JP5843012B2 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
JP5843012B2
JP5843012B2 JP2014524695A JP2014524695A JP5843012B2 JP 5843012 B2 JP5843012 B2 JP 5843012B2 JP 2014524695 A JP2014524695 A JP 2014524695A JP 2014524695 A JP2014524695 A JP 2014524695A JP 5843012 B2 JP5843012 B2 JP 5843012B2
Authority
JP
Japan
Prior art keywords
exhaust
valve
intake
fuel injection
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014524695A
Other languages
Japanese (ja)
Other versions
JPWO2014010355A1 (en
Inventor
露木 毅
毅 露木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014524695A priority Critical patent/JP5843012B2/en
Application granted granted Critical
Publication of JP5843012B2 publication Critical patent/JP5843012B2/en
Publication of JPWO2014010355A1 publication Critical patent/JPWO2014010355A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、ターボ過給機を備えた筒内直接噴射式の内燃機関に関し、特に、掃気を利用してトルク向上を図る技術に関する。   The present invention relates to an in-cylinder direct injection internal combustion engine equipped with a turbocharger, and more particularly to a technique for improving torque using scavenging.

ターボ過給機を備えた筒内直接噴射式の内燃機関では、バルブオーバーラップ期間中に吸気通路から排気通路へ吹き抜ける掃気の効果を利用して、排気タービンの回転速度を高め、シリンダ内への充填効率を高めることでトルク向上を図る技術が知られている。   In an in-cylinder direct injection internal combustion engine equipped with a turbocharger, the rotational speed of the exhaust turbine is increased by using the effect of scavenging air blown from the intake passage to the exhaust passage during the valve overlap period. A technique for improving torque by increasing filling efficiency is known.

関連する技術として、特許文献1には、エンジントルクの比較的低い領域では、ターボ過給機を駆動して希薄燃焼運転を行うことにより燃費向上を図りつつ、エンジントルクの比較的高い領域では、ターボ過給機を駆動して理論空燃比近傍で均質燃焼運転を行うことにより、スモーク及びノッキングの発生を抑制する技術が記載されている。また、特許文献2では、4サイクル運転から2サイクル運転への切換時に、掃気量を増加させて筒内温度を低下させることにより早期着火やノッキングの発生を抑制する技術が記載されている。更に、特許文献3には、掃気状態での定常走行時には燃料噴射量を減少させることが記載されている。   As a related technique, Patent Document 1 discloses that in a region where the engine torque is relatively low, the turbocharger is driven to perform a lean combustion operation to improve fuel efficiency, while in a region where the engine torque is relatively high, A technique for suppressing the occurrence of smoke and knocking by driving a turbocharger and performing a homogeneous combustion operation near the stoichiometric air-fuel ratio is described. Patent Document 2 describes a technique for suppressing the occurrence of early ignition and knocking by increasing the amount of scavenging and lowering the in-cylinder temperature when switching from 4-cycle operation to 2-cycle operation. Furthermore, Patent Document 3 describes that the fuel injection amount is reduced during steady running in a scavenged state.

特開2007−146854号公報JP 2007-146854 A 特開2004−204745号公報JP 2004-204745 A 特開2007−247434号公報JP 2007-247434 A

このようなターボ過給機を備えた筒内直接噴射式の内燃機関において、掃気時に燃料噴射量を理論空燃比よりも増量、すなわちリッチ化し、排気タービンよりも上流側の排気通路内で燃焼を行わせることにより、排気タービンの仕事量を増大し、シリンダ内への充填効率を高めることでトルク向上を図ることを本出願人は検討している。   In an in-cylinder direct injection internal combustion engine equipped with such a turbocharger, the fuel injection amount is increased from the theoretical air-fuel ratio during scavenging, that is, enriched, and combustion is performed in the exhaust passage upstream of the exhaust turbine. By performing this, the present applicant is considering increasing the work of the exhaust turbine and improving the torque by increasing the charging efficiency into the cylinder.

しかしながら、単に掃気時に燃料噴射量をリッチ化した場合、排気温度が低いなどの理由により、排気タービンの上流側の排気通路内で燃焼が良好に行われないおそれがある。この場合、所望のトルク向上効果が得られないばかりか、燃費の低下や排気性能の悪化を招くこととなり、更に、万が一排気タービンよりも下流側に設けられた触媒の近傍で燃焼が生じると、触媒を含めた排気系部品の過度な温度上昇を招くおそれがある。   However, if the fuel injection amount is simply enriched during scavenging, the combustion may not be performed well in the exhaust passage upstream of the exhaust turbine because the exhaust temperature is low. In this case, not only the desired torque improvement effect can be obtained, but also fuel consumption and exhaust performance are deteriorated.Furthermore, in the unlikely event that combustion occurs in the vicinity of the catalyst provided downstream of the exhaust turbine, There is a risk of excessive temperature rise of exhaust system parts including the catalyst.

本発明は、このような事情に鑑みてなされたものである。すなわち、本発明に係る内燃機関は、筒内に燃料を直接的に噴射する燃料噴射弁と、排気通路に設けられた排気タービンにより吸気通路に設けられた吸気コンプレッサを駆動して吸気を過給するターボ過給機と、吸気弁と排気弁の双方が開弁するバルブオーバーラップ期間を調整可能な可変動弁機構等のバルブオーバーラップ期間可変手段と、を備えている。   The present invention has been made in view of such circumstances. That is, the internal combustion engine according to the present invention supercharges intake air by driving a fuel injection valve that directly injects fuel into a cylinder and an intake compressor provided in the intake passage by an exhaust turbine provided in the exhaust passage. And a turbo-supercharger, and a valve overlap period variable means such as a variable valve mechanism capable of adjusting a valve overlap period in which both the intake valve and the exhaust valve are opened.

