JP5850493B2 - Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy - Google Patents

Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy Download PDF

Info

Publication number
JP5850493B2
JP5850493B2 JP2011245556A JP2011245556A JP5850493B2 JP 5850493 B2 JP5850493 B2 JP 5850493B2 JP 2011245556 A JP2011245556 A JP 2011245556A JP 2011245556 A JP2011245556 A JP 2011245556A JP 5850493 B2 JP5850493 B2 JP 5850493B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
rare earth
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011245556A
Other languages
Japanese (ja)
Other versions
JP2013100585A (en
Inventor
石田 潤
潤 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2011245556A priority Critical patent/JP5850493B2/en
Publication of JP2013100585A publication Critical patent/JP2013100585A/en
Application granted granted Critical
Publication of JP5850493B2 publication Critical patent/JP5850493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、水素吸蔵合金及びこの水素吸蔵合金を用いたニッケル水素二次電池に関する。   The present invention relates to a hydrogen storage alloy and a nickel metal hydride secondary battery using the hydrogen storage alloy.

ニッケル水素二次電池は、ニッケルカドミウム二次電池に比べて高容量で、且つ環境安全性にも優れているという点から、各種のポータブル機器やハイブリッド電気自動車等、さまざまな用途に使用されるようになっている。   Nickel metal hydride secondary batteries are used in various applications such as various portable devices and hybrid electric vehicles because they have higher capacity and better environmental safety than nickel cadmium secondary batteries. It has become.

このニッケル水素二次電池の負極に用いられる水素吸蔵合金としては、例えば、AB5相を主相とする構造の希土類−Ni系水素吸蔵合金、即ち、LaNi5系水素吸蔵合金が一般的に使用されている。
しかし、この水素吸蔵合金は、水素吸蔵能力が必ずしも十分ではなく、この水素吸蔵合金を負極に用いたニッケル水素二次電池の場合、更なる高容量化が困難であった。このため、ニッケル水素二次電池の更なる高容量化を図るべく、水素吸蔵合金の水素吸蔵能力の向上が望まれている。
The hydrogen storage alloy used in the negative electrode of the nickel-hydrogen secondary batteries, for example, rare earth -Ni-based hydrogen storage alloy having a structure as a main phase an AB 5 phase, i.e., LaNi 5 type hydrogen absorbing alloy is used in general Has been.
However, this hydrogen storage alloy does not necessarily have sufficient hydrogen storage capability, and it has been difficult to increase the capacity in the case of a nickel metal hydride secondary battery using this hydrogen storage alloy as a negative electrode. For this reason, in order to further increase the capacity of the nickel hydrogen secondary battery, it is desired to improve the hydrogen storage capacity of the hydrogen storage alloy.

ここで、水素吸蔵能力を向上させた水素吸蔵合金としては、例えば、特許文献1に示される水素吸蔵合金が知られている。この水素吸蔵合金は、希土類−Ni系水素吸蔵合金が含有する希土類元素の一部をMg及びCaで置換した希土類−Ca−Mg−Ni系水素吸蔵合金である。この希土類−Ca−Mg−Ni系水素吸蔵合金内には、原子半径が比較的大きな元素であるCaが存在するので、隣接する元素間の隙間、即ち、結晶格子中の隙間を大きく確保でき、これら隙間に水素をより多く吸蔵することができる。このため、希土類−Ca−Mg−Ni系水素吸蔵合金は、従来の希土類−Ni系水素吸蔵合金よりも多量に水素を吸蔵できるので、ニッケル水素二次電池の負極に用いた場合、その電池の高容量化に寄与する。   Here, as a hydrogen storage alloy with improved hydrogen storage capacity, for example, a hydrogen storage alloy disclosed in Patent Document 1 is known. This hydrogen storage alloy is a rare earth-Ca-Mg-Ni hydrogen storage alloy in which a part of the rare earth element contained in the rare earth-Ni system hydrogen storage alloy is replaced with Mg and Ca. In this rare earth-Ca-Mg-Ni-based hydrogen storage alloy, Ca, which is an element having a relatively large atomic radius, exists, so that a large gap between adjacent elements, that is, a gap in the crystal lattice can be secured, More hydrogen can be stored in these gaps. For this reason, rare earth-Ca-Mg-Ni-based hydrogen storage alloys can store a larger amount of hydrogen than conventional rare-earth-Ni-based hydrogen storage alloys. Contributes to higher capacity.

特開平11−217643号公報JP-A-11-217643

ところで、特許文献1の希土類−Ca−Mg−Ni系水素吸蔵合金は、AB3相を主相としている。この主相は、水素の吸蔵時における結晶格子の膨張にともない結晶構造に歪みが生じやすい。そして、水素の吸蔵及び放出が繰り返され、前記歪みの残留量が増加すると結晶格子自体が水素を放出できない形態となってしまい、合金から水素を放出させることが困難となる。 By the way, the rare earth-Ca-Mg-Ni-based hydrogen storage alloy of Patent Document 1 has an AB 3 phase as a main phase. This main phase is likely to be distorted in the crystal structure due to the expansion of the crystal lattice during hydrogen storage. Then, when the occlusion and release of hydrogen are repeated and the residual amount of strain increases, the crystal lattice itself becomes a form incapable of releasing hydrogen, making it difficult to release hydrogen from the alloy.

一方、Caによりもたらされる結晶格子中の大きな隙間は、吸蔵した水素を安定化させやすい。安定化した水素は、合金から放出させるのが困難となるため、水素の吸蔵及び放出を繰り返していくと、放出できない水素が合金中に蓄積されていき、次第に放出できる水素の量が減っていく。   On the other hand, the large gap in the crystal lattice caused by Ca tends to stabilize the stored hydrogen. Stabilized hydrogen is difficult to release from the alloy, so as hydrogen is stored and released repeatedly, hydrogen that cannot be released accumulates in the alloy, and the amount of hydrogen that can be released gradually decreases. .

以上のように、上記の希土類−Ca−Mg−Ni系水素吸蔵合金は、水素の吸蔵量を多くできるものの、水素の吸蔵及び放出を繰り返していくと、吸蔵された水素の放出が困難となりやすい。つまり、水素の吸蔵及び放出の繰り返しによる劣化が起こりやすい。従って、この水素吸蔵合金を負極要素に用いた電池では、高容量化は図れるが、サイクル寿命が短いという問題がある。   As described above, although the rare earth-Ca-Mg-Ni-based hydrogen storage alloy can increase the amount of hydrogen stored, it is difficult to release the stored hydrogen if the storage and release of hydrogen are repeated. . That is, deterioration due to repeated occlusion and release of hydrogen is likely to occur. Therefore, in a battery using this hydrogen storage alloy as a negative electrode element, the capacity can be increased but the cycle life is short.

本発明は、希土類−Ca−Mg−Ni系水素吸蔵合金を負極要素に備えたニッケル水素二次電池における上記のような問題を解決すべくなされたものであり、その目的とするところは、電池の高容量化及びサイクル寿命特性の向上の両立を図ることができる水素吸蔵合金及びこの水素吸蔵合金を用いたニッケル水素二次電池を提供することにある。   The present invention has been made to solve the above-described problems in a nickel-metal hydride secondary battery including a rare earth-Ca-Mg-Ni-based hydrogen storage alloy as a negative electrode element. An object of the present invention is to provide a hydrogen storage alloy capable of achieving both higher capacity and improved cycle life characteristics, and a nickel hydride secondary battery using this hydrogen storage alloy.

上記目的を達成するために、本発明によれば、希土類−Ca−Mg−Ni系の水素吸蔵合金であって、A27相を主相として備え、前記主相のAサイトは、希土類元素、Ca及びMgからなり、前記主相のBサイトは、Niからなり、前記希土類元素は、Pr,Nd及びSmから選択される一種又は二種以上であり、前記Aサイトの元素の原子数と前記Bサイトの元素の原子数との比をB/Aとした場合に、このB/Aが、3.4<B/A≦3.6の関係を満たし、前記Caの含有量が、前記希土類元素、前記Ca及び前記Mgの原子数の総和に対して20原子%以上30原子%以下であることを特徴とする水素吸蔵合金が提供される(請求項1)。 In order to achieve the above object, according to the present invention, a rare-earth-Ca-Mg-Ni-based hydrogen storage alloy comprising an A 2 B 7 phase as a main phase, wherein the A site of the main phase is a rare earth element consists Ca and Mg, B site of the main phase consists of Ni, the rare earth element is at one or more selected Pr, and Nd and Sm, the number of atoms of the element of the a site And the ratio of the number of atoms of the B site element to B / A, this B / A satisfies the relationship of 3.4 <B / A ≦ 3.6, and the Ca content is Provided is a hydrogen storage alloy characterized by being 20 atomic% or more and 30 atomic% or less with respect to the total number of atoms of the rare earth element, the Ca and the Mg (Claim 1).

好ましくは、前記主相の結晶構造は、Ce2Ni7型及びGd2Co7型のうちの一方である構成とする(請求項2)。 Preferably, the crystal structure of the main phase is one of Ce 2 Ni 7 type and Gd 2 Co 7 type (Claim 2).

また、本発明によれば、請求項1又は請求項2に記載の水素吸蔵合金を含む負極要素を備えることを特徴とするニッケル水素二次電池が提供される(請求項3)。   Moreover, according to this invention, the nickel hydride secondary battery provided with the negative electrode element containing the hydrogen storage alloy of Claim 1 or Claim 2 is provided (Claim 3).

本発明に係る水素吸蔵合金は、A27相を主相とし、前記主相のAサイト希土類元素、Ca及びMgからなり、前記主相のBサイトNiからなり、前記希土類元素がPr,Nd及びSmから選択される一種又は二種以上である構成を有しており、この構成により、水素の吸蔵量を高めつつ、水素の吸蔵放出を繰り返しても水素の放出が阻害されることを抑制できる。また、この水素吸蔵合金を含む負極要素を備える本発明のニッケル水素二次電池は、高容量で、且つ、サイクル寿命特性に優れたものとなる。 The hydrogen storage alloy according to the present invention, the A 2 B 7 phase as a main phase, A site rare earth element of the main phase consists of Ca and Mg, B site of the main phase is composed of Ni, the rare earth element It has a configuration that is one or more selected from Pr, Nd, and Sm. With this configuration, while increasing the hydrogen storage amount, the hydrogen release is inhibited even when the hydrogen is stored and released repeatedly. This can be suppressed. Moreover, the nickel-metal hydride secondary battery of this invention provided with the negative electrode element containing this hydrogen storage alloy has a high capacity and excellent cycle life characteristics.

開放型のニッケル水素二次電池の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the open-type nickel-hydrogen secondary battery.

本発明の一実施形態に係る水素吸蔵合金は、A27相を主相とする希土類−Ca−Mg−Ni系水素吸蔵合金である。このA27相は、そのAサイト、希土類元素、カルシウム、マグネシウムからなり、Bサイトニッケルからなる。そして、前記希土類元素は、Pr、Nd及びSmから選択される一種又は二種以上であるThe hydrogen storage alloy according to an embodiment of the present invention is a rare earth -Ca-Mg-Ni-based hydrogen storage alloy as the main phase an A 2 B 7 phase. In this A 2 B 7 phase, the A site is composed of rare earth elements, calcium and magnesium , and the B site is composed of nickel. Then, the rare-earth element is one or more selected Pr, and Nd, and Sm.

ここで、A27相は、AB2相とAB5相とがAB2:AB5=1:2の比で配列された基本ユニットが繰り返し積層されてなる積層構造をなしている。このAB2相は、水素の吸蔵量が多いものの結晶構造が歪みやすい。一方、AB5相は、結晶構造が歪みにくく、水素の吸蔵放出が安定している。本発明に係る水素吸蔵合金は、これらAB2相とAB5相とが上記した比で含まれていることから、AB2相の歪みやすさがAB5相により緩和されており、全体としてバランスのとれた歪みにくい構造となっていると考えられる。よって、本発明に係る水素吸蔵合金は、水素の吸蔵放出を繰り返しても、結晶構造が歪むことによる劣化を抑制することができる。 Here, the A 2 B 7 phase has a laminated structure in which the basic units in which the AB 2 phase and the AB 5 phase are arranged in a ratio of AB 2 : AB 5 = 1: 2 are repeatedly laminated. Although this AB 2 phase has a large amount of occlusion of hydrogen, the crystal structure is easily distorted. On the other hand, the AB 5 phase has a crystal structure that is not easily distorted and has stable hydrogen storage and release. In the hydrogen storage alloy according to the present invention, since these AB 2 phase and AB 5 phase are contained in the above-described ratio, the strain of AB 2 phase is relaxed by the AB 5 phase, and the balance is as a whole. It is thought that it has a structure that is not easily distorted. Therefore, the hydrogen storage alloy according to the present invention can suppress deterioration due to distortion of the crystal structure even if hydrogen storage / release is repeated.

また、本発明に係る水素吸蔵合金は、Ca及びMgと組み合わせる希土類元素として、Pr、Nd及びSmから選択される一種又は二種以上を採用していることから、Caを添加したことにより水素の吸蔵量が高められるというメリットを得つつ、水素が安定化し過ぎて放出できなくなる不具合の発生を抑制することができる。 Moreover, since the hydrogen storage alloy which concerns on this invention employ | adopts the 1 type, or 2 or more types selected from Pr, Nd, and Sm as a rare earth element combined with Ca and Mg, by adding Ca, hydrogen of While obtaining the merit that the amount of occlusion can be increased, it is possible to suppress the occurrence of problems that hydrogen cannot be released due to excessive stabilization.

ここで、Pr、Nd及びSmから選択される一種又は二種以上を含有させると、吸蔵された水素が安定化し過ぎることを抑制することができるのは、以下の理由によるものと考えられる。 Here, when one or more selected from Pr, Nd, and Sm are contained, it is considered that the occluded hydrogen can be prevented from being overly stabilized for the following reason.

水素吸蔵合金は、結晶格子を構成する元素間の距離が広がって結晶格子中に隙間が生じると、この隙間において水素が吸蔵されるが、この隙間が大きいほど水素が安定化しやすい。一方、この隙間が小さいと水素の吸蔵量の向上が図れない。希土類−Ca−Mg−Ni系水素吸蔵合金においては、Ca及びMgと組み合わされる希土類元素によって、前記隙間の大きさが決まると考えられる。Ca及びMgと組み合わされる希土類元素として、Pr、Nd及びSmからなる群から選ばれる少なくとも1種を採用すると、結晶格子の元素間の距離を制御することができ、必要以上に大きな隙間を形成することを抑制できると考えられる。つまり、Pr、Nd及びSmからなる群から選ばれる少なくとも1種を採用することにより、比較的多い水素吸蔵量を確保しつつ、水素吸蔵合金内での水素の過剰な安定化を抑制できる適当な大きさの隙間を形成できると考えられる。   In the hydrogen storage alloy, when the distance between the elements constituting the crystal lattice increases and a gap is generated in the crystal lattice, hydrogen is stored in the gap. However, the larger the gap, the easier the hydrogen is stabilized. On the other hand, if this gap is small, the amount of occlusion of hydrogen cannot be improved. In the rare earth-Ca-Mg-Ni based hydrogen storage alloy, it is considered that the size of the gap is determined by the rare earth element combined with Ca and Mg. When at least one selected from the group consisting of Pr, Nd and Sm is used as the rare earth element combined with Ca and Mg, the distance between the elements of the crystal lattice can be controlled, and a gap larger than necessary is formed. It is thought that this can be suppressed. That is, by adopting at least one selected from the group consisting of Pr, Nd, and Sm, it is possible to suppress excessive stabilization of hydrogen in the hydrogen storage alloy while ensuring a relatively large amount of hydrogen storage. It is thought that a gap of a size can be formed.

ここで、希土類元素の中でも原子半径が比較的大きなLa、Ceや逆に原子半径が比較的小さいYは、Ca及びMgと組み合わせても、適当な大きさの隙間が得られず、水素吸蔵量の向上と水素の安定化の抑制とを両立させることはできない。このため、Ca及びMgと組み合わせる希土類元素としては、Pr、Nd及びSmから選択される一種又は二種以上が選ばれる。好ましくは、Pr及びNdのうちの少なくとも1種が選ばれる。希土類元素としてのPr、Nd及びSmの含有量は、希土類元素、Ca及びMgの各原子数の総和に対して20原子%以上80原子%以下とすることが好ましい。 Here, among rare earth elements, La and Ce having a relatively large atomic radius and Y having a relatively small atomic radius, when combined with Ca and Mg, do not provide a gap of an appropriate size, and the hydrogen storage amount. It is impossible to achieve both improvement of the hydrogen content and suppression of hydrogen stabilization. For this reason, the rare earth element combined with Ca and Mg is selected from one or more selected from Pr, Nd and Sm. Preferably, at least one of Pr and Nd is selected . The content of Pr, Nd and Sm as the rare earth element, rare earth element, is preferably 20 atomic% to 80 atomic% or less based on the sum of the numbers of atoms of Ca and Mg.

本発明に係る水素吸蔵合金は、そこに含まれるCaが多すぎると腐食されやすく、逆に少なすぎるとCa添加による高容量化の効果が得られないため、Caの含有量は、希土類元素、Ca及びMgの各原子数の総和に対して20原子%以上30原子%以下とする。 The hydrogen storage alloy according to the present invention is easily corroded if there is too much Ca, and conversely if it is too little, the effect of increasing the capacity by adding Ca cannot be obtained. on the sum of the numbers of atoms of Ca and Mg you 20 atomic% to 30 atomic% or less.

また、本発明に係る水素吸蔵合金は、そこに含まれるMgが多すぎても少なすぎてもA27相を得ることができない。よって、Mgの含有量は、希土類元素、Ca及びMgの各原子数の総和に対して10原子%以上30原子%以下とすることが好ましい。 In addition, the hydrogen storage alloy according to the present invention cannot obtain the A 2 B 7 phase even if the Mg contained therein is too much or too little. Therefore, it is preferable that the Mg content is 10 atom% or more and 30 atom% or less with respect to the total number of atoms of the rare earth element, Ca and Mg.

更に、本発明に係る水素吸蔵合金において、A27相を主相として得るためには、希土類元素、Ca及びMgの原子数の総和を1とした場合、Niの原子数の比は、3.4を超え3.6以下とする((希土類元素+Ca+Mg):Ni=1:(3.4を超え3.6以下))。より好ましいNiの原子数の比は、3.5である((希土類元素+Ca+Mg):Ni=1:3.5)。 Furthermore, in the hydrogen storage alloy according to the present invention, in order to obtain the A 2 B 7 phase as the main phase, when the total number of atoms of rare earth elements, Ca and Mg is 1, the ratio of the number of Ni atoms is: 3.4 shall be the the more than 3.6 or less ((rare earth elements + Ca + Mg): Ni = 1: (3.6 from more than 3.4)). A more preferable ratio of the number of Ni atoms is 3.5 ((rare earth element + Ca + Mg): Ni = 1: 3.5).

また、本発明に係る水素吸蔵合金は、主相の結晶構造が、Ce2Ni7型及びGd2Co7型のうちの一方であることが好ましい In the hydrogen storage alloy according to the present invention, the crystal structure of the main phase is preferably one of Ce 2 Ni 7 type and Gd 2 Co 7 type .

次に、本発明の水素吸蔵合金は、例えば以下のようにして得られる。
まず、所定の組成となるよう金属原材料を秤量して混合し、この混合物を例えば高周波誘導溶解炉で溶解したのち冷却してインゴットにする。得られたインゴットに対し、不活性ガス雰囲気下にて900〜1200℃に加熱し5〜24時間保持する熱処理を施すことにより本発明の水素吸蔵合金が得られる。この後、前記インゴットを粉砕し、篩分けにより所望粒径に分級して、水素吸蔵合金粒子とする。
Next, the hydrogen storage alloy of this invention is obtained as follows, for example.
First, metal raw materials are weighed and mixed so as to have a predetermined composition, and this mixture is melted in, for example, a high-frequency induction melting furnace and then cooled to an ingot. The obtained ingot is heated to 900 to 1200 ° C. under an inert gas atmosphere and subjected to heat treatment for 5 to 24 hours to obtain the hydrogen storage alloy of the present invention. Thereafter, the ingot is pulverized and classified to a desired particle size by sieving to obtain hydrogen storage alloy particles.

(1)水素吸蔵合金電極(負極)の作製及びこの負極を用いたニッケル水素二次電池の作製 (1) Production of hydrogen storage alloy electrode (negative electrode) and production of nickel-hydrogen secondary battery using this negative electrode

実施例1
Pr、Ca、Mg及びNiを所定の組成となるように秤量して混合し、得られた混合物をアルゴンガス雰囲気中で高周波誘導溶解炉にて溶解し、溶湯を鋳型に流し込み、室温まで冷却して水素吸蔵合金のインゴットを得た。
そして、この水素吸蔵合金のインゴットに対し、アルゴンガス雰囲気中において1000℃に加熱し10時間保持する熱処理を施した。
Example 1
Pr, Ca, Mg and Ni are weighed and mixed so as to have a predetermined composition, and the obtained mixture is melted in a high-frequency induction melting furnace in an argon gas atmosphere, and the molten metal is poured into a mold and cooled to room temperature. Thus, an ingot of a hydrogen storage alloy was obtained.
Then, the hydrogen storage alloy ingot was subjected to a heat treatment of heating to 1000 ° C. and holding for 10 hours in an argon gas atmosphere.

ついで、熱処理後のインゴットをアルゴンガス雰囲気下で機械的に粉砕することにより、平均粒径が60μmである希土類−Ca−Mg−Ni系の水素吸蔵合金粉末を得た。
得られた水素吸蔵合金粉末1重量部と、導電剤として平均粒径2.5μmのニッケル粉末3重量部とを混合し、得られた混合物を加圧成型して1gのペレット状の水素吸蔵合金負極14を作製した。
Then, the heat-treated ingot was mechanically pulverized in an argon gas atmosphere to obtain a rare earth-Ca—Mg—Ni-based hydrogen storage alloy powder having an average particle size of 60 μm.
1 part by weight of the obtained hydrogen storage alloy powder and 3 parts by weight of nickel powder having an average particle size of 2.5 μm as a conductive agent are mixed, and the resulting mixture is pressure-molded to give 1 g of a pellet-shaped hydrogen storage alloy. A negative electrode 14 was produced.

次に、水素吸蔵合金の電気化学容量(合金容量)を測定するために、図1に示す開放型の液リッチなニッケル水素二次電池10を作製した。なお、このニッケル水素二次電池10は、負極容量規制である。また、図1から明らかなように、このニッケル水素二次電池10は、ポリプロピレン製の容器12を備えており、この容器12内に上記したようにして得られた水素吸蔵合金の負極14と、この負極14近傍の位置に酸化水銀電極からなる参照極16とを配置した。更に、これら負極14及び参照極16を囲むようにして筒形状をなす正極18を配置した。この正極18は、負極14に対して十分大きな容量を有する焼結式ニッケル正極からなる。そして、これら負極14、参照極16、正極18が完全に浸かるように7NのKOH溶液からなるアルカリ電解液20を容器12内に注入し、開放型のニッケル水素二次電池10を作製した。なお、図1中の参照符号22、24、26は、負極14、参照極16、正極18それぞれに接続されたリードを表し、これらリード22、24、26は、図示しない充電用電源、測定機器等に接続されている。   Next, in order to measure the electrochemical capacity (alloy capacity) of the hydrogen storage alloy, an open-type liquid-rich nickel-hydrogen secondary battery 10 shown in FIG. 1 was produced. In addition, this nickel metal hydride secondary battery 10 is negative electrode capacity regulation. As is clear from FIG. 1, this nickel metal hydride secondary battery 10 includes a container 12 made of polypropylene, and the negative electrode 14 of the hydrogen storage alloy obtained as described above in the container 12, A reference electrode 16 made of a mercury oxide electrode was disposed at a position near the negative electrode 14. Furthermore, a cylindrical positive electrode 18 was disposed so as to surround the negative electrode 14 and the reference electrode 16. The positive electrode 18 is a sintered nickel positive electrode having a sufficiently large capacity with respect to the negative electrode 14. Then, an alkaline electrolyte 20 made of a 7N KOH solution was poured into the container 12 so that the negative electrode 14, the reference electrode 16, and the positive electrode 18 were completely immersed, and the open-type nickel-hydrogen secondary battery 10 was produced. In FIG. 1, reference numerals 22, 24, and 26 represent leads connected to the negative electrode 14, the reference electrode 16, and the positive electrode 18, respectively. These leads 22, 24, and 26 are a charging power source and a measuring instrument (not shown). Etc. are connected.

実施例2
Prの代わりにNdを用いたこと以外は実施例1と同様な水素吸蔵合金負極を作製した。そして、このようにして得られた負極を用いたこと以外は、実施例1と同様にして開放型のニッケル水素二次電池10を作製した。
Example 2
A hydrogen storage alloy negative electrode similar to that in Example 1 was prepared except that Nd was used instead of Pr. And the open-type nickel-hydrogen secondary battery 10 was produced like Example 1 except having used the negative electrode obtained in this way.

実施例3
Prの代わりにSmを用いたこと以外は実施例1と同様な水素吸蔵合金負極を作製した。そして、このようにして得られた負極を用いたこと以外は、実施例1と同様にして開放型のニッケル水素二次電池10を作製した。
Example 3
A hydrogen storage alloy negative electrode similar to that of Example 1 was prepared except that Sm was used instead of Pr. And the open-type nickel-hydrogen secondary battery 10 was produced like Example 1 except having used the negative electrode obtained in this way.

比較例1
Prの代わりにLaを用いたこと以外は実施例1と同様な水素吸蔵合金負極を作製した。そして、このようにして得られた負極を用いたこと以外は、実施例1と同様にして開放型のニッケル水素二次電池10を作製した。
Comparative Example 1
A hydrogen storage alloy negative electrode similar to that of Example 1 was prepared except that La was used instead of Pr. And the open-type nickel-hydrogen secondary battery 10 was produced like Example 1 except having used the negative electrode obtained in this way.

比較例2
Prの代わりにCeを用いたこと以外は実施例1と同様な水素吸蔵合金負極を作製した。そして、このようにして得られた負極を用いたこと以外は、実施例1と同様にして開放型のニッケル水素二次電池10を作製した。
Comparative Example 2
A hydrogen storage alloy negative electrode similar to that in Example 1 was prepared except that Ce was used instead of Pr. And the open-type nickel-hydrogen secondary battery 10 was produced like Example 1 except having used the negative electrode obtained in this way.

比較例3
Prの代わりにYを用いたこと以外は実施例1と同様な水素吸蔵合金負極を作製した。そして、このようにして得られた負極を用いたこと以外は、実施例1と同様にして開放型のニッケル水素二次電池10を作製した。
Comparative Example 3
A hydrogen storage alloy negative electrode similar to that of Example 1 was prepared except that Y was used instead of Pr. And the open-type nickel-hydrogen secondary battery 10 was produced like Example 1 except having used the negative electrode obtained in this way.

(2)水素吸蔵合金の評価
(i)組成分析
各実施例及び各比較例における熱処理後の水素吸蔵合金インゴットから組成分析用の試料を予め採取しておき、この試料に対し高周波プラズマ分光分析法(ICP)による組成分析を行った。その結果を水素吸蔵合金の組成として表1に示した。
(2) Evaluation of hydrogen storage alloy (i) Composition analysis Samples for composition analysis were collected in advance from the hydrogen storage alloy ingots after heat treatment in each example and each comparative example, and a high frequency plasma spectroscopic analysis method was applied to this sample. Composition analysis by (ICP) was performed. The results are shown in Table 1 as the composition of the hydrogen storage alloy.

(ii)結晶構造の分析
各実施例及び各比較例の水素吸蔵合金粉末から予め結晶構造分析用の試料を採取しておき、この試料に対してX線回折測定(XRD測定)を行った。その結果、各実施例及び各比較例の水素吸蔵合金の主相の結晶構造は、全てGd2Co7型であった。
(Ii) Analysis of crystal structure Samples for crystal structure analysis were collected in advance from the hydrogen storage alloy powders of the examples and comparative examples, and X-ray diffraction measurement (XRD measurement) was performed on the samples. As a result, the crystal structures of the main phases of the hydrogen storage alloys of each Example and each Comparative Example were all Gd 2 Co 7 type.

(3)ニッケル水素二次電池の評価
(i)得られた開放型の負極容量規制のニッケル水素二次電池10に対し、温度25℃において、水素吸蔵合金1gに対して300mAの電流で210分間充電し、その後10分間休止したのち、充電時と同じ電流で参照極16(酸化水銀電極)に対する負極14の電圧が−0.7Vになるまで放電し、その後10分間休止することを1サイクルとする操作を50回繰り返し行った。そして、サイクル毎の放電容量を測定し、この測定値をサイクル容量とした。ここで、全サイクル容量のうちの最大値である最大容量を水素吸蔵合金1g当たりに換算して合金容量として表1に示した。また、50サイクル目のサイクル容量を50サイクル容量とした。そして、(I)式で示される最大容量に対する50サイクル容量の比(容量維持率)を求めた。その結果を50サイクル後の容量維持率として表1に示した。
50サイクル後の容量維持率(%)=(50サイクル容量/最大容量)×100・・・(I)
(3) Evaluation of nickel hydride secondary battery (i) The obtained open-type negative electrode capacity-restricted nickel hydride secondary battery 10 was heated at a temperature of 25 ° C. for 210 minutes at a current of 300 mA with respect to 1 g of the hydrogen storage alloy. Charging and then resting for 10 minutes, then discharging until the voltage of the negative electrode 14 with respect to the reference electrode 16 (mercury oxide electrode) becomes −0.7 V at the same current as charging, and then resting for 10 minutes is one cycle. This operation was repeated 50 times. And the discharge capacity for every cycle was measured, and this measured value was made into cycle capacity. Here, the maximum capacity, which is the maximum value among all the cycle capacities, was converted to 1 g of hydrogen storage alloy and shown as an alloy capacity in Table 1. The cycle capacity at the 50th cycle was set to 50 cycle capacity. And the ratio (capacity maintenance factor) of 50 cycle capacity | capacitance with respect to the maximum capacity | capacitance shown by (I) Formula was calculated | required. The results are shown in Table 1 as the capacity retention after 50 cycles.
Capacity maintenance ratio after 50 cycles (%) = (50 cycle capacity / maximum capacity) × 100 (I)

Figure 0005850493
Figure 0005850493

(4)表1より次のことが明らかである。
(i)実施例1〜3の水素吸蔵合金は、合金容量及び50サイクル後の容量維持率がともに高い値を示している。このことから、水素吸蔵量が多く、しかも、充放電を繰り返しても容量が低下する割合が低いのでサイクル寿命が長いことがわかる。つまり、本願の水素吸蔵合金は、ニッケル水素二次電池に使用した場合、電池の高容量化及びサイクル寿命特性の向上の両立を図ることができる優れた特性を有しているといえる。
(4) From Table 1, the following is clear.
(I) The hydrogen storage alloys of Examples 1 to 3 show high values for both the alloy capacity and the capacity retention after 50 cycles. From this, it can be seen that the cycle life is long because the amount of hydrogen occlusion is large and the rate of decrease in capacity is low even after repeated charge and discharge. In other words, it can be said that the hydrogen storage alloy of the present application has excellent characteristics capable of achieving both a high capacity of the battery and an improvement in cycle life characteristics when used in a nickel metal hydride secondary battery.

これは、実施例1〜3の水素吸蔵合金は、Ca及びMgと組み合わされる希土類元素としてPr、Nd及びSmから選択される一種又は二種以上を用いているため、結晶格子の隙間を適当な大きさに保持できたため、水素の吸蔵量を増加させつつ、水素の安定化を抑制して、サイクル数が進んでも水素の放出量を高く維持できているためと考えられる。その結果、電池の容量を高く維持でき、しかもサイクル寿命を延ばすことができたものと考えられる。 This is because the hydrogen storage alloys of Examples 1 to 3 use one or more selected from Pr, Nd, and Sm as rare earth elements combined with Ca and Mg, so that the gap between the crystal lattices is appropriately set. This is probably because the amount of hydrogen occluded was increased, the hydrogen stabilization was suppressed, and the amount of hydrogen released could be kept high even when the number of cycles progressed. As a result, it is considered that the capacity of the battery could be maintained high and the cycle life could be extended.

(ii)比較例1の水素吸蔵合金は、合金容量は高い値を示しているが、50サイクル後の容量維持率は低い値を示している。
これは、希土類元素としてLaを選択すると、水素吸蔵量は増やすことができるので、合金容量を高くできるが、吸蔵した水素が安定化しやすく、サイクル数が進むにつれて水素の放出が困難になるため、容量維持率が低下したものと考えられる。
(Ii) The hydrogen storage alloy of Comparative Example 1 has a high alloy capacity, but has a low capacity retention rate after 50 cycles.
This is because when La is selected as the rare earth element, the hydrogen storage amount can be increased, so that the alloy capacity can be increased, but the stored hydrogen is easily stabilized, and it becomes difficult to release hydrogen as the number of cycles increases. It is thought that the capacity maintenance rate has decreased.

(iii)比較例2の水素吸蔵合金は、合金容量は低い値を示しているが、50サイクル後の容量維持率は、高い値を示している。
これは、希土類元素としてCeを選択すると、吸蔵した水素の安定化を抑制することができ、サイクル数が進んでも水素の放出を容易に行えるので、容量維持率は高められるが、水素吸蔵量は増やせないため、合金容量が低い値となっていると考えられる。
(Iii) The hydrogen storage alloy of Comparative Example 2 has a low alloy capacity, but the capacity retention after 50 cycles shows a high value.
This is because when Ce is selected as the rare earth element, stabilization of the stored hydrogen can be suppressed, and even when the number of cycles progresses, hydrogen can be easily released, so that the capacity retention rate is increased, but the hydrogen storage amount is Since it cannot be increased, the alloy capacity is considered to be low.

(iv)比較例3の水素吸蔵合金は、合金容量、50サイクル後の容量維持率ともに低い値を示している。
これは、希土類元素としてYを選択すると、水素吸蔵量を増加させることはできないとともに、吸蔵した水素が安定化しやすくなっているためと考えられる。
(Iv) The hydrogen storage alloy of Comparative Example 3 shows a low value for both the alloy capacity and the capacity retention rate after 50 cycles.
This is presumably because when Y is selected as the rare earth element, the hydrogen storage amount cannot be increased and the stored hydrogen is easily stabilized.

(v)以上より、比較例1〜3のように、Pr、Nd及びSm以外の希土類元素を含む水素吸蔵合金を用いると、ニッケル水素二次電池の高容量化及びサイクル寿命特性の向上の両立を図ることはできない。
このことからも、本発明の水素吸蔵合金のように、希土類元素としてPr、Nd及びSmから選択される一種又は二種以上を含む構成とすることが、ニッケル水素二次電池の高容量化及びサイクル寿命特性の向上の両立に有効であることがわかる。
(V) As described above, when a hydrogen storage alloy containing rare earth elements other than Pr, Nd, and Sm is used as in Comparative Examples 1 to 3, both the increase in capacity and the improvement in cycle life characteristics of the nickel hydrogen secondary battery are achieved. Can not be planned.
Also from this, like the hydrogen storage alloy of the present invention, it is possible to increase the capacity of the nickel-metal hydride secondary battery by including one or more kinds selected from Pr, Nd and Sm as rare earth elements. It can be seen that this is effective in improving both cycle life characteristics.

なお、本発明は、上記した実施例に限定されるものではなく、種々の変形が可能である。例えば、本発明に係る水素吸蔵合金を含む負極要素を用いるニッケル水素二次電池としては、上記した開放型のニッケル水素二次電池に限られるものではなく、密閉型のニッケル水素二次電池に用いても構わない。   In addition, this invention is not limited to an above-described Example, A various deformation | transformation is possible. For example, the nickel metal hydride secondary battery using the negative electrode element including the hydrogen storage alloy according to the present invention is not limited to the above-described open nickel metal hydride secondary battery, but is used for a sealed nickel metal hydride secondary battery. It doesn't matter.

10 開放型のニッケル水素二次電池
12 容器
14 負極
16 参照極
18 正極
20 アルカリ電解液
22、24、26 リード
10 Open Nickel Metal Hydride Battery 12 Container 14 Negative Electrode 16 Reference Electrode 18 Positive Electrode 20 Alkaline Electrolyte 22, 24, 26 Lead

Claims (3)

希土類−Ca−Mg−Ni系の水素吸蔵合金であって、
27相を主相として備え、
前記主相のAサイトは、希土類元素、Ca及びMgからなり
前記主相のBサイトは、Niからなり
前記希土類元素は、Pr,Nd及びSmから選択される一種又は二種以上であり、
前記Aサイトの元素の原子数と前記Bサイトの元素の原子数との比をB/Aとした場合に、このB/Aが、3.4<B/A≦3.6の関係を満たし、
前記Caの含有量が、前記希土類元素、前記Ca及び前記Mgの原子数の総和に対して20原子%以上30原子%以下である
ことを特徴とする水素吸蔵合金。
A rare earth-Ca-Mg-Ni-based hydrogen storage alloy,
A 2 B 7 phase as the main phase,
A site of the main phase is made from rare earth elements, Ca and Mg,
B site of the main phase consists of Ni,
The rare earth element is one or more selected from Pr, Nd and Sm,
When the ratio of the number of atoms of the element at the A site and the number of atoms of the element at the B site is B / A, this B / A satisfies the relationship of 3.4 <B / A ≦ 3.6. ,
The hydrogen storage alloy characterized in that the content of Ca is 20 atom% or more and 30 atom% or less with respect to the total number of atoms of the rare earth element, Ca and Mg.
前記主相の結晶構造は、
Ce2Ni7型及びGd2Co7型のうちの一方である
ことを特徴とする請求項1に記載の水素吸蔵合金。
The crystal structure of the main phase is
The hydrogen storage alloy according to claim 1, which is one of Ce 2 Ni 7 type and Gd 2 Co 7 type.
請求項1又は請求項2に記載の水素吸蔵合金を含む負極要素を備えることを特徴とするニッケル水素二次電池。   A nickel metal hydride secondary battery comprising a negative electrode element comprising the hydrogen storage alloy according to claim 1.
JP2011245556A 2011-11-09 2011-11-09 Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy Expired - Fee Related JP5850493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245556A JP5850493B2 (en) 2011-11-09 2011-11-09 Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011245556A JP5850493B2 (en) 2011-11-09 2011-11-09 Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2013100585A JP2013100585A (en) 2013-05-23
JP5850493B2 true JP5850493B2 (en) 2016-02-03

Family

ID=48621436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011245556A Expired - Fee Related JP5850493B2 (en) 2011-11-09 2011-11-09 Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP5850493B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187301A (en) * 2014-03-27 2015-10-29 株式会社Gsユアサ Hydrogen storage alloy, electrode, and electrical storage element
WO2020012809A1 (en) * 2018-07-11 2020-01-16 株式会社豊田自動織機 Nickel metal hydride battery
JP7140662B2 (en) 2018-12-06 2022-09-21 トヨタ自動車株式会社 Method for manufacturing negative electrode active material, method for manufacturing negative electrode, and method for manufacturing alkaline storage battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534459B2 (en) * 2009-01-21 2014-07-02 株式会社Gsユアサ Hydrogen storage alloy and nickel metal hydride storage battery
JP5577672B2 (en) * 2009-10-23 2014-08-27 株式会社Gsユアサ Hydrogen storage alloy electrode and nickel metal hydride battery using the same

Also Published As

Publication number Publication date
JP2013100585A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP6061354B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP5466015B2 (en) Nickel metal hydride storage battery and method for producing hydrogen storage alloy
JP5334455B2 (en) Hydrogen storage alloy and nickel-hydrogen storage battery
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP3965209B2 (en) Low Co hydrogen storage alloy
JP6608558B1 (en) Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment
JP5856056B2 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP5850493B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy
JP5825671B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy
JP2008218070A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP6736065B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same
US9450238B2 (en) Hydrogen absorption alloy, hydrogen absorption alloy electrode, and secondary battery
JP6726798B2 (en) Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JP5716195B2 (en) Hydrogen storage alloy and alkaline storage battery using this hydrogen storage alloy
CN114946051B (en) Hydrogen storage alloy for alkaline storage battery
JP6934097B1 (en) Hydrogen storage alloy
JP2022052729A (en) Hydrogen storage alloy for alkaline storage battery
JP2005133193A (en) LOW Co HYDROGEN STORAGE ALLOY
JP7146710B2 (en) Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JPH0675398B2 (en) Sealed alkaline storage battery
JP5224581B2 (en) Nickel metal hydride storage battery
JP2022052728A (en) Hydrogen storage alloy for alkaline storage battery
JP4462909B2 (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R150 Certificate of patent or registration of utility model

Ref document number: 5850493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees