JP3758014B2 - In-cylinder internal combustion engine - Google Patents

In-cylinder internal combustion engine Download PDF

Info

Publication number
JP3758014B2
JP3758014B2 JP04048099A JP4048099A JP3758014B2 JP 3758014 B2 JP3758014 B2 JP 3758014B2 JP 04048099 A JP04048099 A JP 04048099A JP 4048099 A JP4048099 A JP 4048099A JP 3758014 B2 JP3758014 B2 JP 3758014B2
Authority
JP
Japan
Prior art keywords
fuel
engine
ratio
injection
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04048099A
Other languages
Japanese (ja)
Other versions
JP2000240492A (en
Inventor
和宏 一本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP04048099A priority Critical patent/JP3758014B2/en
Publication of JP2000240492A publication Critical patent/JP2000240492A/en
Application granted granted Critical
Publication of JP3758014B2 publication Critical patent/JP3758014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は燃焼室内に直接燃料を噴射する筒内噴射型の内燃機関(以下、エンジンという)に関するものである。
【0002】
【関連する背景技術】
一般にガソリンエンジンでは、高負荷域で燃焼温度の上昇に伴ってノッキングが発生し易くなるため、点火時期をリタードさせてノッキングを抑制する手法が採られている。このため必然的に排気温度が上昇することから、例えば特公昭62−54977号公報に記載のように、高負荷域で機関の空燃比をリッチ側に制御することで排気系等の温度上昇を防止する所謂燃料冷却が実施されている。
【0003】
【発明が解決しようとする課題】
しかしながら、燃料冷却は燃費の点で好ましいものではなく、特に燃焼室内に直接燃料を噴射する筒内噴射型ガソリンエンジンでは、層状燃焼によるリーン運転で低負荷域の燃費低減を図っても、高負荷域での燃費悪化によって燃費低減効果が低下してしまい、本来の利点を十分に生かせないという問題が生じていた。
【0004】
そこで、特開平3−23327号公報に記載の過給式ガソリン内燃機関のように、リーン領域でノッキングを発生し難いガソリンエンジンの特性を利用して、上記とは逆に高負荷域の空燃比をリーン側に制御してノッキングを抑制することも考えられるが、特に運転者が高出力を要求する高回転・高負荷域でリーン化による出力低下を引き起こしてしまうことから、適切な対策とは言い難かった。
【0005】
本発明の目的は上記問題を鑑みて、出力低下を引き起こすことなく高負荷域の燃料冷却による燃費悪化を防止して、筒内噴射の燃費面での利点を十分に生かすことができる筒内噴射型内燃機関を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明では、内燃機関の燃焼室内に直接燃料を噴射する噴射弁と、内燃機関が所定の高回転・高負荷域で運転しているときに、噴射弁による燃料噴射を複数回に分割して実行して、空燃比を理論空燃比近傍に制御する燃料噴射制御手段と、高回転・高負荷域内の位置に応じて、燃料噴射制御手段による各燃料噴射の分割比を設定する分割比設定手段とを備えたものである。従って、例えば燃料噴射制御手段による燃料噴射の分割を吸気と圧縮に分けた場合、先行する燃料噴射で希薄な混合気が生成され、その混合気中に比較的点火に近いタイミングで後続の燃料噴射が行われることから、後続の噴射燃料は前駆反応が進行して自己着火に至る以前に燃焼を開始し、且つ、その燃焼の輝炎により、先行する燃料噴射の混合気が燃焼して、輝炎の急冷で発生するスモークが防止される。そして、高回転・高負荷域内の位置に応じて各燃料噴射の分割比が設定されるため、領域内のどの位置でも自己着火の抑制とスモークの防止作用が奏されて、結果として空燃比をリッチ化して燃料冷却を実施することなく、理論空燃比を保持したままノッキングを抑制可能となる。
【0007】
請求項2の発明では、請求項1において、分割比設定手段にて設定された分割比に応じて点火時期を補正する点火時期補正手段を備えたものである。従って、分割比に応じて点火時期が補正されるため、例えばノッキングを抑制できる範囲内で可能な限り点火時期を進角させて、運転者のアクセル操作に応じた良好な加速感を実現可能となる。
請求項3の発明では、請求項1又は2において、燃料噴射制御手段が、機関の吸気行程と圧縮行程とに分割して燃料噴射を実行し、分割比設定手段が、全燃料噴射量に対する圧縮行程での燃料噴射量が占める割合として分割比を設定すると共に、機関回転速度又は機関負荷の少なくとも一方の増加に伴って分割比を増加設定するものである。従って、機関回転速度又は機関負荷の少なくとも一方が増加してノッキングが発生し易くなるほど、分割比の増加に伴って圧縮行程での噴射割合が増加することから、ノッキングの抑制作用が増加して確実にノッキングを抑制可能となる。
請求項4の発明では、請求項3において、分割比設定手段が、機関のノッキング状況に基づいて設定された下限値とスモークの発生状況に基づいて設定された上限値との間で分割比を設定するものである。従って、ノッキング状況に基づく下限値とスモークの発生状況に基づく上限値との間で分割比が設定され、この分割比に従って吸気行程と圧縮行程とで燃料噴射が行われるため、ノッキングの抑制とスモークの防止とを両立可能となる。
【0008】
【発明の実施の形態】
以下、本発明をターボチャージャを備えた筒内噴射型エンジンに具体化した一実施例を説明する。
図1の全体構成図において、1は自動車用の筒内噴射型ガソリンエンジンであり、燃焼室5や吸気系等が筒内噴射専用に設計されている。エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ3と共に電磁式の燃料噴射弁4が取り付けられており、図示しない燃料ポンプから供給された高圧燃料が、燃料噴射弁4より燃焼室5内に直接噴射されるようになっている。シリンダヘッド2には吸気ポート6が略直立方向に形成され、この吸気ポート6には吸気通路7が接続されている。吸気通路7から取入れられた吸入空気は吸気弁8の開弁に伴い吸気ポート6を経て燃焼室5内に導入され、その吸入空気中に燃料噴射弁4から燃料が噴射されて、点火プラグ3の点火により燃焼する。
【0009】
吸気通路7には、吸入空気量Afを検出するエアフローセンサ(AFS)9、吸入空気を過給するターボチャージャ10のコンプレッサ11、コンプレッサ11による過給で温度上昇した吸入空気を冷却するインタクーラ12、ステップモータ13により開閉駆動されて吸入空気量を調整するスロットルバルブ14が設けられている。又、シリンダヘッド2には排気ポート15が略水平方向に形成され、この排気ポート15には排気通路16が接続されている。燃焼後の排ガスは、排気弁17の開弁に伴って排気ポート15及び排気通路16を経て大気中に排出される。排気通路16には、前記コンプレッサ11と同軸上に結合されて、排ガスにより回転駆動されるターボチャージャ10のタービン18、及び図示しない触媒や消音器が設けられている。
【0010】
車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM,BURAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(エンジン制御ユニット)31が設置されており、エンジン1の総合的な制御を行う。ECU31の入力側には、前記したエアフローセンサ9の他に、運転者によるアクセル操作量APSを検出するアクセルセンサ32、所定クランク角毎にクランク角信号を出力するクランク角センサ33、ターボチャージャ10による過給圧Pbを検出する過給圧センサ34が接続されている。又、ECU31の出力側には、前記した点火プラグ3及び燃料噴射弁4が接続されると共に、ETV−CU(電子スロットルバルブ制御ユニット)35が接続され、このETV−CU35には、前記したスロットルバルブ14のステップモータ13が接続されている。
【0011】
ECU31は、各センサからの検出情報に基づいて、燃料噴射モード(後述するように、燃料噴射を行う行程を表す)、燃料噴射量、点火時期等を決定して、燃料噴射弁4と点火プラグ3を駆動制御する。又、ECU31はアクセルセンサ32にて検出されたアクセル操作量等からスロットル開度θTHを決定してETV−CU35側に出力し、その情報に基づいてETV−CU35がステップモータ13を駆動制御する。
【0012】
次に、以上のように構成されたECU31が実行する燃料噴射制御を説明するが、それに先立って燃料噴射モードの設定について説明する。
筒内噴射型エンジン1では吸気行程のみならず圧縮行程でも燃料噴射可能なことから、燃料噴射モードを圧縮行程に設定して(以下、圧縮行程噴射という)、吸気ポート6から流入した逆タンブル流により点火プラグ3の周囲に理論空燃比近傍の混合気を確保した上で、全体として極めてリーンな空燃比(例えば、40程度)で着火する層状燃焼を可能としている。この圧縮行程噴射では大量の吸気導入によるポンピングロスの低減と相俟って燃料消費を大幅に低減可能であり、本実施例のエンジン1では、図2に示すように低負荷域から中負荷域までの圧縮行程噴射を実施している。又、中負荷域から高負荷域にかけては、通常の吸気管噴射型エンジンと同様に吸気行程噴射を設定し、筒内に均一な混合気を形成して均一燃焼させることにより、ある程度のエンジントルクが保たれるように設定している。
【0013】
加えて、本実施例のエンジン1では、従来はノッキングが発生し易く燃料冷却が実施されていた高回転・高負荷域(ハッチングで示す)で2段混合を併用している。2段混合はスモークを防止した上でノッキングを抑制することを目的として、圧縮行程より先行する吸気行程で予備的な燃料噴射を行う処理である。その原理を簡単に述べると、大半の燃料を点火直前の圧縮行程で噴射することにより、前駆反応が進行して自己着火に至る以前に燃焼を開始させてノッキングを抑制し、且つ、その燃焼の輝炎により、事前に吸気行程で生成された希薄な混合気を燃焼させることで、輝炎の急冷によって発生するスモークを防止するものである。
【0014】
ここで、2段混合の実行時において、全噴射量に対し圧縮行程の噴射量が占める割合(以下、分割比Rという)を0%(全て吸気行程噴射)から100%(全て圧縮行程噴射)まで変化させた場合、スモークの発生率及びノッキングを抑制した上で点火進角可能な限界進角量K1は、図3のように変化する。即ち、分割比Rが小の領域では、吸気行程での噴射燃料により輝炎の急冷を防止可能な空燃比が実現されるためスモーク発生率は低いものの、その吸気行程での燃料の前駆反応が進行してノッキングし易くなることから進角可能な限界を表す限界進角量K1は制限される。逆に分割比Rが大の領域では、ノッキングし難くなることから限界進角量K1を大きく設定可能であるが、吸気行程での噴射燃料による空燃比があまりにも希薄過ぎて燃焼しないためスモーク発生率が急増する。そして、図3にハッチングで示す中間域では、スモーク発生率と限界進角量K1とを共に満足可能な分割比R1〜R2が存在し、後述するように、2段混合ではこの領域内の分割比Rが適用される。
【0015】
ECU31は図4に示すメインルーチンを所定の制御インターバルで実行する。まず、ステップS2で各センサからの検出情報を入力し、ステップS4でアクセルセンサ32にて検出されたアクセル操作量APS、クランク角センサ33からのクランク角信号から算出したエンジン回転速度Ne、過給圧センサ34にて検出された過給圧Pb等から目標平均有効圧Pe(エンジン負荷を表す)を求め、その目標平均有効圧Peとエンジン回転速度Neに基づき、現在のエンジン1の運転状態が図2にハッチングで示した2段混合の領域内にあるか否かを判定する。
【0016】
ステップS4の判定がNO(否定)のときには、ステップS6に移行して分割比Rを100%に設定し、ステップS8でその時点の目標平均有効圧Peを達成すべく、燃料噴射量、点火時期、スロットル開度θTH、図示しないEGRバルブの開度等を制御した後、このルーチンを終了する。
又、前記ステップS4の判定がYES(肯定)で、現在のエンジン1の運転状態が2段混合の領域内にあるときには、ステップS10で領域内の位置に応じて分割比Rを決定する。詳述すると、図2の領域は予め矢印方向に無段階に区分されており、その区分方向に対応して図3の分割比Rが最小値R1から最大値R2まで設定されている。従って、矢印の基端に該当する領域では分割比Rとして最小値R1が設定され、エンジン回転速度Neや目標平均有効圧Peの増加に伴って運転状態が矢印の先端側に移行するほど分割比Rが増加設定されて、矢印の先端では分割比Rとして最大値R2が設定される。又、ステップS10では決定した分割比Rに対応する限界進角量K1が設定されると共に、目標空燃比として理論空燃比が設定される。
【0017】
その後、ステップS8でエンジン1の各種制御を実行するが、その際の燃料噴射制御では、前記ステップS10で決定した分割比Rに基づいて2段混合を実施すると共に、その全体空燃比(吸気行程及び圧縮行程の総噴射量に基づく空燃比)を理論空燃比とすべく燃料噴射量を制御する。又、点火時期制御では、図3に示した特性に基づき、分割比Rに対応した限界進角量K1に基づいて点火進角する。そして、本実施例では、以上のステップS4、ステップS8、ステップS10の処理を実行するときのECU31が燃料噴射制御手段として機能し、ステップS10の処理を実行するときのECU31が分割比設定手段及び点火時期補正手段として機能する。
【0018】
以上説明したECU31の処理により、燃料噴射制御は以下のように実施される。
エンジン1の運転状態が高回転・高負荷域以外(図2のハッチング外)のときには、運転状態に応じて吸気行程噴射又は圧縮行程噴射が実施され、これにより運転者のアクセル要求に応じたエンジン出力を確保した上で、燃費節減が図られる。
【0019】
又、運転状態が高回転・高負荷域に移行すると、エンジン1の燃焼温度は上昇する。特にターボチャージャ10を備えた本実施例のエンジン1では、この領域で過給圧Pbがオーバブースト値付近まで増加することから、燃焼温度が急激に上昇してノッキングを発生し易くなる。このとき、領域内の矢印方向の位置から設定された分割比Rに基づいて2段混合が実施されて、ノッキングを発生し難い燃焼状態が形成される。従って、従来例のように空燃比をリッチ化して燃料冷却を実施したり、或いは逆にノッキング抑制のためにリーン化したりすることなく、理論空燃比を保持したままノッキングを抑制でき、十分な動力性能を確保した上で高回転・高負荷域での燃料冷却による燃費悪化を防止して、筒内噴射の燃費面での利点を十分に生かすことができる。
【0020】
しかも、高回転・高負荷域内では分割比Rに対応して限界進角量K1を設定して、ノッキングを抑制できる範囲内で可能な限り点火時期を進角させている。目標平均有効圧Peやエンジン回転速度Neの増加は、運転者の出力要求が高まることを意味するが、その要求に応じて点火進角によりエンジン出力が増加されることから、運転者のアクセル操作に応じた良好な加速感を実現することができる。
【0021】
又、従来のようにノッキング抑制を目的に点火時期を大きく進角させる必要がなくなり、これに起因して発生していた排気温上昇の問題も解決できる。
以上で実施例の説明を終えるが、本発明の態様はこの実施例に限定されるものではない。例えば、上記実施例では筒内噴射型エンジン1にターボチャージャ10を備えたが、ターボチャージャ10を備えない自然吸気の筒内噴射型エンジンとして具体化してもよい。又、上記実施例では、高回転・高負荷域内で目標平均有効圧Peやエンジン回転速度Neに応じて分割比Rと限界進角量K1を変更したが、これらの値を予め設定した固定値としてもよい。
【0022】
更に、上記実施例では、高回転・高負荷領域でのノッキングを抑制するために、燃料噴射を吸気行程と圧縮行程とに分割する2段混合を実施したが、同様のノッキング抑制作用が得られる制御内容であれば、その噴射タイミングや分割数等を変更してもよく、例えば、同一行程(吸気行程や圧縮行程)内で複数回に分割して燃料噴射を行ってもよい。
【0023】
一方、点火直前に燃料を噴射する圧縮行程噴射では、高回転域において燃料霧化の時間的余裕が極めて短くなることから、エンジン1の仕様によっては安定した燃焼状態を維持できない状況もあり得る。そこで、例えば図2に示す所定回転速度Nemax以上の領域では2段混合を中止して、通常の吸気行程噴射で空燃比をリッチ化して燃料冷却を実施するようにしてもよい。この場合であっても、常用回転域では2段混合によって燃料冷却を廃止できるため、十分な燃費低減を達成できる。
【0024】
【発明の効果】
以上説明したように本発明の筒内噴射型内燃機関によれば、出力低下を引き起こすことなく高負荷域の燃料冷却による燃費悪化を防止して、筒内噴射の燃費面での利点を十分に生かすことができる。
【図面の簡単な説明】
【図1】実施例の筒内噴射型エンジンを示す全体構成図である。
【図2】燃料噴射モードを決定するためのマップを示す説明図である。
【図3】分割比に対するスモーク発生率と限界進角量との関係を示す説明図である。
【図4】ECUが実行するメインルーチンを示すフローチャートである。
【符号の説明】
4 燃料噴射弁
31 ECU(燃料噴射制御手段、分割比設定手段、点火時期補正手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct injection type internal combustion engine (hereinafter referred to as an engine) that injects fuel directly into a combustion chamber.
[0002]
[Related background]
In general, in a gasoline engine, knocking is likely to occur as the combustion temperature rises in a high load region. Therefore, a method is adopted in which the ignition timing is retarded to suppress knocking. For this reason, the exhaust temperature inevitably rises. For example, as described in Japanese Examined Patent Publication No. 62-54977, the temperature of the exhaust system or the like is increased by controlling the air-fuel ratio of the engine to the rich side in a high load range. So-called fuel cooling is implemented to prevent it.
[0003]
[Problems to be solved by the invention]