そして、上記バルブオーバーラップ期間に吸気通路から排気通路へ吹き抜ける掃気の掃気率を推定するとともに、上記排気タービンよりも上流側の排気通路内を流れる排気の排気温度を検出もしくは推定し、これらの掃気率と排気温度が所定の条件を満たす場合に、排気タービンよりも上流側の排気通路内で燃焼が行われるように、シリンダ内に供給する燃料噴射量を設定する。   The scavenging rate of the scavenging air that blows from the intake passage to the exhaust passage during the valve overlap period is estimated, and the exhaust temperature of the exhaust gas flowing in the exhaust passage upstream of the exhaust turbine is detected or estimated, When the rate and the exhaust temperature satisfy predetermined conditions, the fuel injection amount to be supplied into the cylinder is set so that combustion is performed in the exhaust passage upstream of the exhaust turbine.

より具体的には、掃気率が第1の所定値以上であり、かつ、排気温度が第2の所定値以上である場合に、排気タービンよりも上流側の排気通路内で確実に燃焼させ得る条件が成立していると判断して、シリンダ内に供給する燃料噴射量をリッチ化する。これによって、排気タービンよりも上流側の排気通路内で燃焼を行わせて、排気タービンの仕事量を増大し、シリンダ内への充填効率を高めることでエンジントルクを向上することができる。   More specifically, when the scavenging rate is equal to or higher than a first predetermined value and the exhaust temperature is equal to or higher than a second predetermined value, the scavenging rate can be reliably burned in the exhaust passage upstream of the exhaust turbine. It is determined that the condition is satisfied, and the fuel injection amount supplied into the cylinder is enriched. As a result, combustion is performed in the exhaust passage upstream of the exhaust turbine, the work of the exhaust turbine is increased, and the engine torque can be improved by increasing the charging efficiency into the cylinder.

逆に言えば、上記の条件が成立しない限り、排気通路内で燃焼を行わせるための燃料噴射量のリッチ化を行わず、例えば理論空燃比もしくはリーン側の空燃比となるように燃料噴射量を制御することによって、未燃燃料が排気側へ流れ出ることを抑制して、排気タービンよりも下流側で燃焼が生じる事態を未然に回避し、触媒等の排気部品の過剰な昇温を防止することができる。   In other words, unless the above condition is satisfied, the fuel injection amount for making combustion in the exhaust passage is not enriched, for example, the fuel injection amount so that the stoichiometric air-fuel ratio or the lean air-fuel ratio is obtained. By controlling this, it is possible to prevent the unburned fuel from flowing out to the exhaust side, to avoid a situation where combustion occurs downstream from the exhaust turbine, and to prevent excessive temperature rise of exhaust parts such as a catalyst. be able to.

本発明によれば、掃気率と排気温度のそれぞれが所定の条件を満たす場合に限り、シリンダ内に供給する燃料噴射量を適宜に設定することで、排気タービンよりも上流側の排気通路内で燃焼を行わせて、排気タービンの仕事量を増大し、シリンダ内への充填効率を高めることで、エンジントルクを増加させることができる。   According to the present invention, only when each of the scavenging rate and the exhaust temperature satisfies a predetermined condition, the fuel injection amount to be supplied into the cylinder is appropriately set, so that the exhaust passage upstream of the exhaust turbine is set in the exhaust passage. The engine torque can be increased by increasing the work of the exhaust turbine and increasing the charging efficiency into the cylinder by performing combustion.

また、排気タービンよりも上流側の排気通路内で燃焼を行わせる条件を掃気率と排気温度により限定することで、排気タービンよりも下流側の排気通路内で不用意に燃焼が生じる事態を未然に回避し、触媒等の排気部品の過剰な昇温を防止することができる。   In addition, by limiting the conditions for performing combustion in the exhaust passage upstream of the exhaust turbine by the scavenging rate and the exhaust temperature, it is possible to prevent inadvertent combustion in the exhaust passage downstream of the exhaust turbine. It is possible to avoid excessive heating of exhaust parts such as a catalyst.

本発明に係る内燃機関の制御装置の一例を示すシステム構成図。The system block diagram which shows an example of the control apparatus of the internal combustion engine which concerns on this invention. 機関回転数及び機関負荷に対する掃気率及びバルブオーバーラップ量(O/L量)の関係を示す説明図。Explanatory drawing which shows the relationship of the scavenging rate with respect to an engine speed and an engine load, and valve overlap amount (O / L amount). 本発明の一実施例に係る制御の流れを示すフローチャート。The flowchart which shows the flow of control which concerns on one Example of this invention. バルブオーバーラップ(O/L)量の演算処理の一例を示す機能ブロック図。The functional block diagram which shows an example of the calculation process of valve overlap (O / L) amount.

以下、図示実施例により本発明を説明する。図1は本発明に係る内燃機関のシステム構成の一例を示している。内燃機関1は、筒内直接噴射式の直列4気筒ガソリン内燃機関である。4つの気筒の各シリンダ1Aには、吸気通路2を介して吸入空気が供給され、燃焼後の排気ガスが排気通路3を介して排出される。吸気通路2の吸気コレクタ2Aよりも下流側には、各シリンダ1Aの吸気ポートへ接続する複数の吸気ブランチを備えた枝管形状の吸気マニホールド4が設けられ、同じく排気通路3には、各シリンダ1Aの排気ポートに接続する複数の排気ブランチを備えた枝管形状の排気マニホールド8が設けられている。   Hereinafter, the present invention will be described with reference to illustrated embodiments. FIG. 1 shows an example of a system configuration of an internal combustion engine according to the present invention. The internal combustion engine 1 is an in-cylinder direct injection type in-line four-cylinder gasoline internal combustion engine. Intake air is supplied to each cylinder 1 </ b> A of the four cylinders via the intake passage 2, and exhaust gas after combustion is discharged via the exhaust passage 3. A branch pipe-shaped intake manifold 4 having a plurality of intake branches connected to the intake ports of the respective cylinders 1A is provided on the downstream side of the intake collector 2A of the intake passages 2. A branch pipe-shaped exhaust manifold 8 having a plurality of exhaust branches connected to the exhaust port 1A is provided.

吸気コレクタ2Aよりも上流側の吸気通路2には、上流側より順に、吸入空気内の粉塵等の異物を捕集するエアクリーナ7と、吸気通路2内を通過する吸入新気量を計量するエアフローメータ6と、ターボ過給機10の吸気コンプレッサ11と、内燃機関1のシリンダ1A内へ流入する吸入空気量を調整するための電子制御式のスロットルバルブ5と、吸入空気を冷却するインタークーラ13と、が設けられている。   In the intake passage 2 upstream of the intake collector 2A, in order from the upstream side, an air cleaner 7 that collects foreign matters such as dust in the intake air, and an air flow that measures the amount of fresh intake air passing through the intake passage 2 Meter 6, intake compressor 11 of turbocharger 10, electronically controlled throttle valve 5 for adjusting the amount of intake air flowing into cylinder 1 </ b> A of internal combustion engine 1, and intercooler 13 for cooling intake air And are provided.

ターボ過給機10は、排気エネルギーを利用して吸入空気を過給するものであり、吸気コンプレッサ11と排気タービン12とがシャフトを介して同軸上に接続されており、排気タービン12が内燃機関1の排気エネルギーにより回転すると、吸気コンプレッサ11が回転駆動されて、吸入空気を下流側に圧送する。   The turbocharger 10 supercharges intake air using exhaust energy, and an intake compressor 11 and an exhaust turbine 12 are coaxially connected via a shaft, and the exhaust turbine 12 is an internal combustion engine. When it is rotated by the exhaust energy of 1, the intake compressor 11 is rotationally driven to pump the intake air downstream.

リサキュレーション通路14は、吸気通路2における吸気コンプレッサ11の上流部分と下流部分とを接続する通路であり、途中に設けたリサキュレーションバルブ15により開閉される。このリサキュレーションバルブ15は、一般に知られているものと同様に、過給圧と吸気マニホールド4内の圧力(以下、吸気管圧という)との差圧が所定値以上になったときに開弁する。例えば、内部に備える弁体に対して、内蔵するスプリングの反力が閉弁方向に付勢されており、さらに、弁体の開弁方向に過給圧が作用し、閉弁方向には吸気管圧が作用しており、過給圧と吸気管圧との差圧がスプリングの反力を超えた場合に開弁する。これにより、過給状態で走行中にスロットルバルブ5が全閉となった場合に、過給圧の過上昇を防止することができる。なお、リサキュレーションバルブ15が開弁するときの過給圧と吸気管圧との差圧は、スプリングのバネ定数により任意の値に設定することができる。   The recirculation passage 14 is a passage connecting the upstream portion and the downstream portion of the intake compressor 11 in the intake passage 2 and is opened and closed by a recirculation valve 15 provided in the middle. The recirculation valve 15 is opened when the differential pressure between the supercharging pressure and the pressure in the intake manifold 4 (hereinafter referred to as intake pipe pressure) becomes a predetermined value or more, as is generally known. To do. For example, the reaction force of the built-in spring is urged in the valve closing direction against the valve body provided inside, and the boost pressure acts in the valve opening direction of the valve body, while the intake pressure is applied in the valve closing direction. When the pipe pressure is applied and the differential pressure between the supercharging pressure and the intake pipe pressure exceeds the reaction force of the spring, the valve is opened. Thereby, when the throttle valve 5 is fully closed during traveling in the supercharging state, it is possible to prevent the supercharging pressure from being excessively increased. The differential pressure between the supercharging pressure and the intake pipe pressure when the recirculation valve 15 is opened can be set to an arbitrary value depending on the spring constant of the spring.

排気通路3には、排気タービン12よりも下流側に、排気浄化用の排気触媒9が配置される。この排気触媒9としては、三元触媒等が用いられる。排気バイパス通路16は、排気通路3における排気タービン12の上流部分と下流部分とを接続する通路であり、途中に設けたウエストゲートバルブ17により開度が調整される。ウエストゲートバルブ17の動作は後述するコントロールユニット25により制御され、過給圧が所定の設定値に達したらウエストゲートバルブ17を開くことにより、余剰の排気ガスが排気バイパス通路16を通して直接排出される。   An exhaust gas purification catalyst 9 is disposed in the exhaust passage 3 downstream of the exhaust turbine 12. As this exhaust catalyst 9, a three-way catalyst or the like is used. The exhaust bypass passage 16 is a passage connecting the upstream portion and the downstream portion of the exhaust turbine 12 in the exhaust passage 3, and the opening degree is adjusted by a wastegate valve 17 provided in the middle. The operation of the wastegate valve 17 is controlled by a control unit 25 which will be described later. When the supercharging pressure reaches a predetermined set value, the wastegate valve 17 is opened so that excess exhaust gas is directly discharged through the exhaust bypass passage 16. .

EGR通路20は、排気触媒9よりも下流側の排気通路3と、エアフロメータ6よりも下流側かつ吸気コンプレッサ11よりも上流側の吸気通路2とを接続する通路である。このEGR通路20には、吸気通路2へ還流する排気ガスの量であるEGR量を調整するEGR制御バルブ21が設けられるとともに、このEGR通路20を通流する排気を冷却するためのEGRクーラ22が設けられている。   The EGR passage 20 is a passage connecting the exhaust passage 3 downstream of the exhaust catalyst 9 and the intake passage 2 downstream of the air flow meter 6 and upstream of the intake compressor 11. The EGR passage 20 is provided with an EGR control valve 21 that adjusts an EGR amount that is the amount of exhaust gas recirculated to the intake passage 2, and an EGR cooler 22 that cools the exhaust gas flowing through the EGR passage 20. Is provided.

内燃機関1の各シリンダ1Aには、燃料をシリンダ1A内に直接噴射する燃料噴射弁40が配置されている。また、排気弁と吸気弁のいずれもが開弁したバルブオーバーラップ期間を調整可能な手段として、この実施例では、吸気弁のバルブタイミングを変更可能な吸気バルブタイミング変更機構(吸気VTC)41と、排気弁のバルブタイミングを変更可能な排気バルブタイミング変更機構(排気VTC)42と、が設けられている。これらのバルブタイミング変更機構41,42は、公知のように、クランクシャフトに対するカムシャフトの回転位相を変化させることにより、吸気弁もしくは排気弁の開時期と閉時期とを同時かつ連続的に変更可能なものである。なお、バルブオーバーラップ期間を調整可能な機構としてはこれに限らず、吸気弁開時期(IVO)と排気弁閉時期(EVC)の少なくとも一方を変化させ得るものであればよく、例えば吸気弁や排気弁のリフト量及び作動角を変化させるリフト作動角変更機構のように、一般的に知られている他の形式の可変動弁機構を用いるようにしても良い。   Each cylinder 1A of the internal combustion engine 1 is provided with a fuel injection valve 40 that directly injects fuel into the cylinder 1A. Further, in this embodiment, as means capable of adjusting the valve overlap period in which both the exhaust valve and the intake valve are opened, in this embodiment, an intake valve timing changing mechanism (intake VTC) 41 capable of changing the valve timing of the intake valve, An exhaust valve timing changing mechanism (exhaust VTC) 42 capable of changing the valve timing of the exhaust valve is provided. These valve timing changing mechanisms 41 and 42 can simultaneously and continuously change the opening timing and closing timing of the intake valve or the exhaust valve by changing the rotational phase of the camshaft with respect to the crankshaft, as is well known. It is a thing. The mechanism that can adjust the valve overlap period is not limited to this, and any mechanism that can change at least one of the intake valve opening timing (IVO) and the exhaust valve closing timing (EVC) may be used. Other generally known variable valve mechanisms may be used, such as a lift operating angle changing mechanism that changes the lift amount and operating angle of the exhaust valve.

制御部としてのコントロールユニット25は、各種センサから検出される機関運転状態に基づいて、各種の機関制御処理を記憶及び実行する機能を有している。上記の各種センサとして、吸気通路2の吸気コレクタ2Aには、過給圧としての吸気コレクタ2A内の圧力を検出する過給圧検出用の圧力センサ27と、吸気温度としての吸気コレクタ2A内の温度を検出する吸気温検出用の吸気温センサ30と、が設けられるとともに、排気通路3には、排気タービン12よりも上流側の排気温度を検出する排温センサ28が設けられており、かつ、機関回転速度を検出するためのクランク角センサ26や、運転者により操作されるアクセルペダルの開度を検出するアクセル開度センサ29等が設けられている。   The control unit 25 as a control unit has a function of storing and executing various engine control processes based on the engine operating state detected from various sensors. As the various sensors described above, the intake collector 2A of the intake passage 2 includes a pressure sensor 27 for detecting a boost pressure as a boost pressure, and a pressure sensor 27 for detecting a boost pressure as a boost pressure, and an intake collector 2A as an intake air temperature. An intake air temperature sensor 30 for detecting the temperature of the intake air, and an exhaust temperature sensor 28 for detecting the exhaust gas temperature upstream of the exhaust turbine 12 in the exhaust passage 3. A crank angle sensor 26 for detecting the engine rotation speed, an accelerator opening sensor 29 for detecting the opening of an accelerator pedal operated by the driver, and the like are provided.

コントロールユニット25は、上記の各種機関制御として、燃料噴射弁40による燃料噴射量及び燃料噴射時期を制御するとともに、バルブタイミング変更機構41,42による吸気弁や排気弁のバルブタイミング(VTC変換角)を制御し、また燃焼室内に設けられた点火プラグ(図示省略)による点火時期制御等を行う。   The control unit 25 controls the fuel injection amount and fuel injection timing by the fuel injection valve 40 as the various engine controls described above, and the valve timing (VTC conversion angle) of the intake and exhaust valves by the valve timing changing mechanisms 41 and 42. Further, ignition timing control or the like is performed by a spark plug (not shown) provided in the combustion chamber.

そしてコントロールユニット25は、バルブオーバーラップ期間等に基づいて、吸気通路2から排気通路3へ吹き抜ける掃気の掃気率を推定する。ここで、「掃気率」とは、シリンダ1A内に吸入される吸入空気量に対して、バルブオーバーラップ期間中に吸気通路2から排気通路3へ吹き抜ける掃気量の比率に相当する。また、「筒内新気量」とは、シリンダ1A内に充填されて燃焼に用いられる新気の量に相当する。なお、この明細書においては、シリンダ1Aへ供給される吸入ガスに対し、排気ガスであるEGRガス等を含まないものを「吸入新気」もしくは単に「新気」と呼び、EGRガス等を含むものを「吸入空気」もしくは単に「空気」と呼ぶ。   The control unit 25 estimates the scavenging rate of the scavenging air blown from the intake passage 2 to the exhaust passage 3 based on the valve overlap period and the like. Here, the “scavenging rate” corresponds to the ratio of the scavenging amount blown from the intake passage 2 to the exhaust passage 3 during the valve overlap period with respect to the intake air amount sucked into the cylinder 1A. The “cylinder fresh air amount” corresponds to the amount of fresh air that is filled in the cylinder 1A and used for combustion. In this specification, the intake gas supplied to the cylinder 1A is referred to as “intake fresh air” or simply “new air” and does not contain exhaust gas EGR gas or the like, and includes EGR gas or the like. Things are called “intake air” or simply “air”.

コントロールユニット25は、吸気マニホールド4内の圧力が排気マニホールド8内の圧力より高い場合には、吸気弁及び排気弁が開弁しているバルブオーバーラップ期間が生じるバルブタイミングとなるようにバルブタイミング変更機構41,42を作動させる。これは、バルブオーバーラップ期間中に、吸気マニホールド4から流入した新気が掃気ガスとしてそのまま排気マニホールド8へ吹き抜ける、いわゆる掃気効果を利用して、排気タービン12の回転速度を高め、シリンダ1A内への充填効率を高めるためである。   When the pressure in the intake manifold 4 is higher than the pressure in the exhaust manifold 8, the control unit 25 changes the valve timing so that the valve timing during which the valve overlap period during which the intake valve and the exhaust valve are open occurs. The mechanisms 41 and 42 are operated. This is because, during the valve overlap period, the fresh air flowing from the intake manifold 4 is blown out as it is to the exhaust manifold 8 as a scavenging gas, so that the rotational speed of the exhaust turbine 12 is increased and into the cylinder 1A. This is to increase the filling efficiency.

具体的には図2に示すように、バルブオーバーラップ期間としてのバルブオーバーラップ量(「O/L量」あるいは「バルブO/L量」とも呼ぶ)は、低回転高負荷側で大きくなり、高回転低負荷側で小さくなるように設定される。このO/L量に比例するように、掃気率もまた、低回転高負荷側で大きくなり、高回転低負荷側で小さくなる。   Specifically, as shown in FIG. 2, the valve overlap amount (also referred to as “O / L amount” or “valve O / L amount”) as the valve overlap period increases on the low rotation high load side, It is set to be smaller on the high rotation and low load side. The scavenging rate also increases on the low rotation high load side and decreases on the high rotation low load side in proportion to the O / L amount.

また、EGRガスが掃気されることのないように、EGR制御バルブ21を開いてEGRを付与するEGR領域Regrは、バルブオーバーラップ量が付与されずに掃気率が0となる高回転側の非掃気領域RsNo内に設定されている。   Further, in order to prevent the EGR gas from being scavenged, the EGR region Regr that applies EGR by opening the EGR control valve 21 is not subjected to the valve overlap amount, and the scavenging rate is 0. It is set in the scavenging region RsNo.

図3は、本発明の一実施例に係る制御の流れを示すフローチャートである。ステップS11では、要求トルクが、スロットル全開(WOT)時の出力に相当する所定値DD#以上であるかを判定する。ステップS12では、バルブオーバーラップ期間が付与される領域、つまり掃気が発生し得る低回転高負荷側の所定の掃気領域Rs(図2参照)であるか否かを判定する。   FIG. 3 is a flowchart showing a control flow according to an embodiment of the present invention. In step S11, it is determined whether the required torque is equal to or greater than a predetermined value DD # corresponding to the output when the throttle is fully open (WOT). In step S12, it is determined whether or not the valve overlap period is given, that is, a predetermined scavenging region Rs (see FIG. 2) on the low-rotation and high-load side where scavenging can occur.

ステップS13では、バルブオーバーラップ期間、つまりバルブオーバーラップ量(バルブO/F量)が所定値XX#を超えているかを判定する。この理由は、掃気領域Rsであっても、バルブO/L量によって掃気率が異なることから、予め掃気率が小さくなるような状態、つまりバルブO/L量が所定値XX#以下の状態を、後述するトルク向上のためにリッチ化を行う領域から除外するためである。   In step S13, it is determined whether the valve overlap period, that is, the valve overlap amount (valve O / F amount) exceeds a predetermined value XX #. This is because, even in the scavenging region Rs, the scavenging rate varies depending on the valve O / L amount, so that the scavenging rate is reduced in advance, that is, the valve O / L amount is equal to or smaller than the predetermined value XX #. This is because it is excluded from the region where the enrichment is performed in order to improve the torque described later.

図4は、コントロールユニット25により記憶及び実行されるバルブO/L量の演算処理の一例を示している。符号B13は、排気バルブオーバーラップ変更機構(排気VTC)42により遅角もしくは進角される排気弁閉時期の排気上死点に対する遅角量を表す制御マップであり、排気弁閉時期が排気上死点よりも遅角している場合に正の値となるようにマッピングされている。符号B14は、吸気バルブオーバーラップ変更機構(吸気VTC)41により遅角もしくは進角される吸気弁開時期の排気上死点に対する進角量を表す制御マップであり、吸気弁開時期が排気上死点よりも進角している場合に正の値となるようにマッピングされている。   FIG. 4 shows an example of the valve O / L amount calculation process stored and executed by the control unit 25. Reference numeral B13 is a control map showing a retard amount with respect to the exhaust top dead center of the exhaust valve closing timing retarded or advanced by the exhaust valve overlap changing mechanism (exhaust VTC) 42. It is mapped so as to be a positive value when it is retarded from the dead point. Reference numeral B14 is a control map showing an advance amount with respect to the exhaust top dead center of the intake valve opening timing retarded or advanced by the intake valve overlap changing mechanism (intake VTC) 41. It is mapped so as to be a positive value when it is advanced from the dead point.

目標負荷(B11)とエンジン回転数(B12)に基づいて、排気VTC用の制御マップB13を参照することにより、排気上死点に対する排気弁閉時期の遅角量を演算するとともに、吸気VTC用の制御マップB14を参照することにより、排気上死点に対する吸気弁開時期の進角量を演算し、加算部B15において両者を加算することによって、バルブO/L量(B16)を求めることができる。   By referring to the exhaust VTC control map B13 based on the target load (B11) and the engine speed (B12), the retard amount of the exhaust valve closing timing with respect to the exhaust top dead center is calculated and the intake VTC is used. By referring to the control map B14, the advance amount of the intake valve opening timing with respect to the exhaust top dead center is calculated, and the valve O / L amount (B16) is obtained by adding both in the addition unit B15. it can.

なお、この例では排気VTCや吸気VTCの目標変換角(進角量・遅角量)に基づいてバルブO/L量を求めているが、これに限らず、例えばカムシャフトの回転角を検出するセンサ等の出力を利用して、実際のバルブO/L量を検出するように構成しても良い。   In this example, the valve O / L amount is obtained based on the target conversion angle (advance amount / retard amount) of the exhaust VTC or the intake VTC. However, the present invention is not limited to this, and for example, the rotation angle of the camshaft is detected. The actual valve O / L amount may be detected using the output of the sensor or the like.

再び図3を参照して、ステップS14では、過給圧が所定値ZZ#を超えているかを判定する。過給圧は、圧力センサ27により検出され、あるいは機関回転数や負荷等の機関運転状態に応じて推定される。   Referring to FIG. 3 again, in step S14, it is determined whether the supercharging pressure exceeds a predetermined value ZZ #. The supercharging pressure is detected by the pressure sensor 27 or estimated according to the engine operating state such as the engine speed and the load.

上記ステップS11〜S14の条件が全て満たされていれば、ステップS15へ進み、掃気率を推定する。この掃気率の推定は、バルブO/L量に加え、機関回転数や吸気温度等を勘案して行われる。なお、簡素化のために、ステップS13やステップS14の判定処理を省略するようにしても良い。   If all the conditions of steps S11 to S14 are satisfied, the process proceeds to step S15, and the scavenging rate is estimated. The scavenging rate is estimated in consideration of the engine speed, the intake air temperature, etc. in addition to the valve O / L amount. For simplification, the determination process in step S13 or step S14 may be omitted.

ステップS16では、推定した掃気率が、排気タービン12の上流側の排気通路3内での燃焼が可能な所定値SS#(例えば約25%)を超えているか否かを判定する。ステップS17では、排気タービン12よりも上流側の排気通路3内の排気温度が、排気タービン12の上流側の排気通路3内での燃焼が可能な所定値YY#(例えば約700度)を超えているか否かを判定する。この排気温度は、上記の排温センサ28により直接的に検出される。但し、排温センサ28を省略し、過給圧(吸気量)、機関回転速度、点火時期、燃料噴射量及び燃料噴射時期等に基づいて排気温度を推定するようにしても良い。   In step S16, it is determined whether or not the estimated scavenging rate exceeds a predetermined value SS # (for example, about 25%) that allows combustion in the exhaust passage 3 upstream of the exhaust turbine 12. In step S17, the exhaust temperature in the exhaust passage 3 upstream of the exhaust turbine 12 exceeds a predetermined value YY # (for example, about 700 degrees) that allows combustion in the exhaust passage 3 upstream of the exhaust turbine 12. It is determined whether or not. The exhaust temperature is directly detected by the exhaust temperature sensor 28 described above. However, the exhaust temperature sensor 28 may be omitted, and the exhaust temperature may be estimated based on the supercharging pressure (intake amount), the engine speed, the ignition timing, the fuel injection amount, the fuel injection timing, and the like.

ステップS16及びステップS17の双方の条件が成立する場合に限り、ステップS18へ進み、排気タービン12よりも上流側の排気通路3内で燃焼が行われるように、燃料噴射量の増量による筒内リッチ化を許可する。例えば、掃気率が25%の場合、排気中の酸素濃度が5%を超えると燃焼限界を上回り、燃焼が可能となる。従って、この状態での排気温度が、COの燃焼温度である700度を超えると、排気タービン12前での燃焼の成立性が十分に高くなり、高確率で排気タービン12前での燃焼が可能となるために、上記の筒内リッチ化が許可される。この筒内リッチ化の際の燃料噴射量の増量分は、掃気率に応じて設定され、具体的には掃気率が高いほど燃料増量分が多くなるように設定される。   Only when the conditions of both step S16 and step S17 are satisfied, the process proceeds to step S18, and the in-cylinder rich due to the increase in the fuel injection amount is performed so that combustion is performed in the exhaust passage 3 upstream of the exhaust turbine 12. Allow For example, when the scavenging rate is 25%, if the oxygen concentration in the exhaust gas exceeds 5%, the combustion limit is exceeded and combustion is possible. Therefore, if the exhaust temperature in this state exceeds 700 ° C., which is the combustion temperature of CO, the possibility of combustion before the exhaust turbine 12 becomes sufficiently high, and combustion before the exhaust turbine 12 can be performed with high probability. Therefore, the in-cylinder enrichment described above is permitted. The amount of increase in the fuel injection amount at the time of in-cylinder enrichment is set according to the scavenging rate, and specifically, the fuel increase amount is set to increase as the scavenging rate increases.

このように、排気タービン12の上流側で、掃気による新気と、燃料増量による未燃ガスとが燃焼することにより、過給圧を高めて、充填効率を向上し、エンジントルクを向上することができる。   In this way, the fresh air due to scavenging and the unburned gas due to the increase in fuel are combusted on the upstream side of the exhaust turbine 12, thereby increasing the supercharging pressure, improving the charging efficiency, and improving the engine torque. Can do.

また、このようにトルク向上のためのリッチ化を行う場合、スロットルバルブ5は全開とされており、機関要求負荷の増加に応じて、バルブオーバーラップ量を増大させるとともに、燃料噴射量を増量させていくことで、機関要求負荷の増加に応じて機関負荷を増加させていくことができる。排気タービン12での燃焼は排気タービン12の仕事量に直結しているために、ターボ過給機10の応答速度が速まり、トルク応答性に優れている。   Further, when the enrichment for improving the torque is performed in this way, the throttle valve 5 is fully opened, and the valve overlap amount is increased and the fuel injection amount is increased in accordance with the increase in the engine required load. By doing so, the engine load can be increased in accordance with the increase in the engine required load. Since the combustion in the exhaust turbine 12 is directly linked to the work amount of the exhaust turbine 12, the response speed of the turbocharger 10 is increased and the torque response is excellent.

一方、ステップS11〜S14,S16,S17の条件のうち、いずれかの条件が満たされていなければ、ステップS18のトルク向上のためのリッチ化は行われず、空燃比が理論空燃比のストイキもしくはリーン側となるように燃料噴射量が設定される。このように、排気タービン12よりも上流側の排気通路3内での燃焼が確実に行われる状況でなければ、排気タービン前での燃焼のための燃料増量が行われることがないので、排気タービンよりも下流側の排気通路3内で不用意に燃焼が生じることを確実に防止し、排気触媒9を含めた排気部品の過剰な昇温を確実に抑制することができる。   On the other hand, if any of the conditions in steps S11 to S14, S16, and S17 is not satisfied, enrichment for improving the torque in step S18 is not performed, and the stoichiometric or lean air / fuel ratio is stoichiometric or lean. The fuel injection amount is set to be on the side. Thus, unless the combustion in the exhaust passage 3 upstream of the exhaust turbine 12 is reliably performed, the fuel increase for combustion before the exhaust turbine is not performed. Thus, it is possible to reliably prevent inadvertent combustion in the exhaust passage 3 on the downstream side, and to reliably suppress excessive temperature rise of the exhaust parts including the exhaust catalyst 9.

以上のように本発明を図示実施例に基づいて説明してきたが、本発明は上述した実施例に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   Although the present invention has been described based on the illustrated embodiments as described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims. It goes without saying that it can be achieved.

Claims (2)

筒内に燃料を直接的に噴射する燃料噴射弁と、
排気通路に設けられた排気タービンにより吸気通路に設けられた吸気コンプレッサを駆動して吸気を過給するターボ過給機と、を備えた内燃機関の制御装置において、
吸気弁と排気弁の双方が開弁するバルブオーバーラップ期間を調整可能なバルブオーバーラップ期間可変手段と、
上記バルブオーバーラップ期間に吸気通路から排気通路へ吹き抜ける掃気の掃気率を推定する掃気率推定手段と、
上記排気タービンよりも上流側の排気通路内を流れる排気の排気温度を検出もしくは推定する排気温度取得手段と、
上記掃気率と上記排気温度がそれぞれ所定の条件を満たす場合に、上記排気タービンよりも上流側の排気通路内で燃焼が行われるように、シリンダ内に供給する燃料噴射量を設定する燃料噴射量設定手段と、
吸気通路に設けられ、吸入空気量を調整するスロットルバルブと、
を有し、
上記燃料噴射量設定手段は、上記掃気率が第1の所定値を超えており、かつ、上記排気温度が第2の所定値を超えている場合に、上記スロットルバルブを全開にするとともに、機関要求負荷の増加に応じて、上記バルブオーバーラップ期間を増大させつつ、上記燃料噴射量を増量させることで、シリンダ内に供給する燃料噴射量をリッチ化する内燃機関の制御装置。
A fuel injection valve that directly injects fuel into the cylinder;
In a control device for an internal combustion engine comprising: a turbocharger that drives an intake compressor provided in an intake passage by an exhaust turbine provided in the exhaust passage to supercharge intake air;
A valve overlap period variable means capable of adjusting a valve overlap period in which both the intake valve and the exhaust valve are opened;
Scavenging rate estimating means for estimating a scavenging rate of scavenging air blown from the intake passage to the exhaust passage during the valve overlap period;
Exhaust temperature acquisition means for detecting or estimating the exhaust temperature of the exhaust flowing in the exhaust passage upstream of the exhaust turbine;
A fuel injection amount for setting a fuel injection amount to be supplied into the cylinder so that combustion is performed in an exhaust passage upstream of the exhaust turbine when the scavenging rate and the exhaust temperature satisfy predetermined conditions. Setting means;
A throttle valve provided in the intake passage for adjusting the amount of intake air;
I have a,
The fuel injection amount setting means opens the throttle valve fully when the scavenging rate exceeds a first predetermined value and the exhaust gas temperature exceeds a second predetermined value. A control apparatus for an internal combustion engine that enriches a fuel injection amount supplied into a cylinder by increasing the fuel injection amount while increasing the valve overlap period in response to an increase in required load .
筒内に燃料を直接的に噴射する燃料噴射弁と、
排気通路に設けられた排気タービンにより吸気通路に設けられた吸気コンプレッサを駆動して吸気を過給するターボ過給機と、
吸気弁と排気弁の双方が開弁するバルブオーバーラップ期間を調整可能なバルブオーバーラップ期間可変手段と、
吸気通路に設けられ、吸入空気量を調整するスロットルバルブと、
を備えた内燃機関の制御方法において、
上記バルブオーバーラップ期間に吸気通路から排気通路へ吹き抜ける掃気の掃気率を推定し、
上記排気タービンよりも上流側の排気通路内を流れる排気の排気温度を検出もしくは推定し、
上記掃気率と排気温度が所定の条件を満たす場合に、上記排気タービンよりも上流側の排気通路内で燃焼が行われるように、シリンダ内に供給する燃料噴射量を設定し、
上記掃気率が第1の所定値を超えており、かつ、上記排気温度が第2の所定値を超えている場合に、上記スロットルバルブを全開にするとともに、機関要求負荷の増加に応じて、上記バルブオーバーラップ期間を増大させつつ、上記燃料噴射量を増量させることで、シリンダ内に供給する燃料噴射量をリッチ化する内燃機関の制御方法。
A fuel injection valve that directly injects fuel into the cylinder;
A turbocharger that supercharges intake air by driving an intake air compressor provided in the intake passage by an exhaust turbine provided in the exhaust passage;
A valve overlap period variable means capable of adjusting a valve overlap period in which both the intake valve and the exhaust valve are opened;
A throttle valve provided in the intake passage for adjusting the amount of intake air;
An internal combustion engine control method comprising:
Estimating the scavenging rate of scavenging air blown from the intake passage to the exhaust passage during the valve overlap period,
Detecting or estimating the exhaust temperature of the exhaust flowing in the exhaust passage upstream of the exhaust turbine,
When the scavenging rate and the exhaust temperature satisfy predetermined conditions, a fuel injection amount to be supplied into the cylinder is set so that combustion is performed in the exhaust passage upstream of the exhaust turbine ,
When the scavenging rate exceeds a first predetermined value and the exhaust temperature exceeds a second predetermined value, the throttle valve is fully opened, and according to an increase in engine demand load, A control method for an internal combustion engine, wherein the fuel injection amount supplied into the cylinder is enriched by increasing the fuel injection amount while increasing the valve overlap period .
JP2014524695A 2012-07-09 2013-06-10 Control device and control method for internal combustion engine Expired - Fee Related JP5843012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524695A JP5843012B2 (en) 2012-07-09 2013-06-10 Control device and control method for internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012153163 2012-07-09
JP2012153163 2012-07-09
JP2014524695A JP5843012B2 (en) 2012-07-09 2013-06-10 Control device and control method for internal combustion engine
PCT/JP2013/065990 WO2014010355A1 (en) 2012-07-09 2013-06-10 Control device and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP5843012B2 true JP5843012B2 (en) 2016-01-13
JPWO2014010355A1 JPWO2014010355A1 (en) 2016-06-20

Family

ID=49915823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014524695A Expired - Fee Related JP5843012B2 (en) 2012-07-09 2013-06-10 Control device and control method for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5843012B2 (en)
WO (1) WO2014010355A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158435A1 (en) * 2014-04-17 2015-10-22 Frank Hoos Combustion cycle process
JP2016050502A (en) * 2014-08-29 2016-04-11 スズキ株式会社 Control device of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299992A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Control system of internal combustion engine
JP2009197759A (en) * 2008-02-25 2009-09-03 Mazda Motor Corp Engine system with supercharger
JP2009235920A (en) * 2008-03-26 2009-10-15 Denso Corp Fuel injection control device of cylinder injection internal combustion engine with supercharger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183235A (en) * 1987-01-27 1988-07-28 Toyota Motor Corp Control device for air-fuel ratio of internal combustion engine
JPH05280390A (en) * 1992-03-31 1993-10-26 Mazda Motor Corp Two-cycle engine control device
JP3280758B2 (en) * 1993-07-06 2002-05-13 マツダ株式会社 Intake device for engine with mechanical supercharger
JP2008101502A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Control device of internal combustion engine with supercharger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299992A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Control system of internal combustion engine
JP2009197759A (en) * 2008-02-25 2009-09-03 Mazda Motor Corp Engine system with supercharger
JP2009235920A (en) * 2008-03-26 2009-10-15 Denso Corp Fuel injection control device of cylinder injection internal combustion engine with supercharger

Also Published As

Publication number Publication date
WO2014010355A1 (en) 2014-01-16
JPWO2014010355A1 (en) 2016-06-20

Similar Documents

Publication Publication Date Title
US9297320B2 (en) Systems and methods for exhaust catalyst temperature control
JP4609541B2 (en) Control device for an internal combustion engine with a supercharger
US10041448B2 (en) Systems and methods for boost control
EP2325463B1 (en) Internal combustion engine and internal combustion engine control method
US9534530B2 (en) Dedicated-EGR cylinder with variable charge motion
JP6028925B2 (en) Control device for internal combustion engine
JP5169439B2 (en) Internal combustion engine control device and internal combustion engine control system
JP5545654B2 (en) Turbocharged internal combustion engine
US20140331651A1 (en) Control apparatus for internal combustion engine
JP5610873B2 (en) Internal combustion engine
US20130305713A1 (en) Control device for internal combustion engine with turbo-supercharger
JP5092962B2 (en) Control device for an internal combustion engine with a supercharger
JP2011196196A (en) Control device of internal combustion engine
JP2012097639A (en) Control device for internal combustion engine
JP5843012B2 (en) Control device and control method for internal combustion engine
JP2013130121A (en) Exhaust gas recirculation system for spark-ignition-type internal combustion engine
RU2537660C1 (en) Method of ice adjustment
JP6127906B2 (en) Control device for internal combustion engine
JP5850155B2 (en) Control device for internal combustion engine
JP2019120204A (en) Engine control device
JP2013253500A (en) Control device for internal combustion engine
JP2017145715A (en) Turbocharged engine
WO2014002567A1 (en) Control device and control method of internal combustion engine
JP2014240630A (en) Egr control device of internal combustion engine
JP2009250209A (en) Exhaust gas recirculating device of internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5843012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees