JP5863170B2 - Method for manufacturing fixed abrasive wire - Google Patents

Method for manufacturing fixed abrasive wire Download PDF

Info

Publication number
JP5863170B2
JP5863170B2 JP2011271150A JP2011271150A JP5863170B2 JP 5863170 B2 JP5863170 B2 JP 5863170B2 JP 2011271150 A JP2011271150 A JP 2011271150A JP 2011271150 A JP2011271150 A JP 2011271150A JP 5863170 B2 JP5863170 B2 JP 5863170B2
Authority
JP
Japan
Prior art keywords
abrasive grains
wire
abrasive
plating layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011271150A
Other languages
Japanese (ja)
Other versions
JP2012176483A (en
Inventor
重信 坪倉
重信 坪倉
敦司 内山
敦司 内山
侑俊 山口
侑俊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANCALL CORPORATION
Original Assignee
SANCALL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANCALL CORPORATION filed Critical SANCALL CORPORATION
Priority to JP2011271150A priority Critical patent/JP5863170B2/en
Priority to CN2012100208566A priority patent/CN102618908A/en
Publication of JP2012176483A publication Critical patent/JP2012176483A/en
Application granted granted Critical
Publication of JP5863170B2 publication Critical patent/JP5863170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電解メッキによって砥粒をワイヤに固着させる固定砥粒ワイヤの製造方法に関する。   The present invention relates to a method for manufacturing a fixed abrasive wire in which abrasive grains are fixed to a wire by electrolytic plating.

シリコンやセラミック等の硬質材料の切断等に用いられる固定砥粒ワイヤの製造方法として、ワイヤ本体の表面に電解メッキによって砥粒を固着させる方法が提案されている(例えば下記特許文献1参照)。   As a method for manufacturing a fixed abrasive wire used for cutting hard materials such as silicon and ceramic, a method has been proposed in which abrasive particles are fixed to the surface of a wire body by electrolytic plating (see, for example, Patent Document 1 below).

詳しくは、前記特許文献1には、砥粒群を含有するメッキ液が収容されたメッキ槽内において電極板及びワイヤ本体を対向配置させる工程と、前記電極板が陽極となり且つ前記ワイヤ本体が陰極となるように電圧を印可させて、前記ワイヤ本体の表面に砥粒を含んだ状態のメッキ層を析出させる工程とを含む固定砥粒ワイヤの製造方法において、前記メッキ液中にレベリング剤を含有させることが開示されている。   Specifically, in Patent Document 1, the electrode plate and the wire body face each other in a plating tank containing a plating solution containing a group of abrasive grains, the electrode plate serves as an anode, and the wire body serves as a cathode. In the method of manufacturing a fixed abrasive wire, including applying a voltage so as to form a plating layer containing abrasive grains on the surface of the wire body, a leveling agent is contained in the plating solution. Is disclosed.

前記特許文献1に記載の製造方法は、砥粒群を含有するメッキ液にレベリング剤を含めることにより、砥粒の固着強度を向上させつつ砥粒による切削性能又は切断性能を向上させ得る固定砥粒ワイヤを製造できるとされている。   The manufacturing method described in Patent Literature 1 includes a leveling agent in a plating solution containing an abrasive grain group, thereby improving the cutting performance or cutting performance of the abrasive grains while improving the fixing strength of the abrasive grains. It is said that a grain wire can be manufactured.

即ち、前記メッキ液中の前記レベリング剤は、陽極として作用する前記電極板に近接する部分、即ち、前記砥粒の頂点近傍に優先的に吸着される。その結果、前記砥粒の頂点近傍におけるメッキ層の成長速度が前記砥粒のうち前記電極板から離間された基端側部分(前記砥粒のうち前記ワイヤ本体に近接する部分)におけるメッキ層の成長速度よりも遅くなる。従って、前記砥粒の基端側部分に比較的厚く析出されるメッキ層によって前記砥粒の固着強度を向上させつつ前記砥粒の頂点近傍のメッキ層を薄くして前記砥粒による切削性能又は切断性能を向上させ得るとされている。   That is, the leveling agent in the plating solution is preferentially adsorbed on a portion adjacent to the electrode plate that acts as an anode, that is, near the apex of the abrasive grains. As a result, the growth rate of the plating layer in the vicinity of the apex of the abrasive grains is that of the plating layer in the base end side portion (the portion of the abrasive grains close to the wire body) that is separated from the electrode plate. Slower than the growth rate. Accordingly, the plating layer deposited relatively thick on the base end side portion of the abrasive grains improves the adhesive strength of the abrasive grains while thinning the plating layer near the apex of the abrasive grains, or the cutting performance by the abrasive grains or It is said that cutting performance can be improved.

しかしながら、前記メッキ液中に前記レベリング剤を加えることで前記砥粒の頂点近傍に析出されるメッキ層の層厚を薄くできる反面、前記砥粒の頂点近傍には前記レベリング剤が吸着されることになるから、このレベリング剤によって前記砥粒による切削性能又は切断性能が悪化するという問題が生じ得る。   However, by adding the leveling agent to the plating solution, the thickness of the plating layer deposited near the top of the abrasive grains can be reduced, but the leveling agent is adsorbed near the top of the abrasive grains. Therefore, this leveling agent may cause a problem that the cutting performance or cutting performance of the abrasive grains deteriorates.

又、前記特許文献1にも記載されているように、前記レベリング剤は、種類によって機能に差異が存在する。従って、ある特定の大きさ及び形状の砥粒に対して適切なレベリング効果を奏するレベリング剤であっても、これとは異なる大きさ及び形状の砥粒に対して有効にレベリング効果を奏するとは限らない。   In addition, as described in Patent Document 1, the leveling agent has a difference in function depending on the type. Therefore, even with a leveling agent that exhibits an appropriate leveling effect on abrasive grains of a specific size and shape, the leveling effect is effective on abrasive grains of a different size and shape. Not exclusively.

前記メッキ液中に含有される砥粒群は、それぞれ、固有の大きさ及び形状を有する複数の砥粒を含んでいる。従って、これらの大きさ及び形状の異なる複数の砥粒に対してレベリング剤によって効果的なレベリング効果を得ることは困難である。   The abrasive grain group contained in the plating solution includes a plurality of abrasive grains each having a specific size and shape. Therefore, it is difficult to obtain an effective leveling effect with a leveling agent for a plurality of abrasive grains having different sizes and shapes.

特許第4538049号公報Japanese Patent No. 4538049

本発明は、前記従来技術に鑑みなされたものであり、砥粒群を含有するメッキ液を用いた電解メッキによって砥粒がワイヤ本体に固着されてなる固定砥粒ワイヤを製造する方法であって、前記メッキ液中にレベリング剤を添加することなく、前記砥粒の前記ワイヤ本体への固着強度の向上及び前記砥粒による切削性能又は切断性能の向上を同時に図り得る固定砥粒ワイヤの製造方法の提供を、目的とする。   The present invention has been made in view of the above prior art, and is a method for producing a fixed abrasive wire in which abrasive grains are fixed to a wire body by electrolytic plating using a plating solution containing abrasive grains. A method for producing a fixed-abrasive wire capable of simultaneously improving the fixing strength of the abrasive grains to the wire body and improving the cutting performance or cutting performance of the abrasive grains without adding a leveling agent to the plating solution The purpose is to provide

本発明は、前記目的を達成する為に、砥粒群を含むメッキ液を用いてワイヤ本体にメッキ層を電着させることで前記ワイヤ本体に砥粒が固着されてなる固定砥粒ワイヤを製造する方法であって、砥粒群を含むメッキ液中において対向配置された電極部材が陽極となり且つワイヤ本体が陰極となるような正電解電圧を印可して砥粒群を含むメッキ層を前記ワイヤ本体に電着させる正電解処理工程と、前記正電解処理工程の後にメッキ液中で対向配置された電極部材が陰極となり且つワイヤ本体が陽極となるような逆電解電圧を印可して前記メッキ層中の少なくとも一部の砥粒の頂部が露出するように前記メッキ層を剥離させる逆電解処理工程とを含み、前記逆電解処理工程は、前記ワイヤ本体及び前記電極部材間を流れる電流がパルス電流となるように逆電解電圧を印可するものとされている固定砥粒ワイヤの製造方法を提供する。 In order to achieve the above object, the present invention produces a fixed abrasive wire in which abrasive particles are fixed to the wire body by electrodepositing a plating layer on the wire body using a plating solution containing a group of abrasive grains. A plating layer containing an abrasive grain group is applied by applying a positive electrolysis voltage such that an electrode member disposed oppositely in a plating solution containing an abrasive grain group serves as an anode and a wire body serves as a cathode. A positive electrolytic treatment step for electrodepositing the main body, and a plating layer applied by applying a reverse electrolytic voltage such that the electrode member opposed to the plating solution after the positive electrolytic treatment step serves as a cathode and the wire main body serves as an anode. look including a reverse electrolytic treatment step in which the top portion of at least some of the abrasive grains to separate the plating layer so as to expose in the reverse electrolysis step, the current flowing between the wire body and the electrode member is pulsed With current To provide a method of manufacturing a fixed abrasive wire is intended to apply a reverse electrolysis voltage so.

好ましくは、前記砥粒は、前記メッキ液に包含されている段階においては前記メッキ液に包含されている金属の一部又は全部と同一金属によってコーティングされているものとされる。   Preferably, the abrasive grains are coated with the same metal as a part or all of the metals included in the plating solution in the stage of being included in the plating solution.

ましくは、前記パルス電流の周波数は10Hz以上で且つ1200Hz以下、さらに好ましくは、50Hz以上で且つ1000Hz以下とされる。 Good Mashiku, the pulse current frequency and 1200Hz or less 10Hz or more, more preferably, are and 1000Hz or less than 50 Hz.

本発明に係る固定砥粒ワイヤの製造方法によれば、砥粒群を含むメッキ液中に対向配置された電極部材が陽極となり且つワイヤ本体が陰極となるような正電解電圧を印可して前記砥粒群を含むメッキ層を前記ワイヤ本体に電着させ、その後に、メッキ液中で対向配置された電極部材が陰極となり且つワイヤ本体が陽極となり、前記ワイヤ本体及び前記電極部材間を流れる電流がパルス電流となるような逆電解電圧を印可して前記メッキ層中の少なくとも一部の砥粒の頂部が露出するように前記メッキ層を剥離させたので、前記砥粒の前記ワイヤ本体への固着強度の向上を図りつつ、前記砥粒による切削性能又は切断性能の向上を図ることができる。 According to the method for manufacturing a fixed abrasive wire according to the present invention, the positive electrode voltage is applied so that the electrode member disposed opposite to the plating solution containing the abrasive grain group serves as an anode and the wire body serves as a cathode. the plated layer containing abrasive grains group electrodeposited on the wire body, followed, and the wire member oppositely disposed electrode member in the plating solution is a cathode Ri is Do an anode, between the wire body and the electrode member since the current flowing was peeling the plating layer as the top of at least some abrasive grains in the plating layer by applying a pulse current and a so that a reverse electrolysis voltage is exposed, the wire of the abrasive The cutting performance or cutting performance by the abrasive grains can be improved while improving the strength of fixing to the main body.

特に、前記メッキ液中にレベリング剤を添加すること無く前記効果を得ることができるので、前記レベリング剤に起因する砥粒の切削性能又は切断性能の悪化を招くことが無く、さらに、種々の粒径及び形状の砥粒を含む砥粒群に対して有効に前記効果を奏することができる。
又、ドレッシング処理又は研磨処理によって前記砥粒群の少なくとも一部の砥粒を露出させる場合に比して、砥粒の脱落を有効に防止しつつより多くの砥粒を前記メッキ層から露出させることができる。
In particular, since the effect can be obtained without adding a leveling agent to the plating solution, the cutting performance or cutting performance of abrasive grains caused by the leveling agent is not deteriorated, and various grains The said effect can be effectively show | played with respect to the abrasive grain group containing an abrasive grain of a diameter and a shape.
In addition, more abrasive grains are exposed from the plated layer while effectively preventing the abrasive grains from dropping than when at least a part of the abrasive grains of the abrasive grains group is exposed by dressing treatment or polishing treatment. be able to.

図1は、本発明の一実施の形態に係る固定砥粒ワイヤの製造方法に用いられるメッキ槽の模式図である。FIG. 1 is a schematic view of a plating tank used in a method for manufacturing a fixed abrasive wire according to an embodiment of the present invention. 図2(a)は、本発明の一実施の形態に係る固定砥粒ワイヤの製造方法における正電解処理工程後の状態を示す部分模式断面図である。 図2(b)は、本発明の一実施の形態に係る固定砥粒ワイヤの製造方法における逆電解処理工程後の状態を示す部分模式断面図である。Fig.2 (a) is a partial schematic cross section which shows the state after the positive electrolysis process in the manufacturing method of the fixed abrasive wire which concerns on one embodiment of this invention. FIG.2 (b) is a partial schematic cross section which shows the state after the reverse electrolysis process in the manufacturing method of the fixed abrasive wire which concerns on one embodiment of this invention. 図3は、本発明の一実施の形態に係る固定砥粒ワイヤの製造方法において使用される砥粒群の一例の粒径分布図である。FIG. 3 is a particle size distribution diagram of an example of an abrasive grain group used in the method of manufacturing a fixed abrasive wire according to an embodiment of the present invention. 図4は、本発明の一実施の形態に係る固定砥粒ワイヤの製造方法における工程模式図である。FIG. 4 is a process schematic diagram in the method of manufacturing a fixed abrasive wire according to one embodiment of the present invention. 図5は、本発明の一実施の形態に係る固定砥粒ワイヤの製造方法に関し行った実験に使用した装置の模式図である。FIG. 5 is a schematic diagram of an apparatus used in an experiment conducted on a method for manufacturing a fixed abrasive wire according to an embodiment of the present invention. 図6は、前記実験装置を用いて製造した逆電解前の固定砥粒ワイヤの模式断面図である。FIG. 6 is a schematic cross-sectional view of a fixed abrasive wire before reverse electrolysis manufactured using the experimental apparatus. 図7は、前記逆電解前の固定砥粒ワイヤに対してパルス電流による逆電解処理を行った際の前記パルス電流の波形を示すグラフである。FIG. 7 is a graph showing a waveform of the pulse current when reverse electrolysis treatment with pulse current is performed on the fixed abrasive wire before reverse electrolysis. 図8(a)〜(d)は、それぞれ、前記逆電解前の固定砥粒ワイヤに対して、周波数5Hz、10Hz、20Hz及び50Hzのパルス電流が流れるように逆電解処理を行った実施例1〜4を電子顕微鏡で観察した写真である。FIGS. 8A to 8D show Example 1 in which reverse electrolysis treatment was performed so that pulse currents having frequencies of 5 Hz, 10 Hz, 20 Hz, and 50 Hz flow through the fixed abrasive wire before reverse electrolysis. It is the photograph which observed ~ 4 with the electron microscope. 図9(a)〜(d)は、それぞれ、前記逆電解前の固定砥粒ワイヤに対して、周波数80Hz、100Hz、400Hz及び700Hzのパルス電流が流れるように逆電解処理を行った実施例5〜8を電子顕微鏡で観察した写真である。FIGS. 9A to 9D show Example 5 in which reverse electrolysis treatment was performed so that pulse currents with frequencies of 80 Hz, 100 Hz, 400 Hz, and 700 Hz flow through the fixed abrasive wire before reverse electrolysis, respectively. It is the photograph which observed ~ 8 with the electron microscope. 図10(a)〜(d)は、それぞれ、前記逆電解前の固定砥粒ワイヤに対して、周波数1000Hz、1200Hz、1400Hz及び1750Hzのパルス電流が流れるように逆電解処理を行った実施例9〜12を電子顕微鏡で観察した写真である。10 (a) to 10 (d) are examples 9 in which reverse electrolysis treatment was performed so that pulse currents with frequencies of 1000 Hz, 1200 Hz, 1400 Hz, and 1750 Hz flow through the fixed abrasive wire before reverse electrolysis, respectively. It is the photograph which observed ~ 12 with the electron microscope. 図11は、前記逆電解前の固定砥粒ワイヤに対して直流電流による逆電解処理を行った際の前記直流電流の波形を示すグラフである。FIG. 11 is a graph showing a waveform of the direct current when reverse electrolytic treatment with direct current is performed on the fixed abrasive wire before reverse electrolysis. 図12は、前記逆電解前の固定砥粒ワイヤに対して、直流電流が流れるように逆電解処理を行った実施例13を電子顕微鏡で観察した写真である。FIG. 12 is a photograph of Example 13 in which reverse electrolysis treatment was performed on the fixed abrasive wire before reverse electrolysis so that a direct current flows through an electron microscope.

以下、本発明に係る固定砥粒ワイヤの製造方法の好ましい実施の形態について、添付図面を参照しつつ説明する。   Hereinafter, preferred embodiments of a method for producing a fixed abrasive wire according to the present invention will be described with reference to the accompanying drawings.

前記固定砥粒ワイヤは、ダイヤモンド等の砥粒が銅メッキされた炭素鋼等のワイヤ本体に固着されてなるものであり、シリコンやセラミック等の硬質材料の切断又は切削に好適に使用される。
本実施の形態に係る固定砥粒ワイヤの製造方法は、砥粒群を含むメッキ液からなるメッキ層をワイヤ本体に電着させることで前記砥粒群を前記ワイヤ本体に固着させるものである。
The fixed abrasive wire is fixed to a wire body such as carbon steel coated with copper such as diamond and is suitably used for cutting or cutting a hard material such as silicon or ceramic.
In the method for manufacturing a fixed abrasive wire according to the present embodiment, the abrasive grains are fixed to the wire body by electrodepositing a plating layer made of a plating solution containing the abrasive grains on the wire body.

図1に、本実施の形態に係る製造方法に用いられるメッキ装置の模式図を示す。
前記製造方法は、図1に示すように、正電解電圧槽30内に収容された砥粒群を含むメッキ液10中において電極部材20及びワイヤ本体5を対向配置させた状態で前記電極部材20が陽極となり且つ前記ワイヤ本体5が陰極となるような正電解電圧を印可して前記砥粒群を含むメッキ層を前記ワイヤ本体に電着させる正電解処理工程(図2(a)参照)と、前記正電解処理工程の後にメッキ液中において対向配置された電極部材が陰極となり且つワイヤ本体が陽極となるような逆電解電圧を印可することで、前記メッキ層中の少なくとも一部の砥粒の頂部が露出するように前記メッキ層を剥離させる逆電解処理工程(図2(b)参照)とを含んでいる。
In FIG. 1, the schematic diagram of the plating apparatus used for the manufacturing method which concerns on this Embodiment is shown.
As shown in FIG. 1, the manufacturing method includes the electrode member 20 in a state where the electrode member 20 and the wire body 5 are opposed to each other in a plating solution 10 including an abrasive grain group housed in a positive electrolytic voltage vessel 30. A positive electrolytic treatment step (see FIG. 2 (a)) in which a positive electrolysis voltage is applied so that the wire body 5 becomes a cathode and a plated layer containing the abrasive grains is electrodeposited on the wire body. By applying a reverse electrolysis voltage such that the electrode member opposed to the plating solution after the positive electrolysis treatment step becomes a cathode and the wire body becomes an anode, at least a part of the abrasive grains in the plating layer And a reverse electrolytic treatment step (see FIG. 2B) for peeling the plating layer so that the top of the substrate is exposed.

なお、図1中符号35はメッキ液10のリザーブタンクであり、ポンプ40を介して前記正電解電圧槽30及び前記リザーブタンク35の間で前記メッキ液10が循環されるようになっている。
なお、前記逆電解処理工程は、前記電極部材及び前記ワイヤ本体への電圧印可方向が異なる点を除き、前記正電解処理工程におけるメッキ装置と同一装置を用いて行われる。
In FIG. 1, reference numeral 35 denotes a reserve tank for the plating solution 10, and the plating solution 10 is circulated between the positive electrolysis voltage tank 30 and the reserve tank 35 via a pump 40.
In addition, the said reverse electrolysis process is performed using the same apparatus as the plating apparatus in the said positive electrolysis process except the point from which the voltage application direction to the said electrode member and the said wire main body differs.

このように、本実施の形態に係る製造方法によれば、正電解電圧の印可によって前記砥粒15を含む前記メッキ層11を前記ワイヤ本体5の表面に析出させ(図2(a)参照)、その後に、逆電解電圧の印可によって前記メッキ層中の少なくとも一部の砥粒の頂部が露出するように前記メッキ層を剥離させており(図2(b)参照)、従って、前記砥粒15の前記ワイヤ本体5への固着強度を向上させつつ、前記砥粒15による切削性能又は切断性能を向上させることができる。
この点に関し、詳述する。
Thus, according to the manufacturing method according to the present embodiment, the plating layer 11 including the abrasive grains 15 is deposited on the surface of the wire body 5 by applying a positive electrolysis voltage (see FIG. 2A). Thereafter, the plating layer is peeled off by applying a reverse electrolysis voltage so that the tops of at least some of the abrasive grains in the plating layer are exposed (see FIG. 2B). The cutting performance or cutting performance of the abrasive grains 15 can be improved while improving the adhesion strength of 15 to the wire body 5.
This point will be described in detail.

前記電極部材20が陽極となり且つ前記ワイヤ本体5が陰極となるように正電解電圧を印可して前記ワイヤ本体5の表面に前記砥粒群を含むメッキ層11を析出させる正電解処理工程においては、前記メッキ層11の析出速度は、陽極として作用する前記電極部材20に近い領域ほど速くなる。   In a positive electrolysis treatment step in which a positive electrolysis voltage is applied so that the electrode member 20 becomes an anode and the wire body 5 becomes a cathode to deposit the plating layer 11 including the abrasive grains on the surface of the wire body 5. The deposition rate of the plating layer 11 increases as the area closes to the electrode member 20 acting as an anode.

つまり、前記砥粒15の前記ワイヤ本体5への固着強度を十分に得るような層厚のメッキ層を形成すると、図2(a)に示すように、前記砥粒群における各砥粒15の頂上部分のメッキ層11の層厚が厚くなる。
前記固定砥粒ワイヤにおける切削作用又は切断作用は前記複数の砥粒15によって奏される為、前記複数の砥粒15の頂上部分に層厚の前記メッキ層11が積層されていると、前記砥粒15による切削能力又は切断能力が悪化する。
That is, when a plating layer having a layer thickness sufficient to obtain a sufficient bonding strength of the abrasive grains 15 to the wire body 5 is formed, as shown in FIG. The layer thickness of the plating layer 11 at the top portion is increased.
Since the cutting action or the cutting action in the fixed abrasive wire is performed by the plurality of abrasive grains 15, when the plating layer 11 having a layer thickness is laminated on the top portion of the plurality of abrasive grains 15, the abrasive The cutting ability or cutting ability by the grains 15 deteriorates.

ここで、正電解電圧の印可によって砥粒を含むメッキ層をワイヤ本体に析出させる際に、前記メッキ層を形成するメッキ液中に予めレベリング剤を添加しておくことで、前記砥粒の頂上部分のメッキ層を薄く、又は、無くすることが従来から提案されている。   Here, when a plating layer containing abrasive grains is deposited on the wire body by applying a positive electrolysis voltage, a leveling agent is added in advance to the plating solution for forming the plating layer, so that the top of the abrasive grains is added. Conventionally, it has been proposed to reduce or eliminate the plating layer.

詳しくは、前記メッキ液中のレベリング剤は、正電解処理の際に陽極として作用する前記電極板に近接する部分、即ち、前記砥粒の頂点近傍に優先的に吸着される。その結果、前記砥粒の頂点近傍におけるメッキ層の成長速度が前記砥粒のうち前記電極板から離間された基端側部分(前記砥粒のうち前記ワイヤ本体に近接する部分)におけるメッキ層の成長速度よりも遅くなる。従って、前記砥粒の基端側部分に比較的厚く析出されるメッキ層によって前記砥粒の固着強度を向上させつつ前記砥粒の頂点近傍のメッキ層を薄くして前記砥粒による切削性能又は切断性能を向上させることができるとされている。   Specifically, the leveling agent in the plating solution is preferentially adsorbed in the vicinity of the electrode plate that acts as an anode during the positive electrolysis treatment, that is, in the vicinity of the apex of the abrasive grains. As a result, the growth rate of the plating layer in the vicinity of the apex of the abrasive grains is that of the plating layer in the base end side portion (the portion of the abrasive grains close to the wire body) that is separated from the electrode plate. Slower than the growth rate. Accordingly, the plating layer deposited relatively thick on the base end side portion of the abrasive grains improves the adhesive strength of the abrasive grains while thinning the plating layer near the apex of the abrasive grains, or the cutting performance by the abrasive grains or It is said that cutting performance can be improved.

しかしながら、前記メッキ液中に前記レベリング剤を加えることで前記砥粒の頂点近傍に析出されるメッキ層の層厚を薄くできる反面、前記砥粒の頂点近傍には前記レベリング剤が吸着されることになる。従って、このレベリング剤によって前記砥粒による切削性能又は切断性能が悪化するという問題が生じ得る。   However, by adding the leveling agent to the plating solution, the thickness of the plating layer deposited near the top of the abrasive grains can be reduced, but the leveling agent is adsorbed near the top of the abrasive grains. become. Therefore, this leveling agent may cause a problem that the cutting performance or cutting performance of the abrasive grains is deteriorated.

又、前記レベリング剤は、種類によって機能に差異が存在する。従って、ある特定の大きさ及び形状の砥粒に対して適切なレベリング効果を奏するレベリング剤であっても、これとは異なる大きさ及び形状の砥粒に対して有効にレベリング効果を奏するとは限らない。
通常、前記メッキ液中に含まれる砥粒群は、平均粒径によって特定されるが、その大きさ及び形状は互いに対して異なっている。
従って、大きさ及び形状が異なる複数の砥粒に対して有効なレベリング効果を得ることは困難である。
Moreover, the leveling agent has a difference in function depending on the type. Therefore, even with a leveling agent that exhibits an appropriate leveling effect on abrasive grains of a specific size and shape, the leveling effect is effective on abrasive grains of a different size and shape. Not exclusively.
Usually, the group of abrasive grains contained in the plating solution is specified by the average particle diameter, but the size and shape are different from each other.
Therefore, it is difficult to obtain an effective leveling effect for a plurality of abrasive grains having different sizes and shapes.

さらに、ワイヤ本体の表面に析出されたメッキ層から砥粒を露出させる他の方法として、正電解処理によって砥粒群を含むメッキ層をワイヤ本体の表面に析出させた後に、ドレッシング処理又は研磨処理によって前記砥粒群の少なくとも一部を露出させることが提案されている。   Furthermore, as another method of exposing the abrasive grains from the plating layer deposited on the surface of the wire body, a plating layer containing an abrasive grain group is deposited on the surface of the wire body by positive electrolytic treatment, and then dressing treatment or polishing treatment. It is proposed to expose at least a part of the abrasive grain group.

しかしながら、この従来方法では、前記砥粒群における20%程度の砥粒しか露出させることができない。
この点に関し、前記砥粒群として、レーザー回析散乱法による平均粒子径15μmのダイヤモンド粒子群を用いる場合を例に説明する。
図3に、前記ダイヤモンド粒子群の粒径分布図を示す。
However, with this conventional method, only about 20% of the abrasive grains in the group of abrasive grains can be exposed.
In this regard, a case where a diamond particle group having an average particle diameter of 15 μm by a laser diffraction scattering method is used as the abrasive grain group will be described as an example.
FIG. 3 shows a particle size distribution diagram of the diamond particle group.

図3に示すように、平均粒子径15μmのダイヤモンド粒子群は、粒子径15μmのダイヤモンド粒子を最も多く含むものの、粒子径10μm以下の粒子から粒子径20μm以上の粒子を含んでいる。   As shown in FIG. 3, the diamond particle group having an average particle diameter of 15 μm contains the largest number of diamond particles having a particle diameter of 15 μm, but includes particles having a particle diameter of 10 μm or less to particles having a particle diameter of 20 μm or more.

このような種々の粒子径の粒子を含むダイヤモンド粒子群に対して例えば粒子径15μmの粒子が露出する程度に研磨処理を行ったとすると、粒子径が15μmより大きな粒子にとっては過研磨状態となる。   If a polishing process is performed to such a degree that, for example, particles having a particle diameter of 15 μm are exposed to a group of diamond particles including particles having such various particle diameters, particles having a particle diameter larger than 15 μm are over-polished.

つまり、研磨処理によってダイヤモンド粒子を露出させる場合には、比較的粒子径の大きな粒子が脱落しないように研磨量を設定する必要があり、例えば、粒子群全体の約20%に相当する粒子径17.5μm以上のダイヤモンド粒子しか露出させることができないことになる。   That is, when diamond particles are exposed by polishing treatment, it is necessary to set the polishing amount so that particles having a relatively large particle size do not fall off. Only diamond particles of 5 μm or more can be exposed.

これらの従来技術に対し、本実施の形態に係る前記製造方法は、前述の通り、正電解処理工程の後に、逆電解電圧を印可することで前記メッキ層中の少なくとも一部の砥粒の頂部が露出するように前記メッキ層を剥離させている。   In contrast to these prior arts, the manufacturing method according to the present embodiment, as described above, applies the reverse electrolysis voltage after the forward electrolysis treatment step, so that the tops of at least some of the abrasive grains in the plating layer are applied. The plating layer is peeled off so as to be exposed.

この逆電解電圧の印可によって、前記メッキ層11のうち前記電極部材20に近接する部分、即ち、前記複数の砥粒15の頂上部分に積層された部分が優先的に剥離される。
従って、図2(b)に示すように、前記砥粒群を形成する複数の砥粒15の基端側部分については前記メッキ層11によって前記ワイヤ本体5に強固に固着された状態を維持しつつ、前記砥粒群における少なくとも一部の砥粒15の頂上部分を露出させて前記砥粒15による切削能力又は切断能力を向上させることができる。
By applying the reverse electrolysis voltage, a portion of the plated layer 11 that is close to the electrode member 20, that is, a portion that is stacked on top portions of the plurality of abrasive grains 15 is peeled off preferentially.
Therefore, as shown in FIG. 2 (b), the base end side portion of the plurality of abrasive grains 15 forming the abrasive grain group is maintained firmly fixed to the wire body 5 by the plating layer 11. However, it is possible to improve the cutting ability or cutting ability of the abrasive grains 15 by exposing the top portions of at least some of the abrasive grains 15 in the abrasive grain group.

特に、本実施の形態においては、前記メッキ液10中にレベリング剤を添加すること無く前記効果を得ることができる。従って、前記レベリング剤が前記砥粒15に付着することに起因する切削能力又は切断能力の低下を招くこともない。   In particular, in the present embodiment, the above effect can be obtained without adding a leveling agent to the plating solution 10. Therefore, the cutting ability or cutting ability due to the leveling agent adhering to the abrasive grains 15 is not reduced.

さらに、前記レベリング剤は、種類によって機能に差異が存在する。つまり、ある特定の大きさ及び形状の砥粒に対して適切なレベリング効果を得る為には、それ専用のレベリング剤を用いる必要がある。
しかしながら、前記メッキ液中に含有される砥粒群は、それぞれ固有の大きさ及び形状を有する複数の砥粒15を含んでいる。従って、ある特定のレベリング剤によって、異なる大きさ及び形状の複数の砥粒15を含む砥粒群に対して有効にレベリング効果を得ることは困難である。
Furthermore, the leveling agent has a difference in function depending on the type. That is, in order to obtain an appropriate leveling effect with respect to an abrasive having a specific size and shape, it is necessary to use a dedicated leveling agent.
However, the abrasive grain group contained in the plating solution includes a plurality of abrasive grains 15 each having a specific size and shape. Therefore, it is difficult to effectively obtain a leveling effect for an abrasive grain group including a plurality of abrasive grains 15 having different sizes and shapes with a specific leveling agent.

この点に関しても、逆電解電圧の印可によって前記砥粒群のうちの少なくとも一部の砥粒15の頂上部分のメッキ層11を剥離させている本実施の形態においては、大きさ及び形状の異なる複数の砥粒15に対して、固着強度を向上させつつ、切削性能の向上を有効に図ることができる。   With respect to this point as well, in the present embodiment in which the plating layer 11 at the top of at least some of the abrasive grains 15 in the abrasive grain group is peeled off by applying a reverse electrolysis voltage, the size and shape are different. It is possible to effectively improve the cutting performance while improving the fixing strength with respect to the plurality of abrasive grains 15.

又、逆電解電圧を印可すると、前記砥粒15の頂上部分のメッキ層11を優先的に剥離させることできるので、種々の大きさの砥粒15に対してワイヤ本体5への固着強度を十分に維持しつつ、頂部を有効に露出させることができる。
例えば、前記砥粒群として平均粒子径15μmのダイヤモンド粒子群を用いる場合において、本実施の形態に係る方法によれば、粒子径約13μm以上のダイヤモンド粒子を露出させることができる。これは粒子群全体の約70%に相当する。
In addition, when a reverse electrolysis voltage is applied, the plating layer 11 at the top portion of the abrasive grains 15 can be peeled off preferentially, so that the bonding strength to the wire body 5 is sufficient for the abrasive grains 15 of various sizes. The top can be effectively exposed while maintaining the above.
For example, when a diamond particle group having an average particle diameter of 15 μm is used as the abrasive particle group, diamond particles having a particle diameter of about 13 μm or more can be exposed according to the method according to the present embodiment. This corresponds to about 70% of the entire particle group.

ここで、本実施の形態に係る製造方法の具体的な工程について説明する。
図4に、前記製造方法における工程模式図を示す。
Here, specific steps of the manufacturing method according to the present embodiment will be described.
In FIG. 4, the process schematic diagram in the said manufacturing method is shown.

図4に示すように、サプライ機100から供給される長尺のワイヤ本体は下記各処理槽を通過して巻取り機200によって巻き取られる。
前記ワイヤ本体は、例えば、銅メッキされた炭素鋼とされ、直径は0.1〜0.3mmとされる。
As shown in FIG. 4, the long wire main body supplied from the supply machine 100 passes through the following treatment tanks and is wound up by the winder 200.
The wire body is, for example, copper-plated carbon steel and has a diameter of 0.1 to 0.3 mm.

前記製造方法は、前述の通り、正電解電圧を印可することで前記砥粒群を含むメッキ層11を前記ワイヤ本体5に電着させる正電解処理工程と、前記正電解処理工程の後に逆電解電圧を印可すること前記メッキ層11中の少なくとも一部の砥粒15の頂部が露出するように前記メッキ層11を剥離させる逆電解処理工程とを含むが、前記正電解処理工程及び前記逆電解処理工程に先だって、好ましくは、前処理工程を含むことができる。   As described above, the manufacturing method includes a positive electrolytic treatment process in which a plating layer 11 including the abrasive grain group is electrodeposited on the wire body 5 by applying a positive electrolytic voltage, and reverse electrolysis after the positive electrolytic treatment process. Applying a voltage includes a reverse electrolysis treatment step in which the plating layer 11 is peeled off so that the tops of at least some of the abrasive grains 15 in the plating layer 11 are exposed, and the positive electrolysis treatment step and the reverse electrolysis treatment step. Prior to the treatment step, a pretreatment step can preferably be included.

前記前処理工程には、図4に示すように、脱脂槽110を用いた脱脂工程及び水洗槽120を用いた水洗工程が含まれる。
又、前記ワイヤ本体5が予めメッキ等によってコーティングされている場合には、前記前処理工程には、さらに、コーティング剥離槽130を用いたコーティング剥離工程が含まれる。
As shown in FIG. 4, the pretreatment process includes a degreasing process using a degreasing tank 110 and a water washing process using a water washing tank 120.
When the wire body 5 is previously coated by plating or the like, the pretreatment process further includes a coating peeling process using a coating peeling tank 130.

さらに、前記前処理工程は、ストライクメッキ槽140におけるストライクメッキ工程を含むことができる。
前記ストライクメッキ工程は、前記メッキ層11の析出に先立って前記ワイヤ本体5の表面に薄いメッキ層を形成するものであり、この薄いメッキ層によって前記砥粒15を含む前記メッキ層11の前記ワイヤ本体への密着性を向上させることができる。
Further, the pretreatment process may include a strike plating process in the strike plating tank 140.
In the strike plating step, a thin plating layer is formed on the surface of the wire body 5 prior to the deposition of the plating layer 11, and the wire of the plating layer 11 including the abrasive grains 15 is formed by the thin plating layer. Adhesion to the main body can be improved.

前記正電解処理工程は、前述の通り、前記砥粒群を含む前記メッキ液10中で前記電極部材20及び前記ワイヤ本体5を対向配置させた状態で正電解電圧を印可するように構成されている。   As described above, the positive electrolysis treatment step is configured to apply a positive electrolysis voltage in a state where the electrode member 20 and the wire body 5 are opposed to each other in the plating solution 10 including the abrasive grain group. Yes.

前記砥粒15としては、例えば、ダイヤモンド粒子を用いることができ、前記メッキ液10には、例えば、スルファミン酸ニッケルを用いることができる。
又、前記電極部材20にはニッケルを用いることができる。
For example, diamond particles can be used as the abrasive grains 15, and nickel sulfamate can be used as the plating solution 10, for example.
The electrode member 20 can be made of nickel.

好ましくは、前記砥粒群の砥粒15は、前記メッキ液10に包含されている段階においては前記メッキ液10に含まれる金属の一部又は全部と同一金属によってコーティングされているものとされる。
斯かる構成によれば、前記砥粒15と前記メッキ層11との固着強度を向上させることができる。
Preferably, the abrasive grains 15 of the group of abrasive grains are coated with the same metal as a part or all of the metals contained in the plating solution 10 when included in the plating solution 10. .
According to such a configuration, the fixing strength between the abrasive grains 15 and the plating layer 11 can be improved.

前記逆電解処理工程は、メッキ液が収容された逆電解槽30’中で対向配置された電極部材及びワイヤ本体に逆電解電圧を印可するように構成されている。   The reverse electrolysis treatment step is configured to apply a reverse electrolysis voltage to the electrode member and the wire main body which are disposed to face each other in the reverse electrolysis tank 30 ′ in which the plating solution is accommodated.

図4に示すように、前記製造方法は、前記逆電解処理工程の後に、後処理を含むことができる。
前記後処理には、後メッキ槽150における後メッキ工程と、水洗槽160における水洗工程と、防錆槽170における防錆処理工程とが含まれる。
前記後メッキ工程は、前記砥粒15の固着強度を向上させる為の工程であり、前記メッキ液10が収容された前記後メッキ槽150内において前記電極部材20及び前記ワイヤ本体5を対向させた状態で、前記電極部材20が陽極となり且つ前記ワイヤ本体5が陰極となるように正電解電圧を印可することによってメッキ層を析出させるように構成される。
As shown in FIG. 4, the manufacturing method may include a post-treatment after the reverse electrolysis treatment step.
The post-treatment includes a post-plating process in the post-plating tank 150, a water-washing process in the water-washing tank 160, and a rust-proofing process process in the rust-proofing tank 170.
The post-plating step is a step for improving the adhesion strength of the abrasive grains 15, and the electrode member 20 and the wire body 5 are opposed to each other in the post-plating tank 150 in which the plating solution 10 is accommodated. In this state, a plating layer is deposited by applying a positive electrolysis voltage so that the electrode member 20 becomes an anode and the wire body 5 becomes a cathode.

なお、前記逆電解処理工程の後の状態においては、前記砥粒15の頂部が露出されている為(即ち、前記砥粒15の頂部のメッキ層11やコーティングは剥離されている為)、前記後メッキ工程によっては前記砥粒15の露出頂部にメッキ層は析出されない。   In the state after the reverse electrolytic treatment step, the top of the abrasive grains 15 is exposed (that is, the plating layer 11 and the coating on the top of the abrasive grains 15 are peeled off). Depending on the post-plating process, the plating layer is not deposited on the exposed tops of the abrasive grains 15.

ここで、本実施の形態に係る製造方法について行った実験結果について説明する。
図5に実験装置の模式図を示す。
Here, the result of an experiment performed on the manufacturing method according to the present embodiment will be described.
FIG. 5 shows a schematic diagram of the experimental apparatus.

本実験においては、図5に示すように、電解槽130内に、砥粒として作用する,無電解Ni−Pメッキが施された平均粒子径10〜20μmのダイヤモンド粒子115(下記図6参照)を含むスルファミン酸メッキ液110を収容させ、このメッキ液中において電極部材120と線径0.12mmのピアノ線(JIS記号:SWRS82A-S)105とを対向配置させた。   In this experiment, as shown in FIG. 5, diamond particles 115 having an average particle diameter of 10 to 20 μm and subjected to electroless Ni—P plating that act as abrasive grains in an electrolytic bath 130 (see FIG. 6 below). In this plating solution, an electrode member 120 and a piano wire (JIS symbol: SWRS82A-S) 105 having a wire diameter of 0.12 mm are disposed to face each other.

なお、図5中の符号106は前記ピアノ線105の自由端部に連結されたステンレスナットであり、前記ピアノ線105の撓みを防止して前記電極部材120及び前記ピアノ線105の平行性を担保する為に備えられる。
又、符号107は前記電解槽130内に設置された攪拌子であり、前記メッキ液中の砥粒濃度の均一化を図る為に備えられる。
5 is a stainless nut connected to the free end of the piano wire 105, which prevents bending of the piano wire 105 and ensures parallelism of the electrode member 120 and the piano wire 105. Prepared to do.
Reference numeral 107 denotes a stirrer installed in the electrolytic bath 130, and is provided to make the abrasive grain concentration uniform in the plating solution.

この状態で、前記電極部材120が陽極となり且つ前記ピアノ線105が陰極となるように電源101によって電圧を印可して、前記ピアノ線105の表面に厚さ5〜6μmのメッキ層111(下記図6参照)を設けた。   In this state, a voltage is applied by the power source 101 so that the electrode member 120 serves as an anode and the piano wire 105 serves as a cathode, and a plated layer 111 having a thickness of 5 to 6 μm is formed on the surface of the piano wire 105 (the following figure). 6).

図6に、前記メッキ層111が設けられたピアノ線105の模式断面図を示す。
図6に示すように、本実験においては、前記メッキ層111は、前記ピアノ線105の脱脂及び水洗を行った後に前記ピアノ線105の表面に設けられるスルファミン酸基本浴による下地メッキ層111aと、前記下地メッキ層111aの表面に設けられた砥粒付きメッキ層111bであって、前記Ni−Pメッキ付きダイヤモンド粒子115を含むスルファミン酸基本浴による砥粒付きメッキ層111bと、前記砥粒付きメッキ層111bの表面に設けられたスルファミン酸基本浴による後メッキ層111cとを含んでいる。
なお、本実験においては、Ni−Pメッキ付きダイヤモンド粒子115は、ダイヤモンド粒子及びNi−Pメッキの重量比を7:3とした。
FIG. 6 shows a schematic cross-sectional view of the piano wire 105 provided with the plating layer 111.
As shown in FIG. 6, in this experiment, the plating layer 111 is a base plating layer 111 a with a sulfamic acid basic bath provided on the surface of the piano wire 105 after degreasing and washing the piano wire 105, and A plating layer 111b with abrasive grains provided on the surface of the underlying plating layer 111a, the plating layer with abrasive grains 111b by the sulfamic acid basic bath containing the diamond particles 115 with Ni-P plating, and the plating with abrasive grains And a post-plating layer 111c by a sulfamic acid basic bath provided on the surface of the layer 111b.
In this experiment, the diamond particles 115 with Ni-P plating have a weight ratio of diamond particles and Ni-P plating of 7: 3.

このようにして形成された逆電解前の固定砥粒ワイヤ(前記Ni−Pメッキ付きダイヤモンド115を含む厚さ5〜6μmの前記メッキ層111が前記ピアノ線105の表面に析出された固定砥粒ワイヤ)に対して、パルス電流による逆電解処理を行った。   Fixed abrasive wire before reverse electrolysis formed in this way (fixed abrasive grains in which the plated layer 111 having a thickness of 5 to 6 μm including the diamond 115 with Ni—P plating is deposited on the surface of the piano wire 105. The wire was subjected to reverse electrolysis treatment with a pulse current.

具体的には、前記電極部材120を陰極とし且つ前記ピアノ線105を陽極とした状態で、電流密度20A/dmのパルス電流(図7参照)が、周波数5Hz(実施例1)、10Hz(実施例2)、20Hz(実施例3)、50Hz(実施例4)、80Hz(実施例5)、100Hz(実施例6)、400Hz(実施例7)、700Hz(実施例8)、1000Hz(実施例9)、1200Hz(実施例10)、1400Hz(実施例11)及び1750Hz(実施例12)の条件で流れるように、逆電解電圧を印可した。 Specifically, in the state where the electrode member 120 is a cathode and the piano wire 105 is an anode, a pulse current (see FIG. 7) with a current density of 20 A / dm 2 has a frequency of 5 Hz (Example 1), 10 Hz ( Example 2), 20 Hz (Example 3), 50 Hz (Example 4), 80 Hz (Example 5), 100 Hz (Example 6), 400 Hz (Example 7), 700 Hz (Example 8), 1000 Hz (Implementation) Example 9) A reverse electrolysis voltage was applied so as to flow under conditions of 1200 Hz (Example 10), 1400 Hz (Example 11) and 1750 Hz (Example 12).

なお、前記各実施例1〜12においては、図7に示すように、パルス電流のデューティ比を0.3(1周期のうち30%の時間だけ前記電流密度の電流を流し、残りの70%は通電停止)とした。   In each of the first to twelfth embodiments, as shown in FIG. 7, the duty ratio of the pulse current is set to 0.3 (the current having the current density is allowed to flow for 30% of one period, and the remaining 70%. Was deenergized).

また、前記各実施例1〜12における逆電解処理の仕事量(電流密度×時間)が一定(260A・s/dm)となるように、逆電解処理の時間を設定した。
即ち、各実施例1〜12において、前記電流密度のパルス電流が流れる時間の合計が13秒となるように、逆電解処理の時間を設定した。
Moreover, the time of the reverse electrolysis treatment was set so that the work amount (current density × time) of the reverse electrolysis treatment in each of Examples 1 to 12 was constant (260 A · s / dm 2 ).
That is, in each of Examples 1 to 12, the time for the reverse electrolysis treatment was set so that the total time during which the pulse current having the current density flows was 13 seconds.

前記実施例1〜12の結果を電子走査顕微鏡(日本電子製 JEOL 型番:JSM-6363LA)を用いて倍率1500〜3000倍で観察した。
実施例1〜4の結果を図8(a)〜(d)にそれぞれ示す。
実施例5〜8の結果を図9(a)〜(d)にそれぞれ示す。
実施例9〜12の結果を図10(a)〜(d)にそれぞれ示す。
The results of Examples 1 to 12 were observed at a magnification of 1500 to 3000 using an electron scanning microscope (JEOL model number: JSM-6363LA, manufactured by JEOL Ltd.).
The result of Examples 1-4 is shown to Fig.8 (a)-(d), respectively.
The results of Examples 5 to 8 are shown in FIGS. 9 (a) to 9 (d), respectively.
The results of Examples 9 to 12 are shown in FIGS. 10 (a) to 10 (d), respectively.

さらに、実施例13として、前記逆電解前の固定砥粒ワイヤに対して直流電流による逆電解処理を行った。
詳しくは、図11に示すように、前記実施例1〜12と逆電解処理の条件を一致させる為に、前記直流電流の電流密度を20A/dmとし且つ仕事量が260A・s/dmとなるように通電時間を13sとした。
Furthermore, as Example 13, reverse electrolysis treatment with direct current was performed on the fixed abrasive wire before reverse electrolysis.
Specifically, as shown in FIG. 11, in order to make the conditions of the reverse electrolysis process coincide with those in Examples 1 to 12, the current density of the direct current is set to 20 A / dm 2 and the work amount is 260 A · s / dm 2. The energization time was 13 s so that

前記実施例13の結果を前記電子走査顕微鏡(日本電子製 JEOL 型番:JSM-6363LA)を用いて倍率3000倍で観察した結果を図12に示す。   The result of observing the result of Example 13 at a magnification of 3000 times using the electron scanning microscope (JEOL model number: JSM-6363LA manufactured by JEOL) is shown in FIG.

直流電流による逆電解処理の場合には、図12から、前記砥粒の回りのメッキ層が全体的に略均一に薄くなっていることが確認された。   In the case of reverse electrolysis treatment using a direct current, it was confirmed from FIG. 12 that the plating layer around the abrasive grains was thinned substantially uniformly as a whole.

これに対し、パルス電流による逆電解処理の場合には、図8〜図10から、前記砥粒の回りのメッキ層が局所的に薄くなっていることが確認された。
これは、パルス電流による逆電解処理によれば、前記砥粒の前記メッキ層に対する固着強度を維持しつつ、前記砥粒による切削性能を向上させ得ることを意味している。
On the other hand, in the case of the reverse electrolysis treatment using a pulse current, it was confirmed from FIGS. 8 to 10 that the plating layer around the abrasive grains was locally thin.
This means that according to the reverse electrolysis treatment using a pulse current, the cutting performance of the abrasive grains can be improved while maintaining the adhesion strength of the abrasive grains to the plating layer.

又、パルス電流の周波数が10Hz(実施例2)〜1200Hz(実施例11)の範囲では、前記砥粒の前記メッキ層に対する固着強度を実質的に損なうこと無く、前記砥粒の一部を確実に露出させ得ることが確認された。
より好ましくは、パルス電流の周波数を50Hz(実施例4)〜1000Hz(実施例9)とすれば、前記砥粒の露出領域を広げ得ることが確認された。
Further, when the frequency of the pulse current is in the range of 10 Hz (Example 2) to 1200 Hz (Example 11), a part of the abrasive grains can be surely obtained without substantially impairing the adhesion strength of the abrasive grains to the plating layer. It was confirmed that it could be exposed.
More preferably, it was confirmed that when the frequency of the pulse current is 50 Hz (Example 4) to 1000 Hz (Example 9), the exposed region of the abrasive grains can be expanded.

5 ワイヤ本体
10 メッキ液
11 メッキ層
15 砥粒
20 電極部材
5 Wire body 10 Plating solution 11 Plating layer 15 Abrasive grain 20 Electrode member

Claims (4)

砥粒群を含むメッキ液を用いてワイヤ本体にメッキ層を電着させることで前記ワイヤ本体に砥粒が固着されてなる固定砥粒ワイヤを製造する方法であって、
砥粒群を含むメッキ液中において対向配置された電極部材が陽極となり且つワイヤ本体が陰極となるような正電解電圧を印可して砥粒群を含むメッキ層を前記ワイヤ本体に電着させる正電解処理工程と、
前記正電解処理工程の後にメッキ液中で対向配置された電極部材が陰極となり且つワイヤ本体が陽極となるような逆電解電圧を印可して前記メッキ層中の少なくとも一部の砥粒の頂部が露出するように前記メッキ層を剥離させる逆電解処理工程とを含み、
前記逆電解処理工程は、前記ワイヤ本体及び前記電極部材間を流れる電流がパルス電流となるように逆電解電圧を印可するものとされていることを特徴とする固定砥粒ワイヤの製造方法。
A method for producing a fixed abrasive wire in which abrasive particles are fixed to the wire body by electrodepositing a plating layer on the wire body using a plating solution containing a group of abrasive grains,
A positive electrolysis voltage is applied so that the electrode member disposed oppositely in the plating solution containing the abrasive grain group serves as an anode and the wire body serves as a cathode. An electrolytic treatment process;
After the positive electrolysis treatment step, a reverse electrolysis voltage is applied so that the electrode member opposed to the plating solution serves as a cathode and the wire main body serves as an anode, so that the top of at least some of the abrasive grains in the plating layer a reverse electrolytic treatment step of peeling the plating layer to expose seen including,
In the reverse electrolysis treatment step, a reverse electrolysis voltage is applied so that a current flowing between the wire body and the electrode member becomes a pulse current .
前記砥粒は、前記メッキ液に包含されている段階においては前記メッキ液に包含されている金属の一部又は全部と同一金属によってコーティングされていることを特徴とする請求項1に記載の固定砥粒ワイヤの製造方法。   2. The fixing according to claim 1, wherein the abrasive grains are coated with the same metal as a part or all of the metal contained in the plating solution in the step of being contained in the plating solution. A method for producing an abrasive wire. 前記パルス電流の周波数は10Hz以上で且つ1200Hz以下であることを特徴とする請求項1又は2に記載の固定砥粒ワイヤの製造方法。 The method of manufacturing a fixed abrasive wire according to claim 1 or 2 , wherein the frequency of the pulse current is 10 Hz or more and 1200 Hz or less. 前記パルス電流の周波数は50Hz以上で且つ1000Hz以下であることを特徴とする請求項に記載の固定砥粒ワイヤの製造方法。 The method for producing a fixed abrasive wire according to claim 3 , wherein the frequency of the pulse current is 50 Hz or more and 1000 Hz or less.
JP2011271150A 2011-01-31 2011-12-12 Method for manufacturing fixed abrasive wire Expired - Fee Related JP5863170B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011271150A JP5863170B2 (en) 2011-01-31 2011-12-12 Method for manufacturing fixed abrasive wire
CN2012100208566A CN102618908A (en) 2011-01-31 2012-01-30 Method for making fixed abrasive grain metal wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011017930 2011-01-31
JP2011017930 2011-01-31
JP2011271150A JP5863170B2 (en) 2011-01-31 2011-12-12 Method for manufacturing fixed abrasive wire

Publications (2)

Publication Number Publication Date
JP2012176483A JP2012176483A (en) 2012-09-13
JP5863170B2 true JP5863170B2 (en) 2016-02-16

Family

ID=46978714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271150A Expired - Fee Related JP5863170B2 (en) 2011-01-31 2011-12-12 Method for manufacturing fixed abrasive wire

Country Status (1)

Country Link
JP (1) JP5863170B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5705813B2 (en) * 2011-12-02 2015-04-22 古河電気工業株式会社 Diamond abrasive manufacturing method, wire tool manufacturing method, and wire tool
JP6245833B2 (en) * 2013-04-11 2017-12-13 株式会社不二機販 Wire saw manufacturing method
CN104357895B (en) * 2014-11-21 2016-08-17 山东大学 Sand device and upper sand method thereof on a kind of electroplating diamond wire saw silk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1143692A (en) * 1978-03-20 1983-03-29 J. Lawrence Fletcher Bonding process for grinding tools
JPH08309668A (en) * 1995-05-16 1996-11-26 Mitsubishi Materials Corp Manufacture of inner circumferential blade grinding wheel
JP2006181701A (en) * 2004-12-28 2006-07-13 Asahi Diamond Industrial Co Ltd Electro-deposited wire tool and manufacturing method thereof
JP4939066B2 (en) * 2006-01-25 2012-05-23 ジャパンファインスチール株式会社 Saw wire and manufacturing method thereof
WO2010141206A2 (en) * 2009-06-05 2010-12-09 Applied Materials, Inc. Method and apparatus for manufacturing an abrasive wire

Also Published As

Publication number Publication date
JP2012176483A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP6196285B2 (en) Materials and processes of electrochemical deposition of nano-laminated brass alloys
CA2730252C (en) Low stress property modulated materials and methods of their preparation
US7704127B2 (en) Electrodeposited wire tool
TWI439574B (en) And a method for producing the porous metal foil and a method for producing the same
JP2009066689A (en) Fixed abrasive grain wire saw
JPWO2012046804A1 (en) Copper foil and manufacturing method thereof, copper foil with carrier and manufacturing method thereof, printed wiring board, multilayer printed wiring board
JP5863170B2 (en) Method for manufacturing fixed abrasive wire
JP7389847B2 (en) How to produce thin functional coatings on light alloys
JP5066508B2 (en) Fixed abrasive wire saw
JPWO2011042931A1 (en) Fixed abrasive wire, method of manufacturing the same, and abrasive used for the fixed abrasive wire
JP3423702B2 (en) Metal plating method
JP5705813B2 (en) Diamond abrasive manufacturing method, wire tool manufacturing method, and wire tool
JP5665558B2 (en) Method for manufacturing fixed abrasive wire
JP2007307669A (en) Wire electric discharge machine and wire electric discharge machining method
JP2011255475A (en) Fixed abrasive wire
JP6029202B2 (en) Method of electroplating pure iron on aluminum or aluminum alloy material
RU2647723C1 (en) Method of diamond tool making
JP2010052070A (en) Electrodeposition bonded abrasive tool, method of manufacturing the same, and abrasive grain used for manufacturing the same
JP6839434B2 (en) Nanocarbon fiber-containing fixed abrasive wire saw and its manufacturing method
CN102618908A (en) Method for making fixed abrasive grain metal wire
JPS6156871A (en) Manufacture of multi-layer electrodeposited saw edge
Turner et al. Effect of mode of application on the formation of zinc alloy films on aluminium
JP2005081474A (en) Hyperfine crystal electroforming tool and its manufacturing method
JP2006021304A (en) Manufacturing method of electro-deposition abrasive tool and the electro-deposition abrasive tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5863170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees