JP5853912B2 - 焼結原料への凝結材添加方法 - Google Patents

焼結原料への凝結材添加方法 Download PDF

Info

Publication number
JP5853912B2
JP5853912B2 JP2012195274A JP2012195274A JP5853912B2 JP 5853912 B2 JP5853912 B2 JP 5853912B2 JP 2012195274 A JP2012195274 A JP 2012195274A JP 2012195274 A JP2012195274 A JP 2012195274A JP 5853912 B2 JP5853912 B2 JP 5853912B2
Authority
JP
Japan
Prior art keywords
raw material
coagulant
fine powder
mass
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012195274A
Other languages
English (en)
Other versions
JP2014051694A (ja
Inventor
健一 八ヶ代
健一 八ヶ代
淳治 長田
淳治 長田
大山 浩一
浩一 大山
茂 樫村
茂 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012195274A priority Critical patent/JP5853912B2/ja
Publication of JP2014051694A publication Critical patent/JP2014051694A/ja
Application granted granted Critical
Publication of JP5853912B2 publication Critical patent/JP5853912B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結原料への凝結材添加方法に関し、特に、難造粒性の粉鉱石から構成される焼結原料に凝結材を添加する方法に関する。
焼結原料となる鉄鉱石は粉鉱石であるため、焼成前に、この粉鉱石に水を混合して混練、造粒処理することで、焼結機へ装入される微粉量を低減している。この混練、造粒処理は、焼結鉱の生産性の維持改善に重要な操作であり、従来から各種混練、造粒技術が提案されてきた。
また、近年の資源劣質化に伴う鉄鉱石の微粉化の進行に対しても、これら各種混練、造粒技術を用いることにより、焼結機に装入する段階における微粉を減少させることができる。一方、凝結材(炭材)への微粉の付着が増加し、凝結材の燃焼性が悪化するという課題が顕在化してきたが、上記課題に対して以下の改善手段が考案されている。
例えば特許文献1では、ドラムミキサーで粉鉱石とコークス(凝結材)を撹拌して擬似粒子に造粒する焼結用原料の造粒方法において、予めコークスの全添加量の20〜50質量%と粉鉱石とをドラムミキサーに装入し、残部のコークスを、ドラムミキサーの全長を1.0Lとして装入口から0.5L〜0.98Lの範囲に添加することで、コークスへの微粉付着を抑え、コークスの燃焼性を確保する技術が開示されている。
また、特許文献2では、石灰石系粉原料及び固体燃料系粉原料(凝結材)を除く焼結原料をドラムミキサーの装入口から装入して造粒すると共に、該焼結原料がドラムミキサーの排出口に到達するまでの滞留時間が10〜90秒範囲となる下流側途中に設定した領域で石灰石系粉原料及び固体燃料系粉原料を添加することで、冷間強度と被還元性の高い焼結鉱を製造できることが開示されている。
特開2000−290732号公報 特開2003−138319号公報
しかしながら、近年増加しつつある難造粒性の粉鉱石を焼結原料として配合した場合、特許文献1及び2に記載されているような、凝結材のドラムミキサー後段添加を実施したとしても、以下の理由により、焼結鉱の生産性改善効果が期待できないという問題がある。
転動造粒により生成される擬似粒子は、核となる鉱石や凝結材に微粉が付着して形成される。しかし、微粉の付着成長は、微粉の付着が、ある程度進んだ段階で飽和する。そして、その後は、微粉の剥離と再付着がドラムミキサー内で繰り返される状態となる。微粉の剥離と再付着の程度は、微粉の付着力に影響される。難造粒性の粉鉱石から構成される焼結原料の場合、微粉の付着力が弱いため、微粉が造粒物中に多く内包されており、焼成中の通気が悪化する。加えて、難造粒性の粉鉱石から構成される焼結原料を使用すると、造粒過程における微粉の剥離と再付着が激しく、ドラムミキサー後段の造粒完了近くで凝結材添加を実施したとしても、剥離と再付着を繰り返す微粉に凝結材が埋没して、凝結材の燃焼性が悪化し、焼結鉱の生産改善効果が減殺されることとなる。
本発明はかかる事情に鑑みてなされたもので、難造粒性の粉鉱石から構成される焼結原料の付着性を向上させて、造粒物中の微粉を低減させると共に凝結材の微粉への埋没を抑制して、焼結鉱の生産性を向上させることが可能な、焼結原料への凝結材添加方法を提供することを目的とする。
上記目的を達成するため、本発明に係る焼結原料への凝結材添加方法は、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有する粉鉱石から構成される焼結原料に、生石灰及び消石灰のいずれか1又は2からなるバインダーを、生石灰換算で前記焼結原料の全量に対して外掛けで0.5質量%以上6質量%以下の量加えて撹拌機で撹拌した後、ドラム式造粒機に装入して造粒するに際し、凝結材を該ドラム式造粒機で添加することを特徴としている。
本発明では、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有する粉鉱石から構成される焼結原料(本明細書では、「難造粒性の微粉原料」と呼ぶことがある。)に、生石灰及び/又は消石灰からなるバインダーを加えて撹拌機で撹拌した後、ドラム式造粒機に装入して造粒することにより、難造粒性の微粉原料の付着性が向上し、造粒が強化される。その結果、焼結機に装入される造粒物中の微粉が低減され、焼成中の通気が良好となる。加えて、難造粒性の微粉原料の付着性が確保された状態で、凝結材をドラム式造粒機で添加するので、凝結材の微粉への埋没が抑制され、凝結材の燃焼性が改善される。
また、本発明に係る焼結原料への凝結材添加方法では、前記ドラム式造粒機の全長に対して該ドラム式造粒機の装入口の位置を0.0、排出口の位置を1.0とすると、前記ドラム式造粒機で前記凝結材を添加する位置を0.8以上1.0以下とすることを好適とする。これにより、空気遮断性の高い造粒粉が凝結材に付着するのを抑制でき、焼結鉱の生産性改善効果が顕著となる。
また、本発明に係る焼結原料への凝結材添加方法では、前記撹拌機の撹拌羽根の周速を2m/秒以上とすることを好適とする。これにより、生石灰や消石灰を分散させる効果が促進されて微粉が減少し、更に焼結鉱の生産性が向上する。
なお、撹拌羽根の周速は、撹拌羽根の先端部の周速である。
本発明に係る焼結原料への凝結材添加方法では、生石灰及び/又は消石灰からなるバインダーを難造粒性の微粉原料に加えて撹拌機で撹拌した後、ドラム式造粒機に装入して造粒する際に、凝結材をドラム式造粒機で添加するので、難造粒性の微粉原料の付着性が向上して、造粒物中の微粉が低減すると共に凝結材の微粉への埋没が抑制される。その結果、焼成中の通気と凝結材の燃焼性が改善され、焼結鉱の生産性が向上する。
本発明の第1の実施の形態に係る焼結原料への凝結材添加方法のフロー図である。 本発明の第2の実施の形態に係る焼結原料への凝結材添加方法のフロー図である。 難造粒性の微粉原料に添加するバインダーの種類と造粒物の粉率との関係を示したグラフである。 凝結材の添加位置と焼結鉱の生産性との関係を示したグラフである。 凝結材の添加総量に対するドラム式造粒機で添加される凝結材の割合と焼結鉱の生産性との関係を示したグラフである。 生石灰の添加割合と焼結鉱の生産性との関係について、撹拌羽根の周速をパラメータとして示したグラフである。
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
[第1の実施の形態]
本発明の第1の実施の形態に係る焼結原料への凝結材添加方法の手順を示したフロー図を図1に示す。本実施の形態に係る焼結原料への凝結材添加方法では、先ず、難造粒性の微粉原料に、生石灰及び消石灰のいずれか1又は2からなるバインダーを加えて撹拌機10で撹拌する。その際、撹拌機10の撹拌羽根の周速は2m/秒以上とすることが好ましい。
撹拌機10で撹拌した焼結原料は、ドラム式造粒機11(「ドラムミキサー」と呼ばれることもある。)に装入され、造粒処理が行われる。その際、凝結材をドラム式造粒機11で添加する。ドラム式造粒機11における凝結材の添加位置は、ドラム式造粒機11の全長に対してドラム式造粒機11の装入口の位置を0.0、排出口の位置を1.0とすると、0.8以上1.0以下とすることが好ましい。
難造粒性の微粉原料は、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有する粉鉱石から構成される焼結原料である。難造粒性の微粉原料に加える生石灰及び/又は消石灰の量は、生石灰換算で、難造粒性の微粉原料の全量に対して外掛けで0.5質量%以上6質量%以下とする。なお、生石灰には、CaOが例えば90質量%以上のものが多用されている。
また、凝結材は、粉コークスなどの固体燃料系粉原料である。凝結材の添加量は、難造粒性の微粉原料の全量に対して外掛けで3質量%〜6質量%程度である。
混練撹拌や造粒処理において添加する水は、生石灰の消化(消石灰化)や消石灰の溶解効果が得られる量で良く、混練撹拌や造粒処理で一般に用いられる水分量(例えば、焼結原料と水の合計を100質量%として4質量%〜12質量%)で効果が得られる。
撹拌機10は、撹拌羽根の周速を2m/秒以上にできるものであれば特に限定されるものではなく、例えばアイリッヒミキサーや万能ミキサー(自転する撹拌羽根の軸を公転させる竪型ミキサー)などを使用することができる。撹拌羽根の周速の上限値は特に限定していないが、世の中で一般に使用されている撹拌機を考慮すれば、例えば35m/秒程度である。また、撹拌羽根の直径(回転軸を挟んでその両側に設けられた羽根の先端間の距離)は、実験室で使用するものも含めて0.1m〜1.5m程度である。
[第2の実施の形態]
本発明の第2の実施の形態に係る焼結原料への凝結材添加方法の手順を示したフロー図を図2に示す。本実施の形態に係る焼結原料への凝結材添加方法では、難造粒性の微粉原料に生石灰及び/又は消石灰からなるバインダーを加えて撹拌機10で撹拌したものに、その他原料を加えてドラム式造粒機11に装入する点が第1実施の形態と異なっている。
その他原料は、難造粒性の微粉原料と異なる易造粒性の焼結原料、即ち、500μmアンダーが50質量%未満及び/又は10μmアンダーが5質量%超の粒度を有する粉鉱石から構成される焼結原料ないし副原料である。
[生石灰や消石灰による微粉原料の造粒メカニズム]
本発明が造粒の対象とする焼結原料は、篩目10μmアンダーの粒子(微粒子)が5質量%以下と極めて少なく、500μmアンダーの粒子が50質量%以上と非常に多い、難造粒性の粉鉱石から構成される焼結原料である。この難造粒性の微粉原料が通常の鉄鉱石と異なる点は、10μmアンダーの微粒子が極めて少ない点であり、例えば、鉄鉱石の粉砕処理と水による比重選鉱処理を繰り返すことで、このような粒度特性となることを本発明者等は突き止めている。
なお、500μmアンダーの粒子の質量%の測定に際しては、難造粒性の微粉原料2kgを150℃で1時間乾燥した後、0.5mmの篩目(JIS Z8801−1「試験用ふるい−第1部:金属製網ふるい」に拠る。)で分級し、篩下の質量%を求めた。一方、10μmアンダーの微粒子の質量%の測定には、上記乾燥後の難造粒性の微粉原料に対してレーザー回折・散乱式粒度分析計(日機装株式会社製 MICROTRAC(登録商標) MT3300型、測定範囲:0.02μm〜1400μm)を使用した。
一般に、焼結原料は、鉄鉱石として一又は複数種の粉鉱石(微粉原料の場合を含む。)を含むものであって、副原料や凝結材を含むかどうかは任意である。本発明では、生石灰や消石灰を含まないものを指す。なお、焼結原料における副原料や凝結材は、鉄鉱石に対して質量比で30質量%以下程度添加する場合があるが、焼結原料の造粒性や造粒物強度の改善は、これらの添加では難しい。
粒径が10μmオーバーかつ500μmアンダー程度に概ね揃った微粉原料を造粒すると、隣接する原料粒子間に空間(以下、「粒子間隙」と呼ぶ。)が形成される。しかし、上記微粉原料中には、粒子間隙を充填する10μmアンダーの微粒子が極めて少ないため、上記微粉原料は粒子間隙を内包したまま造粒され、造粒物強度は極めて低くなる。このため、例えばセルロース等の粘着質のバインダーを用いて上記微粉原料を造粒し、隣接する上記微粉原料の粒子同士を粘着できたとしても、造粒物内部に粒子間隙が内在しているため、造粒物強度の向上が図りにくい。
従って、上記微粉原料の造粒に用いるバインダーには、10μmアンダーの微粒子を供給でき、粒子間隙を充填できるものが望ましいことに本発明者等は想到した。
上記知見を踏まえたうえで、バインダーについて鋭意検討した結果、本発明者等は、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有する粉鉱石から構成される焼結原料を造粒するに際し、10μmアンダーの微粒子を供給でき、粒子間隙を充填できるバインダーとして、生石灰と消石灰が好適であることを見出した。
次に、生石灰と消石灰による造粒メカニズムについて説明する。
生石灰は、混練(撹拌)や造粒中に水と接触することで一部が吸湿、消化(消石灰化)して微粒化し、水とともに難造粒性の微粉原料に均一に混ざり易くなると考えられる。
生成した消石灰の一部については、水に溶解することでも、難造粒性の微粉原料に均一に混ざり易くなる。生石灰の代わりに、あるいは生石灰と共に、消石灰を難造粒性の微粉原料に添加する場合も同様であり、一部の消石灰が水に溶解して、難造粒性の微粉原料中に均一に混ざり易くなる。
生石灰の消化で生成する消石灰や、水の蒸発等によって再晶出する消石灰は、粒径が10μmアンダーの微粒子であり、更にはサブミクロンオーダーの微粒子も多く含まれており、消石灰によって形成される固体架橋は、難造粒性の微粉原料の造粒性向上や造粒物の強度向上に大きく寄与する。
従って、極力多くの生石灰を消化させること、生成する消石灰の粒径を小さくすること、極力多くの消石灰を造粒水に溶解させること等により、造粒に寄与する消石灰を多量に生成させて、生成した消石灰を難造粒性の微粉原料全体に分散させ(マクロに分散させ)、各微粉原料の粒子表面に極力付着させる(ミクロに分散させる)ことが重要となる。
ところで、固形バインダーにはベントナイトや炭酸カルシウム等があるが、通常の混練(撹拌)処理程度では、難造粒性の微粉原料に固形バインダーを均一に分散させるのが難しいことが本発明者等の検討により判明している。これは、粒子が微粒化せず溶解もしないベントナイトや炭酸カルシウム等を上記微粉原料に添加しても分散が進まないためである。
なお、炭酸カルシウム(分子式:CaCO)も、生石灰や消石灰と同様、CaOを含んでおり(炭酸カルシウムのCaO含有率は56質量%程度)、石灰石あるいは単に石灰と称される場合がある。しかし、炭酸カルシウムは、化学的に安定な物質であって、吸湿による消化や水への溶解は起こりにくい。従って、本発明における生石灰や消石灰には、炭酸カルシウムは含まない。
ここで、難造粒性の微粉原料に添加するバインダーの種類が造粒物の造粒性に及ぼす影響について実施した試験について、図3を参照しながら説明する。
本試験では、4質量%以上の結晶水を含む高結晶水鉱石を0〜10質量%配合した難造粒性(500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度)の粉鉱石から構成される焼結原料に、バインダー(炭酸カルシウム、消石灰、生石灰)を外掛けで2質量%(ドライベースの焼結原料である粉鉱石を100質量%とした値。以下同様)添加し、これを万能ミキサー(撹拌機の一例)で撹拌した後、ドラム式造粒機で造粒処理した。
また、バインダー添加効果を評価する基準として使用するため、バインダーを添加していない難造粒性の微粉原料のみのものについても万能ミキサーで撹拌した後、ドラム式造粒機で造粒処理した。
難造粒性の焼結原料に添加した水分は9質量%〜12質量%の範囲で一定(焼結原料と水の合計を100質量%としたときの水分質量%。以下同様)とした。また、撹拌時の撹拌羽根の周速は2.2m/秒、処理時間90秒とし、造粒時の周速は1.0m/秒、処理時間60秒とした。
なお、上記周速は、撹拌機、造粒機において、回転するもの(撹拌羽根、ドラム等)で最も速い部位の速度である。
試験結果の評価に際しては、上記方法により造粒処理した難造粒性の微粉原料2kgを150℃で1時間乾燥した後、0.5mmの篩目(JIS Z8801−1「試験用ふるい−第1部:金属製網ふるい」に拠る。)で分級し、0.5mmアンダーの割合を粉率と定義した。なお、図中の粉率は、バインダーを添加していない難造粒性の微粉原料のみの粉率を1.0として、それぞれ基準化した値である。
図3より、難造粒性の微粉原料に炭酸カルシウムを添加した場合、造粒性の改善代が小さい(粉率:0.70)のに対して、難造粒性の微粉原料に生石灰又は消石灰を添加した場合は、造粒性が著しく改善する(生石灰:0.41、消石灰:0.43)ことがわかる。これは、上述したように、生石灰が水と接触して微粒化し、更に生成した消石灰(添加した消石灰も含む。)の一部が水に溶解することで、消石灰が難造粒性の微粉原料に均一に混ざり易くなり、消石灰によって形成される固体架橋が微粉原料の造粒性向上や造粒物の強度向上に大きく寄与することに因ると考えられる。
上記知見に基づき、本発明者等は、難造粒性の微粉原料の造粒性を向上させることが可能なバインダーの添加方法、即ち、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有する粉鉱石から構成される焼結原料に、生石灰及び消石灰のいずれか1又は2からなるバインダーを加え、撹拌機で撹拌した後に、ドラム式造粒機を用いて転動造粒する方法に想到した。
なお、図3に示した粉率は平均値であり、いずれのバインダーを用いた場合も5%程度の粉率値のばらつきがあった。
一方、難造粒性の微粉原料として、4質量%以上の結晶水を含む高結晶水鉱石を30質量%〜60質量%配合したものを使用した場合は、粉率が全体的に悪化(増加)した。具体的には、バインダーとして炭酸カルシウムを使用した場合は、概ね2〜3割程度のばらつきとなり、バインダーとして生石灰や消石灰を使用した場合は、炭酸カルシウムの粉率値のばらつきよりも小さく1割程度であった。
これは、造粒時や造粒後に気孔に水が吸収され得る高結晶水鉱石では、炭酸カルシウムを用いた場合、固体架橋が安定しないが、生石灰や消石灰を用いた場合、吸湿による消化や水への溶解が起きることにより、気孔への吸水が生じても固体架橋が比較的安定しているためであると考えられる。
[ドラム式造粒機での凝結材の添加について]
次に、凝結材の微粉への埋没を抑制するために実施した、ドラム式造粒機での凝結材の添加試験について説明する。図4及び図5に試験結果を示す。なお、本発明者等は、本試験に使用した生石灰に代えて、消石灰を用いた場合も同様の結果となることを確認している。
図4は、凝結材の添加位置と焼結鉱の生産性との関係を示したグラフである。
試験には、4質量%以上の結晶水を含む高結晶水鉱石を30〜60質量%配合した難造粒性の微粉原料(500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有する粉鉱石から構成される焼結原料)を使用した。
従来例については、難造粒性の微粉原料全量をドラム式造粒機に装入して生石灰を2質量%添加し、水分が7質量%となるように加水して100回転造粒した。
一方、実施例及び参考例については、ドラム式造粒機に装入する前に、アイリッヒミキサー(撹拌機の一例)を用いて難造粒性の微粉原料を撹拌した。具体的には、難造粒性の微粉原料に対して外掛けで生石灰を2質量%添加し、アイリッヒミキサーで撹拌処理する原料の水分が7質量%となるように加水して、アイリッヒミキサーの撹拌羽根の周速を2m/秒として2分間撹拌した。その後、ドラム式造粒機に装入し、従来例と同様、100回転造粒した。
本試験では、難造粒性の微粉原料をドラム式造粒機で造粒するに際し、造粒過程における凝結材の添加タイミングの影響を調査するため、ドラム式造粒機での凝結材添加位置を変更して焼結生産性の変化を比較した。
凝結材の添加位置は、ドラム式造粒機の全長を1.0として、ドラム式造粒機の装入口0.0で焼結原料の装入と同時に凝結材を添加した場合、ドラム式造粒機内の途中0.6、0.8の位置で凝結材を添加した場合、排出口1.0で焼結原料上に凝結材を添加した場合について比較した。また、従来より一般的に行われているドラム式造粒機の上流側のベルトコンベア上に焼結原料を投下すると同時に凝結材を添加する事前添加方法について併せて比較した。
なお、凝結材の添加量は、ドラム式造粒機に装入する焼結原料(水、生石灰を除くドライベース。以下同様)の4.5質量%とした。
図4に示されているように、本試験における試験ケースは、焼結原料の事前撹拌を行わずに造粒する従来例、焼結原料の事前撹拌を行うと共にドラム式造粒機で凝結材を添加する実施例、並びに、焼結原料の事前撹拌を行うと共にドラム式造粒機の上流側で凝結材を事前添加する参考例の3グループから構成されている。
焼結鉱の生産性は、焼成速度(kg/Hr)と歩留(%)の積で表すこととし、従来例において凝結材を事前添加した試験ケースにおける焼結鉱の生産性を1として基準化したものを生産性指数とした。
従来例では、凝結材を事前添加した際の生産性に対し、ドラム式造粒機装入口0.0の凝結材添加では、生産性に変化は無いが、ドラム式造粒機の0.6、0.8の位置で凝結材を添加した場合、生産性が向上しており、従来技術の有効性が確認された。しかし、ドラム式造粒機排出口1.0では、生産性改善効果が消失した。これは、ドラム式造粒機の0.6より前段への凝結材添加では、再造粒による凝結材への微粉付着により燃焼性が悪化し、ドラム式造粒機排出口1.0での凝結材添加では、その後のドラム式造粒機排出口からベルトコンベアへの乗り継ぎや、4回程度のベルトコンベア乗り継ぎによる撹拌では混合が不足し、凝結材分布が偏って歩留が悪化するためと考えられる。
これに対し、実施例及び参考例では、従来例に比べて生産性が改善し、難造粒性の微粉原料と生石灰との事前混練(撹拌)の効果が確認された。また、凝結材の事前添加(参考例)に対し、ドラム式造粒機装入口0.0の凝結材添加(実施例)では更に生産が改善した。これは、生石灰と事前混練原料の付着性が強いため、ベルトコンベア上に静置している状態で凝結材を添加すると、凝結材が前記原料に付着して、ドラム式造粒機内の焼結原料全体への分散性が一定レベルに留まったのに対し、ドラム式造粒機入口部で転動している原料へ凝結材を添加することで(回転しながら凝結材を添加することで)、分散性が改善されると推定される。
また、ドラム式造粒機後方での凝結材添加(実施例)では、0.6まで生産性改善がさほど見られず、従来例と同程度の改善に留まるが、0.8の添加位置で大幅に向上し、更にドラム式造粒機排出口ではやや低下するものの、生産性の改善は維持される結果となった。
難造粒性の微粉原料を生石灰と事前混練することにより、緻密な付着物が形成されるため、凝結材に付着、あるいは凝結材が取り込まれた場合に空気の遮断性が高く、燃焼性が低下することがある。従って、可能な限り造粒末期での凝結材添加が有効であると考えられる。加えて、造粒完了時点では微粉が少なく、原料の比表面積も小さくなっていることから、凝結材の混合分散も、その後のドラム式造粒機排出口からベルトコンベアへの乗り継ぎや、2回以上のベルトコンベアの乗り継ぎ程度の撹拌で確保できるため、造粒完了時点の凝結材添加でも有効と考えられる。
なお、ベルトコンベアは、ドラム式造粒機から排出した例えば造粒物を含む焼結原料を、次の装置(例えば焼結機)に搬送する際に常用されるもので、通常、焼結原料は概ね4回以上のベルトコンベア乗り継ぎを経て次の装置に搬送される。
なお、混練撹拌処理した難造粒性の微粉原料と共に、難造粒性の微粉原料と異なる造粒性が良い焼結原料(500μmアンダーが50質量%未満及び/又は10μmアンダーが5質量%超)を同じ生石灰添加割合で直接ドラム式造粒機に追加装入し、双方をドラム式造粒機で造粒処理しても同様の効果が得られた。これは、追加装入した焼結原料には500μmオーバーの粒子が多く、疑似粒子の核となる粒子が増えたこと、及び/又は10μmアンダーの粒子が多いため、疑似粒子製造の際の核粒子への微粉付着を促進できたことなどが考えられる。
上記追加装入する焼結原料は、ドラム型造粒機に装入する焼結原料総量の0質量%以上90質量%未満程度であると、本発明の効果が顕著となる。90質量%以上(混練撹拌処理した難造粒性の微粉原料が10質量%以下)では効果は認められるものの、造粒性の良い焼結原料の比率が多いため改善効果代が小さくなる。
図5は、凝結材の添加に関して、ドラム型造粒機での添加量と事前添加量の割合が焼結鉱の生産性に及ぼす影響について示したグラフである。なお、縦軸の生産性指数は図4と同じものである。
生石灰添加、水分添加、凝結材添加総量は図4の試験と同条件、使用した難造粒性の微粉原料も同条件である。凝結材の添加位置は、ドラム式造粒機の全長に対して0.8の位置で一定とした。
図5の横軸の物理量は、凝結材の添加総量に対するドラム式造粒機で添加する凝結材の割合(0.1、0.6、1.0)である。なお、ドラム式造粒機で添加する以外の残部の凝結材は、アイリッヒミキサーの入側で焼結原料に添加した。
図5より、ドラム式造粒機で添加する凝結材の割合が増加するにつれて、焼結生産性も向上することがわかる。また、0.1、0.6、1.0の各添加割合における生産性指数を外挿した曲線値のほうが、添加割合ゼロにおける生産性指数値より大きいことから、ドラム式造粒機で凝結材を添加する効果は大きいと考えられる。
以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
生石灰の添加割合及び撹拌機の撹拌羽根の周速が焼結鉱の生産性に及ぼす影響について調査した試験について説明する。なお、本発明者等は、本試験に使用した生石灰に代えて、消石灰を用いた場合も同様の結果となることを確認している。
使用した焼結原料は、図4の試験と同じ難造粒性の微粉原料である。
撹拌時における生石灰の添加割合は、焼結原料の全量に対して外掛けで0.5、1.0、2.0、6.0質量%とし、撹拌羽根の周速は1m/秒、2m/秒、3m/秒とした。
また、水分は、混練撹拌処理する原料との合計量に対して7質量%となるように加水した。
混練撹拌処理した焼結原料はドラム式造粒機へ装入して100回転造粒した。凝結材の添加位置は、ドラム式造粒機の上流側で事前に添加する場合と、前述した試験において最も効果の大きかったドラム式造粒機内の0.8位置とした。
また、撹拌効果を評価する基準として使用するため、撹拌していない難造粒性の微粉原料に凝結材を事前添加し、ドラム式造粒機へ装入して100回転造粒した。
なお、凝結材の添加量は、ドラム式造粒機に装入する焼結原料の4.5質量%とした。
本試験における試験ケースは、焼結原料の事前撹拌を行うと共にドラム式造粒機内で凝結材を添加する実施例(▲、■、●)、焼結原料の事前撹拌を行うと共にドラム式造粒機の上流側で焼結原料に凝結材を事前添加する参考例(△、□、○)、並びに、事前撹拌を行っていない焼結原料に凝結材を事前添加して造粒する比較例(×)の3グループから構成されている。
生石灰の添加割合と焼結鉱の生産性との関係について、撹拌羽根の周速をパラメータとして示したグラフを図6に示す。なお、図6の生産性指数は、各生石灰添加割合(0.5、1.0、2.0、6.0質量%)における比較例の生産性を1.0としてそれぞれ基準化した値である。
全実施例及び全参考例において、生石灰の添加割合が0.5質量%から6質量%の範囲で、撹拌により生産性が改善されることが確認された(全実施例及び全参考例において生産性指数が1を超えている)。
また、凝結材の事前添加(参考例)に比べて、ドラム式造粒機での凝結材添加(実施例)の効果が大きいことが確認された(参考例△と実施例▲、参考例□と実施例■、参考例○と実施例●の各比較)。
撹拌速度の影響については、周速1m/秒に対して、2m/秒での改善が大きく、更に3m/秒では改善効果が飽和する傾向が見られた(参考例同士△、□、○の比較、実施例同士▲、■、●の比較)。
10:撹拌機、11:ドラム式造粒機

Claims (3)

  1. 500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有する粉鉱石から構成される焼結原料に、生石灰及び消石灰のいずれか1又は2からなるバインダーを、生石灰換算で前記焼結原料の全量に対して外掛けで0.5質量%以上6質量%以下の量加えて撹拌機で撹拌した後、ドラム式造粒機に装入して造粒するに際し、凝結材を該ドラム式造粒機で添加することを特徴とする焼結原料への凝結材添加方法。
  2. 請求項1記載の焼結原料への凝結材添加方法において、前記ドラム式造粒機の全長に対して該ドラム式造粒機の装入口の位置を0.0、排出口の位置を1.0とすると、前記ドラム式造粒機で前記凝結材を添加する位置を0.8以上1.0以下とすることを特徴とする焼結原料への凝結材添加方法。
  3. 請求項1又は2記載の焼結原料への凝結材添加方法において、前記撹拌機の撹拌羽根の周速を2m/秒以上とすることを特徴とする焼結原料への凝結材添加方法。
JP2012195274A 2012-09-05 2012-09-05 焼結原料への凝結材添加方法 Active JP5853912B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195274A JP5853912B2 (ja) 2012-09-05 2012-09-05 焼結原料への凝結材添加方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195274A JP5853912B2 (ja) 2012-09-05 2012-09-05 焼結原料への凝結材添加方法

Publications (2)

Publication Number Publication Date
JP2014051694A JP2014051694A (ja) 2014-03-20
JP5853912B2 true JP5853912B2 (ja) 2016-02-09

Family

ID=50610433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195274A Active JP5853912B2 (ja) 2012-09-05 2012-09-05 焼結原料への凝結材添加方法

Country Status (1)

Country Link
JP (1) JP5853912B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337737B2 (ja) * 2014-10-17 2018-06-06 新日鐵住金株式会社 焼結鉱の製造方法
JP6519005B2 (ja) * 2015-03-31 2019-05-29 日本製鉄株式会社 焼結鉱の製造方法
CN110546284B (zh) * 2017-04-17 2021-10-01 杰富意钢铁株式会社 烧结矿的制造方法
JP7040332B2 (ja) * 2018-07-19 2022-03-23 日本製鉄株式会社 焼結鉱の製造方法
JP7067372B2 (ja) * 2018-08-28 2022-05-16 日本製鉄株式会社 配合原料の造粒方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888981B2 (ja) * 2003-03-20 2007-03-07 株式会社神戸製鋼所 焼結鉱の製造方法

Also Published As

Publication number Publication date
JP2014051694A (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5853912B2 (ja) 焼結原料への凝結材添加方法
CN108699623B (zh) 烧结矿的制造方法
JP2007138244A (ja) 焼結鉱の製造方法
JP5987958B2 (ja) 焼結原料へのバインダーの添加方法
JP6132114B2 (ja) 焼結用造粒原料の製造方法
JP5828305B2 (ja) 焼結原料の事前処理方法
JP6036295B2 (ja) 焼結原料の事前処理方法
JP6380762B2 (ja) 焼結鉱の製造方法
JP6369113B2 (ja) 焼結鉱の製造方法
JP2003129139A (ja) 焼結原料の事前処理方法
JP6051883B2 (ja) 焼結原料造粒物の乾燥方法
JP6468367B2 (ja) 焼結鉱の製造方法
JP5835099B2 (ja) 焼結原料の事前処理方法
JP5811066B2 (ja) 焼結原料の事前処理方法
JP5398820B2 (ja) 焼結用造粒物の処理方法
JP5482684B2 (ja) 焼結原料の事前処理方法
JP6256728B2 (ja) 焼結用造粒原料の製造装置
CN110170140B (zh) 高质量干粉灭火剂的生产方法
JP5821778B2 (ja) 焼結原料の事前処理方法
JP5817643B2 (ja) 焼結原料の事前処理方法
WO2019181672A1 (ja) 造粒物、造粒物の製造方法および焼結鉱の製造方法
JP5817644B2 (ja) 焼結原料へのバインダーの添加方法
JP5803809B2 (ja) 焼結原料の事前調整方法
JP5799892B2 (ja) 焼結原料の造粒方法
JP5831397B2 (ja) 焼結鉱の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151123

R151 Written notification of patent or utility model registration

Ref document number: 5853912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350