JP2009235920A - Fuel injection control device of cylinder injection internal combustion engine with supercharger - Google Patents

Fuel injection control device of cylinder injection internal combustion engine with supercharger Download PDF

Info

Publication number
JP2009235920A
JP2009235920A JP2008079515A JP2008079515A JP2009235920A JP 2009235920 A JP2009235920 A JP 2009235920A JP 2008079515 A JP2008079515 A JP 2008079515A JP 2008079515 A JP2008079515 A JP 2008079515A JP 2009235920 A JP2009235920 A JP 2009235920A
Authority
JP
Japan
Prior art keywords
fuel injection
injection
exhaust
internal combustion
supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008079515A
Other languages
Japanese (ja)
Inventor
Hiroya Nogami
宏哉 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008079515A priority Critical patent/JP2009235920A/en
Priority to DE102009000933A priority patent/DE102009000933A1/en
Publication of JP2009235920A publication Critical patent/JP2009235920A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/20Control of the pumps by increasing exhaust energy, e.g. using combustion chamber by after-burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the acceleration response of a cylinder injection internal combustion engine with a supercharger. <P>SOLUTION: After securing the amount of oxygen required for recombustion through the increase in the amount of oxygen in an exhaust pipe 22 by forcing sucked air to blow by during valve overlap in the vicinity of the intake top dead center, main injection is executed from an intake stroke to the early stage of a compression stroke (for instance, BTDC300°CA-BTDC160°CA) after the valve overlap, and then additional injection is executed from an intermediate stage to the latter stage of the compression stroke (for instance, BTDC100°CA-BTDC0°CA). By so doing, a combustible gas component containing unburned HC is discharged in the exhaust pipe 22 while increasing exhaust temperature by burning a part of fuel injected into a cylinder by the additional injection. As a result, rotation speed of an exhaust turbine 26 can be increased by increasing energy of exhaust gas through the reliable recombustion of combustible gas component in the exhaust pipe 22 to increase boost pressure of a supercharger 25, thereby enhancing the acceleration response. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気タービン式の過給機を装着した筒内噴射式内燃機関の燃料噴射制御装置に関する発明である。   The present invention relates to a fuel injection control device for a direct injection internal combustion engine equipped with an exhaust turbine supercharger.

近年、車両に搭載される内燃機関(エンジン)においては、省燃費と高出力化とを両立させるために、筒内噴射式内燃機関に排気タービン式過給機(いわゆるターボチャージャ)を搭載したものがある。このものは、内燃機関の排気通路に設けた排気タービンと吸気通路に設けたコンプレッサとを連結し、排出ガスのエネルギで排気タービンを回転駆動することでコンプレッサを回転駆動して吸入空気を過給するようにしている。   In recent years, in an internal combustion engine (engine) mounted on a vehicle, an exhaust turbine supercharger (so-called turbocharger) is mounted on a direct injection internal combustion engine in order to achieve both fuel saving and high output. There is. In this system, an exhaust turbine provided in an exhaust passage of an internal combustion engine is connected to a compressor provided in an intake passage, and the exhaust turbine is rotationally driven by exhaust gas energy to rotationally drive the compressor to supercharge intake air. Like to do.

このような過給機付き筒内噴射式内燃機関においては、特許文献1(特開2000−345889号公報)に記載されているように、低回転・低負荷域での加速応答性を向上させるために、低回転・低負荷域において、圧縮行程で主噴射を実行した後に、膨張行程の再燃焼可能な時期に追加噴射を実行することで、排気通路内で可燃ガス成分を再燃焼させて排出ガスのエネルギを増大させることで、排気タービンの回転速度を上昇させて過給圧を上昇させるようにしたものがある。
特開平10−322099号公報(第4頁〜第5頁等)
In such a cylinder injection internal combustion engine with a supercharger, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2000-345889), acceleration response in a low rotation / low load region is improved. Therefore, after the main injection is executed in the compression stroke in the low rotation / low load range, the additional combustion is executed at a time when the combustion can be recombusted in the expansion stroke, so that the combustible gas components are reburned in the exhaust passage. There is one that increases the supercharging pressure by increasing the rotational speed of the exhaust turbine by increasing the energy of the exhaust gas.
Japanese Patent Laid-Open No. 10-322099 (pages 4 to 5 etc.)

上記特許文献1の技術は、低回転・低負荷域において、膨張行程で追加噴射を実行して排気通路内で可燃ガス成分を再燃焼させて過給圧を上昇させるものである。この特許文献1の技術を高負荷域に適用すると、再燃焼に必要な酸素量よりも排出ガス中の酸素量が不足して、十分に再燃焼を生じさせることが困難となる。この理由は、低負荷域では、リーン空燃比で運転されるため、排出ガス中の酸素濃度が高く、再燃焼に必要な酸素量を確保できるが、高負荷域では、出力トルクを高めるためにストイキ付近の空燃比で運転されるため、排出ガス中の酸素濃度が低くなるためである。   The technique disclosed in Patent Document 1 performs additional injection in an expansion stroke in a low rotation / low load region to re-combust combustible gas components in the exhaust passage to increase the supercharging pressure. When the technique of Patent Document 1 is applied to a high load region, the amount of oxygen in the exhaust gas is insufficient compared to the amount of oxygen necessary for recombustion, and it becomes difficult to cause recombustion sufficiently. The reason for this is that since the engine is operated at a lean air-fuel ratio in the low load region, the oxygen concentration in the exhaust gas is high and the amount of oxygen necessary for recombustion can be secured, but in the high load region, the output torque is increased. This is because the oxygen concentration in the exhaust gas becomes low because the air-fuel ratio is operated near the stoichiometric ratio.

また、特許文献1の技術では、膨張行程で追加噴射を実行するため、排出ガスの熱エネルギが追加噴射の燃料の気化熱に奪われてしまい、その分、排気温度が低下して、排気温度を再燃焼に必要な高温域まで上昇せることが困難となり、これも再燃焼を生じさせにくくする要因となる。   Further, in the technique of Patent Document 1, since additional injection is executed in the expansion stroke, the heat energy of the exhaust gas is deprived by the vaporization heat of the fuel of the additional injection, and the exhaust temperature is lowered accordingly, and the exhaust temperature It is difficult to raise the temperature to the high temperature range necessary for recombustion, which also makes it difficult to cause recombustion.

この対策として、点火時期を遅角させて排気温度を上昇させることが考えられるが、点火時期を遅角させると、出力が低下して加速応答性が損なわれてしまう欠点がある。   As a countermeasure, it is conceivable to retard the ignition timing and raise the exhaust gas temperature. However, if the ignition timing is retarded, there is a drawback that the output decreases and the acceleration response is impaired.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、排気通路内で可燃ガス成分を確実に再燃焼させて、過給機の排気タービンを駆動する排出ガスのエネルギを上昇させることができ、過給機の過給圧を上昇させて加速応答性を高めることができる過給機付き筒内噴射式内燃機関の燃料噴射制御装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to ensure that the combustible gas components are reburned in the exhaust passage so as to drive the exhaust turbine of the supercharger. It is an object of the present invention to provide a fuel injection control device for a cylinder injection internal combustion engine with a supercharger capable of increasing the supercharging pressure of the supercharger and improving the acceleration response.

上記目的を達成するために、請求項1に係る発明は、筒内に直接燃料を噴射する燃料噴射弁と、排出ガスのエネルギで排気タービンを回転させて吸入空気を過給する過給機と、前記燃料噴射弁の燃料噴射動作を制御する燃料噴射制御手段とを備えた過給機付き筒内噴射式内燃機関の燃料噴射制御装置において、前記燃料噴射制御手段は、筒内で混合気の主燃焼を生じさせるための第1の燃料噴射(主噴射)を、吸気上死点付近のバルブオーバーラップ後の吸気行程から圧縮行程の初期に実行し、その後、排気通路内に可燃ガス成分を排出して該排気通路内で再燃焼させるための第2の燃料噴射(追加噴射)を圧縮行程の中期から後期に実行するようにしたものである。   In order to achieve the above object, an invention according to claim 1 is directed to a fuel injection valve that directly injects fuel into a cylinder, and a supercharger that supercharges intake air by rotating an exhaust turbine with the energy of exhaust gas. And a fuel injection control device for a cylinder injection internal combustion engine with a supercharger comprising a fuel injection control means for controlling a fuel injection operation of the fuel injection valve, wherein the fuel injection control means The first fuel injection (main injection) for causing the main combustion is performed from the intake stroke after the valve overlap near the intake top dead center to the initial stage of the compression stroke, and then the combustible gas component is introduced into the exhaust passage. The second fuel injection (additional injection) for discharging and reburning in the exhaust passage is executed from the middle stage to the latter stage of the compression stroke.

この構成では、吸気上死点付近のバルブオーバーラップ中(吸気バルブと排気バルブの両方が開いている期間)に吸入空気を吹き抜けさせて排気通路内の酸素量を増加させて再燃焼に必要な酸素量を確保してから、筒内で混合気の主燃焼を生じさせるための第1の燃料噴射を吸気行程から圧縮行程の初期に実行した後、第2の燃料噴射を圧縮行程の中期から後期に実行することで、第2の燃料噴射で筒内に噴射した燃料の一部を燃焼させて排気温度を上昇させながら、未燃HCを含む可燃ガス成分を排気通路内に排出することができる。これにより、排気通路内で再燃焼に必要な酸素量を確保し且つ排気温度を再燃焼に必要な高温域まで上昇させながら、再燃焼に必要な量の可燃ガス成分を排気通路内に排出することができるため、排気通路内で可燃ガス成分を確実に再燃焼させて排出ガスのエネルギを増大させて排気タービンの回転速度を上昇させることができ、過給機の過給圧を上昇させて加速応答性を高めることができる。   In this configuration, during the valve overlap near the intake top dead center (period when both the intake valve and the exhaust valve are open), the intake air is blown through to increase the amount of oxygen in the exhaust passage, which is necessary for recombustion. After securing the amount of oxygen, the first fuel injection for causing the main combustion of the air-fuel mixture in the cylinder is performed from the intake stroke to the beginning of the compression stroke, and then the second fuel injection is started from the middle of the compression stroke. By executing in the latter period, a part of the fuel injected into the cylinder in the second fuel injection is burned to raise the exhaust temperature, and the combustible gas component including unburned HC can be discharged into the exhaust passage. it can. As a result, the amount of combustible gas necessary for recombustion is discharged into the exhaust passage while ensuring the amount of oxygen necessary for recombustion in the exhaust passage and raising the exhaust temperature to a high temperature range necessary for recombustion. Therefore, the combustible gas component can be reliably reburned in the exhaust passage to increase the energy of the exhaust gas, thereby increasing the rotation speed of the exhaust turbine and increasing the supercharging pressure of the supercharger. Acceleration response can be improved.

この場合、請求項2のように、第2の燃料噴射を実行する運転領域を、所定負荷以上で且つ所定機関回転速度以下の領域に限定すると共に、第2の燃料噴射の実行と停止の切り替えにヒステリシスを持たせるようにすると良い。ここで、第2の燃料噴射を実行する運転領域を所定負荷以上とする理由は、ストイキ付近の空燃比で運転される高負荷域で第2の燃料噴射を実行するためであり、また、第2の燃料噴射を実行する運転領域を所定機関回転速度以下とする理由は、機関回転速度が高くなるほど、排気圧が高くなるため、機関回転速度が高くなれば、排気圧が吸気圧よりも高くなってバルブオーバーラップ中に吸入空気の吹き抜けが発生しなくなるためである。機関回転速度が低くなれば、排気圧が吸気圧よりも低くなって、バルブオーバーラップ中に吸入空気の吹き抜けを生じさせることができる。また、第2の燃料噴射の実行と停止の切り替えにヒステリシスを持たせれば、第2の燃料噴射を実行する運転領域の境界線付近で第2の燃料噴射の実行と停止とが頻繁に切り替えられるハンチング現象を防止することができる。   In this case, as in claim 2, the operating region in which the second fuel injection is executed is limited to a region that is not less than a predetermined load and not more than a predetermined engine speed, and switching between execution and stop of the second fuel injection. It is advisable to have hysteresis in the. Here, the reason why the operation region in which the second fuel injection is performed is set to be equal to or greater than the predetermined load is that the second fuel injection is performed in a high load region that is operated at an air-fuel ratio in the vicinity of the stoichiometry. The reason why the operating region in which the fuel injection is performed is set to be equal to or lower than the predetermined engine rotation speed is that the exhaust pressure increases as the engine rotation speed increases. Therefore, if the engine rotation speed increases, the exhaust pressure becomes higher than the intake pressure. This is because the intake air does not blow through during the valve overlap. If the engine speed decreases, the exhaust pressure becomes lower than the intake pressure, and intake air can be blown out during the valve overlap. Further, if hysteresis is provided for switching between execution and stop of the second fuel injection, execution and stop of the second fuel injection are frequently switched near the boundary of the operation region in which the second fuel injection is performed. Hunting phenomenon can be prevented.

また、請求項3のように、排気通路のうちの排気タービンの下流側に設けられた排出ガス浄化用の触媒と、該触媒の上流側又はその下流側又は前記排気タービンの上流側のいずれかの位置の排気温度を検出又は推定する排気温度判定手段とを備え、前記排気温度判定手段で検出又は推定した排気温度が所定温度以上となる場合に前記第2の燃料噴射(再燃焼)を禁止するようにすると良い。このようにすれば、排気通路に設置した触媒や空燃比センサ等の排気系部品が排気熱で損傷する可能性のある高温領域で、第2の燃料噴射(再燃焼)を禁止して排気温度を低下させることができ、排気系部品が排気熱で損傷することを防止できる。   Further, as in claim 3, the exhaust gas purifying catalyst provided on the downstream side of the exhaust turbine in the exhaust passage, and either the upstream side or the downstream side of the catalyst or the upstream side of the exhaust turbine. Exhaust temperature determination means for detecting or estimating the exhaust temperature at the position, and prohibiting the second fuel injection (reburning) when the exhaust temperature detected or estimated by the exhaust temperature determination means exceeds a predetermined temperature It is good to do. In this way, in the high temperature region where exhaust system parts such as the catalyst and air-fuel ratio sensor installed in the exhaust passage may be damaged by exhaust heat, the second fuel injection (reburning) is prohibited and the exhaust temperature is prohibited. And the exhaust system parts can be prevented from being damaged by the exhaust heat.

また、第1の燃料噴射の噴射量と第2の燃料噴射の噴射量の設定方法としては、例えば、請求項4のように、第1の燃料噴射の噴射量を主燃焼を生じさせるのに最適な噴射量に設定し、第2の燃料噴射の噴射量を排気通路内で再燃焼を生じさせるのに必要最小限の噴射量に設定したり、或は、請求項5のように、第1の燃料噴射の噴射量に内燃機関の運転条件に応じた係数を乗算して第2の燃料噴射の噴射量を設定したり、或は、請求項6のように、第1の燃料噴射と第2の燃料噴射との合計噴射量を内燃機関の運転条件に応じて設定し、該合計噴射量を該内燃機関の運転条件に応じた比率で第1の燃料噴射の噴射量と第2の燃料噴射の噴射量に分配するようにしても良い。いずれの方法でも、燃費の悪化を抑えながら、第2の燃料噴射の噴射量を排気通路内で再燃焼を生じさせるのに必要な噴射量に設定することができる。   Further, as a method of setting the injection amount of the first fuel injection and the injection amount of the second fuel injection, for example, as in claim 4, the injection amount of the first fuel injection is caused to cause main combustion. The optimal injection amount is set, and the injection amount of the second fuel injection is set to a minimum injection amount necessary to cause re-combustion in the exhaust passage, or as in claim 5 The injection amount of the first fuel injection is set by multiplying the injection amount of the first fuel injection by a coefficient according to the operating condition of the internal combustion engine, or the first fuel injection and The total injection amount with the second fuel injection is set according to the operating condition of the internal combustion engine, and the total injection amount is set at a ratio according to the operating condition of the internal combustion engine with the second fuel injection amount and the second fuel injection amount. You may make it distribute to the injection quantity of fuel injection. In any method, it is possible to set the injection amount of the second fuel injection to an injection amount necessary for causing recombustion in the exhaust passage while suppressing deterioration of fuel consumption.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、後述する排気タービン式過給機25のコンプレッサ27と、このコンプレッサ27で加圧された吸入空気を冷却するインタークーラー31が設けられている。このインタークーラー31の下流側には、モータ等によって開度調節されるスロットルバルブ15と、スロットル開度を検出するスロットル開度センサ16とが設けられている。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A downstream side of the air flow meter 14 is provided with a compressor 27 of an exhaust turbine supercharger 25 described later and an intercooler 31 that cools intake air pressurized by the compressor 27. On the downstream side of the intercooler 31, a throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、スロットルバルブ15の下流側圧力(吸気圧)を検出する吸気圧センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の上部には、それぞれ燃料を筒内に直接噴射する燃料噴射弁20が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pressure sensor 18 that detects a downstream pressure (intake pressure) of the throttle valve 15 is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for directly injecting fuel into the cylinder is attached to the upper part of each cylinder. .

また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって各気筒の混合気に着火される。更に、エンジン11には、吸気バルブ41と排気バルブ42の開閉タイミング(バルブタイミング)をエンジン運転状態に応じて変化させる可変バルブタイミング装置(VVT)43,44が搭載されている。尚、吸気側の可変バルブタイミング装置43のみを設け、排気側の可変バルブタイミング装置44を省略した構成としても良い。   A spark plug 21 is attached to the cylinder head of the engine 11 for each cylinder, and an air-fuel mixture in each cylinder is ignited by spark discharge of each spark plug 21. Further, the engine 11 is equipped with variable valve timing devices (VVT) 43 and 44 that change the opening / closing timing (valve timing) of the intake valve 41 and the exhaust valve 42 according to the engine operating state. Only the intake-side variable valve timing device 43 may be provided, and the exhaust-side variable valve timing device 44 may be omitted.

一方、エンジン11の排気管22(排気通路)には、排出ガスの空燃比(又はリッチ/リーン)を検出する空燃比センサ24(又は酸素センサ)が設けられ、この空燃比センサ24の下流側(本実施例では排気タービン26の下流側)には、排出ガスを浄化する三元触媒等の触媒23が設けられている。   On the other hand, the exhaust pipe 22 (exhaust passage) of the engine 11 is provided with an air-fuel ratio sensor 24 (or oxygen sensor) that detects the air-fuel ratio (or rich / lean) of the exhaust gas. A catalyst 23 such as a three-way catalyst for purifying exhaust gas is provided (on the downstream side of the exhaust turbine 26 in this embodiment).

このエンジン11には、排気タービン式の過給機25が搭載されている。この過給機25は、排気管22に排気タービン26が設けられ、該排気タービン26とその下流側の触媒23との間に空燃比センサ24が配置され、吸気管12のうちのエアフローメータ14とスロットルバルブ15との間にコンプレッサ27が配置されている。過給機25は、排気タービン26とコンプレッサ27とが連結され、排出ガスのエネルギで排気タービン26を回転駆動することでコンプレッサ27を回転駆動して吸入空気を過給するようになっている。   An exhaust turbine supercharger 25 is mounted on the engine 11. In the supercharger 25, an exhaust turbine 26 is provided in the exhaust pipe 22, an air-fuel ratio sensor 24 is disposed between the exhaust turbine 26 and the catalyst 23 on the downstream side thereof, and the air flow meter 14 in the intake pipe 12. And the throttle valve 15 is provided with a compressor 27. In the supercharger 25, an exhaust turbine 26 and a compressor 27 are connected, and the exhaust turbine 26 is rotationally driven by the energy of exhaust gas, whereby the compressor 27 is rotationally driven to supercharge intake air.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ36や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ37が取り付けられている。このクランク角センサ37の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 36 that detects the cooling water temperature and a crank angle sensor 37 that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)38に入力される。このECU38は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶手段)に記憶された図2乃至図4の各ルーチンを実行することで、筒内で混合気の主燃焼を生じさせるための第1の燃料噴射(以下「主噴射」という)を、吸気上死点付近のバルブオーバーラップ後の吸気行程から圧縮行程の初期(例えばBTDC300℃A〜BTDC160℃A)に実行し、その後、排気管22内に可燃ガス成分を排出して該排気管22内で再燃焼させるための第2の燃料噴射(以下「追加噴射」という)を圧縮行程の中期から後期(例えばBTDC100℃A〜BTDC0℃A)に実行するようにしている。以下、図2〜図4の各ルーチンの処理内容を説明する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 38. The ECU 38 is mainly composed of a microcomputer, and causes the main combustion of the air-fuel mixture in the cylinder by executing the routines of FIGS. 2 to 4 stored in a built-in ROM (storage means). The first fuel injection (hereinafter referred to as “main injection”) is executed from the intake stroke after valve overlap near the intake top dead center to the initial stage of the compression stroke (for example, BTDC 300 ° C. A to BTDC 160 ° C. A), The second fuel injection (hereinafter referred to as “additional injection”) for discharging the combustible gas component into the exhaust pipe 22 and re-combusting in the exhaust pipe 22 is performed from the middle stage to the latter stage (for example, BTDC 100 ° C. A to BTDC0). At a temperature of 0 ° C.). Hereinafter, the processing content of each routine of FIGS. 2-4 is demonstrated.

[燃料噴射制御ルーチン]
図2の燃料噴射制御ルーチンは、各気筒の主噴射タイミングをセットする直前に実行され、特許請求の範囲でいう燃料噴射制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ100で、後述する図3の主噴射制御ルーチンを実行し、次のステップ200で、後述する図4の追加噴射制御ルーチンを実行する。
[Fuel injection control routine]
The fuel injection control routine of FIG. 2 is executed immediately before the main injection timing of each cylinder is set, and serves as fuel injection control means in the claims. When this routine is started, first, at step 100, a main injection control routine of FIG. 3 to be described later is executed, and at step 200, an additional injection control routine of FIG. 4 to be described later is executed.

[主噴射制御ルーチン]
図2の燃料噴射制御ルーチンのステップ100で、図3の主噴射制御ルーチンが起動されると、まずステップ101で、筒内で混合気の主燃焼を生じさせるのに最適な主噴射量をエンジン運転条件や要求トルク等に応じてマップ等により算出する。
[Main injection control routine]
When the main injection control routine of FIG. 3 is started in step 100 of the fuel injection control routine of FIG. 2, first, in step 101, the optimum main injection amount for causing the main combustion of the air-fuel mixture in the cylinder is determined. It is calculated by a map or the like according to operating conditions, required torque, and the like.

この後、ステップ102に進み、主噴射タイミング(主噴射を実行するタイミング)をマップ等により算出する。この場合、主噴射タイミングは、吸気上死点付近のバルブオーバーラップ後の吸気行程から圧縮行程の初期(例えばBTDC300℃A〜BTDC160℃A)の範囲で現在のエンジン運転条件(エンジン回転速度、負荷等)に応じて設定される。
この後、ステップ103に進み、上記ステップ102で算出した主噴射タイミングで主噴射を実行する。
Thereafter, the process proceeds to step 102, and main injection timing (timing for executing main injection) is calculated from a map or the like. In this case, the main injection timing is the current engine operating conditions (engine speed, load, etc.) in the range from the intake stroke after valve overlap near the intake top dead center to the initial stage of the compression stroke (for example, BTDC 300 ° C. A to BTDC 160 ° C. A). Etc.).
Thereafter, the process proceeds to step 103, and main injection is executed at the main injection timing calculated in step 102.

[追加噴射制御ルーチン]
図2の燃料噴射制御ルーチンのステップ200で、図4の追加噴射制御ルーチンが起動されると、まずステップ201で、冷却水温センサ36で検出した冷却水温が所定水温以上であるか否か(つまりエンジン11の暖機が完了したか否か)を判定し、所定水温未満であれば、追加噴射の実行条件が成立しない未暖機状態であると判断して、そのまま本ルーチンを終了する。
[Additional injection control routine]
When the additional injection control routine of FIG. 4 is started in step 200 of the fuel injection control routine of FIG. 2, first, in step 201, whether or not the cooling water temperature detected by the cooling water temperature sensor 36 is equal to or higher than a predetermined water temperature (that is, It is determined whether or not the engine 11 has been warmed up. If the temperature is lower than the predetermined water temperature, it is determined that the additional injection execution condition is not satisfied, and this routine is immediately terminated.

これに対して、上記ステップ201で、冷却水温が所定水温以上(暖機完了)と判定されれば、ステップ202に進み、吸排気の可変バルブタイミング装置(VVT)43,44が作動可能な状態であるか否かを判定し、吸排気の可変バルブタイミング装置(VVT)43,44が作動可能な状態でなければ、追加噴射の実行条件が成立しないと判断して、そのまま本ルーチンを終了する。   On the other hand, if it is determined in step 201 that the cooling water temperature is equal to or higher than the predetermined water temperature (warming-up completion), the process proceeds to step 202, and the intake and exhaust variable valve timing devices (VVT) 43 and 44 are operable. If the intake / exhaust variable valve timing devices (VVT) 43 and 44 are not in an operable state, it is determined that the condition for executing the additional injection is not satisfied, and this routine is immediately terminated. .

一方、上記ステップ203で、吸排気の可変バルブタイミング装置(VVT)43,44が作動可能な状態であると判定されれば、ステップ203に進み、現在のエンジン運転領域が追加噴射領域内であるか否かを判定する。この際、追加噴射領域の境界線を定める判定値Neth ,Pmth は、図5に示すように、エンジン回転速度Neth と負荷Pmth (例えば吸気管圧力、スロットル開度等)で設定され、負荷が判定値Pmth 以上で且つエンジン回転速度が判定値Neth 以下の領域が追加噴射領域となる。   On the other hand, if it is determined in step 203 that the intake / exhaust variable valve timing devices (VVT) 43 and 44 are operable, the routine proceeds to step 203, where the current engine operation region is within the additional injection region. It is determined whether or not. At this time, the determination values Neth and Pmth that define the boundary line of the additional injection region are set by the engine speed Neth and the load Pmth (for example, intake pipe pressure, throttle opening, etc.) as shown in FIG. An area where the engine speed is equal to or greater than the value Pmth and equal to or less than the determination value Neth is an additional injection area.

ここで、追加噴射を実行する負荷領域を判定値Pmth 以上とする理由は、ストイキ付近の空燃比で運転される高負荷域で追加噴射を実行するためであり、また、追加噴射を実行するエンジン回転速度領域を判定値Neth 以下とする理由は、エンジン回転速度が高くなるほど、排気圧が高くなるため、エンジン回転速度が高くなれば、排気圧が吸気圧よりも高くなってバルブオーバーラップ中(吸気バルブ41と排気バルブ42の両方が開いている期間)に吸入空気の吹き抜けが発生しなくなるためである。エンジン回転速度が低くなれば、排気圧が吸気圧よりも低くなって、バルブオーバーラップ中に吸入空気の吹き抜けを発生させることができる。   Here, the reason why the load region in which the additional injection is performed is set to the determination value Pmth or more is to perform the additional injection in a high load region that is operated at an air-fuel ratio in the vicinity of the stoichiometric, and an engine that performs the additional injection. The reason why the rotational speed region is set to the determination value Neth or less is that the exhaust pressure increases as the engine rotational speed increases. Therefore, if the engine rotational speed increases, the exhaust pressure becomes higher than the intake pressure and the valve overlaps ( This is because the intake air does not blow through during the period when both the intake valve 41 and the exhaust valve 42 are open. If the engine speed decreases, the exhaust pressure becomes lower than the intake pressure, and intake air can be blown out during the valve overlap.

更に、本実施例では、追加噴射の実行と停止の切り替えにヒステリシスを持たせるようにしている。これにより、追加噴射を実行する運転領域の境界線付近で追加噴射の実行と停止とが頻繁に切り替えられるハンチング現象を防止することができる。この場合、ハンチング防止効果を更に高めるために、追加噴射の実行と停止の切り替え後の経過時間を計測して、この経過時間が所定の切り替え禁止時間を越えるまで、追加噴射の実行と停止の切り替えを禁止するようにしても良い。   Further, in this embodiment, hysteresis is provided for switching between execution and stop of additional injection. Thereby, it is possible to prevent a hunting phenomenon in which the execution and stop of the additional injection are frequently switched near the boundary of the operation region in which the additional injection is executed. In this case, in order to further enhance the hunting prevention effect, the elapsed time after switching between execution and stop of additional injection is measured, and switching between execution and stop of additional injection is continued until this elapsed time exceeds a predetermined switching prohibition time. May be prohibited.

上記ステップ203で、現在のエンジン運転領域が追加噴射領域内でないと判定されれば、以降の処理を行うことなく、そのまま本ルーチンを終了するが、現在のエンジン運転領域が追加噴射領域内であると判定されれば、ステップ204に進み、触媒23の上流側又はその下流側又は排気タービン26の上流側のいずれかの位置の排気温度が所定温度範囲内(Tlow <排気温度<Thigh)内であるか否かを判定する。ここで、所定温度範囲の下限温度Tlow は、再燃焼に必要最低限の排気温度に相当し、上限温度Thighは、触媒23や空燃比センサ24等の排気系部品が排気熱で損傷することを防止できる上限の排気温度に相当する。   If it is determined in step 203 that the current engine operation region is not within the additional injection region, this routine is terminated without performing the subsequent processing, but the current engine operation region is within the additional injection region. If YES, the routine proceeds to step 204, where the exhaust temperature at any position upstream or downstream of the catalyst 23 or upstream of the exhaust turbine 26 is within a predetermined temperature range (Tlow <exhaust temperature <Thigh). It is determined whether or not there is. Here, the lower limit temperature Tlow in the predetermined temperature range corresponds to the minimum exhaust temperature necessary for recombustion, and the upper limit temperature Thigh indicates that exhaust system parts such as the catalyst 23 and the air-fuel ratio sensor 24 are damaged by exhaust heat. This corresponds to the upper exhaust temperature that can be prevented.

所定温度範囲の下限温度Tlow と上限温度Thighは、予め設定した一定温度としても良いが、図6及び図7に示すように、エンジン回転速度等のエンジン運転条件に応じて設定しても良い。また、所定温度範囲の下限温度Tlow と上限温度Thigh付近で追加噴射の実行と停止とが頻繁に切り替えられるハンチング現象を防止するために、所定温度範囲の下限温度Tlow と上限温度Thighにヒステリシスを持たせるようにしても良い。更に、ハンチング防止効果を高めるために、追加噴射の実行と停止の切り替え後の経過時間を計測して、この経過時間が所定の切り替え禁止時間を越えるまで、追加噴射の実行と停止の切り替えを禁止するようにしても良い。この切り替え禁止時間は、予め設定した一定時間としても良いが、図8に示すように、エンジン回転速度等のエンジン運転条件に応じて設定しても良い。   The lower limit temperature Tlow and the upper limit temperature Thigh in the predetermined temperature range may be set to a predetermined constant temperature, but may be set according to engine operating conditions such as the engine speed as shown in FIGS. Further, in order to prevent a hunting phenomenon in which execution and stop of additional injection are frequently switched around the lower limit temperature Tlow and the upper limit temperature Thigh in the predetermined temperature range, the lower limit temperature Tlow and the upper limit temperature Thigh in the predetermined temperature range have hysteresis. You may make it. Furthermore, in order to enhance the effect of preventing hunting, the elapsed time after switching between execution and stop of additional injection is measured, and switching between execution and stop of additional injection is prohibited until this elapsed time exceeds a predetermined switching prohibition time. You may make it do. This switching prohibition time may be a predetermined time set in advance, or may be set according to engine operating conditions such as engine rotation speed as shown in FIG.

この際、排気温度は、排気温度センサ(図示せず)で検出するようにしても良いし、エンジン運転条件等に基づいて推定するようにしても良い。この機能が特許請求の範囲でいう排気温度判定手段としての役割を果たす。   At this time, the exhaust temperature may be detected by an exhaust temperature sensor (not shown), or may be estimated based on engine operating conditions and the like. This function plays a role as exhaust temperature determination means in the claims.

上述したステップ204で、排気温度が所定温度範囲の下限温度Tlow 以下(排気温度≦Tlow )又は上限温度Thigh以上(排気温度≧Thigh)と判定されれば、追加噴射が禁止され、そのまま本ルーチンを終了する。   If it is determined in step 204 described above that the exhaust temperature is equal to or lower than the lower limit temperature Tlow (exhaust temperature ≤ Tlow) or higher than the upper limit temperature Thigh (exhaust temperature ≥ Thigh), the additional injection is prohibited, and this routine is directly executed. finish.

一方、ステップ204で、排気温度が所定温度範囲内(Tlow <排気温度<Thigh)内であると判定されれば、ステップ205に進み、追加噴射量を次のいずれかの方法で算出する。   On the other hand, if it is determined in step 204 that the exhaust temperature is within the predetermined temperature range (Tlow <exhaust temperature <Thigh), the process proceeds to step 205, and the additional injection amount is calculated by one of the following methods.

[追加噴射量の算出方法(その1)]
追加噴射量を排気管22内で再燃焼を生じさせるのに必要最小限の噴射量に設定する。この追加噴射量は、予め設定した一定量であっても良いし、現在のエンジン運転条件(エンジン回転速度、負荷等)に応じてマップ等により算出しても良い。
[Calculation method of additional injection amount (part 1)]
The additional injection amount is set to a minimum injection amount necessary to cause recombustion in the exhaust pipe 22. This additional injection amount may be a predetermined fixed amount or may be calculated by a map or the like according to the current engine operating conditions (engine speed, load, etc.).

[追加噴射量の算出方法(その2)]
主噴射量に現在のエンジン運転条件(エンジン回転速度、負荷等)に応じた係数(比率)を乗算して追加噴射量を算出する。この係数は、予め設定した一定値であっても良いし、現在のエンジン運転条件(エンジン回転速度、負荷等)に応じて図9のマップにより係数を算出しても良い。
[Method for calculating additional injection amount (part 2)]
The additional injection amount is calculated by multiplying the main injection amount by a coefficient (ratio) according to the current engine operating conditions (engine speed, load, etc.). This coefficient may be a constant value set in advance, or may be calculated from the map of FIG. 9 according to the current engine operating conditions (engine speed, load, etc.).

[追加噴射量の算出方法(その3)]
主噴射と追加噴射との合計噴射量を現在のエンジン運転条件(エンジン回転速度、負荷等)に応じてマップ等により算出し、該合計噴射量を現在のエンジン運転条件(エンジン回転速度、負荷等)に応じた比率で主噴射量と追加噴射量に分配する。
[Calculation method of additional injection amount (part 3)]
The total injection amount of main injection and additional injection is calculated by a map etc. according to the current engine operating conditions (engine speed, load, etc.), and the total injection amount is calculated based on the current engine operating conditions (engine speed, load, etc.) ) Are distributed to the main injection amount and the additional injection amount at a ratio according to.

追加噴射量の算出後、ステップ206に進み、現在のエンジン運転条件(エンジン回転速度、負荷等)に応じて図10のマップにより追加噴射タイミングを算出する。図10のマップは、追加噴射タイミングをBTDC(圧縮上死点前のクランク角)で表しているが、ATDC(吸気上死点後のクランク角)で表しても良い。或は、主噴射タイミングに、現在のエンジン運転条件(エンジン回転速度、負荷等)に応じた所定値を加算して追加噴射タイミングを求めるようにしても良い。要は、追加噴射タイミングを圧縮行程の中期から後期(例えばBTDC100℃A〜BTDC0℃A)の範囲で現在のエンジン運転条件に応じて設定すれば良い。   After calculating the additional injection amount, the routine proceeds to step 206, where the additional injection timing is calculated from the map of FIG. 10 in accordance with the current engine operating conditions (engine speed, load, etc.). In the map of FIG. 10, the additional injection timing is represented by BTDC (crank angle before compression top dead center), but may be represented by ATDC (crank angle after intake top dead center). Alternatively, the additional injection timing may be obtained by adding a predetermined value corresponding to the current engine operating conditions (engine speed, load, etc.) to the main injection timing. In short, the additional injection timing may be set in accordance with the current engine operating conditions in the range from the middle stage to the latter stage of the compression stroke (for example, BTDC 100 ° C. A to BTDC 0 ° C. A).

追加噴射タイミングの算出後、ステップ207に進み、追加噴射用の点火時期を現在のエンジン運転条件(エンジン回転速度、負荷等)に応じて図11のマップにより算出する。この際、追加噴射用の点火時期は、エンジン回転速度が低くなるほど圧縮上死点(BTDC0℃A)に近付いていき、例えば1000rpm以下では、追加噴射用の点火時期が圧縮上死点(BTDC0℃A)に設定される。また、例えば1500rpm以上の領域では、負荷が大きくなるほど、追加噴射用の点火時期が圧縮上死点側に近付くように設定される。   After calculating the additional injection timing, the routine proceeds to step 207, where the ignition timing for additional injection is calculated from the map of FIG. 11 according to the current engine operating conditions (engine speed, load, etc.). At this time, the ignition timing for additional injection approaches the compression top dead center (BTDC 0 ° C. A) as the engine speed decreases. For example, at 1000 rpm or less, the ignition timing for additional injection becomes the compression top dead center (BTDC 0 ° C.). A). For example, in an area of 1500 rpm or more, the ignition timing for additional injection is set to approach the compression top dead center side as the load increases.

この後、ステップ208に進み、上記ステップ206で設定した追加噴射タイミングで追加噴射を実行する。
追加噴射を実行する場合は、吸排気の可変バルブタイミング装置(VVT)43,44によって吸気上死点付近のバルブオーバーラップ量が適量の吸入空気の吹き抜けを生じさせるように調整される。
Thereafter, the process proceeds to step 208, and additional injection is executed at the additional injection timing set in step 206.
When the additional injection is executed, the valve overlap amount near the intake top dead center is adjusted by the intake and exhaust variable valve timing devices (VVT) 43 and 44 so that an appropriate amount of intake air is blown through.

以上説明した本実施例では、吸気上死点付近のバルブオーバーラップ中に吸入空気を吹き抜けさせて排気管22内の酸素量を増加させて再燃焼に必要な酸素量を確保してから、主噴射を吸気行程から圧縮行程の初期(例えばBTDC300℃A〜BTDC160℃A)に実行した後、追加噴射を圧縮行程の中期から後期(例えばBTDC100℃A〜BTDC0℃A)に実行することで、追加噴射で筒内に噴射した燃料の一部を燃焼させて排気温度を上昇させながら、未燃HCを含む可燃ガス成分を排気管22内に排出することができる。これにより、排気管22内で再燃焼に必要な酸素量を確保し且つ排気温度を再燃焼に必要な高温域まで上昇させながら、再燃焼に必要な量の可燃ガス成分を排気管22内に排出することができるため、排気管22内で可燃ガス成分を確実に再燃焼させて排出ガスのエネルギを増大させて排気タービン26の回転速度を上昇させることができ、過給機25の過給圧を上昇させて加速応答性を高めることができる。   In the present embodiment described above, the intake air is blown through during the valve overlap near the intake top dead center to increase the amount of oxygen in the exhaust pipe 22 to ensure the amount of oxygen necessary for re-combustion. After the injection is executed from the intake stroke to the initial stage of the compression stroke (for example, BTDC 300 ° C. A to BTDC 160 ° C. A), the additional injection is performed from the middle to the later stage of the compression stroke (for example, BTDC 100 ° C. A to BTDC 0 ° C. A) Combustible gas components including unburned HC can be discharged into the exhaust pipe 22 while burning a part of the fuel injected into the cylinder by injection to raise the exhaust temperature. As a result, an amount of oxygen necessary for recombustion is ensured in the exhaust pipe 22 and the amount of combustible gas component necessary for recombustion is increased in the exhaust pipe 22 while raising the exhaust temperature to a high temperature range necessary for recombustion. Since the exhaust gas can be discharged, the combustible gas component can be surely reburned in the exhaust pipe 22 to increase the energy of the exhaust gas, and the rotational speed of the exhaust turbine 26 can be increased. The acceleration response can be enhanced by increasing the pressure.

図12は、本実施例の追加噴射による効果を追加噴射を行わない場合と対比して示すタイムチャートである。追加噴射なしの場合と比較すると、本実施例の追加噴射を行うことで過給圧が大幅に上昇してトルクが大幅に上昇する効果が得られる。また、本実施例のように圧縮行程の中期から後期に追加噴射を行うと、追加噴射の燃料の一部が筒内で燃焼するため、その分、主噴射量(主噴射時間)を追加噴射なしの場合よりも低減することができ、燃費の悪化を最小限にとどめることができる。また、本実施例のように圧縮行程の中期から後期に追加噴射を行うと、排気バルブ42の出口の排気温度が追加噴射なしの場合よりも少し上昇し、更に、追加噴射によって生成した可燃ガスを排気管22内で再燃焼させることで、排気タービン26の入口の排気温度が大幅に上昇して、過給圧とトルクが大幅に上昇する効果が得られる。   FIG. 12 is a time chart showing the effect of the additional injection of this embodiment in comparison with the case where the additional injection is not performed. Compared with the case without additional injection, the effect of the boost pressure being significantly increased and the torque being significantly increased by performing the additional injection of the present embodiment can be obtained. In addition, if additional injection is performed from the middle to the latter half of the compression stroke as in this embodiment, a part of the fuel of the additional injection burns in the cylinder, so that the main injection amount (main injection time) is added accordingly. This can be reduced as compared with the case of none, and the deterioration of fuel consumption can be minimized. In addition, when additional injection is performed from the middle stage to the latter stage of the compression stroke as in this embodiment, the exhaust temperature at the outlet of the exhaust valve 42 rises slightly compared to the case without additional injection, and further, combustible gas generated by the additional injection. Is reburned in the exhaust pipe 22, so that the exhaust temperature at the inlet of the exhaust turbine 26 is significantly increased, and the supercharging pressure and torque are significantly increased.

しかも、本実施例では、排気温度が所定温度以上となる場合に追加噴射(再燃焼)を禁止するようにしたので、排気管22に設置した触媒23や空燃比センサ24等の排気系部品が排気熱で損傷する可能性のある高温領域で、追加噴射(再燃焼)を禁止して排気温度を低下させることができ、排気系部品が排気熱で損傷することを防止できる。   In addition, in this embodiment, since the additional injection (reburning) is prohibited when the exhaust gas temperature is equal to or higher than the predetermined temperature, exhaust system parts such as the catalyst 23 and the air-fuel ratio sensor 24 installed in the exhaust pipe 22 are not used. In a high temperature region that can be damaged by exhaust heat, additional injection (reburning) can be prohibited to lower the exhaust temperature, and exhaust system parts can be prevented from being damaged by exhaust heat.

尚、本発明は、過給機25の構成を適宜変更しても良く、例えば、排気タービン26の上流側と下流側とをバイパスさせる排気バイパス通路を設けて、この排気バイパス通路の途中に、当該排気バイパス通路を開閉するウェイストゲートバルブを設けたり、或は、コンプレッサ27の上流側と下流側とをバイパスさせる吸気バイパス通路を設け、この吸気バイパス通路の途中に、当該吸気バイパス通路を開閉するエアバイパスバルブを設けた構成としても良い。   In the present invention, the configuration of the supercharger 25 may be changed as appropriate. For example, an exhaust bypass passage that bypasses the upstream side and the downstream side of the exhaust turbine 26 is provided, A waste gate valve for opening and closing the exhaust bypass passage is provided, or an intake bypass passage for bypassing the upstream side and the downstream side of the compressor 27 is provided, and the intake bypass passage is opened and closed in the middle of the intake bypass passage. It is good also as a structure which provided the air bypass valve.

本発明の一実施例を示すエンジン制御システム全体の概略構成図である。1 is a schematic configuration diagram of an entire engine control system showing an embodiment of the present invention. 燃料噴射制御ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a fuel-injection control routine. 主噴射制御ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the main injection control routine. 追加噴射制御ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an additional injection control routine. 追加噴射領域の境界線を設定するエンジン回転速度Neth と負荷Pmth のマップの一例を示す図である。It is a figure which shows an example of the map of the engine speed Neth which sets the boundary line of an additional injection area | region, and load Pmth. 追加噴射を実行する排気温度範囲の下限温度Tlow をエンジン回転速度に応じて設定するマップの一例を示す図である。It is a figure which shows an example of the map which sets the minimum temperature Tlow of the exhaust gas temperature range which performs additional injection according to an engine speed. 追加噴射を実行する排気温度範囲の上限温度Thighをエンジン回転速度に応じて設定するマップの一例を示す図である。It is a figure which shows an example of the map which sets the upper limit temperature Thigh of the exhaust gas temperature range which performs additional injection according to an engine speed. 追加噴射の実行と停止の切り替え後の切り替え禁止時間をエンジン回転速度に応じて設定するマップの一例を示す図である。It is a figure which shows an example of the map which sets the switching prohibition time after switching of execution and stop of additional injection according to an engine speed. 主噴射量に対する追加噴射量の比率である係数をエンジン運転条件(エンジン回転速度、負荷)に応じて設定するマップの一例を示す図である。It is a figure which shows an example of the map which sets the coefficient which is a ratio of the additional injection quantity with respect to the main injection quantity according to engine operating conditions (engine speed, load). 追加噴射タイミングをエンジン運転条件(エンジン回転速度、負荷)に応じて設定するマップの一例を示す図である。It is a figure which shows an example of the map which sets an additional injection timing according to engine driving | running conditions (engine rotational speed, load). 追加噴射用の点火時期をエンジン運転条件(エンジン回転速度、負荷)に応じて設定するマップの一例を示す図である。It is a figure which shows an example of the map which sets the ignition timing for additional injection according to engine operating conditions (engine speed, load). 追加噴射による効果を追加噴射なしの場合と対比して示すタイムチャートである。It is a time chart which shows the effect by additional injection compared with the case where there is no additional injection.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、15…スロットルバルブ、18…吸気圧センサ、20…燃料噴射弁、21…点火プラグ、22…排気管(排気通路)、24…空燃比センサ、25…過給機、26…排気タービン、27…コンプレッサ、38…ECU(燃料噴射制御手段,排気温度判定手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter, 15 ... Throttle valve, 18 ... Intake pressure sensor, 20 ... Fuel injection valve, 21 ... Spark plug, 22 ... Exhaust pipe (exhaust passage), 24 ... Air-fuel ratio sensor, 25 ... supercharger, 26 ... exhaust turbine, 27 ... compressor, 38 ... ECU (fuel injection control means, exhaust temperature determination means)

Claims (6)

筒内に直接燃料を噴射する燃料噴射弁と、排出ガスのエネルギで排気タービンを回転させて吸入空気を過給する過給機と、前記燃料噴射弁の燃料噴射動作を制御する燃料噴射制御手段とを備えた過給機付き筒内噴射式内燃機関の燃料噴射制御装置において、
前記燃料噴射制御手段は、筒内で混合気の主燃焼を生じさせるための第1の燃料噴射を吸気上死点付近のバルブオーバーラップ後の吸気行程から圧縮行程の初期に実行し、その後、排気通路内に可燃ガス成分を排出して該排気通路内で再燃焼させるための第2の燃料噴射を圧縮行程の中期から後期に実行することを特徴とする過給機付き筒内噴射式内燃機関の燃料噴射制御装置。
A fuel injection valve for directly injecting fuel into the cylinder, a supercharger for supercharging intake air by rotating an exhaust turbine with the energy of exhaust gas, and a fuel injection control means for controlling the fuel injection operation of the fuel injection valve In a fuel injection control device for a cylinder injection internal combustion engine with a supercharger comprising:
The fuel injection control means executes the first fuel injection for causing the main combustion of the air-fuel mixture in the cylinder from the intake stroke after the valve overlap near the intake top dead center to the initial stage of the compression stroke. In-cylinder injection internal combustion engine with a supercharger, characterized in that a second fuel injection for discharging a combustible gas component into the exhaust passage and re-combusting in the exhaust passage is executed from the middle to the later stage of the compression stroke Engine fuel injection control device.
前記燃料噴射制御手段は、前記第2の燃料噴射を実行する運転領域を、所定負荷以上で且つ所定機関回転速度以下の領域に限定すると共に、前記第2の燃料噴射の実行と停止の切り替えにヒステリシスを持たせることを特徴とする請求項1に記載の過給機付き筒内噴射式内燃機関の燃料噴射制御装置。   The fuel injection control means limits an operation region in which the second fuel injection is performed to a region not less than a predetermined load and not more than a predetermined engine rotational speed, and is used for switching between execution and stop of the second fuel injection. 2. The fuel injection control device for a direct injection internal combustion engine with a supercharger according to claim 1, wherein hysteresis is provided. 前記排気通路のうちの前記排気タービンの下流側に設けられた排出ガス浄化用の触媒と、
前記触媒の上流側又はその下流側又は前記排気タービンの上流側のいずれかの位置の排気温度を検出又は推定する排気温度判定手段とを備え、
前記燃料噴射制御手段は、前記排気温度判定手段で検出又は推定した排気温度が所定温度以上となる場合に前記第2の燃料噴射を禁止する手段を有することを特徴とする請求項1又は2に記載の過給機付き筒内噴射式内燃機関の燃料噴射制御装置。
A catalyst for purifying exhaust gas provided downstream of the exhaust turbine in the exhaust passage;
Exhaust temperature determination means for detecting or estimating the exhaust temperature at any position upstream of the catalyst or downstream thereof or upstream of the exhaust turbine;
The fuel injection control means includes means for prohibiting the second fuel injection when the exhaust temperature detected or estimated by the exhaust temperature determination means is equal to or higher than a predetermined temperature. A fuel injection control device for a cylinder injection internal combustion engine with a supercharger.
前記燃料噴射制御手段は、前記第1の燃料噴射の噴射量を主燃焼を生じさせるのに最適な噴射量に設定し、前記第2の燃料噴射の噴射量を前記排気通路内で再燃焼を生じさせるのに必要最小限の噴射量に設定することを特徴とする請求項1乃至3のいずれかに記載の過給機付き筒内噴射式内燃機関の燃料噴射制御装置。   The fuel injection control means sets the injection amount of the first fuel injection to an optimal injection amount for causing main combustion, and re-combusts the injection amount of the second fuel injection in the exhaust passage. 4. The fuel injection control device for a cylinder injection internal combustion engine with a supercharger according to claim 1, wherein the fuel injection control device is set to a minimum injection amount necessary for generating the same. 前記燃料噴射制御手段は、前記第1の燃料噴射の噴射量を主燃焼を生じさせるのに最適な噴射量に設定し、前記第1の燃料噴射の噴射量に内燃機関の運転条件に応じた係数を乗算して前記第2の燃料噴射の噴射量を設定することを特徴とする請求項1乃至3のいずれかに記載の過給機付き筒内噴射式内燃機関の燃料噴射制御装置。   The fuel injection control means sets the injection amount of the first fuel injection to an optimal injection amount for causing main combustion, and the injection amount of the first fuel injection is in accordance with operating conditions of the internal combustion engine. 4. The fuel injection control device for a cylinder injection internal combustion engine with a supercharger according to any one of claims 1 to 3, wherein an injection amount of the second fuel injection is set by multiplying a coefficient. 前記燃料噴射制御手段は、前記第1の燃料噴射と前記第2の燃料噴射との合計噴射量を内燃機関の運転条件に応じて設定し、該合計噴射量を該内燃機関の運転条件に応じた比率で前記第1の燃料噴射の噴射量と前記第2の燃料噴射の噴射量に分配する手段を有することを特徴とする請求項1乃至3のいずれかに記載の過給機付き筒内噴射式内燃機関の燃料噴射制御装置。   The fuel injection control means sets a total injection amount of the first fuel injection and the second fuel injection according to an operating condition of the internal combustion engine, and sets the total injection amount according to the operating condition of the internal combustion engine. 4. A supercharger-equipped cylinder according to claim 1, further comprising means for distributing the injection amount of the first fuel injection and the injection amount of the second fuel injection at a predetermined ratio. A fuel injection control device for an injection type internal combustion engine.
JP2008079515A 2008-03-26 2008-03-26 Fuel injection control device of cylinder injection internal combustion engine with supercharger Pending JP2009235920A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008079515A JP2009235920A (en) 2008-03-26 2008-03-26 Fuel injection control device of cylinder injection internal combustion engine with supercharger
DE102009000933A DE102009000933A1 (en) 2008-03-26 2009-02-17 Fuel injection control device of a direct injection internal combustion engine with charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079515A JP2009235920A (en) 2008-03-26 2008-03-26 Fuel injection control device of cylinder injection internal combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JP2009235920A true JP2009235920A (en) 2009-10-15

Family

ID=41051608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079515A Pending JP2009235920A (en) 2008-03-26 2008-03-26 Fuel injection control device of cylinder injection internal combustion engine with supercharger

Country Status (2)

Country Link
JP (1) JP2009235920A (en)
DE (1) DE102009000933A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011005225A1 (en) 2010-03-09 2011-09-15 Denso Corporation Anomaly diagnostic device of an internal combustion engine with a turbocharger
JP5843012B2 (en) * 2012-07-09 2016-01-13 日産自動車株式会社 Control device and control method for internal combustion engine
CN107448309A (en) * 2016-04-21 2017-12-08 通用汽车环球科技运作有限责任公司 The control of internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297024B (en) * 2011-07-06 2013-09-18 江西惟思特科技发展有限公司 Miniature pure oxygen combustion gas turbine generator
CN102297025B (en) * 2011-07-06 2013-09-18 江西惟思特科技发展有限公司 Micro gas turbine generator employing mixed oxygen-enriched combustion
CN102287266B (en) * 2011-07-06 2013-09-18 江西惟思特科技发展有限公司 Micro fully-wind-driven oxygen enriched combustion type gas turbine generator
DE102016212946A1 (en) * 2016-07-15 2018-01-18 Continental Automotive Gmbh Method for controlling and controlled according to this method internal combustion engine with an exhaust gas turbocharger
DE102017006240A1 (en) 2017-07-01 2019-01-03 Daimler Ag Method for operating an internal combustion engine of a motor vehicle with an automatic transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345889A (en) 1999-06-02 2000-12-12 Mitsubishi Motors Corp Cylinder injection-type internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011005225A1 (en) 2010-03-09 2011-09-15 Denso Corporation Anomaly diagnostic device of an internal combustion engine with a turbocharger
US8413497B2 (en) 2010-03-09 2013-04-09 Denso Corporation Abnormality diagnostic device of internal combustion engine with turbocharger
JP5843012B2 (en) * 2012-07-09 2016-01-13 日産自動車株式会社 Control device and control method for internal combustion engine
CN107448309A (en) * 2016-04-21 2017-12-08 通用汽车环球科技运作有限责任公司 The control of internal combustion engine

Also Published As

Publication number Publication date
DE102009000933A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4306642B2 (en) Internal combustion engine control system
JP4517515B2 (en) 4-cycle engine for automobiles
JP4395099B2 (en) Control device for an internal combustion engine with a supercharger
EP1245815B1 (en) Direct-injection spark-ignition engine with a turbo-charging device, engine control method , and computer-readable storage medium therefor
US20120285161A1 (en) Methods and Systems for Variable Displacement Engine Control
JP5772025B2 (en) Control device for internal combustion engine
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
JP2009235920A (en) Fuel injection control device of cylinder injection internal combustion engine with supercharger
JP5397567B1 (en) Control device for internal combustion engine
JP6236960B2 (en) Control device and control method for spark ignition internal combustion engine
JP2012229666A (en) Internal combustion engine control device
EP2998552B1 (en) Control device for internal combustion engine
JP2002047969A (en) Controller for engine
JP2012097639A (en) Control device for internal combustion engine
JP4385531B2 (en) 4-cycle engine with catalyst
JP3552609B2 (en) Control device for spark ignition type direct injection engine
JP5741345B2 (en) Engine control device
JP3864541B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006152894A (en) Throttle control device of internal combustion engine with supercharger
JP4778879B2 (en) Supercharging pressure control device for internal combustion engine
JP2005256691A (en) Control device for gasoline engine with variable nozzle mechanism turbocharger
JP2012188994A (en) Control apparatus for internal combustion engine with supercharger
JP2007023837A (en) Control device of internal combustion engine having supercharger with electric motor
JP2006132399A (en) Control device and control method for an engine with supercharger
JP3758014B2 (en) In-cylinder internal combustion engine