However, fuel cooling is not preferable from the viewpoint of fuel consumption. In particular, in a direct injection gasoline engine that injects fuel directly into the combustion chamber, even if the fuel consumption in the low load range is reduced by lean operation by stratified combustion, the high load The fuel consumption reduction effect declined due to the deterioration of fuel consumption in the region, and there was a problem that the original advantages could not be fully utilized.
[0004]
Thus, by utilizing the characteristics of a gasoline engine that is unlikely to cause knocking in the lean region, such as a supercharged gasoline internal combustion engine described in Japanese Patent Application Laid-Open No. Hei 3-23327, the air-fuel ratio in the high load region is reversed. It is conceivable to suppress knocking by controlling the engine to the lean side, but it will cause a decrease in output due to leaning, especially in the high rotation and high load areas where the driver requires high output. It was hard to say.
[0005]
In view of the above problems, an object of the present invention is to provide in-cylinder injection that can prevent the deterioration of fuel consumption due to fuel cooling in a high load region without causing a decrease in output and can fully take advantage of the fuel efficiency of in-cylinder injection. An internal combustion engine is provided.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an injection valve for directly injecting fuel into the combustion chamber of the internal combustion engine, and an injection valve when the internal combustion engine is operating in a predetermined high rotation / high load range. The fuel injection control means for controlling the air-fuel ratio to be close to the theoretical air-fuel ratio by executing the fuel injection by multiple times, and each fuel injection by the fuel injection control means according to the position in the high rotation / high load range Division ratio setting means for setting the division ratio . Therefore, for example, when dividing the fuel injection by the fuel injection control means into intake and compression, a lean air-fuel mixture is generated by the preceding fuel injection, and the subsequent fuel injection is relatively close to ignition in the air-fuel mixture. Therefore, the subsequent injected fuel starts to burn before the precursor reaction proceeds and reaches self-ignition, and the mixture of the preceding fuel injection is burned by the bright flame of the combustion. Smoke generated by rapid cooling of the flame is prevented. Since the split ratio of each fuel injection is set according to the position in the high rotation / high load range, the self-ignition suppression and the smoke prevention effect are achieved at any position in the range, resulting in the air / fuel ratio being reduced. It is possible to suppress knocking while maintaining the stoichiometric air-fuel ratio without enriching and performing fuel cooling.
[0007]
According to a second aspect of the invention, there is provided an ignition timing correction means for correcting the ignition timing in accordance with the division ratio set by the division ratio setting means in the first aspect. Therefore, since the ignition timing is corrected according to the division ratio, for example, the ignition timing is advanced as much as possible within a range in which knocking can be suppressed, and a good acceleration feeling according to the driver's accelerator operation can be realized. Become.
According to a third aspect of the present invention, in the first or second aspect, the fuel injection control means divides the engine into an intake stroke and a compression stroke and executes fuel injection, and the division ratio setting means compresses the total fuel injection amount. The split ratio is set as a ratio of the fuel injection amount in the stroke, and the split ratio is set to increase as at least one of the engine rotation speed or the engine load increases. Therefore, as the engine rotation speed or the engine load increases and knocking is more likely to occur, the injection ratio in the compression stroke increases with an increase in the split ratio, so that the knocking suppression action increases and is surely achieved. It becomes possible to suppress knocking.
According to a fourth aspect of the present invention, in the third aspect, the split ratio setting means sets the split ratio between the lower limit value set based on the engine knocking status and the upper limit value set based on the smoke occurrence status. It is to set. Accordingly, a split ratio is set between the lower limit value based on the knocking situation and the upper limit value based on the smoke occurrence condition, and fuel injection is performed in the intake stroke and the compression stroke in accordance with this split ratio. It is possible to achieve both prevention and prevention.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in an in-cylinder injection engine equipped with a turbocharger will be described.
In the overall configuration diagram of FIG. 1, reference numeral 1 denotes an in-cylinder injection gasoline engine for an automobile, and the combustion chamber 5 and the intake system are designed exclusively for in-cylinder injection. The cylinder head 2 of the engine 1 is provided with an electromagnetic fuel injection valve 4 together with a spark plug 3 for each cylinder, and high-pressure fuel supplied from a fuel pump (not shown) is supplied from the fuel injection valve 4 to the combustion chamber 5. It is designed to be injected directly into the inside. An intake port 6 is formed in the cylinder head 2 in a substantially upright direction, and an intake passage 7 is connected to the intake port 6. The intake air taken in from the intake passage 7 is introduced into the combustion chamber 5 through the intake port 6 when the intake valve 8 is opened, and fuel is injected from the fuel injection valve 4 into the intake air, so that the spark plug 3 It burns by ignition.
[0009]
The intake passage 7 includes an air flow sensor (AFS) 9 that detects the intake air amount Af, a compressor 11 of a turbocharger 10 that supercharges the intake air, an intercooler 12 that cools the intake air whose temperature has increased due to the supercharging by the compressor 11, A throttle valve 14 that is opened and closed by a step motor 13 to adjust the amount of intake air is provided. An exhaust port 15 is formed in the cylinder head 2 in a substantially horizontal direction, and an exhaust passage 16 is connected to the exhaust port 15. The exhaust gas after combustion is discharged into the atmosphere through the exhaust port 15 and the exhaust passage 16 when the exhaust valve 17 is opened. The exhaust passage 16 is provided with a turbine 18 of the turbocharger 10 that is coaxially coupled to the compressor 11 and driven to rotate by exhaust gas, and a catalyst and a silencer (not shown).
[0010]
In the vehicle compartment, an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.) used for storing control programs and control maps, an ECU (engine) equipped with a central processing unit (CPU), a timer counter, etc. A control unit 31 is installed and performs overall control of the engine 1. On the input side of the ECU 31, in addition to the air flow sensor 9, an accelerator sensor 32 that detects an accelerator operation amount APS by a driver, a crank angle sensor 33 that outputs a crank angle signal for each predetermined crank angle, and a turbocharger 10. A supercharging pressure sensor 34 for detecting the supercharging pressure Pb is connected. Further, the ignition plug 3 and the fuel injection valve 4 are connected to the output side of the ECU 31, and an ETV-CU (electronic throttle valve control unit) 35 is connected to the ETV-CU 35. A step motor 13 of the valve 14 is connected.
[0011]
The ECU 31 determines a fuel injection mode (representing a process for performing fuel injection, as will be described later), a fuel injection amount, an ignition timing, and the like based on detection information from each sensor, and the fuel injection valve 4 and the ignition plug. 3 is driven and controlled. The ECU 31 determines the throttle opening θTH from the accelerator operation amount detected by the accelerator sensor 32 and outputs it to the ETV-CU 35 side, and the ETV-CU 35 drives and controls the step motor 13 based on the information.
[0012]
Next, fuel injection control executed by the ECU 31 configured as described above will be described. Prior to that, setting of the fuel injection mode will be described.
In-cylinder injection type engine 1 can inject fuel not only in the intake stroke but also in the compression stroke, so that the fuel injection mode is set to the compression stroke (hereinafter referred to as compression stroke injection), and the reverse tumble flow flowing from intake port 6 As a result, the air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio is secured around the spark plug 3, and the stratified combustion that enables ignition at an extremely lean air-fuel ratio (for example, about 40) as a whole is enabled. In this compression stroke injection, the fuel consumption can be significantly reduced in combination with the reduction of the pumping loss due to the introduction of a large amount of intake air. In the engine 1 of this embodiment, as shown in FIG. The compression stroke injection up to is carried out. In the middle load range to the high load range, the intake stroke injection is set in the same way as a normal intake pipe injection type engine, and a uniform mixture is formed in the cylinder and uniformly burned, so that a certain amount of engine torque is obtained. Is set to be maintained.
[0013]
In addition, in the engine 1 of the present embodiment, two-stage mixing is used together in a high rotation / high load region (indicated by hatching) where knocking is likely to occur and fuel cooling has been performed conventionally. The two-stage mixing is a process in which preliminary fuel injection is performed in the intake stroke preceding the compression stroke for the purpose of suppressing knocking while preventing smoke. The principle is briefly described. By injecting most of the fuel in the compression stroke immediately before ignition, the combustion is started before the precursor reaction proceeds and self-ignition is reached, and knocking is suppressed. By burning the lean air-fuel mixture generated in advance in the intake stroke by the bright flame, smoke generated by quenching of the bright flame is prevented.
[0014]
Here, the ratio of the injection amount of the compression stroke to the total injection amount (hereinafter referred to as the division ratio R) is changed from 0% (all intake stroke injection) to 100% (all compression stroke injection) when performing the two-stage mixing. 3, the limit advance amount K1 that allows ignition advance while suppressing the occurrence rate of smoke and knocking changes as shown in FIG. That is, in the region where the split ratio R is small, although the air-fuel ratio that can prevent the quenching of the bright flame by the injected fuel in the intake stroke is realized, the smoke generation rate is low, but the precursor reaction of the fuel in the intake stroke is low. The advance amount K1 representing the advanceable limit is limited because it is easy to knock and advance. On the other hand, in the region where the split ratio R is large, knocking becomes difficult, so the limit advance amount K1 can be set large. However, smoke is generated because the air-fuel ratio by the injected fuel in the intake stroke is too lean to burn. The rate increases rapidly. In the intermediate area shown by hatching in FIG. 3, there are division ratios R1 to R2 that can satisfy both the smoke generation rate and the limit advance amount K1, and as will be described later, the division in this area is performed in the two-stage mixing. The ratio R is applied.
[0015]
The ECU 31 executes the main routine shown in FIG. 4 at a predetermined control interval. First, detection information from each sensor is input in step S2, the accelerator operation amount APS detected by the accelerator sensor 32 in step S4, the engine rotational speed Ne calculated from the crank angle signal from the crank angle sensor 33, and supercharging. The target average effective pressure Pe (representing the engine load) is obtained from the boost pressure Pb detected by the pressure sensor 34, and the current operating state of the engine 1 is determined based on the target average effective pressure Pe and the engine rotational speed Ne. It is determined whether or not it is within the two-stage mixing area shown by hatching in FIG.
[0016]
When the determination in step S4 is NO (No), the process proceeds to step S6, the division ratio R is set to 100%, and in step S8, the fuel injection amount, ignition timing are set so as to achieve the target average effective pressure Pe at that time. After controlling the throttle opening degree θTH, the opening degree of an EGR valve (not shown), etc., this routine is terminated.
If the determination in step S4 is YES (positive) and the current operating state of the engine 1 is in the two-stage mixing region, the division ratio R is determined in step S10 according to the position in the region. More specifically, the region in FIG. 2 is divided in advance in the direction of the arrow in advance, and the division ratio R in FIG. 3 is set from the minimum value R1 to the maximum value R2 corresponding to the division direction. Accordingly, in the region corresponding to the base end of the arrow, the minimum value R1 is set as the split ratio R, and the split ratio increases as the operating state shifts to the tip end side of the arrow as the engine rotational speed Ne and the target average effective pressure Pe increase. R is set to increase, and the maximum value R2 is set as the division ratio R at the tip of the arrow. In step S10, the limit advance amount K1 corresponding to the determined split ratio R is set, and the stoichiometric air-fuel ratio is set as the target air-fuel ratio.
[0017]
Thereafter, various controls of the engine 1 are executed in step S8. In the fuel injection control at that time, two-stage mixing is performed based on the split ratio R determined in step S10, and the overall air-fuel ratio (intake stroke) is also performed. In addition, the fuel injection amount is controlled so that the air-fuel ratio based on the total injection amount in the compression stroke) becomes the stoichiometric air-fuel ratio. In the ignition timing control, the ignition advance is made based on the limit advance amount K1 corresponding to the division ratio R based on the characteristics shown in FIG. In the present embodiment, the ECU 31 when executing the processes of steps S4, S8, and S10 described above functions as a fuel injection control means, and the ECU 31 when executing the process of step S10 includes the split ratio setting means and Functions as ignition timing correction means.
[0018]
The fuel injection control is performed as follows by the processing of the ECU 31 described above.
When the operating state of the engine 1 is other than the high rotation / high load range (outside hatching in FIG. 2), the intake stroke injection or the compression stroke injection is performed according to the operating state, thereby the engine according to the driver's accelerator request Fuel consumption can be saved while ensuring output.
[0019]
Further, when the operating state shifts to a high rotation / high load region, the combustion temperature of the engine 1 rises. In particular, in the engine 1 of the present embodiment provided with the turbocharger 10, since the boost pressure Pb increases to near the overboost value in this region, the combustion temperature rises rapidly and knocking is likely to occur. At this time, two-stage mixing is performed based on the division ratio R set from the position in the direction of the arrow in the region, and a combustion state in which knocking is difficult to occur is formed. Therefore, it is possible to suppress knocking while maintaining the theoretical air-fuel ratio without enriching the air-fuel ratio as in the conventional example and performing fuel cooling or conversely leaning to suppress knocking. In addition to ensuring the performance, it is possible to prevent fuel consumption deterioration due to fuel cooling in a high rotation / high load range, and to fully take advantage of the fuel efficiency of in-cylinder injection.
[0020]
In addition, in the high rotation / high load range, the limit advance amount K1 is set corresponding to the division ratio R, and the ignition timing is advanced as much as possible within a range in which knocking can be suppressed. An increase in the target average effective pressure Pe or the engine rotational speed Ne means that the driver's output demand increases, but since the engine output is increased by the ignition advance in response to the demand, the driver's accelerator operation A good acceleration feeling can be realized according to
[0021]
Further, it is not necessary to advance the ignition timing greatly for the purpose of suppressing knocking as in the prior art, and the problem of the exhaust gas temperature rise caused by this can be solved.
This is the end of the description of the embodiment. However, the embodiment of the present invention is not limited to this embodiment. For example, in the above embodiment, the in-cylinder injection engine 1 is provided with the turbocharger 10, but may be embodied as a naturally aspirated in-cylinder injection engine without the turbocharger 10. In the above embodiment, the split ratio R and the limit advance amount K1 are changed in accordance with the target average effective pressure Pe and the engine speed Ne in the high rotation / high load range. These values are fixed values set in advance. It is good.
[0022]
Further, in the above embodiment, in order to suppress knocking in the high rotation / high load region, the two-stage mixing in which the fuel injection is divided into the intake stroke and the compression stroke is performed, but the same knocking suppression effect can be obtained. If it is a control content, the injection timing, the number of divisions, etc. may be changed. For example, fuel injection may be performed by dividing into multiple times within the same stroke (intake stroke or compression stroke).
[0023]
On the other hand, in the compression stroke injection in which the fuel is injected immediately before ignition, the time margin for fuel atomization becomes extremely short in the high rotation range, so there may be a situation where a stable combustion state cannot be maintained depending on the specifications of the engine 1. Therefore, for example, in the region of the predetermined rotation speed Nemax or more shown in FIG. 2, the two-stage mixing may be stopped, and the air-fuel ratio may be enriched by normal intake stroke injection to perform fuel cooling. Even in this case, fuel cooling can be abolished by two-stage mixing in the normal rotation range, so that sufficient fuel consumption reduction can be achieved.
[0024]
【The invention's effect】
As described above, according to the in-cylinder injection internal combustion engine of the present invention, it is possible to prevent fuel consumption deterioration due to fuel cooling in a high load region without causing a decrease in output, and to sufficiently provide the fuel consumption advantage of in-cylinder injection. You can save it.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an in-cylinder injection engine of an embodiment.
FIG. 2 is an explanatory diagram showing a map for determining a fuel injection mode.
FIG. 3 is an explanatory diagram showing a relationship between a smoke generation rate and a limit advance amount with respect to a division ratio.
FIG. 4 is a flowchart showing a main routine executed by the ECU.
[Explanation of symbols]
4 Fuel injection valve 31 ECU (fuel injection control means, split ratio setting means, ignition timing correction means)

Claims (4)

内燃機関の燃焼室内に直接燃料を噴射する噴射弁と、
上記内燃機関が所定の高回転・高負荷域で運転しているときに、上記噴射弁による燃料噴射を複数回に分割して実行して、上記内燃機関の空燃比を理論空燃比近傍に制御する燃料噴射制御手段と
上記高回転・高負荷域内の位置に応じて、上記燃料噴射制御手段による各燃料噴射の分割比を設定する分割比設定手段と
を備えたことを特徴とする筒内噴射型内燃機関。
An injection valve for directly injecting fuel into the combustion chamber of the internal combustion engine;
When the internal combustion engine is operating in a predetermined high rotation / high load range, the fuel injection by the injection valve is divided into a plurality of times and the air / fuel ratio of the internal combustion engine is controlled in the vicinity of the theoretical air / fuel ratio. Fuel injection control means ,
A split ratio setting means for setting a split ratio of each fuel injection by the fuel injection control means according to a position in the high rotation / high load range;
A cylinder injection type internal combustion engine characterized by comprising:
上記分割比設定手段にて設定された分割比に応じて点火時期を補正する点火時期補正手段を備えたことを特徴とする請求項1記載の筒内噴射型内燃機関。The in-cylinder injection internal combustion engine according to claim 1, further comprising ignition timing correcting means for correcting the ignition timing in accordance with the split ratio set by the split ratio setting means. 上記燃料噴射制御手段は、機関の吸気行程と圧縮行程とに分割して燃料噴射を実行し、上記分割比設定手段は、全燃料噴射量に対する圧縮行程での燃料噴射量が占める割合として上記分割比を設定すると共に、機関回転速度又は機関負荷の少なくとも一方の増加に伴って上記分割比を増加設定することを特徴とする請求項1又は2記載の筒内噴射型内燃機関。The fuel injection control means performs fuel injection by dividing it into an intake stroke and a compression stroke of the engine. 3. The direct injection internal combustion engine according to claim 1, wherein the ratio is set and the division ratio is increased as at least one of the engine rotational speed and the engine load increases. 上記分割比設定手段は、機関のノッキング状況に基づいて設定された下限値とスモークの発生状況に基づいて設定された上限値との間で上記分割比を設定することを特徴とする請求項3記載の筒内噴射型内燃機関。4. The division ratio setting means sets the division ratio between a lower limit value set based on an engine knocking condition and an upper limit value set based on a smoke occurrence condition. The in-cylinder injection internal combustion engine described.
JP04048099A 1999-02-18 1999-02-18 In-cylinder internal combustion engine Expired - Fee Related JP3758014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04048099A JP3758014B2 (en) 1999-02-18 1999-02-18 In-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04048099A JP3758014B2 (en) 1999-02-18 1999-02-18 In-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000240492A JP2000240492A (en) 2000-09-05
JP3758014B2 true JP3758014B2 (en) 2006-03-22

Family

ID=12581786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04048099A Expired - Fee Related JP3758014B2 (en) 1999-02-18 1999-02-18 In-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3758014B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649142B2 (en) * 2004-07-30 2011-03-09 トヨタ自動車株式会社 Ignition timing control device for internal combustion engine
JP4600607B2 (en) * 2010-06-18 2010-12-15 トヨタ自動車株式会社 Control device for internal combustion engine
JP5500102B2 (en) * 2011-02-24 2014-05-21 マツダ株式会社 Control device for spark ignition gasoline engine

Also Published As

Publication number Publication date
JP2000240492A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US10641161B2 (en) Control device for compression-ignition engine
US10767612B2 (en) Control device for compression-ignition engine
JP3233039B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
US10480479B2 (en) Control device for engine
US10794317B2 (en) Control device for compression-ignition engine
US6330796B1 (en) Control device for direct injection engine
US7168409B2 (en) Controller for direct injection internal combustion engine
US6684630B2 (en) Direct-injection spark-ignition engine with a turbo charging device
US10731589B2 (en) Control device for compression-ignition engine
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2009235920A (en) Fuel injection control device of cylinder injection internal combustion engine with supercharger
US20160348606A1 (en) Control apparatus for internal combustion engine
JP2001098972A (en) Controller for spark-ignition direct injection engine
JP3758014B2 (en) In-cylinder internal combustion engine
JP3807473B2 (en) Internal combustion engine
JP3812138B2 (en) Control device for turbocharged engine
JP3648864B2 (en) Lean combustion internal combustion engine
JP3680568B2 (en) Control device for turbocharged engine
JP3835238B2 (en) Diesel engine control device
JP2006132399A (en) Control device and control method for an engine with supercharger
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
JP2000145524A (en) Internal combustion engine having variable turbo charger
JP2002038990A (en) Fuel injection device for diesel engine
JP2002038995A (en) Fuel injection device for diesel engine
JP3613658B2 (en) Fuel injection control device for multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051220

R151 Written notification of patent or utility model registration

Ref document number: 3758014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees