JP3864541B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP3864541B2
JP3864541B2 JP06140298A JP6140298A JP3864541B2 JP 3864541 B2 JP3864541 B2 JP 3864541B2 JP 06140298 A JP06140298 A JP 06140298A JP 6140298 A JP6140298 A JP 6140298A JP 3864541 B2 JP3864541 B2 JP 3864541B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
ratio control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06140298A
Other languages
Japanese (ja)
Other versions
JPH11257109A (en
Inventor
文昭 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP06140298A priority Critical patent/JP3864541B2/en
Publication of JPH11257109A publication Critical patent/JPH11257109A/en
Application granted granted Critical
Publication of JP3864541B2 publication Critical patent/JP3864541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の空燃比制御装置に関する。
【0002】
【従来の技術】
従来、内燃機関の高負荷運転状態に、内燃機関の出力を確保すると共に排気ガスの温度上昇に伴う排気系の温度上昇を抑制することを目的として、空燃比をリッチに制御する内燃機関の空燃比制御装置が知られている。この種の内燃機関の空燃比制御装置の例としては、例えば特開平5−149164号公報に記載されたものがある。
【0003】
【発明が解決しようとする課題】
ところが、特開平5−149164号公報に記載の内燃機関の空燃比制御装置は、空燃比をリッチに制御することにより、内燃機関の出力確保及び排気系の温度上昇抑制を達成できるものの、排気中のHCが増加してしまう。また、排気系に三元触媒を設けた場合であっても空燃比のリッチ制御を継続すると触媒内の貯蔵酸素量が減少してしまい、貯蔵酸素量が不足すると再び排気中のHCが増加してしまう。
【0004】
前記問題点に鑑み、本発明は、空燃比をリッチに制御する時にも排気中のHCの増加を防止することができる内燃機関の空燃比制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明によれば、吸気弁と排気弁と過給機とを備えた、筒内直接噴射式内燃機関または前記排気弁の閉弁後に燃料噴射が開始されるポート噴射式内燃機関の空燃比制御装置において、内燃機関がリッチ空燃比で運転される時、前記吸気弁及び排気弁の両方を開弁するバルブオーバラップ期間中に、前記過給機の過給圧調整手段により吸気の吹き抜け量を増加させることにより、排気の空燃比を理論空燃比又はリーンにすることを特徴とする内燃機関の空燃比制御装置が提供される。
【0006】
請求項2に記載の発明によれば、前記過給圧調整手段は、ウエイストゲートバルブであることを特徴とする請求項1に記載の内燃機関の空燃比制御装置が提供される。
【0010】
請求項1〜2に記載の内燃機関の空燃比制御装置は、内燃機関がリッチ空燃比で運転される時であっても、吸気の吹き抜け量を増加させて排気を理論空燃比又はリーンにすることにより、排気中のHCの増加を防止することができる。
【0015】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。
【0016】
図1は本発明の内燃機関の空燃比制御装置の第一の実施形態の概略構成図である。図1において、1は機関本体、2′は機関本体1に吸気を供給するための吸気マニホールド、3は吸気マニホールド2′に連通する吸気管、4′は機関本体1から排気を排出するための排気マニホールド、5は排気マニホールド4′から連通する排気管である。6はスロットル弁、7は排気の圧力により吸気の圧力を上昇させるための過給機、8は排気管5に設けられた空燃比センサ、9は吸気量を検出するエアフローメータ、10は機関回転数センサ、11はECU(制御回路)である。図1に示すように、ECU11は、空燃比センサ8、エアフローメータ9及び機関回転数センサ10の検出値を読み込むべく空燃比センサ8、エアフローメータ9及び機関回転数センサ10に電気接続されている。更に、ECU11は、後述する制御を行うために機関本体1及び過給機7(詳細には過給機7の過給圧を制御するウエイストゲートバルブの駆動装置)に電気接続されている。
【0017】
図2は本実施形態の機関本体の一の気筒を示した部分断面図である。図2において、2は吸気ポート、4は排気ポート、21は気筒、22は吸気弁、23は排気弁、24は吸気弁22及び排気弁23のバルブタイミングを変更してバルブオーバラップ期間を変更するための可変バルブタイミング装置(VVT)である。25は筒内に燃料を直接噴射すべく配置された燃料噴射弁、26は燃焼室、27はピストンである。
【0018】
図3は本実施形態の内燃機関の空燃比制御装置の空燃比制御方法を示したフローチャートである。図3に示すように、空燃比制御装置は、まずステップ301にてエアフローメータ9及び機関回転数センサ10を介して吸気量Q及び機関回転数Neを読み込む。続いてステップ302にて、吸気量Q及び機関回転数Neから得られた内燃機関の運転状態がリッチ空燃比運転領域にあるか否かを判断する。例えば内燃機関の高負荷運転時のようなリッチ空燃比運転時にはステップ303に進み、リッチ空燃比運転時でない時にはこのルーチンを終了する。ステップ303では、バルブオーバラップ期間中に過給機7の過給圧を増加させる。詳細には、不図示のウエイストゲートバルブの開弁量を減少することにより、排気の圧力に対する吸気の圧力を増加させる。
【0019】
図4は本実施形態の空燃比制御の効果を示した概略図である。図4(a)は従来の排気空燃比を図4(b)は本実施形態の排気空燃比を示している。図4(a)に示すように、従来の内燃機関の空燃比制御装置では、内燃機関がリッチ空燃比で運転される時、リッチな排気がそのまま排出される。一方、図4(b)に示すように、本実施形態の内燃機関の空燃比制御装置では、内燃機関がリッチ空燃比で運転される時、バルブオーバラップ期間中に過給圧が増加されるために吹き抜けエアが増加し、排気は理論空燃比又はリーンにされて排出される。それゆえ、内燃機関のリッチ運転時に排気中のHCが増加するのを防止することができる。
【0020】
以下、本発明の内燃機関の空燃比制御装置の第二の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置の構成は、図1及び図2に示した第一の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図5は本実施形態の空燃比制御方法を示したフローチャートである。図5に示すように、空燃比制御装置は、まずステップ301にてエアフローメータ9及び機関回転数センサ10を介して吸気量Q及び機関回転数Neを読み込む。続いてステップ302にて、吸気量Q及び機関回転数Neから得られた内燃機関の運転状態がリッチ空燃比運転領域にあるか否かを判断する。例えば内燃機関の高負荷運転時のようなリッチ空燃比運転時にはステップ501に進み、リッチ空燃比運転時でない時にはこのルーチンを終了する。ステップ501では、空燃比センサ8を介して排気の空燃比を検出する。ステップ502では、ステップ501で検出された空燃比が目標空燃比(理論空燃比又はリーン)よりもリーンであるか否かを判断し、YESの時にはステップ503に進み、NOの時にはステップ504に進む。ステップ503では、吹き抜け量を減少させて排気の空燃比をリッチ側にシフトするために、バルブオーバラップ期間中に過給機7の過給圧を減少させ、ステップ501に戻る。ステップ504では、ステップ501で検出された空燃比が目標空燃比よりもリッチであるか否かを判断し、YESの時にはステップ505に進み、NOの時にはこのルーチンを終了する。ステップ505では、吹き抜け量を増加させて排気の空燃比をリーン側にシフトするために、バルブオーバラップ期間中に過給機7の過給圧を増加させ、ステップ501に戻る。本実施形態によれば、図4に示した効果と同様の効果を奏することができると共に、排気の空燃比を目標空燃比に調節することができる。
【0021】
以下、本発明の内燃機関の空燃比制御装置の第三の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置の構成は、図1及び図2に示した第一の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図6は本実施形態の空燃比制御方法を示したフローチャートである。図6に示すように、空燃比制御装置は、まずステップ301にてエアフローメータ9及び機関回転数センサ10を介して吸気量Q及び機関回転数Neを読み込む。続いてステップ302にて、吸気量Q及び機関回転数Neから得られた内燃機関の運転状態がリッチ空燃比運転領域にあるか否かを判断する。例えば内燃機関の高負荷運転時のようなリッチ空燃比運転時にはステップ601に進み、リッチ空燃比運転時でない時にはこのルーチンを終了する。ステップ601では、吹き抜け量を増加させるために吸気弁22及び排気弁23のバルブオーバラップ期間を拡大する。
【0022】
図7はバルブオーバラップ期間の説明図である。図7に示すように、バルブオーバラップは、排気弁を閉弁する前に吸気弁を開弁することにより生ずる。このバルブオーバラップ期間を拡大するには、吸気弁の開弁タイミングを早める、及び/又は排気弁の閉弁タイミングを遅らせればよい。
【0023】
本実施形態によれば、図4に示した効果と同様の効果を奏することができる。つまり、図4(b)に示すように、本実施形態の内燃機関の空燃比制御装置では、内燃機関がリッチ空燃比で運転される時、バルブオーバラップ期間が拡大されるために吹き抜けエアが増加し、排気は理論空燃比又はリーンにされて排出される。それゆえ、内燃機関のリッチ運転時に排気中のHCが増加するのを防止することができる。
【0024】
以下、本発明の内燃機関の空燃比制御装置の第四の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置の構成は、図1及び図2に示した第一の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図8は本実施形態の空燃比制御方法を示したフローチャートである。図8に示すように、空燃比制御装置は、まずステップ301にてエアフローメータ9及び機関回転数センサ10を介して吸気量Q及び機関回転数Neを読み込む。続いてステップ302にて、吸気量Q及び機関回転数Neから得られた内燃機関の運転状態がリッチ空燃比運転領域にあるか否かを判断する。例えば内燃機関の高負荷運転時のようなリッチ空燃比運転時にはステップ501に進み、リッチ空燃比運転時でない時にはこのルーチンを終了する。ステップ501では、空燃比センサ8を介して排気の空燃比を検出する。ステップ502では、ステップ501で検出された空燃比が目標空燃比(理論空燃比又はリーン)よりもリーンであるか否かを判断し、YESの時にはステップ801に進み、NOの時にはステップ504に進む。ステップ801では、吹き抜け量を減少させて排気の空燃比をリッチ側にシフトするために、バルブオーバラップ期間を縮小し、ステップ501に戻る。ステップ504では、ステップ501で検出された空燃比が目標空燃比よりもリッチであるか否かを判断し、YESの時にはステップ802に進み、NOの時にはこのルーチンを終了する。ステップ802では、吹き抜け量を増加させて排気の空燃比をリーン側にシフトするために、バルブオーバラップ期間を拡大し、ステップ501に戻る。本実施形態によれば、図4に示した効果と同様の効果を奏することができると共に、排気の空燃比を目標空燃比に調節することができる。
【0025】
以下、本発明の内燃機関の空燃比制御装置の第五の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置の構成は、図1及び図2に示した第一の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図示しないが、本実施形態の空燃比制御装置は、内燃機関がリッチ空燃比で運転される時に、バルブオーバラップ期間を拡大すると共にバルブオーバラップ期間中に過給機の過給圧を増加して、吸気の吹き抜け量を増加させる。つまり、本実施形態は、上述した第一の実施形態と第三の実施形態とが組み合わされたものである。本実施形態によれば、図4に示した効果と同様の効果を奏することができる。つまり、図4(b)に示すように、本実施形態の内燃機関の空燃比制御装置では、内燃機関がリッチ空燃比で運転される時、バルブオーバラップ期間が拡大されると共にバルブオーバラップ期間中に過給機の過給圧が増加されるために吹き抜けエアが増加し、排気は理論空燃比又はリーンにされて排出される。それゆえ、内燃機関のリッチ運転時に排気中のHCが増加するのを防止することができる。
【0026】
以下、本発明の内燃機関の空燃比制御装置の第五の実施形態の変形例について説明する。本変形例の内燃機関の空燃比制御装置の構成は、図1及び図2に示した第一の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図示しないが、本変形例の空燃比制御装置は、バルブオーバラップ期間及び過給機の過給圧をフィードバック制御する。つまり、本変形例は、上述した第五の実施形態と第二及び第四の実施形態とが組み合わされたものである。本変形例によれば、図4に示した効果と同様の効果を奏することができると共に、排気の空燃比を目標空燃比に調節することができる。
【0027】
以下、本発明の内燃機関の空燃比制御装置の第六の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置は図1及び図9に示す構成を有する。図9は本実施形態の機関本体の一の気筒を示した部分断面図である。図9において、図2中の参照番号と同一の参照番号は図2中の部品と同一の部品を示している。25’は吸気ポート2内に燃料を噴射すべく配置された燃料噴射弁である。本実施形態の空燃比制御方法は、図3に示した空燃比制御方法とほぼ同様である。つまり、図3に示すように、本実施形態の空燃比制御装置は、内燃機関がリッチ空燃比で運転される時、バルブオーバラップ期間中に過給機7の過給圧を増加させる。本実施形態によれば、図4に示すように、バルブオーバラップ期間中に過給圧が増加されるために吹き抜けエアが増加し、排気は理論空燃比又はリーンにされて排出される。それゆえ、内燃機関のリッチ運転時に排気中のHCが増加するのを防止することができる。
【0028】
以下、本発明の内燃機関の空燃比制御装置の第七の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置の構成は、図1及び図9に示した第六の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。本実施形態の空燃比制御方法は、図5に示した空燃比制御方法とほぼ同様である。つまり、図5に示すように、本実施形態の空燃比制御装置は、排気の空燃比が目標空燃比(理論空燃比又はリーン)よりもリーンである時に、吹き抜け量を減少させて排気の空燃比をリッチ側にシフトするために、バルブオーバラップ期間中に過給機7の過給圧を減少させる。一方、排気の空燃比が目標空燃比よりもリッチである時に、吹き抜け量を増加させて排気の空燃比をリーン側にシフトするために、バルブオーバラップ期間中に過給機7の過給圧を増加させる。本実施形態によれば、図4に示した効果と同様の効果を奏することができると共に、排気の空燃比を目標空燃比に調節することができる。
【0029】
以下、本発明の内燃機関の空燃比制御装置の第八の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置の構成は、図1及び図9に示した第六の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図10は本実施形態の空燃比制御方法を示したフローチャートである。図10に示すように、空燃比制御装置は、まずステップ301にてエアフローメータ9及び機関回転数センサ10を介して吸気量Q及び機関回転数Neを読み込む。続いてステップ302にて、吸気量Q及び機関回転数Neから得られた内燃機関の運転状態がリッチ空燃比運転領域にあるか否かを判断する。例えば内燃機関の高負荷運転時のようなリッチ空燃比運転時にはステップ1001に進み、リッチ空燃比運転時でない時にはこのルーチンを終了する。ステップ1001では燃料噴射弁25’から噴射される燃料の噴射開始タイミングを排気弁23の閉弁時以降に制限する。排気弁23の開弁中に燃料噴射が開始されると、吹き抜けエアによって燃料が排気ポート4内に運ばれてしまい、排気の空燃比を理論空燃比又はリーンにすることができないためである。続いてステップ601では、吹き抜け量を増加させるために吸気弁22及び排気弁23のバルブオーバラップ期間を拡大する。
【0030】
本実施形態によれば、図4に示した効果と同様の効果を奏することができる。つまり、図4(b)に示すように、本実施形態の内燃機関の空燃比制御装置では、内燃機関がリッチ空燃比で運転される時、バルブオーバラップ期間が拡大されるために吹き抜けエアが増加し、排気は理論空燃比又はリーンにされて排出される。それゆえ、内燃機関のリッチ運転時に排気中のHCが増加するのを防止することができる。
【0031】
以下、本発明の内燃機関の空燃比制御装置の第九の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置の構成は、図1及び図9に示した第六の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図11は本実施形態の空燃比制御方法を示したフローチャートである。図11に示すように、空燃比制御装置は、まずステップ301にてエアフローメータ9及び機関回転数センサ10を介して吸気量Q及び機関回転数Neを読み込む。続いてステップ302にて、吸気量Q及び機関回転数Neから得られた内燃機関の運転状態がリッチ空燃比運転領域にあるか否かを判断する。例えば内燃機関の高負荷運転時のようなリッチ空燃比運転時にはステップ1001に進み、リッチ空燃比運転時でない時にはこのルーチンを終了する。ステップ1001では、第八の実施形態と同様に、燃料噴射弁25’から噴射される燃料の噴射開始タイミングを排気弁23の閉弁時以降に制限する。排気弁23の開弁中に燃料噴射が開始されると、吹き抜けエアによって燃料が排気ポート4内に運ばれてしまい、排気の空燃比を理論空燃比又はリーンにすることができないためである。続いてステップ501では、空燃比センサ8を介して排気の空燃比を検出する。ステップ502では、ステップ501で検出された空燃比が目標空燃比(理論空燃比又はリーン)よりもリーンであるか否かを判断し、YESの時にはステップ801に進み、NOの時にはステップ504に進む。ステップ801では、吹き抜け量を減少させて排気の空燃比をリッチ側にシフトするために、バルブオーバラップ期間を縮小し、ステップ501に戻る。ステップ504では、ステップ501で検出された空燃比が目標空燃比よりもリッチであるか否かを判断し、YESの時にはステップ802に進み、NOの時にはこのルーチンを終了する。ステップ802では、吹き抜け量を増加させて排気の空燃比をリーン側にシフトするために、バルブオーバラップ期間を拡大し、ステップ501に戻る。本実施形態によれば、図4に示した効果と同様の効果を奏することができると共に、排気の空燃比を目標空燃比に調節することができる。
【0032】
以下、本発明の内燃機関の空燃比制御装置の第十の実施形態について説明する。本実施形態の内燃機関の空燃比制御装置の構成は、図1及び図9に示した第六の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図示しないが、本実施形態の空燃比制御装置は、内燃機関がリッチ空燃比で運転される時に、バルブオーバラップ期間を拡大すると共にバルブオーバラップ期間中に過給機の過給圧を増加して、吸気の吹き抜け量を増加させる。つまり、本実施形態は、上述した第六の実施形態と第八の実施形態とが組み合わされたものである。本実施形態によれば、図4に示した効果と同様の効果を奏することができる。つまり、図4(b)に示すように、本実施形態の内燃機関の空燃比制御装置では、内燃機関がリッチ空燃比で運転される時、バルブオーバラップ期間が拡大されると共にバルブオーバラップ期間中に過給機の過給圧が増加されるために吹き抜けエアが増加し、排気は理論空燃比又はリーンにされて排出される。それゆえ、内燃機関のリッチ運転時に排気中のHCが増加するのを防止することができる。
【0033】
以下、本発明の内燃機関の空燃比制御装置の第十の実施形態の変形例について説明する。本変形例の内燃機関の空燃比制御装置の構成は、図1及び図9に示した第一の実施形態の内燃機関の空燃比制御装置の構成とほぼ同様である。図示しないが、本変形例の空燃比制御装置は、バルブオーバラップ期間及び過給機の過給圧をフィードバック制御する。つまり、本変形例は、上述した第十の実施形態と第七及び第九の実施形態とが組み合わされたものである。本変形例によれば、図4に示した効果と同様の効果を奏することができると共に、排気の空燃比を目標空燃比に調節することができる。
【0034】
【発明の効果】
請求項1〜に記載の発明によれば、内燃機関がリッチ空燃比で運転される時であっても、排気中のHCの増加を防止することができる。
【図面の簡単な説明】
【図1】本発明の内燃機関の空燃比制御装置の第一の実施形態の概略構成図である。
【図2】第一の実施形態の機関本体の一の気筒を示した部分断面図である。
【図3】第一の実施形態の内燃機関の空燃比制御装置の空燃比制御方法を示したフローチャートである。
【図4】第一の実施形態の空燃比制御の効果を示した概略図である。
【図5】第二の実施形態の空燃比制御方法を示したフローチャートである。
【図6】第三の実施形態の空燃比制御方法を示したフローチャートである。
【図7】バルブオーバラップ期間の説明図である。
【図8】第四の実施形態の空燃比制御方法を示したフローチャートである。
【図9】第六の実施形態の機関本体の一の気筒を示した部分断面図である。
【図10】第八の実施形態の空燃比制御方法を示したフローチャートである。
【図11】第九の実施形態の空燃比制御方法を示したフローチャートである。
【符号の説明】
7…過給機
11…ECU
22…吸気弁
23…排気弁
24…可変バルブタイミング装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an internal combustion engine that controls the air-fuel ratio richly in order to secure an output of the internal combustion engine and suppress an exhaust system temperature rise accompanying a rise in exhaust gas temperature in a high-load operation state of the internal combustion engine. Fuel ratio control devices are known. An example of this type of air-fuel ratio control apparatus for an internal combustion engine is disclosed in, for example, Japanese Patent Laid-Open No. 5-149164.
[0003]
[Problems to be solved by the invention]
However, the air-fuel ratio control apparatus for an internal combustion engine described in Japanese Patent Laid-Open No. 5-149164 can achieve the output of the internal combustion engine and suppress the temperature rise of the exhaust system by controlling the air-fuel ratio richly. HC will increase. Even if a three-way catalyst is provided in the exhaust system, if the rich control of the air-fuel ratio is continued, the amount of oxygen stored in the catalyst will decrease, and if the amount of oxygen stored is insufficient, the HC in the exhaust will increase again. End up.
[0004]
In view of the above problems, an object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that can prevent an increase in HC in exhaust gas even when the air-fuel ratio is controlled to be rich.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, a direct injection internal combustion engine having an intake valve, an exhaust valve, and a supercharger , or a port injection internal combustion engine in which fuel injection is started after the exhaust valve is closed. In the engine air-fuel ratio control device, when the internal combustion engine is operated at a rich air-fuel ratio, during the valve overlap period in which both the intake valve and the exhaust valve are opened, the supercharging pressure adjusting means of the supercharger There is provided an air-fuel ratio control apparatus for an internal combustion engine, characterized in that an air-fuel ratio of exhaust gas is made to be a stoichiometric air-fuel ratio or lean by increasing an intake air blow-through amount.
[0006]
According to a second aspect of the present invention, there is provided the air-fuel ratio control apparatus for an internal combustion engine according to the first aspect, wherein the supercharging pressure adjusting means is a waste gate valve .
[0010]
The air-fuel ratio control apparatus for an internal combustion engine according to claim 1 or 2 increases the intake air blow-off amount to make the exhaust gas the stoichiometric air-fuel ratio or lean even when the internal combustion engine is operated at a rich air-fuel ratio. As a result, an increase in HC in the exhaust gas can be prevented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0016]
FIG. 1 is a schematic configuration diagram of a first embodiment of an air-fuel ratio control apparatus for an internal combustion engine according to the present invention. In FIG. 1, 1 is an engine body, 2 ′ is an intake manifold for supplying intake air to the engine body 1, 3 is an intake pipe communicating with the intake manifold 2 ′, and 4 ′ is for discharging exhaust from the engine body 1. An exhaust manifold 5 is an exhaust pipe communicating from the exhaust manifold 4 '. 6 is a throttle valve, 7 is a supercharger for increasing the pressure of intake air by the pressure of exhaust gas, 8 is an air-fuel ratio sensor provided in the exhaust pipe 5, 9 is an air flow meter for detecting the intake air amount, and 10 is engine rotation The number sensor 11 is an ECU (control circuit). As shown in FIG. 1, the ECU 11 is electrically connected to the air-fuel ratio sensor 8, the air flow meter 9, and the engine speed sensor 10 to read the detection values of the air-fuel ratio sensor 8, the air flow meter 9, and the engine speed sensor 10. . Further, the ECU 11 is electrically connected to the engine body 1 and the supercharger 7 (specifically, a waste gate valve driving device for controlling the supercharging pressure of the supercharger 7) in order to perform control described later.
[0017]
FIG. 2 is a partial cross-sectional view showing one cylinder of the engine body of the present embodiment. In FIG. 2, 2 is an intake port, 4 is an exhaust port, 21 is a cylinder, 22 is an intake valve, 23 is an exhaust valve, and 24 is a valve timing of the intake valve 22 and the exhaust valve 23 to change the valve overlap period. This is a variable valve timing device (VVT). 25 is a fuel injection valve arranged to inject fuel directly into the cylinder, 26 is a combustion chamber, and 27 is a piston.
[0018]
FIG. 3 is a flowchart showing the air-fuel ratio control method of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment. As shown in FIG. 3, the air-fuel ratio control apparatus first reads the intake air amount Q and the engine speed Ne via the air flow meter 9 and the engine speed sensor 10 in step 301. Subsequently, at step 302, it is determined whether or not the operating state of the internal combustion engine obtained from the intake air amount Q and the engine speed Ne is in the rich air-fuel ratio operating region. For example, when the rich air-fuel ratio operation is performed such as during high-load operation of the internal combustion engine, the routine proceeds to step 303, and when not during the rich air-fuel ratio operation, this routine is terminated. In step 303, the supercharging pressure of the supercharger 7 is increased during the valve overlap period. Specifically, the intake pressure is increased with respect to the exhaust pressure by decreasing the valve opening amount of a waste gate valve (not shown).
[0019]
FIG. 4 is a schematic diagram showing the effect of the air-fuel ratio control of the present embodiment. FIG. 4A shows a conventional exhaust air-fuel ratio, and FIG. 4B shows the exhaust air-fuel ratio of the present embodiment. As shown in FIG. 4 (a), in the conventional air-fuel ratio control apparatus for an internal combustion engine, when the internal combustion engine is operated at a rich air-fuel ratio, rich exhaust is discharged as it is. On the other hand, as shown in FIG. 4B, in the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment, when the internal combustion engine is operated at a rich air-fuel ratio, the boost pressure is increased during the valve overlap period. Therefore, the blow-by air increases, and the exhaust gas is exhausted to the stoichiometric air-fuel ratio or lean. Therefore, it is possible to prevent the HC in the exhaust gas from increasing during the rich operation of the internal combustion engine.
[0020]
Hereinafter, a second embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The configuration of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is substantially the same as the configuration of the air-fuel ratio control apparatus for the internal combustion engine of the first embodiment shown in FIGS. FIG. 5 is a flowchart showing the air-fuel ratio control method of this embodiment. As shown in FIG. 5, the air-fuel ratio control apparatus first reads the intake air amount Q and the engine speed Ne via the air flow meter 9 and the engine speed sensor 10 in step 301. Subsequently, at step 302, it is determined whether or not the operating state of the internal combustion engine obtained from the intake air amount Q and the engine speed Ne is in the rich air-fuel ratio operating region. For example, when the rich air-fuel ratio operation is performed such as when the internal combustion engine is operating at a high load, the routine proceeds to step 501. When the rich air-fuel ratio operation is not performed, this routine is terminated. In step 501, the air-fuel ratio of the exhaust is detected via the air-fuel ratio sensor 8. In step 502, it is determined whether the air-fuel ratio detected in step 501 is leaner than the target air-fuel ratio (theoretical air-fuel ratio or lean). If YES, the process proceeds to step 503. . In step 503, the supercharging pressure of the supercharger 7 is decreased during the valve overlap period in order to reduce the blow-through amount and shift the air-fuel ratio of the exhaust gas to the rich side, and the process returns to step 501. In step 504, it is determined whether or not the air-fuel ratio detected in step 501 is richer than the target air-fuel ratio. If YES, the process proceeds to step 505, and if NO, this routine is terminated. In step 505, the boost pressure of the supercharger 7 is increased during the valve overlap period in order to increase the blow-through amount and shift the air-fuel ratio of the exhaust gas to the lean side, and the process returns to step 501. According to this embodiment, the same effect as that shown in FIG. 4 can be obtained, and the air-fuel ratio of the exhaust can be adjusted to the target air-fuel ratio.
[0021]
Hereinafter, a third embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The configuration of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is substantially the same as the configuration of the air-fuel ratio control apparatus for the internal combustion engine of the first embodiment shown in FIGS. FIG. 6 is a flowchart showing the air-fuel ratio control method of this embodiment. As shown in FIG. 6, the air-fuel ratio control apparatus first reads the intake air amount Q and the engine speed Ne via the air flow meter 9 and the engine speed sensor 10 in step 301. Subsequently, at step 302, it is determined whether or not the operating state of the internal combustion engine obtained from the intake air amount Q and the engine speed Ne is in the rich air-fuel ratio operating region. For example, when the rich air-fuel ratio operation is performed, such as during high-load operation of the internal combustion engine, the routine proceeds to step 601. When not during the rich air-fuel ratio operation, this routine is terminated. In step 601, the valve overlap period of the intake valve 22 and the exhaust valve 23 is expanded in order to increase the blow-by amount.
[0022]
FIG. 7 is an explanatory diagram of the valve overlap period. As shown in FIG. 7, the valve overlap is caused by opening the intake valve before closing the exhaust valve. In order to extend the valve overlap period, the opening timing of the intake valve may be advanced and / or the closing timing of the exhaust valve may be delayed.
[0023]
According to the present embodiment, the same effect as that shown in FIG. 4 can be obtained. That is, as shown in FIG. 4B, in the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment, when the internal combustion engine is operated at a rich air-fuel ratio, the valve overlap period is extended, so The exhaust gas is exhausted to the stoichiometric air-fuel ratio or lean. Therefore, it is possible to prevent the HC in the exhaust gas from increasing during the rich operation of the internal combustion engine.
[0024]
Hereinafter, a fourth embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The configuration of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is substantially the same as the configuration of the air-fuel ratio control apparatus for the internal combustion engine of the first embodiment shown in FIGS. FIG. 8 is a flowchart showing the air-fuel ratio control method of this embodiment. As shown in FIG. 8, the air-fuel ratio control apparatus first reads the intake air amount Q and the engine speed Ne via the air flow meter 9 and the engine speed sensor 10 in step 301. Subsequently, at step 302, it is determined whether or not the operating state of the internal combustion engine obtained from the intake air amount Q and the engine speed Ne is in the rich air-fuel ratio operating region. For example, when the rich air-fuel ratio operation is performed such as when the internal combustion engine is operating at a high load, the routine proceeds to step 501. When the rich air-fuel ratio operation is not performed, this routine is terminated. In step 501, the air-fuel ratio of the exhaust is detected via the air-fuel ratio sensor 8. In step 502, it is determined whether or not the air-fuel ratio detected in step 501 is leaner than the target air-fuel ratio (theoretical air-fuel ratio or lean). If YES, the process proceeds to step 801. . In step 801, the valve overlap period is shortened to return to step 501 in order to reduce the blow-by amount and shift the exhaust air-fuel ratio to the rich side. In step 504, it is determined whether or not the air-fuel ratio detected in step 501 is richer than the target air-fuel ratio. If YES, the routine proceeds to step 802, and if NO, this routine is terminated. In step 802, in order to increase the blow-through amount and shift the air-fuel ratio of the exhaust gas to the lean side, the valve overlap period is expanded, and the process returns to step 501. According to this embodiment, the same effect as that shown in FIG. 4 can be obtained, and the air-fuel ratio of the exhaust can be adjusted to the target air-fuel ratio.
[0025]
Hereinafter, a fifth embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The configuration of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is substantially the same as the configuration of the air-fuel ratio control apparatus for the internal combustion engine of the first embodiment shown in FIGS. Although not shown, the air-fuel ratio control device of the present embodiment increases the supercharging pressure of the supercharger during the valve overlap period while expanding the valve overlap period when the internal combustion engine is operated at a rich air-fuel ratio. Increase the amount of intake air blown through. That is, this embodiment is a combination of the first embodiment and the third embodiment described above. According to the present embodiment, the same effect as that shown in FIG. 4 can be obtained. That is, as shown in FIG. 4B, in the air-fuel ratio control apparatus for an internal combustion engine of the present embodiment, when the internal combustion engine is operated at a rich air-fuel ratio, the valve overlap period is expanded and the valve overlap period is increased. Since the supercharging pressure of the supercharger is increased, the blow-through air increases, and the exhaust gas is exhausted to the stoichiometric air-fuel ratio or lean. Therefore, it is possible to prevent the HC in the exhaust gas from increasing during the rich operation of the internal combustion engine.
[0026]
Hereinafter, a modification of the fifth embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The configuration of the air-fuel ratio control device for the internal combustion engine of the present modification is substantially the same as the configuration of the air-fuel ratio control device for the internal combustion engine of the first embodiment shown in FIGS. Although not shown, the air-fuel ratio control apparatus of the present modification feedback-controls the valve overlap period and the supercharging pressure of the supercharger. That is, this modification is a combination of the fifth embodiment described above and the second and fourth embodiments. According to this modification, the same effect as that shown in FIG. 4 can be obtained, and the air-fuel ratio of the exhaust gas can be adjusted to the target air-fuel ratio.
[0027]
Hereinafter, a sixth embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment has the configuration shown in FIGS. FIG. 9 is a partial cross-sectional view showing one cylinder of the engine body of the present embodiment. 9, the same reference numerals as those in FIG. 2 denote the same parts as those in FIG. Reference numeral 25 ′ denotes a fuel injection valve arranged to inject fuel into the intake port 2. The air-fuel ratio control method of this embodiment is almost the same as the air-fuel ratio control method shown in FIG. That is, as shown in FIG. 3, the air-fuel ratio control apparatus of the present embodiment increases the supercharging pressure of the supercharger 7 during the valve overlap period when the internal combustion engine is operated at a rich air-fuel ratio. According to the present embodiment, as shown in FIG. 4, the boost pressure is increased during the valve overlap period, so that the blow-through air increases, and the exhaust gas is exhausted to the stoichiometric air-fuel ratio or lean. Therefore, it is possible to prevent the HC in the exhaust gas from increasing during the rich operation of the internal combustion engine.
[0028]
Hereinafter, a seventh embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The configuration of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is substantially the same as the configuration of the air-fuel ratio control apparatus for the internal combustion engine of the sixth embodiment shown in FIGS. The air-fuel ratio control method of this embodiment is almost the same as the air-fuel ratio control method shown in FIG. That is, as shown in FIG. 5, the air-fuel ratio control apparatus of the present embodiment reduces the blow-by amount when the air-fuel ratio of the exhaust gas is leaner than the target air-fuel ratio (theoretical air-fuel ratio or lean). In order to shift the fuel ratio to the rich side, the supercharging pressure of the supercharger 7 is decreased during the valve overlap period. On the other hand, when the exhaust air-fuel ratio is richer than the target air-fuel ratio, the boost pressure of the supercharger 7 is increased during the valve overlap period in order to increase the blow-through amount and shift the exhaust air-fuel ratio to the lean side. Increase. According to this embodiment, the same effect as that shown in FIG. 4 can be obtained, and the air-fuel ratio of the exhaust can be adjusted to the target air-fuel ratio.
[0029]
Hereinafter, an eighth embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The configuration of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is substantially the same as the configuration of the air-fuel ratio control apparatus for the internal combustion engine of the sixth embodiment shown in FIGS. FIG. 10 is a flowchart showing the air-fuel ratio control method of this embodiment. As shown in FIG. 10, the air-fuel ratio control apparatus first reads the intake air amount Q and the engine speed Ne via the air flow meter 9 and the engine speed sensor 10 in step 301. Subsequently, at step 302, it is determined whether or not the operating state of the internal combustion engine obtained from the intake air amount Q and the engine speed Ne is in the rich air-fuel ratio operating region. For example, when the rich air-fuel ratio operation is performed such as when the internal combustion engine is operating at a high load, the routine proceeds to step 1001, and when it is not the rich air-fuel ratio operation, this routine is terminated. In step 1001, the injection start timing of the fuel injected from the fuel injection valve 25 ′ is limited after the exhaust valve 23 is closed. This is because if fuel injection is started while the exhaust valve 23 is open, the fuel is carried into the exhaust port 4 by the blow-by air, and the air-fuel ratio of the exhaust cannot be made the stoichiometric air-fuel ratio or lean. Subsequently, in step 601, the valve overlap period of the intake valve 22 and the exhaust valve 23 is extended in order to increase the blow-by amount.
[0030]
According to the present embodiment, the same effect as that shown in FIG. 4 can be obtained. That is, as shown in FIG. 4B, in the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment, when the internal combustion engine is operated at a rich air-fuel ratio, the valve overlap period is extended, so The exhaust gas is exhausted to the stoichiometric air-fuel ratio or lean. Therefore, it is possible to prevent the HC in the exhaust gas from increasing during the rich operation of the internal combustion engine.
[0031]
The ninth embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described below. The configuration of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is substantially the same as the configuration of the air-fuel ratio control apparatus for the internal combustion engine of the sixth embodiment shown in FIGS. FIG. 11 is a flowchart showing the air-fuel ratio control method of this embodiment. As shown in FIG. 11, the air-fuel ratio control apparatus first reads the intake air amount Q and the engine speed Ne via the air flow meter 9 and the engine speed sensor 10 in step 301. Subsequently, at step 302, it is determined whether or not the operating state of the internal combustion engine obtained from the intake air amount Q and the engine speed Ne is in the rich air-fuel ratio operating region. For example, when the rich air-fuel ratio operation is performed such as when the internal combustion engine is operating at a high load, the routine proceeds to step 1001, and when it is not the rich air-fuel ratio operation, this routine is terminated. In step 1001, the injection start timing of the fuel injected from the fuel injection valve 25 ′ is limited after the exhaust valve 23 is closed, as in the eighth embodiment. This is because if fuel injection is started while the exhaust valve 23 is open, the fuel is carried into the exhaust port 4 by the blow-by air, and the air-fuel ratio of the exhaust cannot be made the stoichiometric air-fuel ratio or lean. Subsequently, at step 501, the air-fuel ratio of the exhaust is detected via the air-fuel ratio sensor 8. In step 502, it is determined whether or not the air-fuel ratio detected in step 501 is leaner than the target air-fuel ratio (theoretical air-fuel ratio or lean). If YES, the process proceeds to step 801. . In step 801, the valve overlap period is shortened to return to step 501 in order to reduce the blow-by amount and shift the exhaust air-fuel ratio to the rich side. In step 504, it is determined whether or not the air-fuel ratio detected in step 501 is richer than the target air-fuel ratio. If YES, the routine proceeds to step 802, and if NO, this routine is terminated. In step 802, in order to increase the blow-through amount and shift the air-fuel ratio of the exhaust gas to the lean side, the valve overlap period is expanded, and the process returns to step 501. According to this embodiment, the same effect as that shown in FIG. 4 can be obtained, and the air-fuel ratio of the exhaust can be adjusted to the target air-fuel ratio.
[0032]
Hereinafter, a tenth embodiment of the air-fuel ratio control apparatus for an internal combustion engine of the present invention will be described. The configuration of the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is substantially the same as the configuration of the air-fuel ratio control apparatus for the internal combustion engine of the sixth embodiment shown in FIGS. Although not shown, the air-fuel ratio control device of the present embodiment increases the supercharging pressure of the supercharger during the valve overlap period while expanding the valve overlap period when the internal combustion engine is operated at a rich air-fuel ratio. Increase the amount of intake air blown through. That is, this embodiment is a combination of the sixth embodiment and the eighth embodiment described above. According to the present embodiment, the same effect as that shown in FIG. 4 can be obtained. That is, as shown in FIG. 4B, in the air-fuel ratio control apparatus for an internal combustion engine of the present embodiment, when the internal combustion engine is operated at a rich air-fuel ratio, the valve overlap period is expanded and the valve overlap period is increased. Since the supercharging pressure of the supercharger is increased, the blow-through air increases, and the exhaust gas is exhausted to the stoichiometric air-fuel ratio or lean. Therefore, it is possible to prevent the HC in the exhaust gas from increasing during the rich operation of the internal combustion engine.
[0033]
A modification of the tenth embodiment of the air-fuel ratio control apparatus for an internal combustion engine according to the present invention will be described below. The configuration of the air-fuel ratio control device for the internal combustion engine of the present modification is substantially the same as the configuration of the air-fuel ratio control device for the internal combustion engine of the first embodiment shown in FIGS. Although not shown, the air-fuel ratio control apparatus of the present modification feedback-controls the valve overlap period and the supercharging pressure of the supercharger. That is, this modification is a combination of the tenth embodiment described above and the seventh and ninth embodiments. According to this modification, the same effect as that shown in FIG. 4 can be obtained, and the air-fuel ratio of the exhaust gas can be adjusted to the target air-fuel ratio.
[0034]
【The invention's effect】
According to the first and second aspects of the invention, it is possible to prevent an increase in HC in the exhaust gas even when the internal combustion engine is operated at a rich air-fuel ratio.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of an air-fuel ratio control apparatus for an internal combustion engine according to the present invention.
FIG. 2 is a partial cross-sectional view showing one cylinder of the engine body of the first embodiment.
FIG. 3 is a flowchart showing an air-fuel ratio control method of the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment.
FIG. 4 is a schematic diagram showing the effect of air-fuel ratio control of the first embodiment.
FIG. 5 is a flowchart showing an air-fuel ratio control method according to a second embodiment.
FIG. 6 is a flowchart showing an air-fuel ratio control method according to a third embodiment.
FIG. 7 is an explanatory diagram of a valve overlap period.
FIG. 8 is a flowchart showing an air-fuel ratio control method according to a fourth embodiment.
FIG. 9 is a partial cross-sectional view showing one cylinder of an engine body according to a sixth embodiment.
FIG. 10 is a flowchart showing an air-fuel ratio control method according to an eighth embodiment.
FIG. 11 is a flowchart showing an air-fuel ratio control method according to a ninth embodiment.
[Explanation of symbols]
7 ... supercharger 11 ... ECU
22 ... Intake valve 23 ... Exhaust valve 24 ... Variable valve timing device

Claims (2)

吸気弁と排気弁と過給機とを備えた、筒内直接噴射式内燃機関または前記排気弁の閉弁後に燃料噴射が開始されるポート噴射式内燃機関の空燃比制御装置において、内燃機関がリッチ空燃比で運転される時、前記吸気弁及び排気弁の両方を開弁するバルブオーバラップ期間中に、前記過給機の過給圧調整手段により吸気の吹き抜け量を増加させることにより、排気の空燃比を理論空燃比又はリーンにすることを特徴とする内燃機関の空燃比制御装置。In an in-cylinder direct injection internal combustion engine having an intake valve, an exhaust valve, and a supercharger , or an air-fuel ratio control device for a port injection internal combustion engine in which fuel injection is started after the exhaust valve is closed , When operating at a rich air-fuel ratio, during the valve overlap period in which both the intake valve and the exhaust valve are opened, by increasing the amount of intake air blown by the supercharging pressure adjusting means of the supercharger, An air-fuel ratio control apparatus for an internal combustion engine, characterized in that the air-fuel ratio of the engine is a stoichiometric air-fuel ratio or lean. 前記過給圧調整手段は、ウエイストゲートバルブであることを特徴とする請求項1に記載の内燃機関の空燃比制御装置。  The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the supercharging pressure adjusting means is a waste gate valve.
JP06140298A 1998-03-12 1998-03-12 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP3864541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06140298A JP3864541B2 (en) 1998-03-12 1998-03-12 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06140298A JP3864541B2 (en) 1998-03-12 1998-03-12 Air-fuel ratio control device for internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006209741A Division JP2006291973A (en) 2006-08-01 2006-08-01 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11257109A JPH11257109A (en) 1999-09-21
JP3864541B2 true JP3864541B2 (en) 2007-01-10

Family

ID=13170121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06140298A Expired - Fee Related JP3864541B2 (en) 1998-03-12 1998-03-12 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3864541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216592A (en) * 2008-11-20 2011-10-12 瓦锡兰芬兰有限公司 Method of controlling turbocharger speed of a piston engine and a control system for a turbocharged piston engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306642B2 (en) * 2005-05-17 2009-08-05 トヨタ自動車株式会社 Internal combustion engine control system
JP4650321B2 (en) 2006-03-28 2011-03-16 トヨタ自動車株式会社 Control device
JP4989523B2 (en) 2008-03-06 2012-08-01 日立オートモティブシステムズ株式会社 Variable valve system for internal combustion engine and control device for internal combustion engine
JP4609541B2 (en) * 2008-07-18 2011-01-12 トヨタ自動車株式会社 Control device for an internal combustion engine with a supercharger
JP5741345B2 (en) * 2011-09-20 2015-07-01 三菱自動車工業株式会社 Engine control device
JP2015200294A (en) * 2014-04-10 2015-11-12 日産自動車株式会社 engine
KR20180068196A (en) * 2016-12-13 2018-06-21 현대자동차주식회사 Method and apparatus for controlling engine system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216592A (en) * 2008-11-20 2011-10-12 瓦锡兰芬兰有限公司 Method of controlling turbocharger speed of a piston engine and a control system for a turbocharged piston engine

Also Published As

Publication number Publication date
JPH11257109A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP4475221B2 (en) engine
EP2079914B1 (en) Internal combustion engine and internal combustion engine control method
JP4517515B2 (en) 4-cycle engine for automobiles
JP4306642B2 (en) Internal combustion engine control system
JP3683681B2 (en) Control device for direct-injection spark-ignition internal combustion engine
EP1865167A1 (en) Control device for engine
JP2009235920A (en) Fuel injection control device of cylinder injection internal combustion engine with supercharger
US20020014072A1 (en) Engine control equipment
JP2004245104A (en) Supercharging type engine
JP3864541B2 (en) Air-fuel ratio control device for internal combustion engine
JP4385531B2 (en) 4-cycle engine with catalyst
JP4655980B2 (en) Control device and control method for internal combustion engine
JP2003013784A (en) Control device of direct injection spark ignition type internal combustion engine
JP3812138B2 (en) Control device for turbocharged engine
JP3807473B2 (en) Internal combustion engine
JP4930726B2 (en) Fuel injection device for internal combustion engine
JP4066642B2 (en) Control device for spark ignition engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JP2002188524A (en) Egr control device for engine with turbocharger
JPH11190236A (en) Device for suppressing knocking of four cycle engine
JP4147715B2 (en) Intake valve operating state control device for in-cylinder injection type spark ignition internal combustion engine
JP2006291973A (en) Air-fuel ratio control device for internal combustion engine
JP2001098964A (en) Controller for spark ignition type direct injection engine
JP4269114B2 (en) In-cylinder internal combustion engine
JP4203720B2 (en) Engine valve timing control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees