JP2009066689A - Fixed abrasive grain wire saw - Google Patents

Fixed abrasive grain wire saw Download PDF

Info

Publication number
JP2009066689A
JP2009066689A JP2007236397A JP2007236397A JP2009066689A JP 2009066689 A JP2009066689 A JP 2009066689A JP 2007236397 A JP2007236397 A JP 2007236397A JP 2007236397 A JP2007236397 A JP 2007236397A JP 2009066689 A JP2009066689 A JP 2009066689A
Authority
JP
Japan
Prior art keywords
plating
abrasive
wire saw
abrasive grains
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007236397A
Other languages
Japanese (ja)
Other versions
JP2009066689A5 (en
Inventor
Takaaki Suzuki
孝彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Read Co Ltd
Original Assignee
Read Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Read Co Ltd filed Critical Read Co Ltd
Priority to JP2007236397A priority Critical patent/JP2009066689A/en
Publication of JP2009066689A publication Critical patent/JP2009066689A/en
Publication of JP2009066689A5 publication Critical patent/JP2009066689A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed abrasive grain wire saw, capable of securing sufficient abrasive grain holding force, achieving excellent machining efficiency and machining precision, and providing long service life and excellent productivity. <P>SOLUTION: In the fixed abrasive grain wire saw 1, a number of abrasive grains 3 having conductive coating 3a on the surface are fixed by metal plating 4 by electrodeposition on the outer circumferential surface of a core wire 2 that is almost circular in cross section, having high strength and conductivity. The metal plating 4 is formed of a first plating layer 4a on the inner side, and a second plating layer 4b on the outer side. The hardness of the second plating layer 4b on the outer side is smaller than the hardness of the first plating layer 4a on the inner side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、大口径のシリコン、サファイヤ、磁性材料等の硬脆材料をスライシングすることに適した固定砥粒ワイヤーソーの改良に関するものである。   The present invention relates to an improvement of a fixed abrasive wire saw suitable for slicing hard and brittle materials such as large-diameter silicon, sapphire, and magnetic materials.

従来、シリコン、サファイヤ等の硬脆材料から成るインゴットワークや、磁性材料から成るブロック状ワークをスライシングするにあたっては、内周刃砥石を用いた加工が行われていた。しかしながら、一度の段取りで多数個のワークを加工することができないため、その後、ワイヤーソーを用いたマルチスライシングに移行されてきた。
上記ワイヤーソーでの加工方式は、基本的には遊離砥粒方式と固定砥粒方式とに区別される。遊離砥粒方式は長い切断加工時間を必要とし、また、切断加工時の油性スラリーによる環境衛生上の問題や、切断加工後のスラリーを除去するため手間のかかる洗浄工程を必要とするという問題点がある。
Conventionally, when slicing an ingot work made of a hard and brittle material such as silicon or sapphire or a block-shaped work made of a magnetic material, processing using an inner peripheral grinding wheel has been performed. However, since a large number of workpieces cannot be machined in one setup, the process has been shifted to multi-slicing using a wire saw.
The wire saw processing method is basically classified into a free abrasive grain method and a fixed abrasive grain method. The loose abrasive method requires a long cutting time, and also has problems of environmental hygiene due to oily slurry during cutting and a troublesome cleaning process to remove the slurry after cutting. There is.

一方、固定砥粒方式で用いられるワイヤーソーは、芯線であるピアノ線等の外周面に砥粒(ダイヤモンドやCBN等)を固着させたもので、レジンボンドワイヤーソーと電着ワイヤーソーとに大別される。
レジンボンドワイヤーソーは、芯線の外周面に樹脂結合材により砥粒を固着させたものであるが、樹脂結合材による砥粒保持力が比較的小さいため、砥粒が脱落したり樹脂結合材そのものが剥離したりし易い等の問題がある。そこで、砥粒保持力を確保するために砥粒を結合材中に埋め込むと、砥粒の有効突出し高さが小さくて寿命が短くなり、しかも、切り粉等の排出性に劣り目詰まりが発生し易いため、研削性に劣るという問題点もある。
On the other hand, wire saws used in the fixed abrasive method are those in which abrasive grains (diamond, CBN, etc.) are fixed to the outer peripheral surface of a piano wire or the like as a core wire. Separated.
Resin bond wire saws are those in which abrasive grains are fixed to the outer peripheral surface of the core wire with a resin binder, but because the abrasive holding power by the resin binder is relatively small, the abrasive grains may fall off or the resin binder itself There are problems such as easy peeling. Therefore, if abrasive grains are embedded in the binder to ensure abrasive holding power, the effective protruding height of the abrasive grains will be small and the service life will be shortened. Therefore, there is a problem that the grindability is inferior.

これらの事情から、昨今では砥粒を電着メッキによりワイヤーに固着させた電着ワイヤーソーが主流となっているが、従来の(導電性被覆が施されていない)裸の砥粒を用いた場合、レジンボンドワイヤーソーとの比較では砥粒の保持力が大きくて脱粒しにくいものの、やはり砥粒の脱落を防止するためにある程度メッキを厚くする必要性がある(一般的には平均砥粒径の約60%以上)。そのため、砥粒の有効突出し高さが小さくて、ワークにメッキ表面が当たって該メッキが剥離してしまうことから寿命が短く、また、製造工程でのメッキ処理に長い時間を要することから生産性に劣る等の問題点がある。   Because of these circumstances, electrodeposition wire saws in which abrasive grains are fixed to the wire by electrodeposition plating have become the mainstream in recent years, but conventional bare (non-conductive coating) bare abrasive grains were used. In this case, compared with the resin bond wire saw, the holding power of the abrasive grains is large and it is difficult for the grains to fall off, but it is still necessary to thicken the plating to some extent to prevent the abrasive grains from dropping (in general, the average abrasive grains) About 60% of the diameter). Therefore, the effective protrusion height of the abrasive grains is small, the plating surface comes into contact with the workpiece and the plating is peeled off, so that the life is short, and the plating process in the manufacturing process takes a long time and the productivity is high. There are problems such as inferiority.

そこで、近年、特許文献1に開示されるように、導電性の被覆を表面に有する砥粒を用いることが試みられている。このような所謂被覆砥粒を用いた電着ワイヤーソーの場合、該被覆砥粒の表面全体に電着によりメッキが施され、しかも、被覆により砥粒表面とメッキとの濡れ性が向上するため、より薄いメッキでより高い砥粒保持力を得ることが可能となり、その結果、寿命が長く、製造工程でのメッキ処理の時間をより短くすることが可能となるという利点がある。   Thus, in recent years, as disclosed in Patent Document 1, attempts have been made to use abrasive grains having a conductive coating on the surface. In the case of an electrodeposition wire saw using such a so-called coated abrasive grain, the entire surface of the coated abrasive grain is plated by electrodeposition, and the wettability between the abrasive grain surface and the plating is improved by the coating. Further, it is possible to obtain a higher abrasive grain holding force with thinner plating, and as a result, there is an advantage that the life is long and the time for the plating process in the manufacturing process can be shortened.

ところで、このような被覆砥粒を用いた電着ワイヤーソーでワークを加工するにあたっては、加工効率や加工精度の観点からすれば、砥粒の刃先上に施されたメッキは、ワークとの間で滑りを生じるため、加工開始後速やかに削り取られて砥粒の刃先が露出されることが望ましい。このような問題点を解決し得るものとして、特許文献2には、砥粒の刃先を当初から露出させた電着ワイヤーソーが開示されているが、刃先のメッキを除去する工程を必要とするため生産性に劣るという問題がある。
特開2006−181698号公報 特開2006−181701号公報
By the way, when processing a workpiece with an electrodeposited wire saw using such coated abrasive grains, from the viewpoint of processing efficiency and processing accuracy, the plating applied on the cutting edge of the abrasive grains is between the workpiece and the workpiece. Therefore, it is desirable that the cutting edge of the abrasive grains is exposed immediately after the start of processing to expose the cutting edge of the abrasive grains. As what can solve such a problem, Patent Document 2 discloses an electrodeposited wire saw in which the cutting edge of an abrasive grain is exposed from the beginning, but requires a step of removing the plating on the cutting edge. Therefore, there is a problem that the productivity is inferior.
JP 2006-181698 A JP 2006-181701 A

本発明の技術的課題は、十分な砥粒保持力を確保することができると同時に、加工効率や加工精度に優れ、しかも、寿命が長く生産性にも優れた固定砥粒ワイヤーソーを提供することにある。   The technical problem of the present invention is to provide a fixed-abrasive wire saw that is capable of ensuring a sufficient abrasive grain retention force, and is excellent in processing efficiency and processing accuracy, and has a long life and excellent productivity. There is.

上記課題を解決するため、本発明は、高強度で導電性を有する芯線の外周面上に、多数の砥粒を金属メッキにより略均等に単粒固着させて成る固定砥粒ワイヤーソーにおいて、上記砥粒が、その表面に導電性被覆を有し、且つ、上記金属メッキが、複数のメッキ層により形成されていて、これらメッキ層の硬度が、最内層から最外層に向けて硬度が小さくなるように調整されており、上記芯線に固着された砥粒の表面全体が上記金属メッキの各メッキ層により覆われていることを特徴とするものである。   In order to solve the above problems, the present invention provides a fixed abrasive wire saw in which a large number of abrasive grains are fixed substantially uniformly by metal plating on the outer peripheral surface of a core wire having high strength and conductivity. The abrasive has a conductive coating on its surface, and the metal plating is formed of a plurality of plating layers, and the hardness of these plating layers decreases from the innermost layer to the outermost layer. The entire surface of the abrasive grains fixed to the core wire is covered with each plating layer of the metal plating.

ここで、上記金属メッキは2層のメッキ層から形成することができる。また、上記ワイヤーソーにおいては、上記金属メッキの各メッキ層が同じ金属を含んでいることが望ましく、そして、上記金属メッキの厚さが、上記砥粒の平均砥粒径に対し30〜50%であることが望ましい。
なお、上記砥粒は、芯線の外周面上に略均等に分布させた多数の点状接着材により仮固着され、上記金属メッキにより本固着されていても良い。
Here, the metal plating can be formed from two plating layers. Further, in the wire saw, it is desirable that each plating layer of the metal plating contains the same metal, and the thickness of the metal plating is 30 to 50% with respect to the average abrasive grain size of the abrasive grains. It is desirable that
The abrasive grains may be temporarily fixed by a number of point-like adhesives distributed substantially uniformly on the outer peripheral surface of the core wire, and may be permanently fixed by the metal plating.

さらに、上記ワイヤーソーの一実施形態においては、上記砥粒が、ダイヤモンド,CBN,SiC,Al23の内から選択される少なくとも1つから成り、上記導電性被覆が、TiC,Ti,Ni,SiC,Cuの内から選択される導電性材料により、該砥粒の表面を全体被覆又は略均等に粒子状に部分被覆することにより形成されている。
また、他の実施形態においては、上記砥粒がダイヤモンドから成り、上記導電性被覆が、該砥粒の表面を熱処理によってグラファイト化させることにより形成されている。
なお、上記金属メッキを形成する各メッキ層の硬度は、180Hv以上600Hv以下であることが望ましい。
Furthermore, in one embodiment of the wire saw, the abrasive grains are made of at least one selected from diamond, CBN, SiC, and Al 2 O 3 , and the conductive coating is TiC, Ti, Ni The surface of the abrasive grains is covered with a conductive material selected from among SiC, Cu, and Cu, or partially coated in a substantially uniform particle shape.
In another embodiment, the abrasive grains are made of diamond, and the conductive coating is formed by graphitizing the surface of the abrasive grains by heat treatment.
The hardness of each plating layer forming the metal plating is desirably 180 Hv or more and 600 Hv or less.

本発明に係る固定砥粒ワイヤーソーによれば、表面に導電性被覆を有する砥粒を、複数のメッキ層から成る金属メッキにより芯線に対し固着させ、さらに、上記複数のメッキ層の硬度を、最内層から最外層に向けて小さくなるように調整することにより、十分な砥粒保持力を確保することができると同時に、ワークの加工開始後、砥粒を覆っている各メッキ層が硬度の小さい外層側から順次削り取られて、より速やかに砥石の刃先を露出させることができるため、加工効率や加工精度に優れ、しかも、寿命が長く生産性にも優れた固定砥粒ワイヤーソーを提供することができる。   According to the fixed abrasive wire saw according to the present invention, the abrasive grains having a conductive coating on the surface are fixed to the core wire by metal plating composed of a plurality of plating layers, and the hardness of the plurality of plating layers is By adjusting the innermost layer so as to decrease from the innermost layer to the outermost layer, it is possible to secure a sufficient abrasive grain holding force, and at the same time, each plating layer covering the abrasive grains has a hardness after the processing of the workpiece is started. The fixed abrasive wire saw with excellent processing efficiency and processing accuracy, long life and excellent productivity, because it can be scraped sequentially from the small outer layer side to expose the cutting edge of the grindstone more quickly. be able to.

以下に、図面に基づき、本発明の実施の形態について詳細に説明する。図1及び図2に示すように、固定砥粒ワイヤーソー1は、高強度で導電性を有する断面略円形の芯線2の外周面上に、表面に導電性被覆3aを有する多数の砥粒3を、電着による金属メッキ4によって固着させたもので、上記芯線2の外周面上において該砥粒3は、互いに重なり合わない単粒状態で、且つ、略均等に分布させた状態で固着されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 and 2, the fixed abrasive wire saw 1 has a large number of abrasive grains 3 having a conductive coating 3 a on the outer peripheral surface of a core wire 2 having a high strength and conductivity and a substantially circular cross section. Are fixed by a metal plating 4 by electrodeposition, and the abrasive grains 3 are fixed on the outer peripheral surface of the core wire 2 in a single grain state that does not overlap with each other and in a substantially evenly distributed state. ing.

上記芯線2としては、例えばピアノ線等の鋼製のワイヤーが好適に用いられるが、ワイヤーの外周面全体に導電性被覆を施して、該ワイヤーに導電性を付与したものであっても良い。
また、上記多数の砥粒3は、本発明の第1の実施形態においては、例えばダイヤモンド,CBN,SiC,Al23の内から選択される一種又は複数種から成っており、それら砥粒3の表面上に、TiC,Ti,Ni,SiC又はCu等の導電性粒子が全体被覆、又は略均等に部分被覆されて、上記導電性被覆3aが形成されている。一方、第2の実施形態においては、多数の砥粒3がダイヤモンドのみから成っていて、それら砥石3表面が熱処理によりグラファイト化されて上記導電性被覆3aが形成されており、該砥粒3の表面のみに導電性が付与されている。
As said core wire 2, although steel wires, such as a piano wire, are used suitably, the electroconductive coating | cover was given to the whole outer peripheral surface of a wire, and the conductivity was provided to this wire.
In the first embodiment of the present invention, the plurality of abrasive grains 3 are composed of one or more kinds selected from, for example, diamond, CBN, SiC, and Al 2 O 3. On the surface of 3, conductive particles such as TiC, Ti, Ni, SiC, or Cu are entirely coated or substantially uniformly coated to form the conductive coating 3 a. On the other hand, in the second embodiment, a large number of abrasive grains 3 are made of only diamond, and the surface of these abrasive stones 3 is graphitized by heat treatment to form the conductive coating 3a. Conductivity is imparted only to the surface.

更に、上記金属メッキ4は、例えばNi等から成るもので、内側の第1メッキ層4a及び外側の第2メッキ層4bから成る2層に形成されていて、第2メッキ層4bが、第1メッキ層4aよりも小さい硬度を有している。ただし、該金属メッキ4を形成するメッキ層の層数は、必ずしも2層である必要性はなく3層以上であっても良い。そのとき、各メッキ層の硬度は、最内層から最外層に向けて小さくなるように、例えば、最内層から最外層に向けて順次各メッキ層の硬度が小さくなっていくように調整される。また、各メッキ層は互いに異なる金属により形成しても良いが、互いに同じ金属を含む方が、各メッキ層間の濡れ性が向上し結合力が増すため望ましい。
なお、上記各メッキ層4a,4bの硬度は、電解メッキ液の組成、電流密度、温度、添加剤の量等により適宜調整することができる。
Further, the metal plating 4 is made of, for example, Ni or the like, and is formed into two layers including an inner first plating layer 4a and an outer second plating layer 4b, and the second plating layer 4b is a first layer. The hardness is smaller than that of the plating layer 4a. However, the number of plating layers forming the metal plating 4 is not necessarily two, and may be three or more. At this time, the hardness of each plating layer is adjusted so that the hardness of each plating layer decreases sequentially from the innermost layer to the outermost layer, for example, so as to decrease from the innermost layer to the outermost layer. In addition, each plating layer may be formed of different metals, but it is preferable that the same metal is included because the wettability between the plating layers is improved and the bonding force is increased.
The hardness of each of the plating layers 4a and 4b can be appropriately adjusted depending on the composition of the electrolytic plating solution, the current density, the temperature, the amount of additives, and the like.

そして、図2に示すように、上記砥粒3は、芯線の外周面上に略均等に分布させた多数の点状の接着材から成る接着部5により仮固着されると共に、結合材としての上記金属メッキ4により本固着されている。このとき、上記砥粒3が表面に導電性被覆3aを有しているため、該砥粒3の表面全体が上記各メッキ層4a,4bによって順次覆われている。   Then, as shown in FIG. 2, the abrasive grains 3 are temporarily fixed by an adhesive portion 5 made of a large number of point-like adhesive materials distributed substantially evenly on the outer peripheral surface of the core wire, and as a binder. It is permanently fixed by the metal plating 4. At this time, since the abrasive grain 3 has the conductive coating 3a on the surface, the entire surface of the abrasive grain 3 is sequentially covered with the plating layers 4a and 4b.

以上のように構成された上記固定砥粒ワイヤーソー1によれば、上記砥粒3の表面全体が電着による金属メッキ4で覆われ、しかも、導電性被覆3aにより砥粒3の表面と金属メッキ4との濡れ性が向上するため、従来の導電性被覆を有していない砥粒を用いたワイヤーソーと比較して、より薄い金属メッキ4でより高い砥粒保持力を確保することが可能となり、その結果、金属メッキ処理に要する時間を短縮することができ、生産性を向上させることが可能となる。   According to the fixed abrasive wire saw 1 configured as described above, the entire surface of the abrasive grain 3 is covered with the metal plating 4 by electrodeposition, and the surface of the abrasive grain 3 and the metal are covered by the conductive coating 3a. Since the wettability with the plating 4 is improved, it is possible to secure a higher abrasive grain holding force with the thinner metal plating 4 as compared with the conventional wire saw using the abrasive grains not having the conductive coating. As a result, the time required for the metal plating process can be shortened, and the productivity can be improved.

また、このように金属メッキ4の厚さを薄くすることができるため、砥粒3の有効突出し高さをより大きく確保することができると同時に、金属メッキ4の表面にワークが当たって該メッキ4が剥離するのを可及的に防止することがでる。しかも、金属メッキ4の厚さを薄くすることでワイヤーソー1全体の弾性率をより低く抑えて捻れに対する耐久性を向上させることができるため、捻れに対してワイヤー表面にクラックが発生しワイヤーが破断するのを可及的に防止することが可能となる。その結果、ワイヤーソーの長寿命化を実現することができる。   Further, since the thickness of the metal plating 4 can be reduced in this way, the effective protrusion height of the abrasive grains 3 can be ensured at the same time, and at the same time, the work hits the surface of the metal plating 4 and the plating is applied. It is possible to prevent the separation of 4 as much as possible. In addition, by reducing the thickness of the metal plating 4, the elastic modulus of the entire wire saw 1 can be kept lower and the durability against twisting can be improved. It is possible to prevent breakage as much as possible. As a result, it is possible to extend the life of the wire saw.

さらに、上記固定砥粒ワイヤーソー1においては、上記金属メッキ4が、第1メッキ層4a及び第2メッキ層4bの2層により形成されていて、外層の第2メッキ層4bが、内層の第1メッキ層4aよりも小さい硬度を有しているので、上述したような導電性被覆3aを有する砥粒3を用いた電着ワイヤーソーの優れた効果を確保しながらも、ワークの加工開始後、砥粒3を覆っている各メッキ層4a,4bが硬度のより小さい第2メッキ層4bから順次速やかに削り取られて、砥石3の刃先を速やかに露出させることができる。   Further, in the fixed abrasive wire saw 1, the metal plating 4 is formed by two layers of the first plating layer 4a and the second plating layer 4b, and the second plating layer 4b of the outer layer is the first layer of the inner layer. Since it has a hardness smaller than 1 plating layer 4a, while ensuring the excellent effect of the electrodeposited wire saw using the abrasive grains 3 having the conductive coating 3a as described above, after starting the processing of the workpiece The plating layers 4a and 4b covering the abrasive grains 3 are sequentially scraped off from the second plating layer 4b having a lower hardness so that the cutting edge of the grindstone 3 can be exposed quickly.

そのため、ワークの加工時に金属メッキ4とワークとの間で生じるスリップを最小限に抑制して切れ味を持続的に確保し、加工効率の向上を図ることができると同時に、加工開始後、ワークの厚みを速やかに安定させて、加工精度の向上を図ることができる。そしてその結果、後工程の仕上処理をも含めたワークの総加工時間を短縮することが可能となる。
しかも、各メッキ層4a,4b間の結合力も十分に確保することができるため、加工中に各メッキ層4a,4b同士が剥離することもなく、十分な耐久性をも確保することができる。
Therefore, the slip generated between the metal plating 4 and the workpiece during machining of the workpiece can be minimized and the sharpness can be secured continuously, and the machining efficiency can be improved. It is possible to quickly stabilize the thickness and improve processing accuracy. As a result, the total machining time of the workpiece including the finishing process in the subsequent process can be shortened.
In addition, since the bonding force between the plating layers 4a and 4b can be sufficiently ensured, the plating layers 4a and 4b are not separated from each other during processing, and sufficient durability can be ensured.

なお、上記固定砥粒ワイヤーソー1において、金属メッキ4の厚さは、砥粒3の平均砥粒径に対して30〜50%の範囲であることが好ましく、より好ましくは40%である。そうすることにより、上述したような砥粒の保持力、捻りに対する耐久性、生産性、加工精度及び加工効率等を最もバランス良く確保することが可能となる。金属メッキ4の厚さが砥粒3の平均砥粒径に対して30%未満であると加工時に砥粒3の脱落が多くなる虞があり、50%を超えると加工時にメッキ表面にワークが当たりメッキが剥離して寿命が短くなると同時に、メッキ処理に時間を要し生産性が低下してしまう虞がある。またこのとき、第1メッキ層4a及び第2メッキ層4bの厚さは、ほぼ同じであっても良いが特にそれに限定されるものではない。   In addition, in the said fixed abrasive wire saw 1, it is preferable that the thickness of the metal plating 4 is 30 to 50% of range with respect to the average abrasive grain diameter of the abrasive grain 3, More preferably, it is 40%. By doing so, it becomes possible to ensure the balance of the above-mentioned holding power of abrasive grains, durability against twisting, productivity, processing accuracy, processing efficiency, and the like in the most balanced manner. If the thickness of the metal plating 4 is less than 30% with respect to the average grain size of the abrasive grains 3, the abrasive grains 3 may fall off during processing. The contact plating peels off and the life is shortened, and at the same time, the plating process takes time, and the productivity may be lowered. At this time, the thicknesses of the first plating layer 4a and the second plating layer 4b may be substantially the same, but are not particularly limited thereto.

ここで、本発明における平均砥粒径とは、第1の実施形態及び第2の実施形態の何れにおいても、導電性被覆3aを含んだ砥粒径を意味することとする。そのとき、該導電性被覆3aの厚みは、メッキ効率の観点からすると、0.5μm以上であることが好ましい。また、上記金属メッキ4すなわち各メッキ層4a、4bの硬度は、加工するワークの硬度等に応じて、180〜600Hvの範囲から選択されることが望ましい。   Here, the average abrasive grain size in the present invention means the abrasive grain size including the conductive coating 3a in both the first embodiment and the second embodiment. At that time, the thickness of the conductive coating 3a is preferably 0.5 μm or more from the viewpoint of plating efficiency. The hardness of the metal plating 4, that is, the plating layers 4a and 4b, is preferably selected from the range of 180 to 600 Hv depending on the hardness of the workpiece to be processed.

図3に基づき上記固定砥粒ワイヤーソー1の製造方法について説明する。まず、図中左方向から供給された芯線2は、図示しない酸洗浄、アルカリ洗浄、水洗浄工程を通過して、陰極mに接続した金属製陰極電極に接触給電させ、接着材塗布装置6により該芯線2の外周面上に多数の点状接着材をほぼ均等に付着させて上記接着部5を形成する。続いて、砥粒吹付装置7において、上記点状の接着部5に、上記導電性被覆3aが表面に施された砥粒3を単粒状態で付着させて仮固着させる。そのとき、該砥粒3は接着部5に単粒にしか付着しないため余分な砥粒が芯線2に付着することがない。   The manufacturing method of the said fixed abrasive wire saw 1 is demonstrated based on FIG. First, the core wire 2 supplied from the left direction in the figure passes through acid cleaning, alkali cleaning, and water cleaning processes (not shown), and is contact-powered to a metal cathode electrode connected to the cathode m, and is applied by an adhesive coating device 6. On the outer peripheral surface of the core wire 2, a large number of point-like adhesives are adhered substantially evenly to form the adhesive portion 5. Subsequently, in the abrasive spraying device 7, the abrasive grains 3 having the conductive coating 3 a applied on the surface thereof are attached to the spot-like adhesive portions 5 in a single grain state and temporarily fixed. At this time, since the abrasive grains 3 adhere only to single grains on the bonding portion 5, extra abrasive grains do not adhere to the core wire 2.

次に、砥粒3が外周面に仮固着された芯線2は、陽極に接続した金属板が電解メッキ液中に浸水設置された第一電解メッキ槽8中を通過する。そうすることで、芯線2の外周面全体、及び導電性被覆3aを有する砥粒3の表面全体にメッキ金属が析出して上記第1メッキ層4aが形成され、該砥粒3が表面全体を第1メッキ層4aにより覆われた状態で芯線2に固着される。ここで、上記第一電解メッキ槽8中の電解メッキ液は、例えば、スルファミン酸ニッケル、ホウ酸、塩化ニッケル及び添加剤から成っている。   Next, the core wire 2 on which the abrasive grains 3 are temporarily fixed to the outer peripheral surface passes through a first electrolytic plating tank 8 in which a metal plate connected to the anode is immersed in the electrolytic plating solution. By doing so, the plating metal is deposited on the entire outer peripheral surface of the core wire 2 and the entire surface of the abrasive grain 3 having the conductive coating 3a to form the first plated layer 4a, and the abrasive grain 3 covers the entire surface. It is fixed to the core wire 2 in a state covered with the first plating layer 4a. Here, the electrolytic plating solution in the first electrolytic plating tank 8 is composed of, for example, nickel sulfamate, boric acid, nickel chloride and an additive.

続いて、砥粒3が第1メッキ層4aにより固着された芯線2は、陰極m、酸処理槽9を通過し次の第二電解メッキ槽10中へと導かれる。そうすることで上記芯線2の第1メッキ層4aの表面全体にメッキが析出して第2メッキ層4bが形成され、その結果、上記砥粒3がその表面全体を2層のメッキ層4a,4bから成る金属メッキ4により覆われた状態となり、芯線2に対して更に強固に固着される。ここで、上記酸処理槽9は、第1メッキ層4aと第2メッキ層4bとの密着性を向上させるためのもので、該酸処理槽9で用いる液体としては、塩化ニッケル、塩酸等からなる混合液体が挙げられるが、特にそれに限定されるものではない。また、本実施形態においては、第二電解メッキ槽10中の電解メッキ液は、第一電解メッキ槽8中のものと基本的には同様の組成から成るが、上記第1メッキ層4aの硬度よりも第2メッキ層4bの硬度が小さくなるように調整するため、両メッキ槽8,10において、電流密度、温度、添加剤の量等を異ならせると共に、加工対象となるワークの硬度をも考慮して最適なメッキ処理条件を選択する。なお、両メッキ槽8,10において、電解メッキ液の組成そのものを異ならせても良いのはもちろんであるが、同じ金属を含んでいる方が、両メッキ層4a,4b間の濡れ性が向上し結合力が増すため望ましい。   Subsequently, the core wire 2 to which the abrasive grains 3 are fixed by the first plating layer 4 a passes through the cathode m and the acid treatment tank 9 and is guided into the next second electrolytic plating tank 10. By doing so, plating is deposited on the entire surface of the first plating layer 4a of the core wire 2 to form the second plating layer 4b. As a result, the abrasive grains 3 are formed on the entire surface of the two plating layers 4a, 4b, It becomes a state covered with the metal plating 4 made of 4b and is more firmly fixed to the core wire 2. Here, the acid treatment tank 9 is for improving the adhesion between the first plating layer 4a and the second plating layer 4b. The liquid used in the acid treatment tank 9 may be nickel chloride, hydrochloric acid, or the like. However, the present invention is not particularly limited thereto. In the present embodiment, the electrolytic plating solution in the second electrolytic plating tank 10 has basically the same composition as that in the first electrolytic plating tank 8, but the hardness of the first plating layer 4a. In order to adjust the hardness of the second plating layer 4b to be smaller than that, the current density, the temperature, the amount of the additive, etc. are varied in the plating tanks 8 and 10, and the hardness of the workpiece to be processed is also increased. Select the optimal plating process conditions in consideration. It should be noted that in both plating tanks 8 and 10, the composition of the electrolytic plating solution itself may be different, but the wettability between the two plating layers 4a and 4b is improved by containing the same metal. This is desirable because the binding force increases.

そしてその後、外周面に砥粒3が金属メッキ4により本固着された芯線2を水洗槽11にて水洗し、巻き取り部12でボビンに巻き取ることによって、多層メッキ固定砥粒ワイヤーソー1を得ることができる。
なお、本発明に係る固定砥粒ワイヤーソー、及びその製造方法は、上記の実施形態に特に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々変更を加えることが可能である。
After that, the core wire 2 having the abrasive grains 3 fixedly adhered to the outer peripheral surface by the metal plating 4 is washed in a water washing tank 11 and wound on a bobbin by a take-up portion 12, whereby the multilayer plating fixed abrasive wire saw 1 is obtained. Obtainable.
The fixed abrasive wire saw and the manufacturing method thereof according to the present invention are not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

以下に本発明に係る実施例を詳細に説明する。ここでは、本発明に係る実施例としての、導電性被覆3aを有する砥粒3を用いた2層メッキの固定砥粒ワイヤーソー1に対し、第1比較例としての、導電性被覆を有する砥粒を用いた単層メッキの固定砥粒ワイヤーソーと、第2比較例としての、導電性被覆を有していない裸の砥粒を用いた単層メッキの固定砥粒ワイヤーソーとを使用して性能比較を実施した。切断評価では磁性材料ネオジウムをそれぞれ切断加工して切断性能の比較を行った。なお、以下の第1実施例においては、上記第1の実施形態に係る固定砥粒ワイヤーソーの比較結果を示し、第2実施例においては、上記第2の実施形態に係る固定砥粒ワイヤーソーの比較結果を示す。ただし、本発明は以下の各実施例に何ら限定されるものではない。   Embodiments according to the present invention will be described in detail below. Here, an abrasive having a conductive coating as a first comparative example with respect to a two-layer plating fixed abrasive wire saw 1 using an abrasive 3 having a conductive coating 3a as an example according to the present invention. A fixed-abrasive wire saw of single-layer plating using grains and a fixed-abrasive wire saw of single-layer plating using bare abrasive grains that do not have a conductive coating as a second comparative example Performance comparison. In the cutting evaluation, each of the magnetic materials neodymium was cut and the cutting performance was compared. In addition, in the following 1st Example, the comparison result of the fixed abrasive wire saw which concerns on the said 1st Embodiment is shown, and in the 2nd Example, the fixed abrasive wire saw which concerns on the said 2nd Embodiment. The comparison result of is shown. However, the present invention is not limited to the following examples.

(第1実施例)
図3に示す製造工程において、芯線径0.18mmのピアノ線と、平均砥粒径が25.7μmでTiCの導電性被覆を施したダイヤモンド砥粒とを用いて、本実施例に係る2層メッキの固定砥粒ワイヤーソーを製作した。巻き取り部ではボビンに巻かれる線速を3m/min以上にして製造効率を高めている。砥粒を仮固着させる接着剤にはアクリルゴム15%とノルマルヘキサン85%の溶液を用いた。そして、第一電解メッキ槽においては、メッキ液として、スルファミン酸ニッケル500g/l、ホウ酸30g/l、塩化ニッケル10g/l、添加剤(例えば、日本化学産業株式会社製 商品名NSF−E)1ml/lを含んでpH4.0に調整された水溶液を用い、液温50℃、電流密度20A/dm2でニッケルメッキを施して上記第1メッキ層を形成した。一方、第二電解メッキ槽においては、メッキ液として、スルファミン酸ニッケル500g/l、ホウ酸30g/l、塩化ニッケル10g/lを含んでpH4.0に調整された水溶液(すなわち、上記第一電解メッキ槽のメッキ液において添加剤を含んでいないもの)を用い、液温50℃、電流密度20A/dm2でニッケルメッキを施して上記第2メッキ層を形成し、これら2層から成る金属メッキにより砥粒を芯線に対し本固着させた。
(First embodiment)
In the manufacturing process shown in FIG. 3, two layers according to the present example are used by using a piano wire having a core wire diameter of 0.18 mm and diamond abrasive grains having an average abrasive grain size of 25.7 μm and a conductive coating of TiC. A fixed-abrasive wire saw for plating was manufactured. In the winding part, the linear velocity wound around the bobbin is set to 3 m / min or more to increase the production efficiency. As an adhesive for temporarily fixing the abrasive grains, a solution of 15% acrylic rubber and 85% normal hexane was used. In the first electroplating bath, as a plating solution, nickel sulfamate 500 g / l, boric acid 30 g / l, nickel chloride 10 g / l, additives (for example, trade name NSF-E manufactured by Nippon Chemical Industry Co., Ltd.) Using the aqueous solution adjusted to pH 4.0 containing 1 ml / l, nickel plating was performed at a liquid temperature of 50 ° C. and a current density of 20 A / dm 2 to form the first plating layer. On the other hand, in the second electroplating bath, an aqueous solution adjusted to pH 4.0 containing nickel sulfamate 500 g / l, boric acid 30 g / l and nickel chloride 10 g / l as the plating solution (that is, the first electrolysis described above). Using the plating solution of the plating tank containing no additive), the second plating layer is formed by nickel plating at a liquid temperature of 50 ° C. and a current density of 20 A / dm 2 , and the metal plating composed of these two layers Thus, the abrasive grains were permanently fixed to the core wire.

その結果として、
実施例1:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均総膜厚が10.3μm(砥粒の平均砥粒径の40%)、第1メッキ層の平均膜厚が5μm(砥粒の平均砥粒径の19.5%)、第1メッキ層の硬度が350Hv、第2メッキ層の平均膜厚が5.3μm(砥粒の平均砥粒径の20.5%)、第2メッキ層の硬度が180Hvである2層メッキ固定砥粒ワイヤーソー
実施例2:平均ワイヤー線径が235μm、平気砥粒数が0.15mm2あたり25個、金属メッキの平均総膜厚が7.8μm(砥粒の平均砥粒径の30%)、第1メッキ層の平均膜厚が5μm(砥粒の平均砥粒径の19.5%)、第1メッキ層の硬度が350Hv、第2メッキ層の平均膜厚が2.8μm(砥粒の平均砥粒径の10.5%)、第2メッキ層の硬度が180Hvである2層メッキ固定砥粒ワイヤーソー
実施例3:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均総膜厚が12.8μm(砥粒の平均砥粒径の50%)、第1メッキ層の平均膜厚が5μm(砥粒の平均砥粒径の19.5%)、第1メッキ層の硬度が350Hv、第2メッキ層の平均膜厚が7.8μm(砥粒の平均砥粒径の30.5%)、第2メッキ層の硬度が180Hvである2層メッキ固定砥粒ワイヤーソー
をそれぞれ得ることができた。
As a result,
Example 1: The average wire diameter is 235 μm, the average number of abrasive grains is 25 per 0.15 mm 2 , the average total film thickness of the metal plating is 10.3 μm (40% of the average abrasive grain size of the abrasive grains), the first The average thickness of the plating layer is 5 μm (19.5% of the average abrasive grain size of the abrasive grains), the hardness of the first plating layer is 350 Hv, and the average thickness of the second plating layer is 5.3 μm (average abrasive grains) (20.5% of the particle size) and the hardness of the second plating layer is 180Hv. Two-layer plating fixed abrasive wire saw Example 2: The average wire diameter is 235 μm, and the number of flat abrasive particles is 25 per 0.15 mm 2 The average total film thickness of the metal plating is 7.8 μm (30% of the average abrasive grain size of the abrasive grains), the average thickness of the first plating layer is 5 μm (19.5% of the average abrasive grain diameter of the abrasive grains), The hardness of the first plating layer is 350 Hv, and the average film thickness of the second plating layer is 2.8 μm (10. %), The hardness of the second plating layer is 180 Hv 2-layer plating bonded abrasive wire saw of Embodiment 3: Mean Wire wire diameter is 235 [mu] m, 25 per 0.15 mm 2 is an average number of abrasive grains, the metal plating average total The film thickness is 12.8 μm (50% of the average abrasive grain size of the abrasive grains), the average film thickness of the first plating layer is 5 μm (19.5% of the average abrasive grain diameter of the abrasive grains), and the hardness of the first plating layer 350 Hv, the average thickness of the second plating layer is 7.8 μm (30.5% of the average grain size of the abrasive grains), and the hardness of the second plating layer is 180 Hv. I was able to get it.

一方、上記第1比較例に係る固定砥粒ワイヤーソーは、芯線径0.18mmのピアノ線と、平均砥粒径が25.7μmでTiCの導電性被覆を施したダイヤモンド砥粒とを用いて、図3に示す本発明に係る固定砥粒ワイヤーソーの製造工程から、第2メッキ層のメッキ処理に関連する工程(すなわち、酸処理槽9及び第二電解メッキ槽10)を除いた工程により製作され、巻き取り部ではボビンに巻かれる線速を3m/min以上にして製造効率を高めている。また、電解メッキ槽においては、メッキ液として、スルファミン酸ニッケル500g/l、ホウ酸30g/l、塩化ニッケル10g/l、添加剤(NSF−E)1ml/lを含んでpH4.0に調整された水溶液を用い、液温50℃、電流密度20A/dm2でニッケルメッキを施して、この単層の金属メッキにより砥粒を芯線に対し本固着させた。 On the other hand, the fixed abrasive wire saw according to the first comparative example uses a piano wire having a core wire diameter of 0.18 mm and diamond abrasive grains having an average abrasive particle diameter of 25.7 μm and a conductive coating of TiC. 3, the manufacturing process of the fixed abrasive wire saw according to the present invention excludes the steps related to the plating treatment of the second plating layer (that is, the acid treatment tank 9 and the second electrolytic plating tank 10). At the winding part, the linear velocity wound around the bobbin is set to 3 m / min or more to increase the manufacturing efficiency. In the electrolytic plating bath, the pH of the plating solution is adjusted to 4.0 with nickel sulfamate 500 g / l, boric acid 30 g / l, nickel chloride 10 g / l, and additive (NSF-E) 1 ml / l. The aqueous solution was used for nickel plating at a liquid temperature of 50 ° C. and a current density of 20 A / dm 2 , and the abrasive grains were permanently fixed to the core wire by this single layer metal plating.

その結果として、
比較例1:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均膜厚が10.3μm(砥粒の平均砥粒径の40%)、金属メッキの硬度が350Hvである単層メッキ固定砥粒ワイヤーソー
比較例2:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均膜厚が7.8μm(砥粒の平均砥粒径の30%)、金属メッキの硬度が350Hvである単層メッキ固定砥粒ワイヤーソー
比較例3:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均膜厚が12.8μm(砥粒の平均砥粒径の50%)、金属メッキの硬度が350Hvである単層メッキ固定砥粒ワイヤーソー
をそれぞれ得ることができた。
As a result,
Comparative Example 1: The average wire diameter is 235 μm, the average number of abrasive grains is 25 per 0.15 mm 2 , the average metal plating film thickness is 10.3 μm (40% of the average abrasive grain diameter of the abrasive grains), Single Layer Plating Fixed Abrasive Wire Saw with Hardness of 350 Hv Comparative Example 2: Average wire diameter is 235 μm, average number of abrasive grains is 25 per 0.15 mm 2 , and average metal plating film thickness is 7.8 μm (abrasive grains 30% of the average abrasive grain size), single layer plating fixed abrasive wire saw with metal plating hardness of 350 Hv Comparative Example 3: average wire diameter is 235 μm, average number of abrasive grains is 25 per 0.15 mm 2 , Single-layer plating fixed abrasive wire saws having an average metal plating thickness of 12.8 μm (50% of the average abrasive grain size of the abrasive grains) and a metal plating hardness of 350 Hv could be obtained.

さらに、上記第2比較例に係る固定砥粒ワイヤーソーは、芯線径0.18mmのピアノ線と、平均砥粒径が25.7μmで表面に導電性被覆を有していない裸のダイヤモンド砥粒とを用いて、上記第1比較例に係る固定砥粒ワイヤーソーと同じ工程により製作され、巻き取り部ではボビンに巻かれる線速を2m/minにしている。また、電解メッキ槽においては、メッキ液として、スルファミン酸ニッケル500g/l、ホウ酸30g/l、塩化ニッケル10g/l、添加剤(NSF−E)1ml/lを含んでpH4.0に調整された水溶液を用い、液温50℃、電流密度20A/dm2でニッケルメッキを施して、この単層の金属メッキにより砥粒を芯線に対し本固着させた。 Further, the fixed abrasive wire saw according to the second comparative example includes a piano wire having a core wire diameter of 0.18 mm, and a bare diamond abrasive grain having an average abrasive particle diameter of 25.7 μm and no conductive coating on the surface. Are used in the same process as the fixed abrasive wire saw according to the first comparative example, and the winding speed of the winding portion is 2 m / min. In the electrolytic plating bath, the pH of the plating solution is adjusted to 4.0 with nickel sulfamate 500 g / l, boric acid 30 g / l, nickel chloride 10 g / l, and additive (NSF-E) 1 ml / l. The aqueous solution was used for nickel plating at a liquid temperature of 50 ° C. and a current density of 20 A / dm 2 , and the abrasive grains were permanently fixed to the core wire by this single layer metal plating.

その結果として、
比較例4:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均膜厚が15.4μm(砥粒の平均砥粒径の60%)、金属メッキの硬度が350Hvである単層メッキ固定砥粒ワイヤーソー
を得ることができた。
As a result,
Comparative Example 4: The average wire diameter is 235 μm, the average number of abrasive grains is 25 per 0.15 mm 2 , the average metal plating film thickness is 15.4 μm (60% of the average abrasive grain diameter of the abrasive grains), A single-layer plated fixed abrasive wire saw having a hardness of 350 Hv could be obtained.

そして、これらワイヤーソーについてそれぞれ、破断強度、捻回クラック数を測定した。またそれに加えて、これらワイヤーソーを線速600m/minで往復運動させ、ワイヤー張力35N、ワーク送り速度40mm/h、新線供給量20m/minの下で水溶性加工液を用いてネオジウム磁性材料(硬度約650Hv)を切断加工し、得られたワーク(サイズ:幅120mm×長さ240mm×高さ120mm)の厚みバラツキTTV5(面内5点における厚みの最大値と最小値との差)、砥粒の残り突出し量、刃先突出しまでの時間をそれぞれ測定した。   And about each of these wire saws, breaking strength and the number of twist cracks were measured. In addition, these wire saws are reciprocated at a line speed of 600 m / min, and a neodymium magnetic material using a water-soluble machining fluid under a wire tension of 35 N, a workpiece feed speed of 40 mm / h, and a new line supply rate of 20 m / min. (Hardness of about 650 Hv) is cut and the obtained workpiece (size: width 120 mm × length 240 mm × height 120 mm) thickness variation TTV5 (difference between the maximum value and the minimum value of the thickness at five points in the plane), The remaining protrusion amount of the abrasive grains and the time until the blade edge protruded were measured.

ここで、破断強度とは、ワイヤーソーをチャック間距離100mmでチャックに固定し、20mm/sの一定速度でワイヤーソーを引張り破断した時の最大点加重のことであり、捻回クラック数とは、ワイヤーソーをチャック間距離100mmでチャックに固定し、500gfの荷重をワイヤーソーに強制的に与え、10回捻った後、20倍の光学顕微鏡でワイヤーソーのメッキ表面に現れたクラックの数を測定したものである。
また、砥粒の残り突出し量とは、ネオジウムワークを加工した後のワイヤーソーにおける、メッキ表面から砥粒先端までの高さのことであり、刃先突出しまでの時間とは、比較例4のワイヤーソーでネオジウムワークを加工したときの主軸モータ電流値4.0A(主軸モータ形格:ACサーボモータ15kW)を基準値とし、他のワイヤーソーで同様にしてネオジウムワークを加工したときに、その主軸モータ電流値が当該基準値に到達するまでの時間、すなわち、導電性被覆を有している砥粒を用いたワイヤーソーの主軸負荷が、導電性被覆を有していない裸の砥粒を用いたワイヤーソーの主軸負荷と同等になるまでの時間のことである。
Here, the breaking strength is the maximum point load when the wire saw is fixed to the chuck at a chuck distance of 100 mm and the wire saw is pulled and broken at a constant speed of 20 mm / s. The wire saw was fixed to the chuck at a distance of 100 mm between the chucks, the load of 500 gf was forcibly applied to the wire saw, twisted 10 times, and the number of cracks appearing on the plated surface of the wire saw with a 20 times optical microscope It is measured.
The remaining protruding amount of the abrasive is the height from the plating surface to the tip of the abrasive in the wire saw after processing the neodymium workpiece, and the time until the cutting edge protrudes is the wire of Comparative Example 4 Spindle motor current value when machining neodymium workpiece with saw 4.0A (spindle motor model: AC servo motor 15kW) as reference value, when machining neodymium workpiece with other wire saw in the same way, the spindle The time until the motor current value reaches the reference value, that is, the spindle load of the wire saw using abrasive grains having a conductive coating uses bare abrasive grains that do not have a conductive coating. It is the time until it becomes equivalent to the spindle load of the wire saw.

表1は、上記実施例1〜3に係る2層メッキ固定砥粒ワイヤーソーと、上記比較例1〜4に係る単層メッキ固定砥粒ワイヤーソーとの性能比較結果である。

Figure 2009066689
Table 1 shows performance comparison results between the two-layer plating fixed abrasive wire saw according to Examples 1 to 3 and the single-layer plating fixed abrasive wire saw according to Comparative Examples 1 to 4.
Figure 2009066689

表1において、まず、実施例1〜3の導電性被覆を有する砥粒を用いた2層メッキ固定砥粒ワイヤーソーの測定結果と、比較例1〜3の導電性被覆を有する砥粒を用いた単層メッキ固定砥粒ワイヤーソーの測定結果とを、同じメッキ総膜厚のもの同士で比較すると、破断強度についてはほぼ同じであり、実施例1〜3においても十分な破断強度を確保することができているといえる。捻回クラック数については、実施例1〜3の方が比較例1〜3に比べて少なくなっていて、捻りに対する耐久性に優れている。これは、外層の第2メッキ層の硬度がより小さいため、ワイヤーソー全体の弾性率がより低く抑えられているためである。砥粒の残り突出し量については、両者ほぼ同じ結果が得られている。これは、砥粒の導電性被覆と金属メッキとの濡れ性が良好であるため、高い砥粒保持力を確保しながらも、メッキの総膜厚をより薄くすることができるからである。   In Table 1, first, the measurement results of the two-layer plating fixed abrasive wire saw using the abrasive grains having the conductive coating of Examples 1 to 3 and the abrasive grains having the conductive coating of Comparative Examples 1 to 3 are used. When the measurement results of the single-layer plated fixed abrasive wire saws were compared between those having the same total film thickness, the breaking strength was almost the same, and sufficient breaking strength was ensured in Examples 1 to 3 as well. It can be said that it is possible. Regarding the number of twist cracks, Examples 1 to 3 are smaller than Comparative Examples 1 to 3, and are excellent in durability against twisting. This is because the hardness of the second plating layer of the outer layer is smaller, so that the elastic modulus of the entire wire saw is suppressed to a lower level. As for the remaining protrusion amount of the abrasive grains, almost the same results are obtained. This is because the wettability between the conductive coating of the abrasive grains and the metal plating is good, so that the total film thickness of the plating can be made thinner while ensuring a high abrasive grain retention.

刃先突出しまでの時間については、実施例1〜3の方が比較例1〜3に比べて明らかに短くなっている。これも、外層の第2メッキ層の硬度がより小さいためで、ワークの加工開始後、砥粒の刃先を覆っている各メッキ層が速やかに削り取られて、砥石の刃先が速やかに露出されるからである。その結果、ワークの加工時にメッキとワークとの間で生じるスリップを最小限に抑制して切れ味を持続的に確保し、加工効率の向上を図ることができる。TTV5についても、実施例1〜3の方が比較例1〜3に比べて小さくて加工精度に優れている。これは、実施例1〜3の方が刃先突出しまでの時間が短いため、ワークの加工開始後、ワークの厚みが速やかに安定するからである。比較例1〜3の場合、刃先突出しまでに長い時間を要し、ワークの加工を開始してから砥粒の刃先を覆うメッキが全て削り取られて砥粒の刃先が露出するまでの暫くの間、ワークの厚みが変化するため、加工精度が低下してしまう。   Regarding the time until the blade tip protrudes, Examples 1 to 3 are clearly shorter than Comparative Examples 1 to 3. This is also because the hardness of the second plating layer of the outer layer is smaller, and after starting the processing of the workpiece, each plating layer covering the cutting edge of the abrasive grains is quickly scraped off, and the cutting edge of the grindstone is quickly exposed. Because. As a result, slip generated between the plating and the workpiece during machining of the workpiece can be suppressed to a minimum, and a sharpness can be secured continuously, thereby improving machining efficiency. As for TTV 5, Examples 1 to 3 are smaller than Comparative Examples 1 to 3, and are excellent in processing accuracy. This is because in Examples 1 to 3, the time until the cutting edge protrudes is shorter, and thus the thickness of the workpiece is quickly stabilized after the machining of the workpiece is started. In the case of Comparative Examples 1 to 3, it takes a long time to protrude the blade edge, and for a while from when the machining of the workpiece is started until all the plating covering the blade edge of the abrasive grain is scraped off and the blade edge of the abrasive grain is exposed Since the thickness of the workpiece changes, the processing accuracy decreases.

次に、実施例1〜3の導電性被覆を有する砥粒を用いた2層メッキ固定砥粒ワイヤーソーの測定結果と、比較例4の導電性被覆を有していない裸の砥粒を用いた単層メッキ固定砥粒ワイヤーソーの測定結果とを比較すると、破断強度及び捻回クラック数については、実施例1〜3の方が比較例4よりも優れた結果が得られており、それは捻回クラック数において特に顕著である。これは、実施例1〜3のワイヤーソーにおいては砥粒に導電性被覆が施されているため、砥粒保持力を確保しながらもメッキの総膜厚をより薄くすることができ、その結果、ワイヤーソー全体の弾性率がより低く抑えられているからである。砥粒の残り突出し量については、実施例1〜3の方が比較例4に比べて明らかに大きくなっている。これも、実施例1〜3のワイヤーソーにおいては砥粒保持力を確保しながらもメッキの総膜厚を薄くすることができるためで、その結果、ワークの加工中にメッキの表面にワークが当たり該メッキが芯線から剥離するのを防止することができ、ワイヤーソーの長寿命化を図ることができる。   Next, the measurement results of the two-layer plating fixed abrasive wire saw using the abrasive grains having the conductive coating of Examples 1 to 3 and the bare abrasive grains not having the conductive coating of Comparative Example 4 are used. When compared with the measurement results of the single-layer plating fixed abrasive wire saw, the results of Examples 1 to 3 were superior to those of Comparative Example 4 for the breaking strength and the number of twist cracks. This is particularly remarkable in the number of twist cracks. This is because the conductive coating is applied to the abrasive grains in the wire saws of Examples 1 to 3, so that the total film thickness of the plating can be made thinner while securing the abrasive grain retention force, and as a result. This is because the elastic modulus of the entire wire saw is suppressed to a lower level. Regarding the remaining protrusion amount of the abrasive grains, Examples 1 to 3 are clearly larger than Comparative Example 4. This is also because in the wire saws of Examples 1 to 3, the total film thickness of the plating can be reduced while ensuring the abrasive grain holding force. As a result, the workpiece is plated on the surface of the plating during the processing of the workpiece. It is possible to prevent the plating from being peeled off from the core wire, and to extend the life of the wire saw.

なお、TTV5については、比較例4のワイヤーソーの方が他のワイヤーソーの例と比較して小さく抑えられているが、これは、比較例4のワイヤーソーにおいては、砥粒が導電性被覆を有していないため、当初から砥粒の刃先がメッキ表面から突出しているからであり、当然の結果といえる。しかしながら、実際に、導電性被覆を有していない裸の砥粒を使用して十分な砥粒保持力を確保するためには、砥粒がメッキ中に完全に埋没するほどメッキの総膜厚を厚くする(すなわち、砥粒の平均砥粒径に対するメッキの総膜厚を100%以上とする)必要性があり、結果として加工精度が低下してしまい、さらに寿命が短くなるばかりでなく生産性も大きく悪化してしまう。   In addition, about TTV5, the wire saw of the comparative example 4 is restrained small compared with the example of another wire saw, but in the wire saw of the comparative example 4, this is because the abrasive grains are conductively coated. This is because the cutting edge of the abrasive grain protrudes from the plating surface from the beginning, which is a natural result. However, in fact, in order to ensure a sufficient abrasive holding force using bare abrasive grains that do not have a conductive coating, the total thickness of the plating is such that the abrasive grains are completely buried during plating. (That is, the total film thickness of the plating with respect to the average abrasive grain size of the abrasive grains must be 100% or more). As a result, the processing accuracy is lowered, and the service life is shortened. Sexually deteriorates.

(第2実施例)
本実施例に係る固定砥粒ワイヤーソーにおいては、上記第1実施例におけるTiCの導電性被覆が表面に施された砥粒に替えて、表面をグラファイト化させて表面のみに導電性を付与したダイヤモンド砥粒が使用されている。この砥粒は、表面に導電性被覆を有していない裸のダイヤモンド砥粒を熱処理(650℃,60分)することにより製造することができ、その平均比抵抗は2.0×103Ωcmである。
(Second embodiment)
In the fixed abrasive wire saw according to the present example, the surface was graphitized to give conductivity only to the surface, instead of the abrasive grain coated with TiC in the first example. Diamond abrasive is used. The abrasive grains can be produced by heat-treating bare diamond abrasive grains having no conductive coating on the surface (650 ° C., 60 minutes), and the average specific resistance is 2.0 × 10 3 Ωcm. It is.

そこで、図3に示す製造工程において、平均砥粒径が25.7μmでグラファイト化により表面に導電性被覆を施した上記砥粒を用い、その他は上記第1実施例の実施例1〜3と同じ条件の下で、本実施例に係る2層メッキの固定砥粒ワイヤーソーを製作した。   Therefore, in the manufacturing process shown in FIG. 3, the abrasive grains having an average abrasive grain size of 25.7 μm and having a surface coated with a conductive coating by graphitization are used. Under the same conditions, a fixed-abrasive wire saw of two-layer plating according to this example was manufactured.

その結果として、
実施例4:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均総膜厚が10.3μm(砥粒の平均砥粒径の40%)、第1メッキ層の平均膜厚が5μm(砥粒の平均砥粒径の19.5%)、第1メッキ層の硬度が350Hv、第2メッキ層の平均膜厚が5.3μm(砥粒の平均砥粒径の20.5%)、第2メッキ層の硬度が180Hvである2層メッキ固定砥粒ワイヤーソー
実施例5:平均ワイヤー線径が235μm、平気砥粒数が0.15mm2あたり25個、金属メッキの平均総膜厚が7.8μm(砥粒の平均砥粒径の30%)、第1メッキ層の平均膜厚が5μm(砥粒の平均砥粒径の19.5%)、第1メッキ層の硬度が350Hv、第2メッキ層の平均膜厚が2.8μm(砥粒の平均砥粒径の10.5%)、第2メッキ層の硬度が180Hvである2層メッキ固定砥粒ワイヤーソー
実施例6:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均総膜厚が12.8μm(砥粒の平均砥粒径の50%)、第1メッキ層の平均膜厚が5μm(砥粒の平均砥粒径の19.5%)、第1メッキ層の硬度が350Hv、第2メッキ層の平均膜厚が7.8μm(砥粒の平均砥粒径の30.5%)、第2メッキ層の硬度が180Hvである2層メッキ固定砥粒ワイヤーソー
をそれぞれ得ることができた。
As a result,
Example 4: The average wire diameter is 235 μm, the average number of abrasive grains is 25 per 0.15 mm 2 , the average total film thickness of the metal plating is 10.3 μm (40% of the average abrasive grain size of the abrasive grains), the first The average thickness of the plating layer is 5 μm (19.5% of the average abrasive grain size of the abrasive grains), the hardness of the first plating layer is 350 Hv, and the average thickness of the second plating layer is 5.3 μm (average abrasive grains) (20.5% of the particle size) and the hardness of the second plating layer is 180 Hv. Two-layer plating fixed abrasive wire saw Example 5: average wire wire diameter is 235 μm, number of flat abrasive particles is 25 per 0.15 mm 2 The average total film thickness of the metal plating is 7.8 μm (30% of the average abrasive grain size of the abrasive grains), the average thickness of the first plating layer is 5 μm (19.5% of the average abrasive grain diameter of the abrasive grains), The hardness of the first plating layer is 350 Hv, and the average film thickness of the second plating layer is 2.8 μm (10. %), The hardness of the second plating layer is 180 Hv 2-layer plating bonded abrasive wire saw of Embodiment 6: Mean Wire wire diameter is 235 [mu] m, 25 per 0.15 mm 2 is an average number of abrasive grains, the metal plating average total The film thickness is 12.8 μm (50% of the average abrasive grain size of the abrasive grains), the average film thickness of the first plating layer is 5 μm (19.5% of the average abrasive grain diameter of the abrasive grains), and the hardness of the first plating layer 350 Hv, the average thickness of the second plating layer is 7.8 μm (30.5% of the average grain size of the abrasive grains), and the hardness of the second plating layer is 180 Hv. I was able to get it.

一方、これら実施例4〜6に係る2層メッキ固定砥粒ワイヤーソーと比較するワイヤーソーについては、導電性被覆を有する砥粒を用いたものとして、平均砥粒径が25.7μmでグラファイト化により表面に導電性被覆が施された上記実施例4〜6と同じダイヤモンド砥粒を用い、その他は上記比較例1〜3と同じ製造工程において同じ条件の下で製作した以下の比較例5〜7の単層メッキ固定砥粒ワイヤーソーを使用し、また、導電性被覆を有していない砥粒を用いたものとして、上記比較例4の単層メッキ固定砥粒ワイヤーソーを使用した。   On the other hand, the wire saw compared with the two-layer plating fixed abrasive wire saw according to Examples 4 to 6 is graphitized with an average abrasive grain size of 25.7 μm, using abrasive grains having a conductive coating. The same diamond abrasive grains as those of Examples 4 to 6 having a conductive coating on the surface thereof were used, and the other Comparative Examples 5 to 5 were produced under the same conditions in the same production process as Comparative Examples 1 to 3 below. The single-layer plating fixed abrasive wire saw of No. 7 was used, and the single-layer plating fixed abrasive wire saw of Comparative Example 4 was used as an abrasive having no conductive coating.

比較例5:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均膜厚が10.3μm(砥粒の平均砥粒径の40%)、金属メッキの硬度が350Hvである単層メッキ固定砥粒ワイヤーソー
比較例6:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均膜厚が7.8μm(砥粒の平均砥粒径の30%)、金属メッキの硬度が350Hvである単層メッキ固定砥粒ワイヤーソー
比較例7:平均ワイヤー線径が235μm、平均砥粒数が0.15mm2あたり25個、金属メッキの平均膜厚が12.8μm(砥粒の平均砥粒径の50%)、金属メッキの硬度が350Hvである単層メッキ固定砥粒ワイヤーソー
そして、上記第1実施例と同じ方法により、これらワイヤーソーについて性能比較試験を行った。
Comparative Example 5: The average wire diameter is 235 μm, the average number of abrasive grains is 25 per 0.15 mm 2 , the average thickness of the metal plating is 10.3 μm (40% of the average abrasive grain size of the abrasive grains), Single Layer Plating Fixed Abrasive Wire Saw with Hardness of 350 Hv Comparative Example 6: Average wire diameter is 235 μm, average number of abrasive grains is 25 per 0.15 mm 2 , and average thickness of metal plating is 7.8 μm (abrasive grains 30% of the average abrasive grain size), single layer plating fixed abrasive wire saw with a metal plating hardness of 350 Hv Comparative Example 7: average wire diameter of 235 μm, average number of abrasive grains of 25 per 0.15 mm 2 , Single-layer plating fixed abrasive wire saw in which the average film thickness of metal plating is 12.8 μm (50% of the average abrasive grain size of abrasive grains) and the hardness of metal plating is 350 Hv. And by the same method as in the first embodiment These The performance was compared to test for Yaso.

表2は、上記実施例4〜6に係る2層メッキ固定砥粒ワイヤーソーと、上記比較例4〜7に係る単層メッキ固定砥粒ワイヤーソーとの性能比較結果である。

Figure 2009066689
Table 2 shows performance comparison results between the two-layer plating fixed abrasive wire saw according to Examples 4-6 and the single-layer plating fixed abrasive wire saw according to Comparative Examples 4-7.
Figure 2009066689

表2において、まず、実施例4〜6の表面がグラファイト化された砥粒を用いた2層メッキ固定砥粒ワイヤーソーの測定結果と、比較例5〜7の表面がグラファイト化された砥粒を用いた単層メッキ固定砥粒ワイヤーソーの測定結果とを、同じメッキ総膜厚のもの同士で比較すると、破断強度についてはほぼ同じであり、実施例4〜6においても十分な破断強度を確保することができているといえる。捻回クラック数については、実施例4〜6の個数は比較例5〜7の個数よりも少なくなっており、実施例4〜6の方が捻りに対する耐久性に優れているといえる。砥粒の残り突出し量については、両者ほぼ同じ結果が得られている。刃先突出しまでの時間については、実施例4〜6の方が比較例5〜7に比べて明らかに短くなっている。TTV5についても、実施例4〜6の方が比較例5〜7に比べて値が小さくて加工精度に優れているといえる。   In Table 2, first, the measurement result of the two-layer plating fixed abrasive wire saw using the abrasive grains in which the surfaces of Examples 4 to 6 were graphitized, and the abrasive grains in which the surfaces of Comparative Examples 5 to 7 were graphitized When the measurement results of the single-layer plating fixed abrasive wire saw using the same are compared with each other with the same total film thickness, the breaking strength is almost the same. In Examples 4 to 6, sufficient breaking strength is obtained. It can be said that it has been secured. Regarding the number of twist cracks, the number of Examples 4 to 6 is smaller than the number of Comparative Examples 5 to 7, and it can be said that Examples 4 to 6 are more excellent in durability against twisting. As for the remaining protrusion amount of the abrasive grains, almost the same results are obtained. About the time to blade edge protrusion, the direction of Examples 4-6 is clearly shorter compared with Comparative Examples 5-7. As for TTV5, it can be said that Examples 4 to 6 are smaller in value than Comparative Examples 5 to 7 and have better processing accuracy.

次に、実施例4〜6の表面がグラファイト化された砥粒を用いた2層メッキ固定砥粒ワイヤーソーの測定結果と、比較例4の導電性被覆を有していない裸の砥粒を用いた単層メッキ固定砥粒ワイヤーソーの測定結果とを比較すると、破断強度及び捻回クラック数については、実施例4〜6の方が比較例4よりも優れた結果が得られており、それは捻回クラック数において特に顕著である。砥粒の残り突出し量については、実施例4〜6の方が比較例4に比べて明らかに大きくなっている。
したがって、上記実施例4〜6においても、上記第1実施例の実施例1〜3と同様の効果を奏することができる。
Next, the measurement results of the two-layer plating fixed abrasive wire saw using the abrasive grains whose surfaces were graphitized in Examples 4 to 6 and the bare abrasive grains not having the conductive coating of Comparative Example 4 were used. When compared with the measurement results of the single-layer plating fixed abrasive wire saw used, for the breaking strength and the number of twist cracks, the results of Examples 4-6 were superior to Comparative Example 4, This is particularly noticeable in the number of twist cracks. About the remaining protrusion amount of an abrasive grain, the direction of Examples 4-6 is clearly large compared with the comparative example 4. FIG.
Therefore, also in the said Examples 4-6, there can exist an effect similar to Examples 1-3 of the said 1st Example.

本発明に係る固定砥粒ワイヤーソーを示す概略的な斜視図である。It is a schematic perspective view which shows the fixed abrasive wire saw which concerns on this invention. 本発明に係る固定砥粒ワイヤーソーを示す概略的な要部拡大断面図である。It is a rough principal part expanded sectional view which shows the fixed abrasive wire saw which concerns on this invention. 本発明に係る固定砥粒ワイヤーソーの製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the fixed abrasive wire saw which concerns on this invention.

符号の説明Explanation of symbols

1 固定砥粒ワイヤーソー
2 芯線
3 砥粒
3a 導電性被覆
4 金属メッキ
4a 第1メッキ層
4b 第2メッキ層
5 接着部
DESCRIPTION OF SYMBOLS 1 Fixed abrasive wire saw 2 Core wire 3 Abrasive grain 3a Conductive coating 4 Metal plating 4a 1st plating layer 4b 2nd plating layer 5 Bonding part

Claims (8)

高強度で導電性を有する芯線の外周面上に、多数の砥粒を金属メッキにより略均等に単粒固着させて成る固定砥粒ワイヤーソーにおいて、
上記砥粒が、その表面に導電性被覆を有し、
上記金属メッキが、複数のメッキ層により形成されていて、これらメッキ層の硬度が、最内層から最外層に向けて小さくなるように調整されており、
上記芯線に固着された砥粒の表面全体が上記金属メッキの各メッキ層により覆われている、
ことを特徴とする固定砥粒ワイヤーソー。
In a fixed abrasive wire saw formed by fixing a large number of abrasive grains substantially uniformly by metal plating on the outer peripheral surface of a core wire having high strength and conductivity,
The abrasive has a conductive coating on its surface,
The metal plating is formed of a plurality of plating layers, and the hardness of these plating layers is adjusted so as to decrease from the innermost layer toward the outermost layer,
The entire surface of the abrasive grains fixed to the core wire is covered with each plating layer of the metal plating,
Fixed abrasive wire saw characterized by that.
上記金属メッキが2層のメッキ層から成っている、
ことを特徴とする請求項1に記載の固定砥粒ワイヤーソー。
The metal plating is composed of two plating layers,
The fixed abrasive wire saw according to claim 1.
上記金属メッキの各メッキ層が同じ金属を含んでいる、
ことを特徴とする請求項1又は2に記載の固定砥粒ワイヤーソー。
Each plating layer of the metal plating contains the same metal,
The fixed abrasive wire saw according to claim 1 or 2, characterized in that
上記金属メッキの厚さが、上記砥粒の平均砥粒径に対し30〜50%である、
ことを特徴とする請求項1〜3の何れかに記載の固定砥粒ワイヤーソー。
The thickness of the metal plating is 30 to 50% with respect to the average abrasive grain size of the abrasive grains.
The fixed abrasive wire saw according to any one of claims 1 to 3.
上記砥粒が、芯線の外周面上に略均等に分布させた多数の点状接着材により仮固着され、上記金属メッキにより本固着されている、
ことを特徴とする請求項1〜4の何れかに記載の固定砥粒ワイヤーソー。
The abrasive grains are temporarily fixed by a large number of point-like adhesives distributed substantially evenly on the outer peripheral surface of the core wire, and are permanently fixed by the metal plating.
The fixed abrasive wire saw according to any one of claims 1 to 4.
上記砥粒が、ダイヤモンド,CBN,SiC,Al23の内から選択される少なくとも1つから成り、上記導電性被覆が、TiC,Ti,Ni,SiC,Cuの内から選択される導電性材料により、該砥粒の表面を全体被覆又は略均等に粒子状に部分被覆することにより形成されている、
ことを特徴とする請求項1〜5の何れかに記載の固定砥粒ワイヤーソー。
The abrasive is composed of at least one selected from diamond, CBN, SiC, and Al 2 O 3 , and the conductive coating is selected from TiC, Ti, Ni, SiC, and Cu. The material is formed by covering the entire surface of the abrasive grains or partially covering the surface of the abrasive grains almost uniformly.
The fixed abrasive wire saw according to any one of claims 1 to 5.
上記砥粒がダイヤモンドから成り、上記導電性被覆が、該砥粒の表面を熱処理によってグラファイト化させることにより形成されている、
ことを特徴とする請求項1〜5の何れかに記載の固定砥粒ワイヤーソー。
The abrasive grains are made of diamond, and the conductive coating is formed by graphitizing the surface of the abrasive grains by heat treatment.
The fixed abrasive wire saw according to any one of claims 1 to 5.
上記金属メッキを形成する各メッキ層の硬度が180Hv以上600Hv以下である、
ことを特徴とする請求項1〜7の何れかに記載の固定砥粒ワイヤーソー。
The hardness of each plating layer forming the metal plating is 180 Hv or more and 600 Hv or less,
The fixed abrasive wire saw according to any one of claims 1 to 7, wherein
JP2007236397A 2007-09-12 2007-09-12 Fixed abrasive grain wire saw Pending JP2009066689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236397A JP2009066689A (en) 2007-09-12 2007-09-12 Fixed abrasive grain wire saw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236397A JP2009066689A (en) 2007-09-12 2007-09-12 Fixed abrasive grain wire saw

Publications (2)

Publication Number Publication Date
JP2009066689A true JP2009066689A (en) 2009-04-02
JP2009066689A5 JP2009066689A5 (en) 2010-07-22

Family

ID=40603495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236397A Pending JP2009066689A (en) 2007-09-12 2007-09-12 Fixed abrasive grain wire saw

Country Status (1)

Country Link
JP (1) JP2009066689A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145856A2 (en) * 2010-05-17 2011-11-24 일진다이아몬드(주) Wire tool
WO2011145858A2 (en) * 2010-05-17 2011-11-24 일진다이아몬드(주) Wire tool
WO2011158834A1 (en) * 2010-06-15 2011-12-22 新日本製鐵株式会社 Saw wire
CN102644102A (en) * 2012-04-05 2012-08-22 燕山大学 Diamond wire saw manufactured by adopting diamond micropowder
WO2014065372A1 (en) * 2012-10-26 2014-05-01 理研コランダム株式会社 Wire tool with abrasive grains
CN103857494A (en) * 2011-09-16 2014-06-11 圣戈班磨料磨具有限公司 Abrasive article and method of forming
JP2015057303A (en) * 2013-08-09 2015-03-26 東京製綱株式会社 Fixed abrasive grain saw wire and method of manufacturing the same
US9067268B2 (en) 2009-08-14 2015-06-30 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
WO2017107194A1 (en) * 2015-12-25 2017-06-29 李秉丰 Method of fixing abrasive to diamond saw wire
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215977A (en) * 1988-06-30 1990-01-19 Nisshin Daiyamondo Kk Diamond grindstone and manufacture thereof
JPH0970760A (en) * 1995-09-06 1997-03-18 Mitsubishi Materials Corp Inner circumferential blade grinding wheel having multiple layered abrasive grain structure
JP2001277092A (en) * 2000-03-30 2001-10-09 Noritake Diamond Ind Co Ltd Resin bond wire saw
JP2004237376A (en) * 2003-02-04 2004-08-26 Read Co Ltd Single layer fixed abrasive grain wire saw, its manufacturing method and cutting method
JP2006181698A (en) * 2004-12-28 2006-07-13 Asahi Diamond Industrial Co Ltd Electro-deposited wire tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215977A (en) * 1988-06-30 1990-01-19 Nisshin Daiyamondo Kk Diamond grindstone and manufacture thereof
JPH0970760A (en) * 1995-09-06 1997-03-18 Mitsubishi Materials Corp Inner circumferential blade grinding wheel having multiple layered abrasive grain structure
JP2001277092A (en) * 2000-03-30 2001-10-09 Noritake Diamond Ind Co Ltd Resin bond wire saw
JP2004237376A (en) * 2003-02-04 2004-08-26 Read Co Ltd Single layer fixed abrasive grain wire saw, its manufacturing method and cutting method
JP2006181698A (en) * 2004-12-28 2006-07-13 Asahi Diamond Industrial Co Ltd Electro-deposited wire tool

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9862041B2 (en) 2009-08-14 2018-01-09 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9067268B2 (en) 2009-08-14 2015-06-30 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
KR101186633B1 (en) 2010-05-17 2012-09-27 일진다이아몬드(주) Wire tool
WO2011145856A3 (en) * 2010-05-17 2012-03-08 일진다이아몬드(주) Wire tool
WO2011145858A3 (en) * 2010-05-17 2012-04-19 일진다이아몬드(주) Wire tool
WO2011145858A2 (en) * 2010-05-17 2011-11-24 일진다이아몬드(주) Wire tool
KR101186634B1 (en) * 2010-05-17 2012-09-27 일진다이아몬드(주) Wire tool
JP2013526422A (en) * 2010-05-17 2013-06-24 日進ダイヤモンド株式会社 Wire tool
WO2011145856A2 (en) * 2010-05-17 2011-11-24 일진다이아몬드(주) Wire tool
WO2011158834A1 (en) * 2010-06-15 2011-12-22 新日本製鐵株式会社 Saw wire
CN102712080A (en) * 2010-06-15 2012-10-03 新日本制铁株式会社 Saw wire
US8707944B2 (en) 2010-06-15 2014-04-29 Nippon Steel & Sumitomo Metal Corporation Saw wire
JP2017074673A (en) * 2010-12-30 2017-04-20 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article and method of forming
US9248583B2 (en) 2010-12-30 2016-02-02 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
EP2755803A4 (en) * 2011-09-16 2015-12-30 Saint Gobain Abrasives Inc Abrasive article and method of forming
KR101618040B1 (en) * 2011-09-16 2016-05-04 생-고뱅 어브레이시브즈, 인코포레이티드 Abrasive article and method of forming
JP2014530770A (en) * 2011-09-16 2014-11-20 サンーゴバンアブレイシブズ,インコーポレイティド Abrasive article and forming method
CN103857494A (en) * 2011-09-16 2014-06-11 圣戈班磨料磨具有限公司 Abrasive article and method of forming
CN107263340A (en) * 2011-09-16 2017-10-20 圣戈班磨料磨具有限公司 abrasive article and forming method
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
CN102644102A (en) * 2012-04-05 2012-08-22 燕山大学 Diamond wire saw manufactured by adopting diamond micropowder
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10596681B2 (en) * 2012-06-29 2020-03-24 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US20170252897A1 (en) * 2012-06-29 2017-09-07 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9687962B2 (en) 2012-06-29 2017-06-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
WO2014065372A1 (en) * 2012-10-26 2014-05-01 理研コランダム株式会社 Wire tool with abrasive grains
TWI576205B (en) * 2012-10-26 2017-04-01 理硏客樂好磨股份有限公司 Wire tool with abrasive particles
JP2014083673A (en) * 2012-10-26 2014-05-12 Riken Corundum Co Ltd Wire tool with abrasive grain
CN104903055A (en) * 2012-10-26 2015-09-09 理研客乐好磨株式会社 Wire tool with abrasive grains
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
JP2015057303A (en) * 2013-08-09 2015-03-26 東京製綱株式会社 Fixed abrasive grain saw wire and method of manufacturing the same
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10137514B2 (en) 2015-06-29 2018-11-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10583506B2 (en) 2015-06-29 2020-03-10 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
WO2017107194A1 (en) * 2015-12-25 2017-06-29 李秉丰 Method of fixing abrasive to diamond saw wire

Similar Documents

Publication Publication Date Title
JP2009066689A (en) Fixed abrasive grain wire saw
JP4139810B2 (en) Electrodeposition wire tool
JP6352176B2 (en) Fixed abrasive wire saw, manufacturing method thereof, and work cutting method using the same
JP5078949B2 (en) Fixed abrasive wire and method of manufacturing fixed abrasive wire
JP5066508B2 (en) Fixed abrasive wire saw
KR102135652B1 (en) Diamond abrasive and wire tools for wire tools
JP5356071B2 (en) Diamond wire saw, diamond wire saw manufacturing method
JP2006181701A (en) Electro-deposited wire tool and manufacturing method thereof
JP5576177B2 (en) Fixed abrasive wire saw and manufacturing method thereof
JP4073328B2 (en) Single layer fixed abrasive wire saw, manufacturing method thereof and cutting method
JP5705813B2 (en) Diamond abrasive manufacturing method, wire tool manufacturing method, and wire tool
JP2014188655A (en) Wire tool for polycrystalline silicon cutting and polycrystalline silicon cutting method
KR20110048659A (en) Wire saw and method for the manufacture of wire saw
JP2011255475A (en) Fixed abrasive wire
JP2011079106A (en) Method of cutting workpiece by fixed abrasive grain wire saw
JP5104394B2 (en) Thin blade grinding wheel manufacturing method
JP5470713B2 (en) Electroformed thin blade whetstone and manufacturing method thereof
CN104647618A (en) Heterogeneous fixed abrasive wire saw for multi-line cutting
JP2014172115A (en) Fixed abrasive grain wire, and method for production thereof
JP4852078B2 (en) Electrodeposition fixed abrasive tool, method for manufacturing the same, and abrasive used for manufacturing the electrodeposition fixed abrasive tool
JP4711025B2 (en) Thin blade whetstone and manufacturing method thereof
JP2003334763A (en) Fixed abrasive grain wire saw
KR20140095205A (en) Wire cutting tool comprising different kind of abrasive particles, and method of fabricating the same
JP6329796B2 (en) Manufacturing method of wire tool
JP2005028525A (en) Super abrasive grain grinding wheel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904