JP5866832B2 - 検出装置及び検出方法 - Google Patents

検出装置及び検出方法 Download PDF

Info

Publication number
JP5866832B2
JP5866832B2 JP2011152734A JP2011152734A JP5866832B2 JP 5866832 B2 JP5866832 B2 JP 5866832B2 JP 2011152734 A JP2011152734 A JP 2011152734A JP 2011152734 A JP2011152734 A JP 2011152734A JP 5866832 B2 JP5866832 B2 JP 5866832B2
Authority
JP
Japan
Prior art keywords
mode
chamber
optical device
light
fluid sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011152734A
Other languages
English (en)
Other versions
JP2013019748A (ja
Inventor
山田 耕平
耕平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011152734A priority Critical patent/JP5866832B2/ja
Publication of JP2013019748A publication Critical patent/JP2013019748A/ja
Application granted granted Critical
Publication of JP5866832B2 publication Critical patent/JP5866832B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、特に微量物質の検出に適する検出装置及び検出方法等に関する。
近年、低濃度の試料分子を検出する高感度分光技術の1つとして、SPR(Surface Plasmon Resonance:表面プラズモン共鳴)、特にLSPR(Localized Surface Plasmon Resonance:局在表面プラズモン共鳴)の利用したSERS(Surface Enhanced Raman Scattering:表面増強ラマン散乱)分光が注目されている(特許文献1)。SERSとは、ナノメートルスケールの凸凹構造を持つ金属表面でラマン散乱光が10〜1014倍増強される現象である。レーザーなどの単一波長の励起光を試料分子に照射する。励起光の波長から試料分子の分子振動エネルギー分だけ僅かにずれた散乱波長(ラマン散乱光)を分光検出し、試料分子の指紋スペクトルを得る。その指紋スペクトルの形状から、試料分子を同定することが可能となる。
特許文献1によれば、溶液だけでなく大気中で安定的なSERS基板について提案されている。これによって試料分子が気体状態でも検出できるようになった。しかし、気体状の標的分子を短時間で効率的に検出する方法については一切触れられていない。つまり、標的分子が自然に吸着されるのを待って検出していた。効率的な気体分子の分析方法として、特許文献2に開示された技術がある。
特許第3714671号公報 特表2003−521688号公報
しかし、特許文献2では、気体を圧縮しカラム(管)への供給するものであり、カラムに気体を通すことが前提となっているため、検出作業時間の短縮には限界があった。
そこで、本発明の幾つかの態様では、標的分子が光学デバイスを被覆する時間を短縮することで、検出時間を短縮することができる検出装置及び検出方法を提供することを目的とする。
(1)本発明の一態様は、
光学デバイスと、
前記光学デバイスが配置される空間の容積が可変であるチャンバーと、
前記光学デバイスに光を照射する光源と、
前記光学デバイスから出射される光を検出する光検出部と、
前記チャンバーの容積を可変駆動する駆動部と、
前記駆動部を制御する制御部と、
を有し、
前記光学デバイスは、該光学デバイスを被覆する流体試料を反映する光を出射し、
前記制御部は、前記チャンバーから前記流体試料を排出する第1モードと、前記第1モード後に前記チャンバーに前記流体試料を吸引する第2モードと、前記第2モード後に前記チャンバーを気密状態として前記光検出部にて検出する第3モードを有し、前記第1,第2モードでは前記チャンバーの容積をV1とし、前記第3モードでは気密状態にされた前記チャンバーの容積をV2(V2<V1)とする検出装置に関する。
本発明の一態様によれば、光デバイスが流体試料により被覆される所定の被覆率に到達する時間tが、流体試料分子の衝突頻度Zに反比例し、衝突頻度Zはチャンバー内での流体試料の分圧Pと比例することに着目した。チャンバー内での流体試料の分圧Pを大きくするために、光検出部にて検出する第3モードでは、チャンバーを気密状態としてチャンバーの容積を、第1,第2モードでのチャンバーの開放時(流体試料の吸引及び排出時)のチャンバーの容積V1よりも小さい容積V2(V2<V1)とした。これにより、第3モードにて、光デバイスが流体試料により被覆されて所定の被覆率に到達する時間tが短縮され、もって検出時間を短縮できる。
(2)本発明の一態様では、前記光学デバイスは、前記流体試料のラマン散乱光を発生させ、前記光検出部は、前記流体試料中に存在し得る検査対象の物質のラマン散乱光を検出することができる。ラマン散乱光は検査対象の物質を反映した信号の一例であり、流体試料中にて検査対象の物質の有無を判定できる。
(3)本発明の一態様では、前記光学デバイスは、1〜1000nmの凸部を有する金属ナノ構造を備えることができる。こうすると、金属ナノ構造の凸部の周囲に増強電場が形成され、増強電場で増強されるラマン散乱光の信号強度が強くなる。
(4)本発明の一態様では、前記チャンバーに前記流体試料を吸引する吸引駆動部をさらに有し、前記制御部は、前記第1モードでは、前記光学デバイス上での前記流体試料の吸引流速をv1とし、前記第2モードでは、前記光学デバイス上での前記流体試料の吸引流速をv2(v2<v1)に設定することができる。
こうすると、第1モードでは、比較的速い流速v1に設定されるので、光学デバイスを被服しまたは吸着された流体試料を脱離させることができ、第1モードを脱離モードと称することができる。第2モードは、比較的遅い流速v2で吸引される流体試料を光学デバイスにて被覆しまたは吸着することができ、第2モードを吸着モードとも称することができる。なお、第3モードは検出モードと称することができる
このように、第1モード、第2モード及び第3モードを交互に繰り返し実施すると、一旦光学デバイスに吸着された流体試料を脱離させることができる。こうして、検出後に光学デバイスをクリーンアップすることができ、前回検出時の影響を残すことなく次回の検査を繰り返し実施することが可能となる。よって、第1,第2,第3モードを交互に繰り返し実施することにより、リアルタイム検査が可能となる。しかも、検出後に光学デバイスをクリーンアップできるので、流体試料中の検査対象の物質が所定の濃度以上で存在するかしないかの判定を信頼性高く行うことができる。
(5)本発明の一態様では、予め決められた時間で周期的に、第1モード、第2モード、第3モードの順にモードを切換えることができる。これにより、連続計測ができ、且つ短時間周期で検出を実現できる。
(6)本発明の一態様では、前記制御部は、前記光検出部からの信号レベルに基づいて前記第1,第2,第3モードを切換えることができる。第1,第2,第3モードでは、光学デバイスに被覆または吸着される流体試料の量の変化が異なるので、光検出部からの信号レベルに基づいて第1,第2,第3モードを切換え、周期的に連続計測することができる。
(7)本発明の一態様では、前記制御部は、前記信号レベルが第1閾値以下となった時に前記第1モードから前記第2モードに切換え、前記信号レベルが前記第1閾値よりも高い第2閾値以上となった時に前記第2モードから前記第3モードに切換え、前記信号レベルが前記第2閾値よりも高い第3閾値以上となった時に前記第3モードから前記第1モードに切換えることができる。第1,第2,第3モードでは、光学デバイスに被覆または吸着される流体試料の量の変化が異なるからである。
(8)本発明の一態様では、前記チャンバーは、チャンバー壁の一部が気密状態を維持して伸縮する伸縮部を含み、前記駆動部は前記伸縮部を伸縮させて前記チャンバーの容積を可変とすることができる。この種の伸縮部として、ベローズや弾性体例えばゴム等を挙げることができる。
(9)本発明の他の態様は、
光学デバイスが配置されたチャンバーを開放して、前記チャンバーから流体試料を排出する第1工程と、
前記チャンバーに流体試料を吸引する第2工程と、
前記流体試料が導入された前記チャンバーを気密状態として、前記光学デバイスに光を照射し、前記光学デバイスから出射される光を検出する第3工程と、
を有し、
前期第1工程及び第2工程では前記チャンバーの容積をV1とし、前記第3工程では前記チャンバーの容積をV2(V2<V1)とする検出方法に関する。
本発明の他の態様では、本発明の一態様と同様にして、第3工程の時間を短縮でき、もって検出時間を短縮できる。
本発明の一実施形態に係る検出装置の概要を示す図である。 図2(A)(B)は第1〜第3モードでのチャンバー容積と流体試料の速度を示す特性図である。 チャンバー容積を変化した時のパラメーターを説明するための図である。 第1〜第3モードでのSERS強度の推移を示す特性図である。 図5(A)は吸引部と光学デバイスの拡大断面図、図5(B)及び図5(C)は光学デバイスでの増強電場の形成を示す断面図及び平面図である。 硫化ジメチルのラマンシフトを示す特性図である。 チャンバー体積変化をパラメーターとした被覆率の曝露時間依存性を示す特性図である。 図8(A)(B)は、第1,第2モードと第3モードでのSERS信号の発生の様子を示す概略説明図である。 検査装置の全体概要を示すブロック図である。 検査装置の制御系ブロック図である。 表面増強赤外分光法に用いられる光学デバイスの概略説明図である。 図11の光学デバイスに入射する赤外線の特性図である。 図11の光学デバイスにて反射される赤外線の特性図である。
以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
1.検出装置の基本構成
図1は、本実施形態の検出装置の構成例を示す。図1において、検出装置100は、チャンバー10と、光学デバイス20と、光源50と、光検出部60と、制御部71と、駆動部80とを有する。チャンバー10は、光学デバイス20が配置される空間の容積が可変である。このため、チャンバー10は、チャンバー壁部の一部が伸縮する伸縮部例えばベローズや弾性体(例えばゴム材)11を有する。チャンバー10は、吸気バルブ12と排気バルブ13を有し、制御部71の制御によるバルブ12,13の駆動により、開放/気密の各状態に設定される。光源50は、光学デバイス20に光を照射する。光検出部60は、光学デバイス20から出射される光を検出する。駆動部80は、制御部71の制御に基づいてベローズ11を伸縮駆動してチャンバー10の容積を可変駆動する。なお、光学デバイス20と、光源50及び/又は光検出部60との間に、光学系30を設けることができる。また、チャンバー10の排気側には吸引駆動部例えばファン40を有することができる。
光学デバイス20は、光源50からの光が照射されることで、吸着している流体試料を反映した光を出射するものである。本実施形態では、流体試料は例えば大気であり、検査対象の物質は大気中の特定気体分子(試料分子)とすることができるが、これに限定されない。
吸引駆動部であるファン40は、流体試料をチャンバー10内に吸引する。光源50は、例えば光学系30を構成する例えばハーフミラー320と対物レンズ330を介して、光学デバイス20に光を照射する。光検出部60は、光学デバイス20に吸着された流体試料が反映された光を、ハーフミラー320及び対物レンズ330を介して検出する。
2.制御モード
制御部71は、制御モードとして、図2(A)(B)に示す第1,第2,第3モードを有する。第1モードは、チャンバー10から流体試料を排出するモードであり、第1工程とも称する。第2モードとは、第1モード後にチャンバー10に流体試料をチャンバー10内に吸引する吸引モードであり、第2工程とも称する。第3モードとは、第2モード後にチャンバー20を気密状態として光検出部60にて検出する検出モードであり、第3工程とも称する。制御部71は、光検出部60からの信号に基づいて、図2に示す第1,第2,第3モードを切換え制御することもできる。
2.1.チャンバー容積の可変制御
制御部71は、駆動部80を駆動制御することでベローズ11を伸縮させて、第1,第2モードでは、開放されたチャンバー10の容積をV1とし、第3モードでは気密状態にされたチャンバー10の容積をV2(V2<V1)とする。こうすることで、第3モードにて光学デバイス20を試料流体により所定の被覆率以上で被覆して、光学デバイス20に流体試料を吸着させるまでに要する時間を短縮し、もって検出時間を短縮している。その理由について、以下にて説明する。
通常、表面への気体分子の衝突頻度Z(個/m・sec)は以下のように表される。
Figure 0005866832
ここで、Pは気体の分圧[Pa]、mは分子1個の質量[kg]であり、式(1)ではm=分子量M(g/mol)/NA(アボガドロ係数:6×1023個/mol)が代入されている。KBはボルツマン定数[1.38e−23J/mol]、Tは絶対温度[K]である。分子の吸着確率はZと吸着確率の積で与えられることから、センサ表面へ分子を効率よく吸着させる1つの方法は、衝突頻度Zを増加させればよい。本実施形態は、第3モード(第3工程)にてチャンバー10の容積VをV1からV2に収縮させることによって、分子の分圧Pを増加させ、結果的に衝突頻度Zの増加を促進させている。
次に、図3に示すように、チャンバー10の容積VをV1からV2に収縮させることによって、分子の分圧P1を分圧P2に増加させることができる。先ず、図3に示す2つの状態での各状態方程式から、
P1×V1=nRT1…(2)
P2×V2=nRT2…(3)
が成立する。
体積変化を緩やかに実施すると、体積収縮時に自然放熱して、T1≒T2となるので、式(2)(3)を変形すると、
P2/P1=V1/V2…(4)
となる。ここで、V1>V2であるから、P2/P1=V1/V2>1となり、
P2>P1 …(5)
が成立することが分かる。つまり、チャンバー10の容積VをV1からV2に収縮させることによって、分子の分圧P1を分圧P2に増加させることができる。それにより、式(1)から衝突頻度Zを大きくすることができることが分かる。
次に、吸着現象を速度論的に説明する。Langmuir型と呼ばれる吸着モデルによると、吸着速度rは、時間t、光学デバイス20の例えば金属表面の吸着サイトの被覆率(占有率)θ、衝突頻度Zを用いると、
Figure 0005866832
と表される。初期吸着確率s0は、例えば100個の分子が表面に衝突し、そのうち50個の分子が吸着した場合0.5となる。この微分方程式を被覆率(占有率)θについて解くと以下のようになる。
Figure 0005866832
つまり、吸着速度rを大きくとるには、衝突頻度Zを大きくすることが重要である。衝突頻度Zとは、ある気体分子の単位表面積への毎時間当りの衝突分子数[個/m・sec]であり式(1)である。(7)式を時間tについて変形すると、
Figure 0005866832
となり、時間tは衝突頻度Zに反比例することが分かる。単純に衝突頻度Zが2倍になれば同じ被覆率に到達する時間tは半分になることが分かる。衝突頻度Zは式(1)により、気体分圧P[Pa]に比例する。そのため、分圧Pを増加させることで、衝突頻度Zを増加させ、時間tを短縮できることが分かる。
2.2.流体試料の吸引速度制御
図2(B)は、上述した第1,第2,第3モードでの光学デバイス20上での流体試料の吸引速度の変化を示している。本実施形態では、上述した第1,第2,第3モードを設定するために、制御部71は吸引駆動部であるファン40を駆動制御して、第1,第2,第3モードにて流体試料の吸引速度(単位時間当たりの気体輸送量)を制御することができる。ただし、第3モードでは、図1のバルブ12,13が制御部71により閉鎖されてチャンバー10が密閉されるので、ファン40の駆動に拘わらず、光学デバイス20上での流体試料の吸引速度(または単位時間当たりの気体輸送量)は零である。
制御部71は、第1モードでは光学デバイス20上での流体試料の吸引流速(単位時間当たりの気体輸送量)vを最大速度v1(ml/分)とし、第2モードでは吸引流速をv2(v2>v1)とし、第3モードでは吸引速度v3は零となる。例えば、v2=1000ml/secに設定できる。吸引駆動部40はチャンバー10内に負圧を発生させる負圧発生部として機能する。吸引駆動部(負圧発生部)40は、ファンに限らず、チューブポンプ、ダイアフラム式ポンプ等のポンプなど、吸引駆動部40にて負圧を発生させて流体試料を吸引できるものであれば良い。吸引速度の制御は、上述の通りファン40を対象としても良いし、バルブやシャッターの開口面積を変化させても良い。制御の結果として、光学デバイス20上の流体試料の吸引速度を可変できれば良い。
本実施形態では、第1モード(脱離モード)では、第2モード(吸着モード)での流速v2よりも大きい流速v1に設定される。よって、第1モードでは光学デバイス20に過去に吸着された流体試料を脱離させることができる。第2モード(吸着モード)では、比較的緩やかな流速v2で吸引される流体試料を光学デバイス20に吸着することができる。チャンバー20を密閉した第3モード(検出モード)では、流速v3は零であるが、上述したようにチャンバー10の容積が収縮されて被覆率が高まる。このとき光学デバイス20に光源30からの光を照射すると、光学デバイス20に吸着された流体試料が反映された光が生ずる。光検出部60は光学デバイス20からの光を検出することができる。
このように、第1,第2,第3モードを交互に実施すると、一旦光学デバイス20に吸着された流体試料を検出前に脱離させることができる。こうして、検査後に光学デバイス20をクリーンアップすることができ、前回検査時の影響を残すことなく次回の検査を繰り返し実施することが可能となる。
ここで、第1〜第3モードの流速v1,v2,v3は光学デバイス20上での流体試料の流速(単位時間当たりの気体輸送量)であり、流速v1,v2が得られるようにファン40が駆動される。その際、第1,第2モードを交互に繰り返し実施する場合には、第2モードでのファン450の駆動を停止してもよい。この場合、第2モードでの風量や慣性を利用して、光学デバイス20上での流体試料の流速v2(v2≠0)を確保できる。
2.3.第1〜第3モードの切り換え制御
第1,第2,第3モードの切換えは、光検出部60の出力に基づいて行うことができる。第1,第2,第3モード間では、流体試料の脱離、吸着または被覆率の増大によって光検出信号が変化するからである。図4は、時刻0〜T2において、光検出部60の出力として、例えば流体試料中の検査対象の試料分子のSERS強度の変化を示している。時刻0から開始される第1モードでは、光学デバイス20に吸着されていた試料分子が脱離されるため、第1モードではSERS強度は低下する。よって、図3に示す第1閾値I1をSERS強度が下回る時刻T0にて、第1モードから第2モードに切り換えることができる。
次に、第2モードでは光学デバイス20に吸着される試料分子が徐々に多くなる。従って、第2モードではSERS強度が増加する。よって、図3に示す第2閾値I2(I2>I1)をSERS強度が上回る時刻T1にて、第2モードから第3モードに切り換えることができる。
次に、第3モードでは、チャンバー10の体積収縮により被覆率が高まり、光学デバイス20に吸着される試料分子が比較的急激に増加する。従って、第3モードでは第2モードよりもさらにSERS強度が増加する。よって、図3に示す第3閾値I3(I3>I2)をSERS強度が上回る時刻T2にて、検出モードを終了させて、第32モードから第1モードに切り換えることができる。
なお、SERS強度は図1に示す光検出部60の受光素子にて受光されるフォトンの数に基づく値である。例えば、第1閾値I1=10カウント(ノイズレベル)、第2閾値I2=30カウント、第3閾値I3=1000カウント(ピークカウント)に設定できる。
本実施形態では、予め決められた時間で第1モード→第2モード→第3モード→第1モード→…と周期的にモードを切換えることができる。それにより、連続計測ができ且つ短時間周期で検出を実現できる。例えば、図2において、T0=30sec、T1=40sec、T2=60secとすることができる。この場合、60secという短い周期で標的分子の有無を高い信頼性で調べることができる。
3.光検出の原理と構造の一例
図5(A)〜図5(C)を用いて、流体試料を反映した光検出原理の一例としてラマン散乱光の検出原理の説明図を示す。図5(A)に示すように、光学デバイス20に吸着される検査対象の試料分子1に入射光(振動数ν)が照射される。一般に、入射光の多くは、レイリー散乱光として散乱され、レイリー散乱光の振動数ν又は波長は入射光に対して変化しない。入射光の一部は、ラマン散乱光として散乱され、ラマン散乱光の振動数(ν−ν’及びν+ν’)又は波長は、試料分子1の振動数ν’(分子振動)が反映される。つまり、ラマン散乱光は、検査対象の試料分子1を反映した光である。入射光の一部は、試料分子1を振動させてエネルギーを失うが、試料分子1の振動エネルギーがラマン散乱光の振動エネルギー又は光エネルギーに付加されることもある。このような振動数のシフト(ν’)をラマンシフトと呼ぶ。
図5(B)は、図1及び図5(A)の光学デバイス20の拡大図である。図5(A)に示すように入射光が基板200の平坦面から入射される場合、基板200は入射光に対して透明な材料が用いられる。光学デバイス20は、基板200上の第1構造として、誘電体から成る複数の凸部210を有する。本実施形態では、入射光に対して透明な誘電体としての石英、水晶、硼珪酸ガラスなどのガラスまたはシリコン等で形成された基板200上に、レジストを形成し、そのレジストを例えば遠紫外線(DUV)フォトリソグラフィー法を用いてパターン化している。パターン化されたレジストにより基板200をエッチングすることで、例えば図5(C)に示すように複数の凸部210が二次元的に配置される。なお、基板200と凸部210とを異なる材料で形成しても良い。
複数の凸部210上の第2構造として、複数の凸部210には、例えばAuまたはAg等の金属ナノ粒子(金属微粒子)220が例えば蒸着、スパッタ等により形成される。結果として、光学デバイス20は、1〜1000nmの凸部を有する金属ナノ構造を有することができる。1〜1000nmの凸部を有する金属ナノ構造とは、基板200の上面を当該サイズの凸部構造(基板材で)を持つように加工する他に、基板上に当該サイズの金属微粒子を蒸着・スパッタ等で固着させる、または、基板上にアイランド構造を有する金属膜を形成する等の方法でも形成できる。
図5(B)及び図5(C)に示すように、二次元パターン状の金属ナノ粒子220に入射光が入射された領域240では、隣り合う金属ナノ粒子220間のギャップGに、増強電場230が形成される。特に、入射光の波長よりも小さな金属ナノ粒子220に対して入射光を照射する場合、入射光の電場は、金属ナノ粒子220の表面に存在する自由電子に作用し、共鳴を引き起こす。これにより、自由電子による電気双極子が金属ナノ粒子220内に励起され、入射光の電場よりも強い増強電場230が形成される。これは、局在表面プラズモン共鳴(LSPR:Localized Surface Plasmon Resonance)とも呼ばれる。この現象は、入射光の波長よりも小さな1〜1000nmの凸部を有する金属ナノ粒子220等の電気伝導体に特有の現象である。
図5(A)〜図5(C)では、光学デバイス20に入射光を照射した時に表面増強ラマン散乱(SERS: Surface Enhanced Raman Scattering)が生ずる。つまり、増強電場230に試料分子1が入り込むと、その試料分子1によるラマン散乱光は増強電場230で増強されて、ラマン散乱光の信号強度は、強くなる。このような表面増強ラマン散乱では、試料分子1が微量であっても、検出感度を高めることができる。
以下にて説明する試料分子1の「吸着」という現象は、試料分子1が金属ナノ粒子220に衝突する衝突分子の数(分圧)が支配的である現象であり、物理吸着及び化学吸着の一方又は双方を含む。「脱離」は外力により吸着を解除することを意味する。吸着エネルギーは試料分子1の運動エネルギーに依存し、ある値を乗り越えると衝突して「吸着」現象を呈し、吸着には外力は不要である。一方、脱離には外力が必要である。また、光学デバイス20に流体試料を吸引することとは、換言すると、その内部に光学デバイス20を配置した流路に吸引流を生じさせることで、流体試料を光デバイス20に接触させることである。
実際に硫化ジメチル(dimethyl sulfide:DMS)分子を用いて測定した結果を図6に示す。硫化ジメチルのSERSスペクトルは676cm−1に鋭いピークを有する。DMS分子はLSPR増強電場内に吸着して、SERS信号が検出される。安定的なSERS信号を得るためには吸着被覆率が0.5以上、例えば0.6を閾値として設定すると、体積収縮がない場合(V2=V1)では、図7に示すように、曝露から6sec以上かかることになる。検出時間を短時間化させるためには効率よく吸着させることが重要である。
そこで、図8(A)に示す第1,第2モードでの体積V1から、図8(B)に示すように第3モードでの体積V3に収縮させる。こうすると、図8(B)に示すように試料分子1の分圧が高くなり、SERS強度が増大する。事実、図7に示すように、V2=V1/2の体積収縮では閾値0.6に到達するのに4secとなり、V2=V1/4の体積収縮では閾値0.6に到達するのに2sec未満に短縮される。このように、図7の特性は、上述した式(1)〜(8)を反映している。
4.検出装置の具体的な構成
図9は、本実施形態の検出装置の具体的な構成例を示す。図9に示される検出装置100も、図1に示すチャンバー10、光学デバイス20と、光学系30と、吸引駆動部40と、光源50と、光検出部60と、制御部71を含む処理部70(図9では省略)と、駆動部80とを有している。
図9において、光源50は例えばレーザーであり、小型化の観点から好ましくは垂直共振型面発光レーザーを用いることができるが、これに限定ざれない。
光源50からの光は、光学系30を構成するコリメーターレンズ310により平行光にされる。コリメーターレンズ310の下流に偏光制御素子を設け、直線偏光に変換しても良い。ただし、光源50として例えば面発光レーザーを採用し、直線偏光を有する光を発光可能であれば、偏光制御素子を省略することができる。
コリメーターレンズ310により平行光された光は、ハーフミラー(ダイクロイックミラー)320により光学デバイス20の方向に導かれ、対物レンズ330で集光され、光学デバイス20に入射する。光学デバイス20には、図5(A)〜図5(C)に示す金属ナノ粒子220が形成される。光学デバイス20から例えば表面増強ラマン散乱によるレイリー散乱光及びラマン散乱光が放射される。光学デバイス20からのレイリー散乱光及びラマン散乱光は、対物レンズ330を通過し、ハーフミラー320によって光検出部60の方向に導かれる。
光学デバイス20からのレイリー散乱光及びラマン散乱光は、集光レンズ340で集光されて、光検出部60に入力される。光検出部60では先ず、光フィルター610に到達する。光フィルター610(例えばノッチフィルター)によりラマン散乱光が取り出される。このラマン散乱光は、さらに分光器620を介して受光素子630にて受光される。分光器620は、例えばファブリペロー共振を利用したエタロン等で形成されて通過波長帯域を可変とすることができる。分光器620を通過する光の波長は、制御部71により制御(選択)することができる。受光素子630によって、試料分子1に特有のラマンスペクトルが得られ、得られたラマンスペクトルと予め保持するデータと照合することで、試料分子1を特定することができる。
チャンバー10は、吸引口14Aと接続される吸引流路14Bと、排出口15Aと接続される排出流路15Bとを有する。試料分子1を含む流体試料は、吸引口14A(搬入口)からチャンバー10の内部に導入され、排出口15Aからチャンバー10の外部に排出される。吸引口14A側に除塵フィルター14Cを設けることができる。図9では、検出装置10は、ファン40を排出口15A付近に有し、ファン40を作動させると、チャンバー10内の圧力(気圧)が低下する。これにより、試料分子1と共に流体試料がチャンバー10に吸引される。流体試料は、吸引流路14Bを通り、光学デバイス20付近の流路を経由して排出流路15Bから排出される。このとき、試料分子1の一部が光学デバイス20の表面(電気伝導体)に吸着する。
検査対象物質である試料分子1は、例えば麻薬やアルコールや残留農薬等の希薄な分子や、ウイルス等の病原体等を想定することができ、特に本実施形態はこれらの試料分子1をリアルタイムで検出するのに適している。
図10は、図9の検出装置10の制御系ブロック図である。図10に示されるように、検出装置100は、例えばインターフェース120、表示部130及び操作部140等をさらに含むことができる。また、処理部70は、図10に示すように制御部としての例えばCPU(Central Processing Unit)71、RAM(Random Access Memory)72、ROM(Read Only Memory)73等を有することができる。さらに、検出装置10は、例えば、バルブ駆動部16、光源ドライバー52、分光ドライバー622、受光回路632及びファンドライバー452を含むことができる。処理部70は、図9に示される光源50以外の光検出部60、ファン450等への命令を送ることができる。さらに、処理部70は、ラマンスペクトルによる分光分析を実行することができ、処理部70は、標的物である試料分子1を特定することができる。なお、処理部70は、ラマン散乱光による検出結果、ラマンスペクトルによる分光分析結果等を例えば通信接続部90に接続される外部機器(図示せず)に送信することができる。
5.その他の変形例
なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できる。
本発明は、SERS強度を検出するものに限らない。例えば、表面増強赤外分光法(SEIRAS:Surface Enhanced Infrared Absorption Spectroscopy)を用いることができる。この場合、図1または図9に示す光学デバイス20を図11に示す光学デバイス170に置き換える。この光学デバイス170は、例えば直角プリズム171の底面に金属薄膜172を形成したものである。直角プリズム171は、例えばCaF等の赤外線を通過させる材料で形成される。金属薄膜172の材料はAg,Cu等の金属薄膜であれば良い。
図12に示す特性を有するP偏光の赤外線IR1を、例えば第1反射ミラー180にて反射させて、光学デバイス170に対して金属薄膜172の法線Lに対して角度θで入射させる。入射赤外線IR1を金属薄膜172で全反射させて得られる反射赤外線IR2には、その界面から試料側に少しもぐり込んだ位置で反射されるエバネッセント波が存在し、それにより試料分子や標準分子のスペクトルを計測できる。この反射赤外線IR2の特性を図13に示す。反射赤外線IR2は、第2反射ミラー181で反射されて、図6等に示す光検出部60に入射される。
10 チャンバー、11 伸縮部、12,13 バルブ、20,170 光学デバイス、30 光学系、40 吸引駆動部(ファン)、50 光源、60 光検出部、70 処理部、71 CPU(制御部)、80 駆動部、100 検出装置、V1,V2 チャンバー容積、v1,v2 流速(輸送量)、I1 第1閾値、I2 第2閾値、I3 第3閾値

Claims (9)

  1. 光学デバイスと、
    前記光学デバイスが配置される空間の容積が可変であるチャンバーと、
    前記光学デバイスに光を照射する光源と、
    前記光学デバイスから出射される光を検出する光検出部と、
    前記チャンバーの容積を可変駆動する駆動部と、
    前記駆動部を制御する制御部と、
    を有し、
    前記光学デバイスは、該光学デバイスを被覆する流体試料を反映する光を出射し、
    前記制御部は、前記チャンバーから前記流体試料を排出する第1モードと、前記第1モード後に前記チャンバーに前記流体試料を吸引する第2モードと、前記第2モード後に前記チャンバーを気密状態として前記光検出部にて検出する第3モードを有し、前記第1,第2モードでは前記チャンバーの容積をV1で保持し、前記第3モードでは気密状態にされた前記チャンバーの容積をV2(V2<V1)で所定時間保持することを特徴とする検出装置。
  2. 請求項1において、
    前記光学デバイスは、前記流体試料のラマン散乱光を発生させ、
    前記光検出部は、前記流体試料中に存在し得る検査対象の物質のラマン散乱光を検出することを特徴とする検出装置。
  3. 請求項2において、
    前記光学デバイスは、1〜1000nmの凸部を有する金属ナノ構造を備えることを特徴とする検出装置。
  4. 請求項1乃至3のいずれかにおいて、
    前記チャンバーに前記流体試料を吸引する吸引駆動部をさらに有し、
    前記制御部は、前記第1モードでは、前記光学デバイス上での前記流体試料の吸引流速をv1とし、前記第2モードでは、前記光学デバイス上での前記流体試料の吸引流速をv2(v2<v1)に設定することを特徴とする検出装置。
  5. 請求項4において、
    前記制御部は、予め決められた時間毎に周期的に、前記第1モード、前記第2モード、前記第3モードの順にモードを切換えることを特徴とする検出装置。
  6. 請求項4において、
    前記制御部は、前記光検出部からの信号レベルに基づいて前記第1,第2,第3モードを切換えることを特徴とする検出装置。
  7. 請求項6において、
    前記制御部は、前記信号レベルが第1閾値以下となった時に前記第1モードから前記第2モードに切換え、前記信号レベルが前記第1閾値よりも高い第2閾値以上となった時に前記第2モードから前記第3モードに切換え、前記信号レベルが前記第2閾値よりも高い第3閾値以上となった時に前記第3モードから前記第1モードに切換えることを特徴とする検出装置。
  8. 請求項1乃至7のいずれかにおいて、
    前記チャンバーは、チャンバー壁の一部が気密状態を維持して伸縮する伸縮部を含み、
    前記駆動部は前記伸縮部を伸縮させて前記チャンバーの容積を可変とすることを特徴とする検出装置。
  9. 光学デバイスが配置されたチャンバーを開放して、前記チャンバーに対して流体試料を吸引及び排出する第1工程と、
    前記流体試料が導入された前記チャンバーを気密状態として、前記光学デバイスに光を照射し、前記光学デバイスから出射される光を検出する第2工程と、
    を有し、
    第1工程では、前記チャンバーの容積をV1で保持し、前記第2工程では、前記チャンバーの容積をV2(V2<V1)で所定時間保持して、前記光検出部からの信号に基づいて前記第1,第2工程を切換えることを特徴とする検出方法。
JP2011152734A 2011-07-11 2011-07-11 検出装置及び検出方法 Expired - Fee Related JP5866832B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152734A JP5866832B2 (ja) 2011-07-11 2011-07-11 検出装置及び検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011152734A JP5866832B2 (ja) 2011-07-11 2011-07-11 検出装置及び検出方法

Publications (2)

Publication Number Publication Date
JP2013019748A JP2013019748A (ja) 2013-01-31
JP5866832B2 true JP5866832B2 (ja) 2016-02-24

Family

ID=47691329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152734A Expired - Fee Related JP5866832B2 (ja) 2011-07-11 2011-07-11 検出装置及び検出方法

Country Status (1)

Country Link
JP (1) JP5866832B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792146A (zh) * 2016-09-30 2019-05-21 株式会社爱发科 电源装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171469B2 (ja) * 2013-03-28 2017-08-02 セイコーエプソン株式会社 検出装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142152A (ja) * 1991-11-15 1993-06-08 Tdk Corp アミンセンサ
JP4057659B2 (ja) * 1995-05-29 2008-03-05 株式会社島津製作所 赤外線ガス分析計
JPH09281040A (ja) * 1996-04-11 1997-10-31 Japan Radio Co Ltd 炭素同位体分析装置
JP3720549B2 (ja) * 1997-10-02 2005-11-30 株式会社堀場製作所 赤外線ガス分析システム
IL158358A0 (en) * 2001-06-08 2004-05-12 Donaldson Co Inc Adsorption element and methods
US7812938B2 (en) * 2007-06-12 2010-10-12 Opto Trace Technologies, Inc. Integrated chemical separation light scattering device
US8377711B2 (en) * 2005-04-04 2013-02-19 Ada Technologies, Inc. Stroboscopic liberation and methods of use
JP2009168455A (ja) * 2008-01-10 2009-07-30 Toyota Motor Corp 分光分析のための試料ステージ、固体試料冷却装置、気体試料同期加圧装置、分析用レーザー光収束照射装置、及び分析チャンバー

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792146A (zh) * 2016-09-30 2019-05-21 株式会社爱发科 电源装置
CN109792146B (zh) * 2016-09-30 2019-11-26 株式会社爱发科 电源装置

Also Published As

Publication number Publication date
JP2013019748A (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5799559B2 (ja) 検出装置
JP5807373B2 (ja) 検出装置
US20110267613A1 (en) Optical device, analyzing apparatus and spectroscopic method
JP5939016B2 (ja) 光学デバイス及び検出装置
US9494465B2 (en) Raman spectroscopic apparatus, raman spectroscopic method, and electronic apparatus
JP2011123057A (ja) 調整可能な分光組成を有する電磁放射を発生させるための放射発生装置及び該装置を製造する方法
JP5866832B2 (ja) 検出装置及び検出方法
JP5879783B2 (ja) 検出装置
JP5772166B2 (ja) 検出装置
JP6326828B2 (ja) センサーユニット複合体、ラマン分光装置、及び電子機器
US20130003057A1 (en) Fluid Separation Device, Gas Separation Device and Detection Device Using the Same
JP5857507B2 (ja) 検出装置
JP2013238479A (ja) 検出装置
JP6418379B2 (ja) 電場増強素子、ラマン分光装置、および電子機器
JP5948746B2 (ja) 検出装置
JP5930100B2 (ja) 検出装置
JP2016004018A (ja) ラマン分光装置および電子機器
JP2015096813A (ja) ラマン分光装置、及び電子機器
JP2017138340A (ja) 検出装置
JP2016040522A (ja) センサー素子、分析装置、及び電子機器
JP6171469B2 (ja) 検出装置
JP2015105885A (ja) ラマン分光装置、電子機器、およびラマン分光測定方法
JP6521215B2 (ja) 分析装置、及び電子機器
JP2016003858A (ja) 検出装置、検出方法、および電場増強素子
JP2016008866A (ja) センサー素子、分析装置、及び電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5866832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees