール燃料及びガソリンが使用可能となっている。なお、図1は、エンジン10に搭載された複数気筒のうちの1気筒を例示したものである。エンジン10の各気筒には、ピストン12により燃焼室14が形成されており、ピストン12はクランク軸16に連結されている。また、エンジン10は、各気筒に吸入空気を吸込む吸気通路18を備えており、吸気通路18には、吸入空気量を調整する電子制御式のスロットルバルブ20が設けられている。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram for explaining a system configuration according to the first embodiment of the present invention. The system of the present embodiment includes a multi-cylinder engine 10 as an internal combustion engine mounted on a vehicle such as an FFV. The engine 10 can use alcohol fuel and gasoline including, for example, methanol and ethanol. FIG. 1 exemplifies one cylinder among a plurality of cylinders mounted on the engine 10. Each cylinder of the engine 10 has a combustion chamber 14 formed by a piston 12, and the piston 12 is connected to a crankshaft 16. Further, the engine 10 includes an intake passage 18 that sucks intake air into each cylinder. The intake passage 18 is provided with an electronically controlled throttle valve 20 that adjusts the amount of intake air.

一方、エンジン10は、各気筒の排気ガスを排出する排気通路22を備えており、排気通路22には、排気ガスを浄化する三元触媒等の触媒24が設けられている。また、エンジンの各気筒は、吸気通路18(吸気ポート)に燃料を噴射する吸気通路噴射弁26と、燃焼室14内(筒内)に燃料を噴射する筒内噴射弁28と、混合気に点火する点火プラグ30と、吸気通路18を筒内に対して開閉する吸気バルブ32と、排気通路22を筒内に対して開閉する排気バルブ34とを備えている。   On the other hand, the engine 10 includes an exhaust passage 22 that exhausts exhaust gas of each cylinder, and the exhaust passage 22 is provided with a catalyst 24 such as a three-way catalyst that purifies the exhaust gas. Each cylinder of the engine has an intake passage injection valve 26 for injecting fuel into the intake passage 18 (intake port), an in-cylinder injection valve 28 for injecting fuel into the combustion chamber 14 (in-cylinder), and an air-fuel mixture. An ignition plug 30 for igniting, an intake valve 32 for opening and closing the intake passage 18 with respect to the inside of the cylinder, and an exhaust valve 34 for opening and closing the exhaust passage 22 with respect to the inside of the cylinder are provided.

また、本実施の形態のシステムは、エンジンの制御に必要な各種のセンサを含むセンサ系統と、エンジンの運転状態を制御するECU(Engine Control Unit)50とを備えている。まず、センサ系統について述べると、クランク角センサ40は、クランク軸16の回転に同期した信号を出力するもので、エアフローセンサ42は、エンジンの吸入空気量を検出する。また、水温センサ44は、機関温度の一例として、エンジン冷却水の温度(エンジン水温)を検出し、吸気温センサ46は、吸入空気の温度(外気温度)を検出する。アルコール濃度センサ48は、燃料中のアルコール濃度を検出するもので、本実施の形態のアルコール濃度取得手段を構成している。センサ系統には、この他にも各種のセンサが含まれており、これらのセンサはECU50の入力側に接続されている。また、ECU50の出力側には、スロットルバルブ20、燃料噴射弁26,28、点火プラグ30等のアクチュエータが接続されている。   The system of the present embodiment includes a sensor system including various sensors necessary for engine control, and an ECU (Engine Control Unit) 50 that controls the operating state of the engine. First, the sensor system will be described. The crank angle sensor 40 outputs a signal synchronized with the rotation of the crankshaft 16, and the air flow sensor 42 detects the intake air amount of the engine. The water temperature sensor 44 detects the temperature of the engine cooling water (engine water temperature) as an example of the engine temperature, and the intake air temperature sensor 46 detects the temperature of the intake air (outside air temperature). The alcohol concentration sensor 48 detects the alcohol concentration in the fuel, and constitutes the alcohol concentration acquisition means of the present embodiment. Various other sensors are included in the sensor system, and these sensors are connected to the input side of the ECU 50. In addition, an actuator such as a throttle valve 20, fuel injection valves 26 and 28, and a spark plug 30 is connected to the output side of the ECU 50.

そして、ECU50は、センサ系統により検出したエンジンの運転情報に基いて各アクチュエータを駆動し、運転制御を行う。具体的には、クランク角センサ40の出力に基いて、各気筒の行程(ピストン12の位置)を判別する気筒判別を実行し、また、エンジン回転数(機関回転数)とクランク角とを検出する。なお、気筒判別は始動時にのみ行われる。また、ECU50は、エアフローセンサ42により吸入空気量を検出し、エンジン回転数と吸入空気量とに基いて負荷率(機関負荷)を算出すると共に、吸入空気量、負荷率、エンジン水温、燃料中のアルコール濃度、エンジンの加減速状態等のパラメータに基いて燃料噴射量を算出する。   Then, the ECU 50 drives each actuator based on engine operation information detected by the sensor system, and performs operation control. Specifically, based on the output of the crank angle sensor 40, cylinder discrimination for discriminating the stroke of each cylinder (the position of the piston 12) is executed, and the engine speed (engine speed) and the crank angle are detected. To do. Note that cylinder discrimination is performed only at the start. The ECU 50 detects the intake air amount by the air flow sensor 42, calculates the load factor (engine load) based on the engine speed and the intake air amount, and also calculates the intake air amount, the load factor, the engine water temperature, The fuel injection amount is calculated based on parameters such as the alcohol concentration of the engine and the acceleration / deceleration state of the engine.

そして、クランク角に基いて噴射弁26,28の噴射タイミングを決定し、当該噴射タイミングが到来した時点で噴射弁26,28から燃料を噴射する。このとき、ECU50は、エンジンの運転状態や温度状態等に応じて、吸気通路噴射弁26による燃料噴射(吸気通路噴射)と、筒内噴射弁28による燃料噴射(筒内噴射)の何れか一方または両方を実行する。あるいは、前記パラメータに基いて吸気通路噴射量と筒内噴射との総和である総燃料噴射量を算出した後に、両方の噴射を実行しつつ、エンジンの運転状態に応じて吸気通路噴射量と筒内噴射量の比率(燃料噴射比率)を変化させる。また、ECU50は、エンジンの運転状態等に応じて点火時期を決定し、点火時期が到来した時点で点火プラグ30を駆動する。これにより、各気筒で混合気を燃焼させ、エンジンを運転する。   Then, the injection timing of the injection valves 26 and 28 is determined based on the crank angle, and fuel is injected from the injection valves 26 and 28 when the injection timing arrives. At this time, the ECU 50 selects one of fuel injection by the intake passage injection valve 26 (intake passage injection) and fuel injection by the in-cylinder injection valve 28 (in-cylinder injection) according to the operating state, temperature state, and the like of the engine. Or do both. Alternatively, after calculating the total fuel injection amount, which is the sum of the intake passage injection amount and the in-cylinder injection, based on the parameters, while performing both injections, the intake passage injection amount and the cylinder are determined according to the operating state of the engine. The ratio of the internal injection amount (fuel injection ratio) is changed. The ECU 50 determines the ignition timing according to the operating state of the engine and drives the spark plug 30 when the ignition timing has arrived. Thus, the air-fuel mixture is combusted in each cylinder and the engine is operated.

[実施の形態1の特徴]
アルコール燃料は、基本的に揮発性が低く、燃料噴射量が増加する傾向があり、この傾向は、特に始動時に顕著となる。このため、始動時には、アルコール燃料を筒内に直接噴射して燃焼性を向上させたいという要求がある。しかし、燃料中のアルコール濃度が高い場合には、筒内噴射のみで燃料を噴射し切れないことがあるので、例えば各気筒において、気筒判別後の1サイクル目に筒内噴射を実行し、2サイクル目以降は吸気通路噴射を併用するのが好ましい。但し、吸気通路噴射においては、吸気通路に噴射された燃料が筒内に到達するまでの時間(輸送遅れ)や、初回の吸気通路噴射により噴射された燃料のうち吸気通路の壁面に付着して燃焼に寄与しない分(壁面付着燃料)について考慮する必要がある。そこで、本実施の形態では、噴射燃料の輸送遅れや壁面付着量を考慮して、以下の制御を実行する。
[Features of Embodiment 1]
Alcohol fuel is basically low in volatility and tends to increase the amount of fuel injection, and this tendency is particularly noticeable at start-up. For this reason, at the time of start-up, there is a demand for improving the combustibility by directly injecting alcohol fuel into the cylinder. However, when the alcohol concentration in the fuel is high, the fuel may not be completely injected only by in-cylinder injection. For example, in each cylinder, in-cylinder injection is executed in the first cycle after cylinder discrimination. It is preferable to use intake passage injection together after the cycle. However, in the intake passage injection, the time until the fuel injected into the intake passage arrives in the cylinder (transport delay) and the fuel injected by the first intake passage injection adheres to the wall surface of the intake passage. It is necessary to consider the amount that does not contribute to combustion (wall-attached fuel). Therefore, in the present embodiment, the following control is executed in consideration of the transport delay of the injected fuel and the amount of wall surface adhesion.

まず、図2は、アルコール濃度が零の燃料(ガソリン)を使用した場合について、各気筒の燃料噴射状態を示す説明図である。なお、図2は、6気筒エンジンを例に挙げ、燃料噴射が実行される順番に従って各気筒に番号(#1〜#6)を付している。また、以下の説明で挙げる各パラメータの算出時期は、本実施の形態における一例に過ぎないもので、本発明を限定するものではない。燃料の噴射時には、まず、吸入空気量、機関負荷、エンジン水温、燃料中のアルコール濃度等のパラメータに基いて、公知の方法により総燃料噴射量(目標値)を算出する。そして、ECU50は、機関始動時の1サイクル目、2サイクル目、3サイクル目以降において、それぞれ以下のような制御を実行する。   First, FIG. 2 is an explanatory diagram showing the fuel injection state of each cylinder when a fuel (gasoline) having a zero alcohol concentration is used. In FIG. 2, a 6-cylinder engine is taken as an example, and numbers (# 1 to # 6) are assigned to the respective cylinders in the order in which fuel injection is performed. Moreover, the calculation time of each parameter mentioned in the following description is only an example in the present embodiment, and does not limit the present invention. At the time of fuel injection, first, a total fuel injection amount (target value) is calculated by a known method based on parameters such as the intake air amount, engine load, engine water temperature, and alcohol concentration in the fuel. Then, the ECU 50 executes the following control in the first cycle, the second cycle, the third cycle and thereafter after the engine is started.

ガソリンを使用する場合には、まず、機関始動時の1サイクル目に筒内噴射のみを実行し、2サイクル目において筒内噴射と吸気通路噴射とを併用する。この場合、1サイクル目は、燃料を筒内に直接噴射して始動性を高めることを目的としている。また、2サイクル目で吸気通路噴射を併用するのは、例えば1サイクル目の筒内噴射により生じたシステムの燃圧低下により2サイクル目の燃料噴射量が不足するのを回避することと、吸気通路(吸気ポート)の壁面に燃料を付着させることを目的としている。初回の吸気通路噴射では、比較的多量の燃料が吸気通路の壁面に付着して混合気の形成に寄与しない傾向がある。このため、2サイクル目に実行される初回の吸気通路噴射では、基本噴射量と壁面付着燃料量とを加算することにより吸気通路噴射量が算出される。   When gasoline is used, first, only in-cylinder injection is executed in the first cycle when the engine is started, and in-cylinder injection and intake passage injection are used in combination in the second cycle. In this case, the first cycle aims to improve the startability by injecting the fuel directly into the cylinder. In addition, the intake passage injection is used together in the second cycle, for example, avoiding the shortage of the fuel injection amount in the second cycle due to the decrease in the fuel pressure of the system caused by the in-cylinder injection in the first cycle, and the intake passage The purpose is to attach fuel to the wall of the (intake port). In the first intake passage injection, a relatively large amount of fuel tends to adhere to the wall surface of the intake passage and does not contribute to the formation of the air-fuel mixture. Therefore, in the first intake passage injection executed in the second cycle, the intake passage injection amount is calculated by adding the basic injection amount and the wall surface attached fuel amount.

ここで、基本噴射量とは、前述の総燃料噴射量と燃料噴射比率とに基いて設定され、吸気通路噴射量のベースとなるものである。壁面付着燃料量は、吸気通路に噴射した燃料のうち壁面に付着する燃料の量に対応するもので、吸気通路噴射量、エンジン水温、アルコール濃度等に基いて、公知の方法により算出される。なお、本発明において、燃料中のアルコール濃度が所定の濃度基準値よりも低い場合には、2サイクル目にも筒内噴射のみを実行する構成としてもよい。即ち、アルコール濃度が濃度基準値よりも低く、1サイクル目の筒内噴射量がシステムの燃圧低下を引き起こさないほど少量となる場合には、2サイクル目にも吸気通路噴射を実行せず、筒内噴射のみにより必要量の燃料を噴射する。   Here, the basic injection amount is set based on the above-described total fuel injection amount and fuel injection ratio, and serves as a base for the intake passage injection amount. The amount of fuel attached to the wall surface corresponds to the amount of fuel attached to the wall surface of the fuel injected into the intake passage, and is calculated by a known method based on the intake passage injection amount, engine water temperature, alcohol concentration, and the like. In the present invention, when the alcohol concentration in the fuel is lower than a predetermined concentration reference value, only in-cylinder injection may be executed in the second cycle. That is, when the alcohol concentration is lower than the concentration reference value and the in-cylinder injection amount in the first cycle is so small that it does not cause a decrease in the fuel pressure of the system, the intake passage injection is not executed in the second cycle, A required amount of fuel is injected only by internal injection.

次に、図3を参照して、アルコール燃料を使用した場合の燃料噴射制御について説明する。図3は、機関始動時における各気筒の燃料噴射状態を示す説明図である。この図に示すように、本実施の形態では、機関始動時の1サイクル目、2サイクル目及び3サイクル目以降について、それぞれ異なる燃料噴射制御を実行する。   Next, fuel injection control when alcohol fuel is used will be described with reference to FIG. FIG. 3 is an explanatory view showing the fuel injection state of each cylinder at the time of engine start. As shown in this figure, in the present embodiment, different fuel injection controls are executed for the first cycle, the second cycle, and the third and subsequent cycles when the engine is started.

(1サイクル目)
機関始動時(気筒判別後)の少なくとも最初の1サイクルにおいては、基本的にガソリンの場合とほぼ同様に、筒内噴射のみを実行して燃料噴射を開始し、始動性を高めるようにする。この時点では、吸気通路噴射を実行しないので、目標筒内噴射量は、前述の総燃料噴射量に対応した値となる。1サイクル目の燃料噴射では、前回の燃料噴射による燃圧の低下を考慮する必要がないので、アルコール濃度に関係なく、筒内噴射を実行する。これにより、始動時には、気化し難いアルコール燃料を筒内に直接噴射して燃焼性を向上させることができる。
(First cycle)
In at least the first one cycle at the time of engine start (after cylinder discrimination), in the same manner as in the case of gasoline, only in-cylinder injection is executed to start fuel injection to improve startability. At this time, since the intake passage injection is not executed, the target in-cylinder injection amount becomes a value corresponding to the aforementioned total fuel injection amount. In the first cycle of fuel injection, since it is not necessary to consider the decrease in fuel pressure due to the previous fuel injection, in-cylinder injection is executed regardless of the alcohol concentration. Thereby, at the time of start-up, the alcohol fuel which is hard to vaporize can be directly injected into the cylinder to improve the combustibility.

(2サイクル目)
機関始動時の2サイクル目以降においては、吸気通路噴射と筒内噴射を併用して燃料噴射を実行する。特に、アルコール燃料の使用時には、ガソリンと比較して燃料噴射量が増加する傾向があるので、1サイクル目の筒内噴射によりシステムの燃圧低下が生じて2サイクル目の燃料噴射量が不足する虞れがある。このため、2サイクル目以降では、吸気通路噴射と筒内噴射を併用して燃料噴射量を確保する。これにより、燃料中のアルコール濃度が高い場合でも、燃料噴射制御を安定的に実行することができる。なお、ガソリンの場合に説明したように、燃料中のアルコール濃度が濃度基準値よりも低い場合には、筒内噴射のみで対応可能と判断し、2サイクル目にも、吸気通路噴射を実行せずに筒内噴射のみを実行する構成としてもよい。
(2nd cycle)
In the second and subsequent cycles when the engine is started, fuel injection is performed using both intake passage injection and in-cylinder injection. In particular, when alcohol fuel is used, the fuel injection amount tends to increase as compared to gasoline. Therefore, the fuel pressure in the system may drop due to the in-cylinder injection in the first cycle, and the fuel injection amount in the second cycle may be insufficient. There is. For this reason, after the second cycle, the fuel injection amount is ensured by using the intake passage injection and the in-cylinder injection together. Thereby, even when the alcohol concentration in the fuel is high, the fuel injection control can be stably executed. As described in the case of gasoline, when the alcohol concentration in the fuel is lower than the concentration reference value, it is determined that only the in-cylinder injection can be handled, and the intake passage injection is executed even in the second cycle. Alternatively, only the in-cylinder injection may be performed.

(早期噴射併用制御)
上述したように、2サイクル目以降には吸気通路噴射を併用するが、燃料中のアルコール濃度がある程度以上高くなると、吸気通路噴射と筒内噴射を併用しても、総燃料噴射量分の燃料を噴射し切れない可能性がある。そこで、本実施の形態では、2つ噴射弁26,28から噴射される燃料の量が実用上の最大値となるアルコール濃度を所定値として設定し、燃料中のアルコール濃度が所定値よりも高い場合には、2サイクル目で噴射すべき燃料の一部を1サイクル目で噴射する早期噴射併用制御を実行する。早期噴射併用制御では、図3に示すように、2サイクル目に噴射される吸気通路噴射量の一部(以下、輸送遅れ噴射量と称す)を、1サイクル目に前倒し(早期化)して吸気通路噴射する。輸送遅れ噴射量は、燃料中のアルコール濃度が高いほど、増加するように設定される。また、早期噴射併用制御は、全ての気筒に対して実行してもよいが、図3に例示したように、必要に応じて一部の気筒のみに実行する構成としてもよい。
(Early injection control)
As described above, the intake passage injection is used together in the second and subsequent cycles. However, if the alcohol concentration in the fuel becomes higher than a certain level, the fuel corresponding to the total fuel injection amount is obtained even if the intake passage injection and the in-cylinder injection are used together. May not be able to be sprayed. Therefore, in the present embodiment, the alcohol concentration at which the amount of fuel injected from the two injection valves 26 and 28 is a practical maximum value is set as a predetermined value, and the alcohol concentration in the fuel is higher than the predetermined value. In this case, the early injection combined control is executed in which a part of the fuel to be injected in the second cycle is injected in the first cycle. In the early injection combined control, as shown in FIG. 3, a part of the intake passage injection amount injected in the second cycle (hereinafter referred to as a transport delay injection amount) is advanced (early) in the first cycle. The intake passage is injected. The transport delay injection amount is set to increase as the alcohol concentration in the fuel increases. Further, the early injection combined control may be executed for all the cylinders, but as illustrated in FIG. 3, it may be configured to be executed only for some of the cylinders as necessary.

ここで、吸気通路に噴射された燃料が筒内に到達するまでには輸送遅れが存在する。このため、2サイクル目の燃料噴射期間が長くなり過ぎる(燃料が噴射し切れない)場合には、少なくとも一部の燃料が輸送遅れにより2サイクル目の燃焼に寄与しない状態となる。このため、早期噴射併用制御は、2サイクル目の燃焼に間に合わない分の燃料を予め1サイクル目に噴射しておき、燃料の輸送遅れを補償するものである。なお、1サイクル目に前倒しされる輸送遅れ噴射量は、当該噴射燃料と合流して2サイクル目に筒内に流入する燃料の総量が適量となるように設定される。また、輸送遅れ噴射量は、必ずしも2サイクル目の吸気通路噴射量を減少させた分と一致させる必要はなく、それよりも多量の燃料を輸送遅れ噴射量として噴射してもよい。   Here, there is a transport delay before the fuel injected into the intake passage reaches the cylinder. For this reason, when the fuel injection period of the second cycle becomes too long (the fuel cannot be completely injected), at least part of the fuel does not contribute to the combustion of the second cycle due to transport delay. For this reason, in the early injection combined control, fuel that is not in time for the combustion in the second cycle is injected in the first cycle in advance to compensate for the fuel transportation delay. The transport delay injection amount that is brought forward in the first cycle is set so that the total amount of fuel that merges with the injected fuel and flows into the cylinder in the second cycle becomes an appropriate amount. Further, the transport delay injection amount does not necessarily need to coincide with the amount by which the intake passage injection amount in the second cycle is decreased, and a larger amount of fuel may be injected as the transport delay injection amount.

なお、輸送遅れ噴射量は、例えば噴射燃料の挙動をモデル化した公知の計算モデル等を用いることにより、エンジン回転数、負荷率、吸気通路噴射量、筒内噴射量、燃料中のアルコール濃度、吸気通路噴射弁26から筒内までの輸送遅れ等のパラメータに基いて算出される。また、早期噴射併用制御では、輸送遅れ噴射量に応じて吸気通路噴射の噴射量及び噴射回数を可変に設定し、噴射燃料の総量が輸送遅れ噴射量と一致するように制御してもよい。早期噴射併用制御によれば、機関始動時に燃料中のアルコール濃度が高く、燃料噴射量が多い場合でも、2サイクル目で過大となった吸気通路噴射量の一部を1サイクル目に前倒しすることができる。そして、この前倒しした燃料を輸送遅れにより2サイクル目で燃焼させることができ、各サイクルで燃焼させる燃料の量を適切に制御することができる。   The transport delay injection amount is, for example, by using a known calculation model that models the behavior of the injected fuel, so that the engine speed, load factor, intake passage injection amount, in-cylinder injection amount, alcohol concentration in the fuel, It is calculated based on parameters such as transport delay from the intake passage injection valve 26 to the cylinder. Further, in the early injection combined control, the injection amount and the number of injections of the intake passage injection may be variably set according to the transport delay injection amount, and the total amount of the injected fuel may be controlled to coincide with the transport delay injection amount. According to the early injection combined control, even if the alcohol concentration in the fuel is high at the time of engine start and the fuel injection amount is large, a part of the intake passage injection amount that has become excessive in the second cycle is moved forward in the first cycle. Can do. Then, this advanced fuel can be burned in the second cycle due to transport delay, and the amount of fuel burned in each cycle can be controlled appropriately.

(3サイクル目以降)
前述した1サイクル目では、前述した1,2サイクル目では、輸送遅れ噴射量及び壁面付着燃料量の分だけ吸気通路噴射量を増加させている。このため、3サイクル目以降においては、それまでに増量した燃料に応じて吸気通路噴射量(またはその燃料増量係数等)を減少させ、一時的に過剰となった燃料噴射量を補償(吸収)する。なお、吸気通路噴射量は、燃料増量係数が大きいほど増加するように設定される。また、吸気通路噴射量を減少させるときには、図3に示すように、噴射回数を増加させる構成としてもよい。
(3rd cycle and after)
In the first cycle, the intake passage injection amount is increased by the transportation delay injection amount and the wall surface attached fuel amount in the first and second cycles. For this reason, after the third cycle, the intake passage injection amount (or its fuel increase coefficient, etc.) is reduced according to the fuel that has been increased so far, and the fuel injection amount that is temporarily excessive is compensated (absorbed). To do. The intake passage injection amount is set so as to increase as the fuel increase coefficient increases. Further, when the intake passage injection amount is decreased, the number of injections may be increased as shown in FIG.

図4は、機関始動時及び始動後における各気筒の燃料噴射状態を示す説明図である。なお、この図は具体的な制御の一例を示している。図3に示すように、3サイクル目以降では、吸気通路噴射の燃料増量係数を徐々に減少させる。このとき、燃料増量係数の減少割合は、燃料中のアルコール濃度が高いほど、大きく設定する。即ち、アルコール濃度が高い燃料の使用時には、1,2サイクル目の吸気通路噴射量が大きく増量されるので、3サイクル目以降では、吸気通路噴射量を急激に減少させる。また、アルコール濃度が低い場合には、1,2サイクル目の吸気通路噴射量の増量が比較的抑制されるので、3サイクル目以降では、その分だけ吸気通路噴射量を緩やかに減少させる。   FIG. 4 is an explanatory view showing the fuel injection state of each cylinder at the time of starting the engine and after starting. This figure shows an example of specific control. As shown in FIG. 3, after the third cycle, the fuel increase coefficient of intake passage injection is gradually decreased. At this time, the decreasing rate of the fuel increase coefficient is set to be larger as the alcohol concentration in the fuel is higher. That is, when the fuel having a high alcohol concentration is used, the intake passage injection amount in the first and second cycles is greatly increased. Therefore, the intake passage injection amount is rapidly reduced in the third and subsequent cycles. Further, when the alcohol concentration is low, an increase in the intake passage injection amount in the first and second cycles is relatively suppressed, and therefore, the intake passage injection amount is gradually decreased in the third and subsequent cycles.

また、1サイクル目において、早期噴射併用制御を実行しなかった気筒(例えば、図3中の#1,#2,#3気筒)では、3サイクル目において、吸気通路噴射量を前記輸送遅れ噴射量の分だけ増量する。即ち、3サイクル目の開始時点では、早期噴射併用制御を実行した一部の気筒(#4,#5,#6気筒)と、当該制御を実行しなかった他の気筒(#1,#2,#3気筒)との間に燃料噴射量のばらつきが存在する。このため、3サイクル目では、早期噴射併用制御を実行しなかった気筒の吸気通路噴射量を輸送遅れ噴射量の分だけ増量する。これにより、1〜3サイクル目を通して、各気筒の燃料噴射量を整合させる(揃える)ことができ、気筒間の空燃比ばらつきを抑制することができる。   Further, in the cylinder in which the early injection combined control is not executed in the first cycle (for example, the cylinders # 1, # 2, and # 3 in FIG. 3), the intake passage injection amount is set to the transport delay injection in the third cycle. Increase by the amount. That is, at the start of the third cycle, some cylinders (# 4, # 5, # 6 cylinders) that have performed early injection combined control and other cylinders (# 1, # 2) that have not performed the control. , # 3 cylinder), the fuel injection amount varies. Therefore, in the third cycle, the intake passage injection amount of the cylinder for which the early injection combined control has not been executed is increased by the amount of the transport delay injection amount. Thereby, the fuel injection amount of each cylinder can be matched (equalized) through the first to third cycles, and variation in the air-fuel ratio among the cylinders can be suppressed.

[実施の形態1を実現するための具体的な処理]
次に、図5を参照して、上述した制御を実現するための具体的な処理について説明する。図5は、本発明の実施の形態1において、ECUにより実行される制御のフローチャートである。この図に示すルーチンでは、まず、ステップ100において、イグニッションスイッチ(IG)がONであるか否かを判定し、ONである場合には、ステップ102に移行する。そして、ステップ102,104,106では、センサ系統の出力に基いて、エンジン水温ethw、外気(環境)温度etha、燃料中のアルコール濃度ealchをそれぞれ算出する。なお、アルコール濃度ealchは、アルコール濃度センサ48を使用せずに、排気空燃比等に基いて推定する構成としてもよい。
[Specific Processing for Realizing Embodiment 1]
Next, specific processing for realizing the above-described control will be described with reference to FIG. FIG. 5 is a flowchart of the control executed by the ECU in the first embodiment of the present invention. In the routine shown in this figure, first, at step 100, it is determined whether or not the ignition switch (IG) is ON. If it is ON, the routine proceeds to step 102. In steps 102, 104, and 106, the engine water temperature ethw, the outside air (environment) temperature etha, and the alcohol concentration ealch in the fuel are calculated based on the output of the sensor system. The alcohol concentration ealch may be estimated based on the exhaust air / fuel ratio without using the alcohol concentration sensor 48.

次に、ステップ108では、スタータスイッチがONであるか否かを判定し、ONである場合には、ステップ110に移行する。ステップ110では、スタータモータを駆動してクランキングを実行(開始)しつつ、クランク角センサ40の出力に基いてクランク角の検出及び気筒判別を実行する。次に、ステップ112では、前述の図3に示すように、燃料中のアルコール濃度に応じた輸送遅れを考慮して燃料噴射形態を決定する。即ち、アルコール濃度に応じて、サイクル毎に筒内噴射量及び吸気通路噴射量を算出し、更に、吸気通路噴射の前倒し回数(気筒数)及び輸送遅れ量を算出する。また、ステップ114では、燃料中のアルコール濃度に応じた輸送遅れを考慮して、吸気通路噴射の増加回数及び噴射量を算出する。   Next, in step 108, it is determined whether or not the starter switch is ON. If it is ON, the process proceeds to step 110. In step 110, crank angle detection and cylinder discrimination are executed based on the output of the crank angle sensor 40 while driving (starting) cranking by driving the starter motor. Next, in step 112, as shown in FIG. 3 described above, the fuel injection mode is determined in consideration of the transport delay corresponding to the alcohol concentration in the fuel. That is, the in-cylinder injection amount and the intake passage injection amount are calculated for each cycle according to the alcohol concentration, and the number of intake passage injections (the number of cylinders) and the transport delay amount are calculated. In step 114, the number of intake passage injection increases and the injection amount are calculated in consideration of the transport delay according to the alcohol concentration in the fuel.

次に、ステップ116では、前述の図4に示すように、吸気通路噴射の前倒し回数に対応した燃料噴射増量係数を算出する。そして、ステップ118では、前記各ステップの算出結果に基いて、筒内噴射及び吸気通路噴射を実行する。なお、上記ルーチンによりエンジンが自立運転に移行した後には、エンジンの運転状態に応じて吸気通路噴射と筒内噴射の何れかを実行するか、または両者を併用して噴射比率を可変に設定する噴き分け制御が実行される。   Next, at step 116, as shown in FIG. 4 described above, a fuel injection increase coefficient corresponding to the number of intake passage injections is calculated. In step 118, in-cylinder injection and intake passage injection are executed based on the calculation results of the respective steps. After the engine shifts to the self-sustained operation by the above routine, either the intake passage injection or the in-cylinder injection is executed or the injection ratio is set to be variable by using both in accordance with the operating state of the engine. Blowing control is executed.

以上詳述した通り、本実施の形態によれば、アルコール燃料を用いるエンジンにおいて、筒内噴射により始動性を確保しつつ、燃料の輸送遅れや壁面付着分を考慮して吸気通路噴射を適切に併用することができ、始動時の空燃比制御性を向上させることができる。   As described above in detail, according to the present embodiment, in an engine using alcohol fuel, intake passage injection is appropriately performed in consideration of fuel transportation delay and wall adhesion while ensuring startability by in-cylinder injection. The air-fuel ratio controllability at the time of starting can be improved.

なお、前記実施の形態1では、図3中に示す1サイクル目の筒内噴射が請求項1における第1の噴射制御手段の具体例を示し、2サイクル目以降の吸気通路噴射及び筒内噴射が第2の噴射制御手段の具体例を示している。また、1サイクル目の吸気通路噴射は、早期噴射併用手段の具体例を示している。2サイクル目の基本噴射量、壁面付着燃料量は、それぞれ請求項2における基本噴射量算出手段、壁面付着燃料量手段の具体例を示している。また、3サイクル目において、早期噴射併用制御を実行しなかった気筒の吸気通路噴射量を輸送遅れ噴射量の分だけ増量する制御が、請求項3における噴射量整合手段の具体例を示している。   In the first embodiment, the in-cylinder injection in the first cycle shown in FIG. 3 shows a specific example of the first injection control means in claim 1, and the intake passage injection and the in-cylinder injection in the second and subsequent cycles. Shows a specific example of the second injection control means. Further, the intake manifold injection in the first cycle shows a specific example of the early injection combined means. The basic injection amount and the wall surface adhering fuel amount in the second cycle are specific examples of the basic injection amount calculating means and the wall surface adhering fuel amount means in claim 2, respectively. In addition, in the third cycle, the control for increasing the intake passage injection amount of the cylinder for which the early injection combined control has not been executed by the amount of the transport delay injection amount is a specific example of the injection amount matching means in claim 3. .

10 エンジン
12 ピストン
14 燃焼室
16 クランク軸
18 吸気通路
20 スロットルバルブ
22 排気通路
24 触媒
26,28 燃料噴射弁
30 点火プラグ
32 吸気バルブ
34 排気バルブ
40 クランク角センサ
42 エアフローセンサ
44 水温センサ
46 吸気温センサ
48 アルコール濃度センサ(アルコール濃度取得手段)
50 ECU
10 Engine 12 Piston 14 Combustion chamber 16 Crankshaft 18 Intake passage 20 Throttle valve 22 Exhaust passage 24 Catalysts 26 and 28 Fuel injection valve 30 Spark plug 32 Intake valve 34 Exhaust valve 40 Crank angle sensor 42 Air flow sensor 44 Water temperature sensor 46 Intake temperature sensor 48 Alcohol concentration sensor (Alcohol concentration acquisition means)
50 ECU

Claims (3)

ガソリン及びアルコール燃料を使用する内燃機関の複数気筒に搭載され、各気筒の吸気通路に燃料をそれぞれ噴射する吸気通路噴射弁と、
前記各気筒に搭載され、筒内に燃料をそれぞれ噴射する筒内噴射弁と、
燃料中のアルコール濃度を取得するアルコール濃度取得手段と、
機関始動時の少なくとも1サイクル目において、前記筒内噴射弁から燃料を噴射する第1の噴射制御手段と、
機関始動時の2サイクル目以降において、前記吸気通路噴射弁と前記筒内噴射弁の両方から燃料を噴射する第2の噴射制御手段と、
燃料中のアルコール濃度が所定値以上の場合に、前記2サイクル目に前記吸気通路噴射弁から噴射する燃料の一部を前記1サイクル目に前記吸気通路噴射弁から噴射する早期噴射併用手段と、
を備えることを特徴とする内燃機関の制御装置。
An intake passage injection valve mounted on a plurality of cylinders of an internal combustion engine that uses gasoline and alcohol fuel, and injects fuel into the intake passage of each cylinder;
In-cylinder injection valves that are mounted on the cylinders and inject fuel into the cylinders;
Alcohol concentration acquisition means for acquiring the alcohol concentration in the fuel;
A first injection control means for injecting fuel from the in-cylinder injection valve in at least a first cycle when the engine is started;
A second injection control means for injecting fuel from both the intake passage injection valve and the in-cylinder injection valve after the second cycle at the time of engine start;
An early injection combined means for injecting a part of the fuel injected from the intake passage injection valve in the second cycle from the intake passage injection valve in the first cycle when the alcohol concentration in the fuel is a predetermined value or more;
A control device for an internal combustion engine, comprising:
前記吸気通路噴射弁から噴射すべき基本噴射量を算出する基本噴射量算出手段と、
前記吸気通路の壁面に付着する分の燃料を補償するための壁面付着燃料量を算出する壁面付着燃料量手段と、を備え、
前記第2の噴射制御手段は、前記2サイクル目において、前記基本噴射量と前記壁面付着燃料量とを加算した量の燃料を前記吸気通路噴射弁から噴射する構成としてなる請求項1に記載の内燃機関の制御装置。
Basic injection amount calculating means for calculating a basic injection amount to be injected from the intake passage injection valve;
A wall surface attached fuel amount means for calculating a wall surface attached fuel amount for compensating for fuel adhering to the wall surface of the intake passage,
The said 2nd injection control means becomes a structure which inject | pours the fuel of the quantity which added the said basic injection amount and the said wall surface attached fuel amount from the said intake passage injection valve in the said 2nd cycle. Control device for internal combustion engine.
前記複数気筒のうち前記1サイクル目に前記早期噴射併用手段が作動していない気筒に対して、3サイクル目における前記吸気通路噴射弁の燃料噴射量を増量する噴射量整合手段を備えてなる請求項1または2に記載の内燃機関の制御装置。   An injection amount matching means for increasing the fuel injection amount of the intake passage injection valve in the third cycle for the cylinder in which the early injection combined means is not operated in the first cycle among the plurality of cylinders. Item 3. The control device for an internal combustion engine according to Item 1 or 2.
JP2012002206A 2012-01-10 2012-01-10 Internal combustion engine control device Pending JP2013142305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002206A JP2013142305A (en) 2012-01-10 2012-01-10 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002206A JP2013142305A (en) 2012-01-10 2012-01-10 Internal combustion engine control device

Publications (1)

Publication Number Publication Date
JP2013142305A true JP2013142305A (en) 2013-07-22

Family

ID=49039030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002206A Pending JP2013142305A (en) 2012-01-10 2012-01-10 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP2013142305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105298655A (en) * 2014-07-28 2016-02-03 康明斯公司 Dual-fuel engine with enhanced cold start capability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105298655A (en) * 2014-07-28 2016-02-03 康明斯公司 Dual-fuel engine with enhanced cold start capability
CN105298655B (en) * 2014-07-28 2020-05-01 康明斯公司 Dual fuel engine with enhanced cold start capability

Similar Documents

Publication Publication Date Title
JP5779331B2 (en) In-cylinder injection gasoline engine controller
US8671902B2 (en) Control apparatus for internal combustion engine
CN105526011B (en) Method and system for reactivating engine cylinders
JP5240370B2 (en) Control device for internal combustion engine
JP2018091267A (en) Controller of internal combustion engine
WO2013030926A1 (en) Control device for internal combustion engine
WO2013030924A1 (en) Control device for internal combustion engine
JP2012255366A (en) Control device and control method for internal combustion engine
JP2009062862A (en) Fuel injection control device of internal combustion engine
JP2008163815A (en) Fuel injection control device for internal combustion engine
JP4563370B2 (en) Fuel injection control device for internal combustion engine
JP5716842B2 (en) Control device for internal combustion engine
US20150006061A1 (en) Fuel injection control method for internal combustion engine
JP5780391B2 (en) Fuel injection control device for internal combustion engine
JP3847052B2 (en) Fuel injection control device for internal combustion engine
JP5867441B2 (en) Control device for internal combustion engine
JP5267728B2 (en) Control device for internal combustion engine
US11220962B1 (en) Methods and systems for a boosted engine
JP2013142305A (en) Internal combustion engine control device
JP2014074337A (en) Control device of internal combustion engine
JP2010265815A (en) Fuel injection system for internal combustion engine
JP5505655B2 (en) Fuel injection control device for internal combustion engine
JP2019108824A (en) Fuel injection control apparatus
JP5240208B2 (en) Control device for internal combustion engine
JP2013142301A (en) Internal combustion engine control device