JP5839876B2 - Copper plate for laser processing, printed circuit board using the copper plate for laser processing, and laser processing method for copper plate - Google Patents

Copper plate for laser processing, printed circuit board using the copper plate for laser processing, and laser processing method for copper plate Download PDF

Info

Publication number
JP5839876B2
JP5839876B2 JP2011163894A JP2011163894A JP5839876B2 JP 5839876 B2 JP5839876 B2 JP 5839876B2 JP 2011163894 A JP2011163894 A JP 2011163894A JP 2011163894 A JP2011163894 A JP 2011163894A JP 5839876 B2 JP5839876 B2 JP 5839876B2
Authority
JP
Japan
Prior art keywords
copper plate
copper
laser processing
laser
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011163894A
Other languages
Japanese (ja)
Other versions
JP2013028828A (en
Inventor
崇 茅原
崇 茅原
清旭 山本
清旭 山本
渡辺 元
元 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Automotive Systems Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011163894A priority Critical patent/JP5839876B2/en
Publication of JP2013028828A publication Critical patent/JP2013028828A/en
Application granted granted Critical
Publication of JP5839876B2 publication Critical patent/JP5839876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、両面を粗化したレーザ加工用銅板に関する。   The present invention relates to a copper plate for laser processing whose both surfaces are roughened.

近年、環境への配慮からプリント基板と端子等との接合に鉛フリーはんだが用いられるようになってきている。鉛フリーはんだには、ウィスカの発生による回路短絡の問題が懸念されている。この問題を回避し得る接合技術としてレーザ溶接が挙げられる。しかし、プリント配線基板に使用されている銅板は、溶接用赤外レーザとして多く用いられるCOレーザの基本波長10600nm、Nd:YAGレーザの基本波長1064nm、ファイバレーザの基本波長1084nmのレーザ光に対し90%以上の反射率を有するため、溶接用途で多く用いられる赤外レーザによるレーザ溶接を行うことが困難である。 In recent years, lead-free solder has been used for joining printed circuit boards to terminals and the like in consideration of the environment. Lead-free solder is concerned about the problem of short circuit due to the occurrence of whiskers. Laser welding is an example of a joining technique that can avoid this problem. However, the copper plate used for the printed circuit board is used for the laser light having a fundamental wavelength of 10600 nm for a CO 2 laser often used as an infrared laser for welding, a fundamental wavelength of 1064 nm for an Nd: YAG laser, and a fundamental wavelength of 1084 nm for a fiber laser. Since it has a reflectance of 90% or more, it is difficult to perform laser welding with an infrared laser that is often used in welding applications.

一方、プリント配線基板用の電解銅箔においては、レーザによる穴加工を可能にするべく、銅箔の表面を黒色化処理する、銅箔の表面を薬液により粗化する、銅箔の表面に鉄、スズ、ニッケル、コバルト、亜鉛などからなる被覆層を形成する、といったレーザ光吸収性を改善する種々の試みが従来なされてきた(特許文献1)。   On the other hand, in the electrolytic copper foil for printed wiring boards, the surface of the copper foil is blackened to enable drilling with a laser, the surface of the copper foil is roughened with a chemical solution, and the surface of the copper foil is iron. Various attempts have been made in the past to improve laser light absorptivity, such as forming a coating layer made of tin, nickel, cobalt, zinc, or the like (Patent Document 1).

特開2004―339531号公報Japanese Patent Application Laid-Open No. 2004-339531

しかし、電解銅箔は、その表面のレーザ光吸収性を改善できたとしても、厚さが30乃至40μm程度と薄いため、端子等をレーザ溶接により接合することは極めて難しい。また、電解銅箔では、レーザ光吸収性と樹脂接着性を共に改善するべく両面を同時に処理することは難しいため、図11に示すように、銅箔12の片面に樹脂接着面13を形成し、樹脂5と接合した後、その表面14にレーザ光吸収性の良好な被覆層15を形成する処理などを施していた。   However, even if the electrolytic copper foil can improve the laser light absorptivity of the surface, it is very difficult to join terminals and the like by laser welding because the thickness is as thin as about 30 to 40 μm. In addition, since it is difficult to simultaneously treat both surfaces of an electrolytic copper foil in order to improve both the laser light absorption and the resin adhesion, a resin adhesion surface 13 is formed on one surface of the copper foil 12 as shown in FIG. After bonding with the resin 5, the surface 14 was subjected to a treatment for forming a coating layer 15 having good laser light absorption.

本発明が解決すべき課題は、レーザ溶接に適し且つ樹脂接着性が良好なレーザ加工用銅板を提供すること、特に、銅板の両面を同時に処理して製造することが可能なレーザ加工用銅板を提供することにある。   The problem to be solved by the present invention is to provide a copper plate for laser processing that is suitable for laser welding and has good resin adhesion, and in particular, a copper plate for laser processing that can be manufactured by simultaneously processing both surfaces of a copper plate It is to provide.

上記課題を解決するために、本発明のレーザ加工用銅板は、一方の面のレーザ光吸収性を改善するとともに他方の面の樹脂接着性を改善するべく、銅板の両面に微細粒状突起を形成したことを特徴とする。   In order to solve the above-described problems, the copper plate for laser processing according to the present invention is formed with fine granular protrusions on both sides of the copper plate in order to improve the laser light absorption of one surface and improve the resin adhesion of the other surface. It is characterized by that.

本発明のレーザ加工用銅板において、前記一方の面のL値が50以上75以下であることが望ましい。そして、前記一方の面の微細粒状突起を構成する粒子の平均粒径が0.3μm以上3μm以下であることが望ましい。また、前記粒子の平均粒径を0.1μm以上、加工に使用するレーザ光の波長以下と規定してもよい。   In the copper plate for laser processing of the present invention, it is desirable that the L value of the one surface is 50 or more and 75 or less. And it is desirable for the average particle diameter of the particle | grains which comprise the fine granular protrusion of said one surface to be 0.3 micrometer or more and 3 micrometers or less. Moreover, you may prescribe | regulate the average particle diameter of the said particle | grain as 0.1 micrometer or more and below the wavelength of the laser beam used for a process.

また、前記微細粒状突起は、電気分解により銅板の両面に銅微粒子を生成させる電解処理と、その電解処理の後に、当該銅微粒子を当該銅板の両面に定着させるめっき処理とを1サイクルとして、これらの処理を1サイクル以上実施することにより形成されたものであることが望ましい。   In addition, the fine granular protrusions are formed by electrolysis that generates copper fine particles on both sides of the copper plate and plating treatment that fixes the copper fine particles on both sides of the copper plate after the electrolytic treatment. It is desirable to be formed by carrying out the process of 1 cycle or more.

本発明によれば、一方の面がレーザ溶接に適し且つ他方の面の樹脂接着性が良好なレーザ加工用銅板を提供することができる。   According to the present invention, it is possible to provide a copper plate for laser processing in which one surface is suitable for laser welding and the other surface has good resin adhesion.

本発明のレーザ加工用銅板は、電気分解により銅板の両面に銅微粒子を生成させる電解処理と、その電解処理の後に、当該銅微粒子を当該銅板の両面に定着させるめっき処理とを1サイクルとして、これらの処理を1サイクル以上実施することにより、銅板の両面を同時に処理して製造することが可能である。   The copper plate for laser processing of the present invention has one cycle of electrolytic treatment for generating copper fine particles on both sides of the copper plate by electrolysis and plating treatment for fixing the copper fine particles on both sides of the copper plate after the electrolytic treatment, By carrying out these treatments for one cycle or more, it is possible to simultaneously produce both sides of the copper plate.

本発明のレーザ加工用銅板を用いたプリント基板の構造を概念的に示す断面図Sectional drawing which shows notionally the structure of the printed circuit board using the copper plate for laser processing of this invention 端子と銅板とを接合可能なレーザ出力と照射時間との関係を示す図The figure which shows the relation between the laser output and the irradiation time which can join the terminal and the copper plate L値とレーザ光照射による銅板の溶け込み深さとの関係を示す図The figure which shows the relationship between L value and the penetration depth of a copper plate by laser beam irradiation 従来の電解銅箔の表面状態を示す電子顕微鏡写真Electron micrograph showing surface state of conventional electrolytic copper foil 本発明のレーザ加工用銅板(粗化銅板)の表面状態を示す電子顕微鏡写真Electron micrograph showing the surface state of the copper plate for laser processing (roughened copper plate) of the present invention 本発明のレーザ加工用銅板(粗化銅板)の製造方法を例示する工程図Process drawing which illustrates the manufacturing method of the copper plate (roughened copper plate) for laser processing of this invention 本発明のレーザ加工用銅板(粗化銅板)の別の製造方法を例示する工程図Process drawing which illustrates another manufacturing method of the copper plate for laser processing (roughened copper plate) of this invention 本発明のレーザ加工用銅板(粗化銅板)の断面構造を示す電子顕微鏡写真Electron micrograph showing the cross-sectional structure of the laser processing copper plate (roughened copper plate) of the present invention 粗化銅板の比較例の断面構造を示す電子顕微鏡写真Electron micrograph showing the cross-sectional structure of a comparative example of a roughened copper plate 粗化銅板の別の比較例の断面構造を示す電子顕微鏡写真Electron micrograph showing the cross-sectional structure of another comparative example of a roughened copper plate 従来の電解銅箔を用いたプリント基板の構造を概念的に示す断面図Sectional drawing which shows the structure of the printed circuit board using the conventional electrolytic copper foil conceptually

以下、本発明の実施形態について説明する。
[レーザ加工用銅板]
図1は本発明のレーザ加工用銅板を用いたプリント基板の構造を概念的に示す断面図である。このプリント基板は、樹脂基板5の表面に本発明のレーザ加工用銅板1を接着したものである。レーザ加工用銅板1は、その一方の面2のレーザ光吸収性を改善するとともに他方の面3の樹脂接着性を改善するべく、銅板4の両面2、3に微細粒状突起2a、3aを形成してなる。以下、前記一方の面を「レーザ光吸収面」、前記他方の面を「樹脂接着面」と記す。銅板4の厚さは70μm乃至200μmである。
Hereinafter, embodiments of the present invention will be described.
[Copper plate for laser processing]
FIG. 1 is a sectional view conceptually showing the structure of a printed circuit board using a laser processing copper plate of the present invention. This printed circuit board is obtained by bonding the copper plate 1 for laser processing of the present invention to the surface of a resin substrate 5. The copper plate 1 for laser processing is formed with fine granular protrusions 2a and 3a on both surfaces 2 and 3 of the copper plate 4 in order to improve the laser light absorption of one surface 2 and improve the resin adhesion of the other surface 3. Do it. Hereinafter, the one surface is referred to as a “laser light absorbing surface” and the other surface is referred to as a “resin bonding surface”. The thickness of the copper plate 4 is 70 μm to 200 μm.

図2は端子と銅板とを接合可能なレーザ出力(基本波長)と照射時間との関係を示している。この測定結果は、基本波長1084nmのファイバレーザを使用し、照射時間を1秒、0.5秒及び0.24秒に設定し、各照射時間において640μm角の真鍮の端子と厚さ200μmの銅板とを接合可能なレーザ出力を、無処理銅板と本発明のレーザ加工用銅板(粗化銅板)について測定した結果である。本実施形態で使用している粗化銅板のL値は63である。この測定結果から、無処理銅板よりも本発明のレーザ加工用銅板(粗化銅板)の方が20乃至30W程小さいレーザ出力で端子と銅板との溶接接合が可能であり、また、レーザ出力が65W程度の結果を比較すると、同程度のレーザ出力においては照射時間が半分程度に短縮可能であることがわかる。   FIG. 2 shows the relationship between the laser output (fundamental wavelength) capable of joining the terminal and the copper plate and the irradiation time. The measurement results were as follows: a fiber laser with a fundamental wavelength of 1084 nm was used, irradiation times were set to 1 second, 0.5 seconds, and 0.24 seconds, a 640 μm square brass terminal and a 200 μm thick copper plate at each irradiation time. Is a result of measuring the unprocessed copper plate and the laser processing copper plate (roughened copper plate) of the present invention. The L value of the roughened copper plate used in this embodiment is 63. From this measurement result, the laser processing copper plate (roughened copper plate) of the present invention can be welded to the terminal and the copper plate with a laser output smaller by 20 to 30 W than the untreated copper plate, and the laser output can be reduced. Comparing the results of about 65 W, it can be seen that the irradiation time can be reduced to about half at the same laser output.

図3はL値とレーザ光照射による銅板の溶け込み深さとの関係を示している。この測定結果は、L値が各々異なる9枚の試料銅板を作成し、それぞれの銅板に対して、基本波長1084nm、出力100Wのレーザ光を、加工速度2m/秒においてビードオン溶接した後における、レーザ照射箇所の断面における溶融領域の深さを測定した結果である。この測定結果から、レーザ光吸収面2のL値が50以上75以下の場合に、溶接に必要とされる溶け込み深さ10乃至60μmが得られることがわかる。レーザ光吸収面2のL値が75より大であると、レーザ光吸収面2のレーザ吸収率が不足し、ファイバレーザによる溶接に不適となる。また、レーザ光吸収面2のL値が50未満であると、粒子が剥離しやすくなるという不具合が生じる。レーザ光吸収面2のL値は、レーザ光の吸収および微粒子の剥離防止という点からという点から55以上70以下であることがより望ましい。ちなみに、光沢のある銅板のL値はほぼ80である。   FIG. 3 shows the relationship between the L value and the penetration depth of the copper plate by laser light irradiation. The measurement results were obtained by preparing nine sample copper plates with different L values, and laser-beaming the laser light having a fundamental wavelength of 1084 nm and an output of 100 W to each copper plate at a processing speed of 2 m / sec. It is the result of measuring the depth of the fusion | melting area | region in the cross section of an irradiation location. From this measurement result, it is understood that when the L value of the laser light absorption surface 2 is 50 or more and 75 or less, a penetration depth of 10 to 60 μm required for welding can be obtained. If the L value of the laser light absorption surface 2 is greater than 75, the laser absorption rate of the laser light absorption surface 2 is insufficient, and it is unsuitable for welding with a fiber laser. Further, when the L value of the laser light absorbing surface 2 is less than 50, there arises a problem that the particles are easily separated. The L value of the laser light absorbing surface 2 is more preferably 55 or more and 70 or less from the viewpoint of absorption of laser light and prevention of peeling of fine particles. Incidentally, the L value of the glossy copper plate is approximately 80.

また、レーザ光吸収面2の微細粒状突起2aを構成する粒子の平均粒径φは0.3μm以上3μm以下であることが望ましい。平均粒径φが0.3μm以上3μm以下であればレーザ光吸収面2のL値が50以上75以下という比較的明るい値であるにもかかわらず図2の結果に示されたような高いレーザ光吸収特性を実現できる。これは微細粒状突起2aによる比較的大きな凹凸がレーザ光吸収面2に形成され且つ微細粒状突起2aを構成している粒子間に比較的多数の隙間が形成され(図8参照)、微細粒状突起2aによる凹凸と粒子間の多数の隙間により入射光の吸収が促進されるためであると考えられる。
平均粒径φが0.1μm以上であれば、本発明による粗化銅板のような微細粒状突起と多数の隙間からなる構造により、上記のように微粒子としてのレーザ光吸収特性を顕著に示し、高いレーザ光吸収特性を得ることができる(図5、図8、図9、図10参照)。また、平均粒径φは、加工に使用するレーザ光の波長と同程度以下(波長約1μm程度の赤外レーザの場合、φは1μm以下)である場合、レーザ光吸収特性が最も優れる。ただし、平均粒径φが3μm以下であれば、COレーザはもちろん、波長1μm程度のレーザ光でも良好なレーザ光吸収特性を得ることができる。
なお、図8〜図10に示されたように、順にめっき電流を強くしていくことによって、粒子間がめっき材で埋められていく傾向がある。図8の状態では、銅箔表面の粒子が原形を保持しているため、上記の理由により、良好なレーザ光吸収特性が得られる。図9、図10のように、粒子間がめっき材で埋められていくと、レーザ光吸収特性は次第に低下するものの、ここに示されたように微細粒状突起と多数の隙間からなる構造を保持することにより、本発明の効果を奏する。反面、図9、図10の場合に比べ、図8の場合は粒子の密着強度が低下し、更にめっきが弱くなると、粒子の剥離が起こりやすくなる。このように、めっき条件は、レーザ光吸収性と粒子密着性を両立するように決定される。
In addition, it is desirable that the average particle diameter φ of the particles constituting the fine granular protrusions 2a of the laser light absorbing surface 2 is 0.3 μm or more and 3 μm or less. When the average particle diameter φ is 0.3 μm or more and 3 μm or less, a high laser as shown in the result of FIG. 2 although the L value of the laser light absorption surface 2 is a relatively bright value of 50 or more and 75 or less. Light absorption characteristics can be realized. This is because relatively large irregularities due to the fine granular protrusions 2a are formed on the laser light absorbing surface 2 and a relatively large number of gaps are formed between the particles constituting the fine granular protrusions 2a (see FIG. 8). It is thought that this is because the absorption of incident light is promoted by the unevenness due to 2a and the numerous gaps between the particles.
If the average particle diameter φ is 0.1 μm or more, the structure consisting of fine granular protrusions such as the roughened copper plate according to the present invention and a large number of gaps, the laser light absorption characteristics as fine particles as shown above are remarkably exhibited. High laser light absorption characteristics can be obtained (see FIGS. 5, 8, 9, and 10). In addition, when the average particle diameter φ is equal to or less than the wavelength of the laser beam used for processing (in the case of an infrared laser having a wavelength of about 1 μm, φ is 1 μm or less), the laser light absorption characteristics are most excellent. However, if the average particle diameter φ is 3 μm or less, good laser light absorption characteristics can be obtained not only for CO 2 laser but also for laser light having a wavelength of about 1 μm.
In addition, as shown in FIGS. 8 to 10, there is a tendency that the space between the particles is filled with the plating material by increasing the plating current in order. In the state of FIG. 8, since the particles on the surface of the copper foil retain the original shape, good laser light absorption characteristics can be obtained for the above reason. As shown in FIGS. 9 and 10, when the space between the particles is filled with the plating material, the laser light absorption characteristic gradually decreases, but as shown here, the structure composed of fine granular protrusions and a large number of gaps is maintained. By doing so, the effects of the present invention are exhibited. On the other hand, in the case of FIG. 8, when the adhesion strength of the particles is reduced and the plating becomes weaker than in the cases of FIGS. As described above, the plating conditions are determined so as to achieve both laser light absorbability and particle adhesion.

[レーザ加工用銅板の製造方法]
次に、レーザ加工用銅板1の製造方法について説明する。
本発明のレーザ加工用銅板1は、電気分解により銅板4の両面に銅微粒子を生成させる電解処理と、その電解処理の後に、当該銅微粒子を銅板4の両面に定着させるめっき処理とを1サイクルとして、これらの処理を1サイクル以上実施することにより形成される。
[Method for producing copper plate for laser processing]
Next, the manufacturing method of the copper plate 1 for laser processing is demonstrated.
The copper plate 1 for laser processing of the present invention is one cycle of electrolytic treatment for generating copper fine particles on both surfaces of the copper plate 4 by electrolysis and plating treatment for fixing the copper fine particles on both surfaces of the copper plate 4 after the electrolytic treatment. As a result, the above process is performed for one cycle or more.

図4は従来の電解銅箔の表面状態を示す電子顕微鏡写真である。図5は電解処理とめっき処理とを1サイクル以上施した銅板の表面状態を示す電子顕微鏡写真である。後者の方が前者よりも銅微粒子の粒径が小さく、微細粒状突起2aによる凹凸と粒子間の隙間が多数存在していることがわかる。   FIG. 4 is an electron micrograph showing the surface state of a conventional electrolytic copper foil. FIG. 5 is an electron micrograph showing the surface state of a copper plate subjected to electrolytic treatment and plating treatment for one cycle or more. It can be seen that the latter has a smaller particle size of the copper fine particles than the former, and there are many irregularities and gaps between the particles due to the fine granular protrusions 2a.

電解処理及びめっき処理により、レーザ光吸収面2及び樹脂接着面3のL値をそれぞれ制御しつつレーザ加工用銅板1を製造するには、図6及び図7に例示する2つの方法がある。   There are two methods illustrated in FIGS. 6 and 7 for manufacturing the copper plate 1 for laser processing while controlling the L value of the laser light absorption surface 2 and the resin bonding surface 3 by electrolytic treatment and plating treatment, respectively.

[第1の製造方法]
図6はレーザ加工用銅板1の第1の製造方法を示している。図6において、6は電解槽、7は電解槽6に収容された電気銅めっき液、8A、8Bは電気銅めっき液7中に対向配置された複数対(図示の例では2対)の不溶性電極(陽極電極)、9A、9Bは電気銅めっき液7中に対向配置された複数対(図示の例では3対)の銅電極(陰極電極)、4は表面を粗化すべき銅板である。不溶性電極8A、8B対と銅電極9A、9B対は互いに縦列配置されている。銅板4は、陰極に保たれた状態で不溶性電極8A、8B対の間に配置されることによりめっき処理が施され、陽極に保たれた状態で銅電極9A、9B対の間に配置されることにより電解処理が施される。めっき液7として、40〜250g/lの硫酸銅、30〜210g/lの硫酸、10〜80ppmの塩酸、光沢剤等の添加剤が使用される。
[First manufacturing method]
FIG. 6 shows a first manufacturing method of the laser processing copper plate 1. In FIG. 6, 6 is an electrolytic cell, 7 is an electrolytic copper plating solution accommodated in the electrolytic cell 6, 8A and 8B are a plurality of pairs (two pairs in the illustrated example) insoluble in the electrolytic copper plating solution 7. Electrodes (anode electrodes), 9A and 9B are a plurality of pairs (three pairs in the illustrated example) of copper electrodes (cathode electrodes) disposed opposite to each other in the electrolytic copper plating solution 7, and 4 is a copper plate whose surface is to be roughened. The insoluble electrodes 8A and 8B and the copper electrodes 9A and 9B are arranged in tandem with each other. The copper plate 4 is plated between the insoluble electrodes 8A and 8B while being held at the cathode, and is placed between the copper electrodes 9A and 9B while being held at the anode. Thus, electrolytic treatment is performed. As the plating solution 7, additives such as 40 to 250 g / l copper sulfate, 30 to 210 g / l sulfuric acid, 10 to 80 ppm hydrochloric acid, and a brightener are used.

めっき処理工程((a)、(c)及び(e))における電流密度及び電流値は一定である。また、電解処理工程((b)及び(d))における電流密度及び電流値も一定である。めっき処理工程における電流密度及び電流値がそれぞれ1.2乃至2.0A/dm、25乃至40Aの場合、電解処理工程における電流密度及び電流値はそれぞれ1.7乃至2.5A/dm、35乃至50Aとすることが望ましい。また、各工程の所要時間は2.5乃至5分である。 The current density and current value in the plating process ((a), (c) and (e)) are constant. Moreover, the current density and current value in the electrolytic treatment process ((b) and (d)) are also constant. When the current density and current value in the plating process are 1.2 to 2.0 A / dm 2 and 25 to 40 A, respectively, the current density and current value in the electrolytic process are 1.7 to 2.5 A / dm 2 , respectively. 35 to 50 A is desirable. The time required for each process is 2.5 to 5 minutes.

まず、(a)に示すように、銅板4を陰極に保った状態で不溶性電極(陽極電極)8A、8B間に配置することにより、銅板4の表面の圧延すじを緩和するためのめっき処理を行う。つぎに、(b)に示すように、銅板4を陽極に保った状態で銅電極(陰極電極)9A、9B間に配置することにより、銅板4の表面に微細状突起2aを構成する銅微粒子を生成させるための電解処理を行う。その後、(c)に示すように、銅板4を再び陰極に保った状態で不溶性電極(陽極電極)8A、8B間に配置してめっき処理を行う。このめっき処理により、銅板4の表面に生成された銅微粒子が銅板4に定着し、銅板4の表面に微細状突起2aが形成される。その後、(d)に示すように、銅板4を再び陽極に保った状態で銅電極(陰極電極)9A、9B間に配置して電解処理を行う。このとき、銅板4の樹脂接着面3を隠すように樹脂製の邪魔板10を設けておく。銅板4の樹脂接着面3側に邪魔板10が設けられていることにより、樹脂接着面3における銅微粒子の生成が抑制される。その結果、樹脂接着面3よりも多くの銅微粒子がレーザ光吸収面2に生成される。その後、(e)に示すように、銅板4を陰極に保った状態で不溶性電極(陽極電極)8A、8B間に配置してめっき処理を行う。このときも、銅板4の樹脂接着面3を隠すように邪魔板10を設けておく。銅板4の樹脂接着面3側に邪魔板10が設けられていることにより、樹脂接着面3における銅微粒子の定着が抑制される。これにより、樹脂接着面3よりも多くの銅微粒子がレーザ光吸収面2に定着される。 First, as shown in (a), by placing the copper plate 4 between the insoluble electrodes (anode electrodes) 8A and 8B while keeping the copper plate 4 at the cathode, a plating treatment for relaxing the rolling stripes on the surface of the copper plate 4 is performed. Do. Next, (b), the copper electrode (cathode) 9A while maintaining the copper plate 4 to the anode, by placing between 9B, copper constituting the fine particle-like projections 2a on the surface of the copper plate 4 An electrolytic treatment for generating fine particles is performed. Thereafter, as shown in (c), the copper plate 4 is kept again as a cathode, and is disposed between the insoluble electrodes (anode electrodes) 8A and 8B to perform plating. This plating, copper particles formed on the surface of the copper plate 4 is fixed to the copper plate 4, the fine particle-like projections 2a on the surface of the copper plate 4 is formed. Thereafter, as shown in (d), the electrolytic treatment is performed by placing the copper plate 4 between the copper electrodes (cathode electrodes) 9A and 9B while keeping the copper plate 4 at the anode again. At this time, a resin baffle plate 10 is provided so as to hide the resin bonding surface 3 of the copper plate 4. Since the baffle plate 10 is provided on the resin bonding surface 3 side of the copper plate 4, the generation of copper fine particles on the resin bonding surface 3 is suppressed. As a result, more copper fine particles than the resin bonding surface 3 are generated on the laser light absorbing surface 2. Thereafter, as shown in (e), plating is performed by placing the copper plate 4 between the insoluble electrodes (anode electrodes) 8A and 8B while keeping the copper plate 4 at the cathode. Also at this time, the baffle plate 10 is provided so as to hide the resin bonding surface 3 of the copper plate 4. By providing the baffle plate 10 on the resin bonding surface 3 side of the copper plate 4, fixing of the copper fine particles on the resin bonding surface 3 is suppressed. As a result, more copper fine particles than the resin bonding surface 3 are fixed to the laser light absorbing surface 2.

以上の一連の処理により、銅板4の両面を同時に処理してレーザ光吸収面2及び樹脂接着面3を有するレーザ加工用銅板1が製造される。レーザ光吸収面2のL値及び樹脂接着面3のL値は、めっき処理工程における電流密度及び電流値、電解処理工程における電流密度及び電流値、各工程の所要時間を調整することにより制御可能である。   Through the series of processes described above, the copper plate 4 for laser processing having the laser light absorption surface 2 and the resin bonding surface 3 is manufactured by simultaneously processing both surfaces of the copper plate 4. The L value of the laser light absorbing surface 2 and the L value of the resin bonding surface 3 can be controlled by adjusting the current density and current value in the plating process, the current density and current value in the electrolytic process, and the time required for each process. It is.

[第2の製造方法]
図7はレーザ加工用銅板1の第2の製造方法を示している。図7の方法では、邪魔板10は使用せず、その代わりに、電解処理工程(b)において、銅板4のレーザ光吸収面2側と樹脂接着面3側とで銅電極(陰極電極)9A、9Bとの間の電流値及び電流密度に差を設ける。
[Second manufacturing method]
FIG. 7 shows a second manufacturing method of the laser processing copper plate 1. In the method of FIG. 7, the baffle plate 10 is not used. Instead, in the electrolytic treatment step (b), a copper electrode (cathode electrode) 9A is formed between the laser light absorbing surface 2 side and the resin bonding surface 3 side of the copper plate 4. , 9B, a difference in current value and current density is provided.

めっき処理工程(a)における電流密度及び電流値は両面2、3側とも同じである。めっき処理工程における電流密度及び電流値がそれぞれ1.2乃至2.0A/dm、25乃至40Aの場合、電解処理工程(b)におけるレーザ光吸収面2側の電極9Aと銅板4との間の電流密度及び電流値はそれぞれ1.7乃至2.5A/dm、35乃至50Aとし、樹脂接着面3側の電極9Bと銅板4との間の電流密度及び電流値はレーザ光吸収面2側よりも小とする。各工程の所要時間は2.5乃至5分である。 The current density and current value in the plating step (a) are the same on both sides 2 and 3. When the current density and the current value in the plating process are 1.2 to 2.0 A / dm 2 and 25 to 40 A, respectively, between the electrode 9A on the laser light absorption surface 2 side and the copper plate 4 in the electrolytic process (b). The current density and the current value are 1.7 to 2.5 A / dm 2 and 35 to 50 A, respectively. The current density and the current value between the electrode 9B on the resin bonding surface 3 side and the copper plate 4 are the laser light absorption surface 2. Smaller than the side. The time required for each step is 2.5 to 5 minutes.

めっき処理工程(a)と電解処理工程(b)を繰り返すことによりレーザ加工用銅板1が製造される。その際、めっき処理工程(a)により、まず銅板4の表面の圧延すじを緩和する。つぎに、電解処理工程(b)により、銅板4の表面に微細状突起2aを構成する銅微粒子を生成させる。樹脂接着面3側よりもレーザ光吸収面2側の方が電流値及び電流密度が大きいため、微細状突起2aを構成する銅微粒子が樹脂接着面3よりもレーザ光吸収面2に多く生成される。その後、再びめっき処理工程(a)により、銅板4の表面の銅微粒子を銅板4に定着させる。これにより、銅板4の表面に微細状突起2aが形成される。その後、再び電解処理工程(b)により、銅板4の表面に銅微粒子をさらに生成させる。このときも銅微粒子が樹脂接着面3よりもレーザ光吸収面2に多く生成される。その後、更にめっき処理工程(a)により、銅板4の表面の銅微粒子を銅板4に定着させる。 By repeating the plating treatment step (a) and the electrolytic treatment step (b), the laser processing copper plate 1 is manufactured. At that time, the rolling stripe on the surface of the copper plate 4 is first relaxed by the plating step (a). Next, by electrolytic process step (b), to produce a copper fine particles constituting the fine particle-like projections 2a on the surface of the copper plate 4. Since the current value and the current density towards the laser light absorbing surface 2 side of the resin adhesive face 3 side is large, many generated laser light absorbing surface 2 than copper particulate resin bonding surface 3 constituting the fine particle-like projections 2a Is done. Thereafter, the copper fine particles on the surface of the copper plate 4 are fixed to the copper plate 4 again by the plating treatment step (a). Thus, the fine particle-like projections 2a on the surface of the copper plate 4 is formed. Thereafter, copper fine particles are further generated on the surface of the copper plate 4 again by the electrolytic treatment step (b). Also at this time, more copper fine particles are generated on the laser light absorption surface 2 than on the resin bonding surface 3. Thereafter, the copper fine particles on the surface of the copper plate 4 are fixed to the copper plate 4 by a plating process (a).

以上の一連の処理により、銅板4の両面を同時に処理してレーザ光吸収面2及び樹脂接着面3を有するレーザ加工用銅板1が製造される。レーザ光吸収面2のL値及び樹脂接着面3のL値は、めっき処理工程における電流密度及び電流値、電解処理工程におけるレーザ光吸収面2側と樹脂接着面3側の電流密度及び電流値、各工程の所要時間を調整することにより制御可能である。   Through the series of processes described above, the copper plate 4 for laser processing having the laser light absorption surface 2 and the resin bonding surface 3 is manufactured by simultaneously processing both surfaces of the copper plate 4. The L value of the laser light absorbing surface 2 and the L value of the resin bonding surface 3 are the current density and current value in the plating process, and the current density and current value on the laser light absorbing surface 2 side and the resin bonding surface 3 side in the electrolytic process. Control is possible by adjusting the time required for each process.

なお、上記の例では、本発明のレーザ加工用銅板1を製造する方法として、電解処理とめっき処理とを併用した製造方法について説明したが、本発明のレーザ加工用銅板1を製造する方法はこれに限定されるものではない。たとえば、電解処理のみによって銅板4の両面を同時に粗化することによりレーザ光吸収面2及び樹脂接着面3を有するレーザ加工用銅板1を製造することも可能である。ただし、めっき処理を行わないことによる銅板4の表面への銅微粒子の定着性の低下は避けられない。   In the above example, as a method of manufacturing the laser processing copper plate 1 of the present invention, a manufacturing method using both electrolytic treatment and plating treatment has been described. However, the method of manufacturing the laser processing copper plate 1 of the present invention is as follows. It is not limited to this. For example, it is also possible to manufacture the laser processing copper plate 1 having the laser light absorption surface 2 and the resin bonding surface 3 by simultaneously roughening both surfaces of the copper plate 4 only by electrolytic treatment. However, a decrease in fixability of the copper fine particles on the surface of the copper plate 4 due to not performing the plating treatment is inevitable.

1 レーザ加工用銅板(粗化銅板)
2 レーザ光吸収面(一方の面)
2a 微細粒状突起
3 樹脂接着面(他方の面)
3a 微細粒状突起
4 銅板
5 樹脂
1 Laser processing copper plate (roughened copper plate)
2 Laser light absorption surface (one surface)
2a Fine granular protrusion 3 Resin bonding surface (the other surface)
3a Fine granular protrusion 4 Copper plate 5 Resin

Claims (10)

厚さ70μm以上の銅板であって、
前記銅版の一方の面のレーザ光吸収性を高めるとともに他方の面の樹脂接着性を良好にさせるべく、前記銅板の両面に微細粒状突起を形成してなり、
前記微細粒状突起が、銅微粒子により構成され、
前記銅微粒子が、前記銅板の他方の面よりも、一方の面に多いことを特徴とするレーザ加工用銅板。
A copper plate having a thickness of 70 μm or more,
In order to improve the laser light absorbability of one surface of the copper plate and to improve the resin adhesion of the other surface, fine grain protrusions are formed on both surfaces of the copper plate,
The fine granular protrusion is composed of copper fine particles,
The copper plate for laser processing, wherein the copper fine particles are more on one surface than the other surface of the copper plate.
前記一方の面のL値が50以上75以下である、請求項1に記載のレーザ加工用銅板。   The copper plate for laser processing according to claim 1, wherein the L value of the one surface is 50 or more and 75 or less. 前記一方の面の微細粒状突起を構成する粒子の平均粒径が0.3μm以上3μm以下である、請求項1又は2に記載のレーザ加工用銅板。   The copper plate for laser processing according to claim 1 or 2, wherein an average particle diameter of particles constituting the fine granular protrusion on the one surface is 0.3 µm or more and 3 µm or less. 前記粒子の平均粒径が0.1μm以上、加工に使用するレーザ光の波長以下であり、
前記加工に使用するレーザ光の波長が1084nm以下である、請求項1又は2に記載のレーザ加工用銅板。
The average particle diameter of the particles is 0.1 μm or more, which is less than the wavelength of the laser beam used for processing,
The copper plate for laser processing according to claim 1 or 2, wherein a wavelength of laser light used for the processing is 1084 nm or less.
前記微細粒状突起は、前記銅微粒子と、当該銅微粒子を定着させるめっき層とを1組として、これらが1組以上形成されたものである、請求項1乃至4の何れか1項に記載のレーザ加工用銅板。 5. The fine granular protrusion according to claim 1, wherein one or more sets of the copper fine particles and the plating layer for fixing the copper fine particles are formed as one set . Copper plate for laser processing. 請求項1乃至5の何れか1項に記載のレーザ加工用銅板の前記他方の面に、樹脂基板が接着されていることを特徴とするプリント基板。   A printed circuit board, wherein a resin substrate is bonded to the other surface of the laser processing copper plate according to claim 1. 一方の面のレーザ光吸収性を高めるとともに他方の面の樹脂接着性を良好にさせるべく、両面に銅微粒子から構成される微細粒状突起を有し、
前記銅微粒子が、前記他方の面よりも、前記一方の面に多い、
厚さ70μm以上の銅板を用い、
前記銅板の一方の面にレーザ光を照射し、前記微細粒状突起によりレーザ光を吸収させて、前記銅板を溶接させることを特徴とする銅板のレーザ加工方法。
In order to improve the laser light absorption of one surface and improve the resin adhesion of the other surface, it has fine granular projections composed of copper fine particles on both sides,
The copper fine particles are more on the one surface than on the other surface,
Using a copper plate with a thickness of 70 μm or more,
A laser processing method for a copper plate, wherein one surface of the copper plate is irradiated with laser light, the laser light is absorbed by the fine granular protrusions, and the copper plate is welded.
前記一方の面のL値が50以上75以下である、請求項7に記載の銅板のレーザ加工方法。   The laser processing method of the copper plate according to claim 7 whose L value of said one side is 50 or more and 75 or less. 前記レーザ光の波長が、前記銅微粒子の粒径よりも大きい、請求項7又は8に記載の銅板のレーザ加工方法。   The laser processing method for a copper plate according to claim 7 or 8, wherein a wavelength of the laser beam is larger than a particle diameter of the copper fine particles. 前記レーザ光の波長が、1084nm以下である、請求項9に記載の銅板のレーザ加工方法。   The copper plate laser processing method according to claim 9, wherein a wavelength of the laser light is 1084 nm or less.
JP2011163894A 2011-07-27 2011-07-27 Copper plate for laser processing, printed circuit board using the copper plate for laser processing, and laser processing method for copper plate Active JP5839876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011163894A JP5839876B2 (en) 2011-07-27 2011-07-27 Copper plate for laser processing, printed circuit board using the copper plate for laser processing, and laser processing method for copper plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011163894A JP5839876B2 (en) 2011-07-27 2011-07-27 Copper plate for laser processing, printed circuit board using the copper plate for laser processing, and laser processing method for copper plate

Publications (2)

Publication Number Publication Date
JP2013028828A JP2013028828A (en) 2013-02-07
JP5839876B2 true JP5839876B2 (en) 2016-01-06

Family

ID=47786125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011163894A Active JP5839876B2 (en) 2011-07-27 2011-07-27 Copper plate for laser processing, printed circuit board using the copper plate for laser processing, and laser processing method for copper plate

Country Status (1)

Country Link
JP (1) JP5839876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001905A1 (en) * 2019-07-01 2021-01-07 三菱電機株式会社 Laser machining apparatus, laser machining method, device for controlling laser machining apparatus, and machine learning device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303693A (en) * 1987-06-02 1988-12-12 Fujitsu Ltd High energy radiation working method
JPH08218137A (en) * 1995-02-14 1996-08-27 Kobe Steel Ltd Copper or copper alloy member excellent in laser weldability
JPH09107168A (en) * 1995-08-07 1997-04-22 Mitsubishi Electric Corp Laser processing method of wiring board, laser processing device of wiring board and carbon dioxide gas laser oscillator for wiring board processing
JP4065215B2 (en) * 2003-05-13 2008-03-19 福田金属箔粉工業株式会社 Copper foil for printed wiring boards
EP2133448B1 (en) * 2007-03-02 2019-10-30 Furukawa Electric Co., Ltd. Production method and device for surface roughening of a copper plate
JP4539743B2 (en) * 2008-03-20 2010-09-08 株式会社デンソー Laser welding method

Also Published As

Publication number Publication date
JP2013028828A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
TWI383721B (en) Printed wiring board
JP5275701B2 (en) Aluminum material for printed wiring board and method for producing the same
TWI496954B (en) An electrolytic copper alloy foil manufacturing method, an electrolytic solution for the production of the alloy foil, a negative electrode current collector for a secondary battery, a secondary battery and an electrode
TWI704048B (en) Surface-treated copper foil and copper clad laminate made of it
US9711440B2 (en) Wiring board and method for manufacturing the same
US20100294539A1 (en) Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
JP2018141229A (en) Electrolytic copper foil having rugby ball-like copper particles and production method of circuit board component
JP2018141228A (en) Electrolytic copper foil having villus-like copper particles and production method of circuit board component
US11114216B2 (en) Aluminum-resin composite, insulated aluminum wire, flat cable and processes for producing the same
WO2013146088A1 (en) Metal foil
JP2008004744A (en) Solid-state electrolytic capacitor manufacturing method
JP2009231266A (en) Conductive microparticle, anisotropic conductive material, and connection structural body
KR101992507B1 (en) Electrolysis copper alloy foil and electrolysis copper alloy foil with carrier foil
JP5145092B2 (en) Aluminum material for printed wiring board and method for producing the same
TW201448338A (en) Copper foil, anode for lithium ion battery, and lithium ion secondary battery
JP5839876B2 (en) Copper plate for laser processing, printed circuit board using the copper plate for laser processing, and laser processing method for copper plate
EP3492211A1 (en) Laser treatment method, bonding method, copper member, method for manufacturing multilayer print wiring substrate, and multilayer print wiring substrate
CN110301040A (en) Extra thin copper foil with carrier foils
JP6685112B2 (en) Lead frame, lead frame package, and manufacturing method thereof
JP2010043346A (en) Method of forming conductive pattern and method of manufacturing plated terminal
CN1364114A (en) Carrier foil-pasted metal foil and production method thereof
KR102372707B1 (en) Carrier material for forming perforated metal foil and perforated metal foil with carrier material
JP2007046095A (en) Copper foil, and surface treatment method therefor
JP2019173057A (en) Plated metallic material
JP2019026879A (en) Production method of electronic component, and electronic component

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R151 Written notification of patent or utility model registration

Ref document number: 5839876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350