JP5838693B2 - Manufacturing method of steel with excellent high temperature strength - Google Patents

Manufacturing method of steel with excellent high temperature strength Download PDF

Info

Publication number
JP5838693B2
JP5838693B2 JP2011212539A JP2011212539A JP5838693B2 JP 5838693 B2 JP5838693 B2 JP 5838693B2 JP 2011212539 A JP2011212539 A JP 2011212539A JP 2011212539 A JP2011212539 A JP 2011212539A JP 5838693 B2 JP5838693 B2 JP 5838693B2
Authority
JP
Japan
Prior art keywords
steel material
temperature
less
addition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011212539A
Other languages
Japanese (ja)
Other versions
JP2013072118A (en
Inventor
木村 達己
達己 木村
清史 上井
清史 上井
三田尾 眞司
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011212539A priority Critical patent/JP5838693B2/en
Publication of JP2013072118A publication Critical patent/JP2013072118A/en
Application granted granted Critical
Publication of JP5838693B2 publication Critical patent/JP5838693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築や橋梁、船舶などの溶接構造物に幅広く用いられている溶接構造用鋼材に係り、とくに火災時の高温強度(耐火性能と呼ぶ)に優れた、いわゆる耐火鋼材に関する。ここでいう「鋼材」には、厚板、H形鋼等を含むものである。   The present invention relates to a welded structural steel material widely used in welded structures such as buildings, bridges, ships, and the like, and more particularly, to a so-called fireproof steel material that is excellent in high-temperature strength during fire (referred to as fireproof performance). The “steel material” here includes thick plates, H-section steel, and the like.

一般に、溶接構造用鋼材は、常温では必要十分な強度を有しているが、350℃を超える温度に曝されると、通常、強度が低下するようになる。このため、このような溶接構造用鋼材を、たとえば建築構造物の構造部材に使用した場合には、火災時における安全性を確保するために、当該構造部材に耐火被覆を施し、鋼材の温度上昇を抑えるなどの工夫が行われている。   In general, a steel material for welded structure has a necessary and sufficient strength at room temperature, but when exposed to a temperature exceeding 350 ° C., the strength usually decreases. For this reason, when such a welded structural steel material is used, for example, as a structural member of a building structure, in order to ensure safety in the event of a fire, a fireproof coating is applied to the structural member to increase the temperature of the steel material. Ingenuity such as suppression is carried out.

しかし、最近では、建築構造物のコスト低減や美観上の観点から、耐火被覆の低減や、さらには耐火被覆の省略(無被覆化)が要望されている。このような要望に対し、耐火被覆を必要としない溶接構造用鋼材、すなわち耐火鋼材が開発され、600℃で常温強度規格値の2/3以上の優れた高温強度を保有する耐火鋼材が広く用いられている。
このような耐火鋼材としては、たとえば、特許文献1、特許文献2、特許文献3、特許文献4などに、記載がある。特許文献1〜4に記載された耐火鋼材は、いずれもMoを必須含有し、Mo炭化物の析出により、600℃で所望の優れた強度(高温強度)を確保している。なお、上記した耐火鋼材では、Mo炭化物の析出強化以外に、フェライト粒の微細化、Mo以外の合金元素による固溶強化、析出強化さらには、硬質相の分散による強化などを併用している。
However, recently, from the viewpoint of cost reduction and aesthetics of building structures, reduction of fireproof coating and further omission of fireproof coating (uncovering) have been demanded. In response to these demands, a welded structural steel material that does not require a fireproof coating, that is, a refractory steel material has been developed, and refractory steel materials having excellent high temperature strength at 600 ° C, which is more than 2/3 of the normal temperature strength standard value, are widely used. It has been.
Examples of such a refractory steel material are described in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like. All of the refractory steel materials described in Patent Documents 1 to 4 contain Mo essentially, and the desired excellent strength (high-temperature strength) is secured at 600 ° C. by precipitation of Mo carbides. In addition to the precipitation strengthening of Mo carbides, the above-mentioned refractory steel materials are used in combination with refinement of ferrite grains, solid solution strengthening with alloy elements other than Mo, precipitation strengthening, and strengthening by dispersion of the hard phase.

しかしながら、Moは希少な資源で高価であることから、多量のMoを含有する耐火鋼材は、Mo原料の高騰により、耐火鋼材の経済的な優位性が損なわれる場合が多い。そのために、低MoとするかあるいはMo無添加とするかの検討が行われている。
例えば、特許文献5には、C:0.001〜0.030%、Si:0.05〜0.50%、Mn:0.4〜2.0%、Nb:0.03〜0.50%、Ti:0.005%以上0.040%未満、N:0.0001〜0.0050%、Al:0.005〜0.030%を含み、さらに、Mg:0.005%以下、REM:0.010%以下の1種または2種を含有し、P、Sを低く制限し、C、Nb、Ti、Nを特定の関係を満足するように調整した耐火鋼材が記載されている。特許文献5に記載された技術では、Nbを多量含有させ、さらに炭化物を形成しないようにC量を低く抑えて、固溶Nbのドラッグ効果を利用して、Mo含有鋼材と同等の高温強度を確保できるとしている。なお、特許文献5に記載された技術では、Mo:0.10%未満の含有が許容されている。
However, since Mo is a scarce resource and expensive, a refractory steel material containing a large amount of Mo often loses the economic superiority of the refractory steel material due to soaring Mo raw material. Therefore, studies are being made on whether to use low Mo or no addition of Mo.
For example, in Patent Document 5 , C: 0.001 to 0.030%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, Nb: 0.03 to 0.50%, Ti: 0.005% or more and less than 0.040%, N: 0.0001 to 0.0050 %, Al: 0.005 to 0.030%, Mg: 0.005% or less, REM: 0.010% or less, one or two of them, P and S are limited low, C, Nb, Ti, N Refractory steel materials adjusted to satisfy specific relationships are described. In the technique described in Patent Document 5, a high amount of Nb is contained, and the amount of C is kept low so as not to form carbides. The high temperature strength equivalent to that of Mo-containing steel is obtained by utilizing the drag effect of solute Nb. It can be secured. In the technique described in Patent Document 5, the content of Mo: less than 0.10% is allowed.

また、特許文献には、C:0.005〜0.030%、Si:0.05〜0.40%、Mn:0.40〜1.85%、Nb:0.01%以上0.35%未満、N:0.0001〜0.0045%、およびZr:0.005〜0.060%またはREM:0.001〜0.01%の1種または2種を含有し、Al:0.03%以下、さらにP、Sを低く制限し、かつZr、REM、Nが特定の関係を満足し、さらにC、Nbが特定の関係を満足するように調整した耐火H形鋼が記載されている。特許文献に記載された技術では、高価なMoを含有することなく、優れた高温強度を確保でき、再熱脆化を防止できるとしている。 In Patent Document 6 , C: 0.005 to 0.030%, Si: 0.05 to 0.40%, Mn: 0.40 to 1.85%, Nb: 0.01% or more and less than 0.35%, N: 0.0001 to 0.0045%, and Zr: 0.005 to Contains one or two of 0.060% or REM: 0.001 to 0.01%, Al: 0.03% or less, further restricts P and S, and Zr, REM and N satisfy a specific relationship, and C , Refractory H-section steel adjusted so that Nb satisfies a specific relationship is described. According to the technique described in Patent Document 6 , excellent high-temperature strength can be secured and reheat embrittlement can be prevented without containing expensive Mo.

特許2828054号公報Japanese Patent No. 2828054 特許3596473号公報Japanese Patent No.3596473 特開平6-10040号公報Japanese Patent Laid-Open No. 6-10040 特開平9-137218号公報JP-A-9-137218 特開2008−121120号公報JP 2008-121120 A 特開2008−179881号公報JP 2008-179881 A

しかしながら、特許文献5,6に記載された技術では、Cを低く調整する必要があり、精錬時間(脱炭時間)が長くなるという問題や、例えばMn添加の副原料として、Cを含まない金属Mnを利用する必要があり、材料コストが高騰するという問題もある。また、特許文献5,6に記載された技術では、極低C化、高Nb含有に伴い再熱脆化が発生しやすくなることや、更なる高温強度の増加を必要とするなどの問題もある。また、特許文献7に記載された技術では、Cを低く調整する必要があり、精錬時間(脱炭時間)が長くなるという問題や、例えば副原料として、Cを含まない原料を利用する必要があり、材料コストが高騰するという問題がある。   However, in the techniques described in Patent Documents 5 and 6, it is necessary to adjust C to be low, and there is a problem that the refining time (decarburization time) becomes long. It is necessary to use Mn, and there is a problem that the material cost increases. In addition, in the techniques described in Patent Documents 5 and 6, there are problems such that reheat embrittlement easily occurs due to extremely low C and high Nb content, and further increase in high-temperature strength is required. is there. Moreover, in the technique described in Patent Document 7, it is necessary to adjust C to be low, and there is a problem that the refining time (decarburization time) becomes long. For example, as a secondary material, it is necessary to use a raw material that does not contain C. There is a problem that the material cost increases.

本発明は、かかる従来技術の問題を解決し、Mo含有量を極力低減した組成でも、安定して所望の高温強度を確保できる、高温強度に優れた耐火鋼材およびその製造方法を提供することを目的とする。   The present invention provides a refractory steel material excellent in high-temperature strength and a method for manufacturing the same, which can solve the problems of the prior art and can stably secure a desired high-temperature strength even with a composition in which the Mo content is reduced as much as possible. Objective.

本発明者らは、上記した目的を達成するために、Mo含有量を極力低減した状態でも、所望の高温強度を安定して確保するための方策について、鋭意研究した。従来Mo含有量を低減したあるいは削減した鋼組成で、耐火性能を向上させるためには、Nbを含有させ、固溶Nbのドラッグ効果を利用していたが、本発明者らは、固溶Nbではなく、Nbの炭窒化物Nb(C,N)、さらにはVの炭窒化物V(C,N)に着目した。   In order to achieve the above-mentioned object, the present inventors diligently studied a method for stably securing a desired high-temperature strength even when the Mo content is reduced as much as possible. Conventionally, in order to improve the fire resistance with a steel composition with reduced or reduced Mo content, Nb was included and the drag effect of solute Nb was used. Instead, attention was paid to Nb carbonitride Nb (C, N) and V carbonitride V (C, N).

そして、本発明者らの更なる研究により、20nm未満の微細な析出物(Nbの炭窒化物およびVの炭窒化物)を適正量析出させることで、火災時に析出するMo量(高温加熱時に炭化物として析出するMo量)が飛躍的に増加し、Mo含有量が少なくても、高温強度が安定して増加すること、すなわち、Mo含有量と火災時にMo炭化物として析出するMo量の比、析出Mo比率(Mo歩留)が飛躍的に向上し、Mo含有量が少なくても、高温強度が向上することを知見した。   By further research by the present inventors, by depositing an appropriate amount of fine precipitates (Nb carbonitride and V carbonitride) of less than 20 nm, the amount of Mo deposited during a fire (during high-temperature heating) The amount of Mo precipitated as carbide) increases dramatically, and even if the Mo content is small, the high-temperature strength increases stably, that is, the ratio of the Mo content to the amount of Mo precipitated as Mo carbide during a fire, It was found that the precipitation Mo ratio (Mo yield) improved dramatically, and the high-temperature strength improved even when the Mo content was small.

本発明はかかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows .

)鋼素材を、熱間圧延して所定寸法の鋼材とするに当たり、前記鋼素材を、質量%で、C:0.01〜0.1%、Si:0.01〜1.0%、Mn:0.1〜2.0%、P:0.030%以下、S:0.030%以下、A1:0.003〜0.1%、Mo:0.010〜0.30%、Nb:0.010〜0.20%、V:0.005〜0.50%を、次(1)式
炭素当量Ceq(%)=C+Si/24+Mn/6+Mo/4+V/14+Ni/40+Cr/5‥‥(1)
(ここで、C,Si,Mn,Mo,V,Ni,Cr:各元素の含有量(質量%)。なお、(1)式中のNi,Crについては、選択元素として含有する場合にはその含有量を、選択元素として含有しない場合には零として計算するものとする。)
で定義される炭素当量Ceqが0.46%以下を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延が、1000〜1350℃の範囲の温度に加熱したのち、圧延終了温度が850℃以上となる熱間圧延を行う熱延工程と、該熱延工程後、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の範囲の温度まで空冷する冷却工程と、該冷却工程後、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の範囲の温度で圧下率:1.0〜10%とする、少なくとも1パスの熱間圧延を行う析出誘起処理工程と、を順次施す工程であることを特徴とする高温強度に優れた耐火鋼材の製造方法。
( 1 ) When a steel material is hot-rolled to obtain a steel material having a predetermined size, the steel material is mass%, C: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.1 to 2.0%, P: 0.030% or less, S: 0.030% or less, A1: 0.003-0.1%, Mo: 0.010-0.30%, Nb: 0.010-0.20%, V: 0.005-0.50% %) = C + Si / 24 + Mn / 6 + Mo / 4 + V / 14 + Ni / 40 + Cr / 5 (1)
(Here, C, Si, Mn, Mo, V, Ni, Cr: content of each element (mass%) . In addition, when Ni and Cr in the formula (1) are contained as selective elements, (If the content is not contained as a selective element, the content shall be calculated as zero.)
The carbon equivalent Ceq defined in the above is adjusted to satisfy 0.46% or less, and the steel material has a composition composed of the balance Fe and inevitable impurities, and the hot rolling is performed at a temperature in the range of 1000 to 1350 ° C. And after the hot rolling step, after the hot rolling step, the range of (Ar3 transformation point-30 ° C) to (Ar3 transformation point-130 ° C). A cooling step of air-cooling to a temperature, and heat of at least one pass after the cooling step at a temperature in the range of (Ar3 transformation point −30 ° C.) to (Ar3 transformation point −130 ° C.): 1.0 to 10% A method for producing a refractory steel material excellent in high-temperature strength, which is a step of sequentially performing a precipitation inducing treatment step of performing hot rolling.

)()において、前記冷却工程における前記空冷に代えて、平均で20℃/s以下の冷却速度で冷却する加速冷却とすることを特徴とする耐火鋼材の製造方法。
)()または()において、前記組成に加えてさらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜1.0%、Cr:0.05〜1.0%、B:0.0001〜0.003%のうちから選ばれた1種または2種以上を含有することを特徴とする耐火鋼材の製造方法。
( 2 ) In ( 1 ), it replaces with the said air cooling in the said cooling process, It is set as the accelerated cooling which cools with an average cooling rate of 20 degrees C / s or less, The manufacturing method of the refractory steel materials characterized by the above-mentioned.
( 3 ) In ( 1 ) or ( 2 ), in addition to the above composition, Cu: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cr: 0.05 to 1.0%, B: 0.0001 to 0.003% A method for producing a refractory steel material, comprising one or more selected from among the above.

)()ないし()のいずれかにおいて、前記組成に加えてさらに、質量%で、Ti:0.003〜0.02%を含有することを特徴とする耐火鋼材の製造方法。
)()ないし()のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%、REM:0.0005〜0.005%のうちから選ばれた1種または2種を含有することを特徴とする耐火鋼材の製造方法。
( 4 ) The method for producing a refractory steel material according to any one of ( 1 ) to ( 3 ), further comprising Ti: 0.003 to 0.02% by mass% in addition to the above composition.
( 5 ) In any one of ( 1 ) to ( 4 ), in addition to the above composition, in addition to mass, one or two selected from Ca: 0.0005 to 0.005% and REM: 0.0005 to 0.005% A method for producing a refractory steel material, comprising:

)()ないし()のいずれかにおいて、前記組成に加えてさらに、前記組成に加えてさらに、質量%で、Zr:0.0001〜0.003%、Mg:0.0001〜0.003%のうちから選ばれた1種または2種を含有することを特徴とする耐火鋼材の製造方法。 ( 6 ) In any one of ( 1 ) to ( 5 ), in addition to the above composition, in addition to the above composition, in addition, by mass%, selected from Zr: 0.0001 to 0.003%, Mg: 0.0001 to 0.003% A method for producing a refractory steel material characterized by containing one or two of them.

本発明によれば、Nb、VおよびMoを必須含有し、しかもMo含有量を極力低減した組成でも、安定して所望の高温耐力を確保でき、優れた高温強度を有する鋼材を、容易にしかも安価に、かつ安定して製造することができ、産業上格段の効果を奏する。   According to the present invention, even with a composition that contains Nb, V, and Mo in an essential manner and the Mo content is reduced as much as possible, a desired high-temperature strength can be secured stably, and a steel material having excellent high-temperature strength can be easily obtained. It can be manufactured inexpensively and stably, and has a remarkable industrial effect.

まず、本発明鋼材の組成限定理由について説明する。以下、とくに断わらない限り、質量%は単に%で記す。
C:0.01〜0.1%
Cは、鋼の強度を増加させる元素であり、本発明では、圧延状態でNb(C,N)、V(C,N)を有効に析出させるとともに、高温加熱時(火災時)に所定量以上のMo炭化物を、析出させ、高温強度を高めるために、必要不可欠な元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.1%を超えて含有しても、その効果が飽和するとともに、溶接性が低下する。そのため、Cは0.01〜0.1%の範囲に限定した。なお、好ましくは、0.02〜0.08%である。
First, the reasons for limiting the composition of the steel of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.01 to 0.1%
C is an element that increases the strength of steel. In the present invention, Nb (C, N) and V (C, N) are effectively precipitated in a rolled state, and at a predetermined amount during high-temperature heating (fire). It is an indispensable element for precipitating the above Mo carbides and increasing the high temperature strength. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, even if it contains exceeding 0.1%, the effect is saturated and weldability falls. Therefore, C is limited to a range of 0.01 to 0.1%. In addition, Preferably, it is 0.02 to 0.08%.

Si:0.01〜1.0%
Siは、固溶して強度を増加させる有効な元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、1.0%を超える含有は溶接熱影響部(HAZ)の靭性を著しく低下させる。このため、Siは0.01〜1.0%の範囲に限定した。なお、好ましくは、0.05%〜0.6%である。
Si: 0.01-1.0%
Si is an effective element that increases the strength by solid solution. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, if the content exceeds 1.0%, the toughness of the heat affected zone (HAZ) is significantly reduced. For this reason, Si was limited to the range of 0.01 to 1.0%. In addition, Preferably, it is 0.05%-0.6%.

Mn:0.1〜2.0%
Mnは、Siと同様に、強度を増加させる比較的安価な元素であり、溶接構造用鋼材の高強度化には重要な元素である。このような効果を得るためには、0.1%以上の含有を必要とする。0.1%未満ではその効果は小さい。一方、2.0%を超えて含有すると、上部ベイナイト変態を促進させるため、母材靭性や溶接熱影響部の靭性を低下させる。このため、Mnは0.1〜2.0%の範囲に限定した。なお、好ましくは、0.5〜1.8%である。
Mn: 0.1-2.0%
Mn, like Si, is a relatively inexpensive element that increases strength, and is an important element for increasing the strength of steel for welded structures. In order to obtain such an effect, the content of 0.1% or more is required. Below 0.1%, the effect is small. On the other hand, if the content exceeds 2.0%, the upper bainite transformation is promoted, so that the base metal toughness and the toughness of the heat affected zone are reduced. For this reason, Mn was limited to the range of 0.1 to 2.0%. In addition, Preferably, it is 0.5 to 1.8%.

P:0.030%以下
Pは、粒界や最終凝固位置等に偏析する傾向が強く、とくに中心偏析部などでは、靱延性や溶接熱影響部の靭性を低下させる等の悪影響を及ぼす。このため、Pはできるだけ低減することが望ましい。しかし、0.030%以下であれば、その悪影響は小さいため、Pは0.030%以下に限定した。なお、好ましくは、0.025%以下である。
P: 0.030% or less P has a strong tendency to segregate at grain boundaries, final solidification positions, and the like, and particularly has adverse effects such as lowering the toughness of the tough ductility and weld heat affected zone at the center segregation part. For this reason, it is desirable to reduce P as much as possible. However, since the adverse effect is small if it is 0.030% or less, P is limited to 0.030% or less. In addition, Preferably, it is 0.025% or less.

S:0.030%以下
Sは、鋼中では、MnS等の硫化物系介在物として存在し、延性、靭性を低下させる悪影響を及ぼす。また、Pと同様に、鋼材の脆化を助長する。そのため、Pと同様に,できるだけ低減することが望ましい。しかし、0.030%以下であれば、その悪影響は許容できる。このため、Sは0.030%以下に限定した。なお、好ましくは、0.025%以下である。
S: 0.030% or less S is present in steel as sulfide inclusions such as MnS, and has an adverse effect on reducing ductility and toughness. Moreover, like P, it promotes embrittlement of the steel material. Therefore, like P, it is desirable to reduce as much as possible. However, the adverse effect is acceptable if it is 0.030% or less. For this reason, S was limited to 0.030% or less. In addition, Preferably, it is 0.025% or less.

Al:0.003〜0.1%
Alは、脱酸剤として作用する元素である。このような効果を得るためには、0.003%以上の含有を必要とする。一方、0.1%を超えて含有しても、効果が飽和し、含有量に見合う効果を期待できなくなる。このため、Alは0.003〜0.1%の範囲に限定した。なお、好ましくは0.010〜0.050%である。
Al: 0.003-0.1%
Al is an element that acts as a deoxidizer. In order to acquire such an effect, 0.003% or more of content is required. On the other hand, even if the content exceeds 0.1%, the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, Al was limited to the range of 0.003 to 0.1%. In addition, Preferably it is 0.010 to 0.050%.

Mo:0.010〜0.30%
Moは、火災時(600℃加熱時)にMo炭化物を形成し、高温強度を安定的に確保する作用を有し、鋼材の耐火性能を十分発揮するために有効な元素である。このような効果を確保するためには、0.010%以上の含有を必要とする。一方、0.30%を超える含有は、材料コストの高騰を招く。このため、Moは0.010〜0.30%の範囲に限定した。なお、好ましくは、0.05%〜0.30%である。
Mo: 0.010-0.30%
Mo is an element that forms Mo carbides in the event of a fire (when heated at 600 ° C.), has the effect of stably ensuring high-temperature strength, and is an effective element for fully exhibiting the fire resistance performance of steel. In order to secure such an effect, the content of 0.010% or more is required. On the other hand, if the content exceeds 0.30%, the material cost increases. For this reason, Mo was limited to the range of 0.010 to 0.30%. In addition, Preferably, it is 0.05%-0.30%.

Nb:0.010〜0.20%
Nbは、本発明において極めて重要な元素である。本発明では、圧延され冷却された鋼材中に、微細なNb(C,N )を多量析出させ、火災時のMo炭化物の析出を促進させる。これにより、Mo含有量が少なくても、得られる高温強度を高くすることができ、Mo含有量を低減することができる。このような効果を得るためには、0.010%以上の含有を必要とする。一方、0.20%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できないばかりか、粗大なNb(C,N)が析出し、鋼材が脆化するとともに、溶接部も脆化するなどの悪影響がある。このため、Nbは0.010〜0.20%の範囲に限定した。なお、好ましくは0.015〜0.15%である。
Nb: 0.010-0.20%
Nb is an extremely important element in the present invention. In the present invention, a large amount of fine Nb (C, N) is precipitated in the rolled and cooled steel material to promote the precipitation of Mo carbides at the time of fire. Thereby, even if there is little Mo content, the high temperature intensity | strength obtained can be made high and Mo content can be reduced. In order to obtain such an effect, a content of 0.010% or more is required. On the other hand, if the content exceeds 0.20%, the effect is saturated, and not only the effect commensurate with the content can be expected, but also coarse Nb (C, N) precipitates, the steel material becomes brittle, and the welded part also has There are adverse effects such as embrittlement. For this reason, Nb was limited to 0.010 to 0.20% of range. In addition, Preferably it is 0.015 to 0.15%.

V:0.005〜0.50%
Vは、V(C,N)として微細析出し、常温強度、高温強度を増加させ、鋼材の強度増加に寄与する。また、Nbと同様に、V(C,N)として微細析出し、火災時のMo炭化物の析出を促進させる。これにより、Mo含有量が少なくても、得られる高温強度を高くすることができ、Mo含有量を低減することができる。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.50%を超える含有は表面品質を低下させ、溶接熱影部を脆化させる。このため、Vは0.005〜0.50%の範囲に限定した。なお、好ましくは0.010〜0.30%である。
V: 0.005-0.50%
V precipitates finely as V (C, N), increases the normal temperature strength and the high temperature strength, and contributes to an increase in the strength of the steel material. Also, like Nb, it finely precipitates as V (C, N) and promotes the precipitation of Mo carbides at the time of fire. Thereby, even if there is little Mo content, the high temperature intensity | strength obtained can be made high and Mo content can be reduced. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.50%, the surface quality deteriorates and the welded thermal shadow becomes brittle. For this reason, V was limited to the range of 0.005 to 0.50%. In addition, Preferably it is 0.010 to 0.30%.

上記した成分が基本の成分であるが、基本成分に加えてさらに、選択元素として、Cu:0.01〜1.0%、Ni:0.01〜1.0%、Cr:0.05〜1.0%、B:0.0001〜0.003%のうちから選ばれた1種または2種以上、および/または、Ti:0.003〜0.02%、および/または、Ca:0.0005〜0.005%、REM:0.0005〜0.005%のうちから選ばれた1種または2種、および/または、Zr:0.0001〜0.003%、Mg:0.0001〜0.003%のうちから選ばれた1種または2種、を選択して含有できる。   The above components are basic components. In addition to the basic components, Cu: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cr: 0.05 to 1.0%, B: 0.0001 to 0.003% One or more selected from among them and / or Ti: 0.003-0.02% and / or Ca: 0.0005-0.005%, REM: 0.0005-0.005% selected from one or two Species and / or one or two selected from Zr: 0.0001 to 0.003%, Mg: 0.0001 to 0.003% can be selected and contained.

Cu:0.01〜1.0%、Ni:0.01〜1.0%、Cr:0.05〜1.0%、B:0.0001〜0.003%のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Bはいずれも、鋼材の強度を増加させる元素であり、必要に応じて、選択して1種または2種以上含有できる。
Cu:0.01〜1.0%
Cuは、0.5%程度までの含有では固溶強化により、それ以上では析出強化により鋼材の強度増加に寄与する。このような効果を得るためには、0.01%以上の含有を必要とする。一方、1.0%を超える含有は、鋼材の表面品質を低下させる。このため、含有する場合には、Cuは0.01〜1.0%の範囲に限定することが好ましい。
One or more selected from Cu: 0.01-1.0%, Ni: 0.01-1.0%, Cr: 0.05-1.0%, B: 0.0001-0.003%
Cu, Ni, Cr, and B are all elements that increase the strength of the steel material, and can be selected to contain one or more as required.
Cu: 0.01-1.0%
When Cu is contained up to about 0.5%, it contributes to increasing the strength of the steel material by solid solution strengthening, and beyond that by precipitation strengthening. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, the content exceeding 1.0% deteriorates the surface quality of the steel material. For this reason, when it contains, it is preferable to limit Cu to 0.01 to 1.0% of range.

Ni:0.01〜1.0%
Niは、固溶強化により鋼材の強度増加に寄与するとともに、低温靭性の向上にも寄与する。このような効果を得るためには、0.01%以上含有することが好ましいが、1.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できず、経済的に不利となる。このため、含有する場合には、Niは0.01〜1.0%に限定することが好ましい。
Ni: 0.01-1.0%
Ni contributes to increasing the strength of steel by solid solution strengthening, and also contributes to improving low temperature toughness. In order to acquire such an effect, it is preferable to contain 0.01% or more, but even if it contains exceeding 1.0%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Become. For this reason, when it contains, it is preferable to limit Ni to 0.01 to 1.0%.

Cr:0.05〜1.0%
Crは、固溶強化により鋼材の強度増加に寄与するとともに、セメンタイトの分解を抑える作用を有し、これにより、焼戻時の軟化抵抗の向上にも寄与する。このような効果を得るためには、0.05%以上含有することが望ましいが、1.0%を超えて含有すると、溶接性が低下するとともに、スケール剥離性が阻害され、表面品質が低下する。このため、含有する場合には、Crは0.05〜1.0%の範囲に限定することが好ましい。
Cr: 0.05-1.0%
Cr contributes to an increase in the strength of the steel material by solid solution strengthening and has an action of suppressing the decomposition of cementite, thereby contributing to an improvement in softening resistance during tempering. In order to acquire such an effect, it is desirable to contain 0.05% or more, but when it contains exceeding 1.0%, weldability will fall, scale peelability will be inhibited and surface quality will fall. For this reason, when it contains, it is preferable to limit Cr to 0.05 to 1.0% of range.

B:0.0001〜0.003%
Bは、微量含有で、焼入れ性を高める有効な元素であり、厚肉H形鋼等の鋼材の高強度化に寄与する。このような効果を得るためには0.0001%以上含有することが望ましいが、0.003%を超える含有は、炭窒化物を形成して靭性を低下させる。このため、含有する場合は、Bは0.0001〜0.003%の範囲に限定することが好ましい。
B: 0.0001-0.003%
B is contained in a small amount and is an effective element that enhances hardenability, and contributes to increasing the strength of steel materials such as thick-walled H-section steel. In order to acquire such an effect, it is desirable to contain 0.0001% or more, but inclusion exceeding 0.003% forms carbonitride and reduces toughness. For this reason, when it contains, it is preferable to limit B to 0.0001 to 0.003% of range.

Ti:0.003〜0.02%、
Tiは、TiNを形成して大入熱溶接熱影響部のミクロ組織を微細化させ、靭性向上に有効に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、0.003%以上含有することが好ましいが、0.02%を超えて含有すると、粗大なTiNが析出しやすくなり、Nb、Vを含む析出物(Nb炭窒化物およびV炭窒化物)の微細分散を阻害する。このため、含有する場合には、Tiは0.003〜0.02%の範囲に限定することが好ましい。
Ti: 0.003-0.02%,
Ti is an element that forms TiN, refines the microstructure of the high heat input welding heat-affected zone, and contributes effectively to improving toughness, and can be contained as necessary. In order to obtain such an effect, it is preferable to contain 0.003% or more, but if it exceeds 0.02%, coarse TiN is likely to precipitate, and precipitates containing Nb and V (Nb carbonitride and Nb V fine carbon dispersion is inhibited. For this reason, when it contains, it is preferable to limit Ti to 0.003 to 0.02% of range.

Ca:0.0005〜0.005%、REM:0.0005〜0.005%のうちから選ばれた1種または2種
Ca、REMはいずれも、介在物の形態制御に有効に寄与する元素であり、とくに介在物の形態制御を介して、偏析部の靭性、延性向上や、溶接熱影響部の靭性向上に有効に寄与する元素であり、必要に応じて、選択して1種または2種を含有できる。このような効果を得るためには、それぞれ0.0005%以上含有することが望ましいが、それぞれ0.005%を超える含有は、鋼の清浄度を低下させる。このため、含有する場合には、Ca:0.0005〜0.005%、REM:0.0005〜0.005%の範囲に、それぞれ限定することが好ましい。
One or two selected from Ca: 0.0005-0.005%, REM: 0.0005-0.005%
Both Ca and REM are elements that contribute effectively to the inclusion shape control, and are particularly effective in improving the toughness and ductility of segregated parts and toughness of weld heat affected parts through the form control of inclusions. It is an element which contributes, and it can contain 1 type or 2 types by selecting as needed. In order to acquire such an effect, it is desirable to contain 0.0005% or more of each, but the content exceeding 0.005% respectively reduces the cleanliness of steel. For this reason, when it contains, it is preferable to limit to Ca: 0.0005-0.005% and REM: 0.0005-0.005%, respectively.

Zr:0.0001〜0.003%、Mg:0.0001〜0.003%のうちから選ばれた1種または2種
Zr、Mgはいずれも、酸化物を形成して、大入熱溶接部のミクロ組織を微細化して大入熱溶接部の靭性向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、それぞれ0.0001%以上含有することが望ましいが、それぞれ0.003%を超えて含有すると、鋼材の清浄性を低下させる。このため、含有する場合には、Zr:0.0001〜0.003%、Mg:0.0001〜0.003%の範囲に限定することが好ましい。
One or two selected from Zr: 0.0001-0.003%, Mg: 0.0001-0.003%
Zr and Mg are elements that form oxides and contribute to improving the toughness of the high heat input weld zone by refining the microstructure of the high heat input weld zone. Or it can contain 2 types. In order to acquire such an effect, it is desirable to contain 0.0001% or more of each, but if it contains more than 0.003%, the cleanliness of the steel material is lowered. For this reason, when it contains, it is preferable to limit to the range of Zr: 0.0001-0.003% and Mg: 0.0001-0.003%.

なお、本発明鋼材では、上記した範囲の成分を、さらに次(1)式
炭素当量Ceq(%)=C+Si/24+Mn/6+Mo/4+V/14+Ni/40+Cr/5‥‥(1)
(ここで、C,Si,Mn,Mo,V,Ni,Cr:各元素の含有量(質量%))
で定義される炭素当量Ceqが0.46以下を満足するように調整する。上記した(1)式で定義される炭素当量Ceqが、0.46を超えると、溶接性や溶接熱影響部靭性を低下させる。このため、炭素当量Ceqは0.46以下に限定した。好ましくは0.44以下である。なお、(1)式中のNi,Crについては、選択元素として含有する場合にはその含有量を、選択元素として含有しない場合には零として計算するものとする。
In the steel of the present invention, the components in the above range are further divided into the following formula (1): carbon equivalent Ceq (%) = C + Si / 24 + Mn / 6 + Mo / 4 + V / 14 + Ni / 40 + Cr / 5 (1)
(Here, C, Si, Mn, Mo, V, Ni, Cr: Content of each element (mass%))
The carbon equivalent Ceq defined by is adjusted to satisfy 0.46 or less. When the carbon equivalent Ceq defined by the above formula (1) exceeds 0.46, weldability and weld heat affected zone toughness are lowered. For this reason, the carbon equivalent Ceq was limited to 0.46 or less. Preferably it is 0.44 or less. In addition, about Ni and Cr in (1) Formula, when it contains as a selective element, the content shall be calculated as zero when not containing as a selective element.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O:0.0030%以下、N:0.0070%以下が許容できる。
つぎに、本発明鋼材の組織限定理由について説明する。
本発明鋼材は、上記した組成を有し、さらに、鋼中に質量%で、粒径20nm未満の析出物として、Nb炭窒化物およびV炭窒化物が、Nb、V換算で合計、0.03〜0.15%、析出した組織を有する。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include O: 0.0030% or less and N: 0.0070% or less.
Next, the reason for limiting the structure of the steel material of the present invention will be described.
The steel material of the present invention has the above-described composition, and further, Nb carbonitride and V carbonitride are precipitates having a particle size of less than 20 nm by mass% in the steel. 0.15% has a precipitated structure.

Nb炭窒化物およびV炭窒化物の粒径が20nm以上では、所望の高温強度向上への寄与が少ない。本発明では、Nb炭窒化物およびV炭窒化物の粒径を、粒径20nm未満に限定した。
鋼中に、粒径20nm未満の析出物として析出したNb炭窒化物およびV炭窒化物の析出量がNb、V換算で合計、すなわち粒径20nm未満の析出物として析出したNb量、V量が合計で、0.03%未満では、高温加熱時のMo炭化物の析出促進が十分でなく、一方、0.15%を超えて多量に析出すると、降伏比が高くなり構造物として耐震性が低下する。また、このような微細なNb析出物および微細なV炭窒化物を多量析出させるためには、熱間圧延条件、その後の冷却条件を高度に管理する必要があり、生産性を低下させる。このため、圧延まま状態での、粒径20nm未満のNb炭窒化物およびV炭窒化物の析出量、すなわち、粒径20nm未満の析出物として析出したNb量およびV量の合計を、0.03〜0.15%の範囲に限定した。なお、好ましくは0.03〜0.12%である。
When the particle size of Nb carbonitride and V carbonitride is 20 nm or more, the contribution to the desired high temperature strength improvement is small. In the present invention, the particle sizes of Nb carbonitride and V carbonitride are limited to less than 20 nm.
The amount of Nb carbonitride and V carbonitride precipitated as precipitates with a particle size of less than 20 nm in steel is the total amount in terms of Nb and V, that is, the amount of Nb and V deposited as precipitates with a particle size of less than 20 nm. However, if it is less than 0.03% in total, the precipitation of Mo carbide during high-temperature heating is not sufficiently promoted. On the other hand, if it exceeds 0.15%, the yield ratio increases and the earthquake resistance of the structure decreases. Moreover, in order to precipitate such fine Nb precipitates and fine V carbonitrides in large quantities, it is necessary to highly manage the hot rolling conditions and the subsequent cooling conditions, thereby reducing productivity. For this reason, the amount of precipitation of Nb carbonitride and V carbonitride having a particle size of less than 20 nm in the as-rolled state, that is, the total amount of Nb and V precipitated as precipitates of particle size of less than 20 nm is 0.03 to Limited to a range of 0.15%. In addition, Preferably it is 0.03-0.12%.

なお、粒径20nm未満のNb炭窒化物およびV炭窒化物の析出量はつぎのようにして、求めるものとする。
対象とする鋼材から、電解抽出用試験片を採取し、電解抽出残渣法を用いて、電解残渣を抽出し、析出Nb量、析出V量を求める。電解抽出残渣法では、まず、試験片を、10%AA系電解液(10vol%アセチルアセトン−1mass%塩化テトラメチルアンモニウム・メタノール)中で、定電流電解する。そして、得られた電解液をろ過し、ろ過済みの電解液についてICP発光分光分析装置を用いて分析し、電解液中のNb量、V量をそれぞれ測定する。
The amount of precipitation of Nb carbonitride and V carbonitride having a particle size of less than 20 nm is determined as follows.
A test piece for electrolytic extraction is collected from the target steel material, and the electrolytic residue is extracted using the electrolytic extraction residue method to determine the amount of precipitated Nb and the amount of precipitated V. In the electrolytic extraction residue method, first, the test piece is subjected to constant current electrolysis in a 10% AA-based electrolytic solution (10 vol% acetylacetone-1 mass% tetramethylammonium chloride / methanol). Then, the obtained electrolytic solution is filtered, and the filtered electrolytic solution is analyzed using an ICP emission spectroscopic analyzer, and the Nb amount and the V amount in the electrolytic solution are respectively measured.

なお、電解液のろ過は、まず、100nmの多孔質フィルタで100nm以上の大きさの残渣(粒子)を捕捉し、次に20nmの多孔質フィルタを用いてろ過し、100nm〜20nmの大きさの残渣(粒子)を捕捉し、ついで、この20nmのフィルタで捕捉できなかった残渣(粒子)を、20nm未満の微細な析出物として、得られたろ過後の電解液についてNb量、V量を分析する。そして得られたNb量およびV量の合計を電解重量で除して、粒径20nm未満の微細な析出物として析出した、NbおよびV量(質量%)とする。   In addition, filtration of electrolyte solution first captures residues (particles) having a size of 100 nm or more with a 100 nm porous filter, then filters using a 20 nm porous filter, and has a size of 100 nm to 20 nm. Residues (particles) were captured, and then the residue (particles) that could not be captured by the 20 nm filter was analyzed as Nb and V amounts for the resulting filtered electrolyte solution as fine precipitates of less than 20 nm. To do. Then, the total amount of Nb and V obtained is divided by the electrolysis weight to obtain the amount of Nb and V (mass%) precipitated as fine precipitates having a particle size of less than 20 nm.

つぎに、本発明耐火鋼材の好ましい製造方法について説明する。
上記した組成を有する鋼素材に、熱間圧延として、熱延工程、冷却工程、および析出促進処理工程を順次施して、所定の寸法形状を有する鋼材とする。
鋼素材の製造方法については、特に限定する必要はなく、上記した組成の溶鋼を転炉等の常用の溶製方法を用いて溶製し、連続鋳造法等の常用の鋳造方法で、スラブ、ビームブランク等の鋼素材とすることが好ましい。
Below, the preferable manufacturing method of this invention refractory steel material is demonstrated.
The steel material having the above composition is subjected to a hot rolling step, a cooling step, and a precipitation promoting treatment step sequentially as hot rolling to obtain a steel material having a predetermined size and shape.
About the manufacturing method of the steel material, it is not particularly limited, and the molten steel having the above composition is melted by using a conventional melting method such as a converter, and a conventional casting method such as a continuous casting method, a slab, It is preferable to use a steel material such as a beam blank.

鋼素材は、まず、再加熱されたのち、熱延工程を施される。
熱間圧延のための加熱温度は、1000〜1350℃の範囲の温度とする。加熱温度が1000℃未満では、Nbの固溶が不十分で、微細なNb析出物を多量に分散させることができず、Mo炭化物の析出促進を達成できない。一方、1350℃を超える高温では、スケールロスが増加し、歩留りが低下するとともに、加熱のための燃料原単位が低下する。このため、鋼素材の再加熱温度は1000〜1350℃の範囲の温度に限定した。なお、好ましくは1100〜1250℃である。Nbの完全固溶という観点からは、好ましくは1200℃以上である。
The steel material is first reheated and then subjected to a hot rolling process.
The heating temperature for hot rolling is a temperature in the range of 1000 to 1350 ° C. When the heating temperature is less than 1000 ° C., the solid solution of Nb is insufficient, fine Nb precipitates cannot be dispersed in a large amount, and Mo carbide precipitation acceleration cannot be achieved. On the other hand, at a high temperature exceeding 1350 ° C., scale loss increases, yield decreases, and fuel intensity for heating decreases. For this reason, the reheating temperature of the steel material was limited to a temperature in the range of 1000 to 1350 ° C. In addition, Preferably it is 1100-1250 degreeC. From the viewpoint of complete solid solution of Nb, it is preferably 1200 ° C. or higher.

また、熱延工程では、加熱された鋼素材に、厚板圧延機、H形鋼圧延機等のリバース圧延機で、熱間圧延を施し、所望の厚鋼板、H形鋼等の鋼材とする。熱間圧延は、圧延終了温度を850℃以上とする、オーステナイト域での圧延とする。圧延終了温度が850℃未満では、組織が微細化し常温での降伏比が高くなりやすく、構造物の耐震性が低下する。このため、熱間圧延の圧延終了温度は850℃以上に限定した。なお、好ましくは900℃以上である。   In the hot rolling process, the heated steel material is hot-rolled with a reverse rolling mill such as a thick plate rolling mill or an H-shaped steel rolling mill to obtain a desired steel plate such as a thick steel plate or H-shaped steel. . Hot rolling is rolling in the austenite region with a rolling end temperature of 850 ° C. or higher. When the rolling end temperature is less than 850 ° C., the structure becomes finer and the yield ratio at room temperature tends to increase, and the earthquake resistance of the structure decreases. For this reason, the rolling end temperature of hot rolling was limited to 850 ° C. or higher. In addition, Preferably it is 900 degreeC or more.

熱延工程終了後、得られた鋼材は、ついで冷却工程を施される。冷却工程は、(Ar変態点−30℃)〜(Ar変態点−130℃)の範囲の温度まで空冷する工程とする。なお、空冷に代えて、加速冷却としてもよい。空冷に代えて、加速冷却を施すことにより、圧延能率の低下を抑制できる。このようなことから、加速冷却は、20℃/s以下の冷却速度での冷却とすることが好ましい。20℃/sを超えて冷却を速くすると、逆に、微細Nb、V析出物の析出量が低下する。 After completion of the hot rolling process, the obtained steel material is then subjected to a cooling process. The cooling step is a step of air cooling to a temperature in the range of (Ar 3 transformation point−30 ° C.) to (Ar 3 transformation point−130 ° C.). Note that accelerated cooling may be used instead of air cooling. A reduction in rolling efficiency can be suppressed by performing accelerated cooling instead of air cooling. For this reason, the accelerated cooling is preferably cooling at a cooling rate of 20 ° C./s or less. On the contrary, if the cooling is accelerated beyond 20 ° C./s, the amount of fine Nb and V precipitates decreases.

冷却工程終了後、析出誘起処理工程を施す。析出誘起処理工程は、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の温度範囲で、圧下率:1.0〜10%とする、少なくとも1パスの熱間圧延を行う工程とする。これにより、Nb析出物であるNb(C,N)、V析出物であるV(C,N)が歪誘起析出して、α相中に微細にかつ多量に析出する。これにより、室温の強度が上昇するとともに、火災時に高温に加熱された際に、Mo炭化物の析出が促進され、高温耐力が増加する。   After the cooling step, a precipitation induction treatment step is performed. The precipitation inducing treatment step is a step of performing at least one pass of hot rolling at a reduction ratio of 1.0 to 10% in a temperature range of (Ar3 transformation point −30 ° C.) to (Ar3 transformation point −130 ° C.). . As a result, Nb (C, N), which is an Nb precipitate, and V (C, N), which is a V precipitate, are strain-induced and precipitate finely and in large quantities in the α phase. This increases the strength at room temperature and promotes precipitation of Mo carbides when heated to a high temperature during a fire, increasing the high-temperature proof stress.

少なくとも1パスの熱間圧延を行う温度が、(Ar3変態点−30℃)を超える高温では、生成するNb、V析出物の量が少ない。一方、(Ar3変態点−130℃)未満となる低温では、圧延負荷が増加し、熱間圧延が困難となる場合が多く、さらに加工フェライトの増加により、降伏強さが高くなり耐震性を低下する。このため、析出促進処理の温度は(Ar3変態点−30℃)〜(Ar3変態点−130℃)の温度範囲に限定した。なお、好ましくは(Ar3変態点−30℃)〜(Ar3変態点−100℃)の温度範囲であり、より好ましくは(Ar3変態点−30℃)〜(Ar3変態点−70℃)の温度範囲である。なお、Ar3変態点は、次式
Ar3変態点(℃)=910−273C+25Si−74Mn−54Ni−8Cu−15Cr−10Mo
(ここで、C,Si,Mn,Ni,Cu,Cr,Mo:各元素の含有量(質量%))
を用いて算出するものとする。なお、上記した式に記載の元素を含有しない場合には、当該元素を零として計算するものとする。
At a high temperature at which hot rolling at least one pass exceeds (Ar3 transformation point −30 ° C.), the amount of Nb and V precipitates produced is small. On the other hand, at a low temperature lower than (Ar3 transformation point -130 ° C), the rolling load increases and hot rolling is often difficult, and the yield strength increases and the earthquake resistance decreases due to the increase in processed ferrite. To do. For this reason, the temperature of the precipitation promoting treatment was limited to a temperature range of (Ar3 transformation point−30 ° C.) to (Ar3 transformation point−130 ° C.). The temperature range is preferably from (Ar3 transformation point −30 ° C.) to (Ar3 transformation point −100 ° C.), more preferably from (Ar3 transformation point −30 ° C.) to (Ar3 transformation point −70 ° C.). It is. The Ar3 transformation point is
Ar3 transformation point (℃) = 910−273C + 25Si−74Mn−54Ni−8Cu−15Cr−10Mo
(Here, C, Si, Mn, Ni, Cu, Cr, Mo: content of each element (mass%))
It shall be calculated using In addition, when the element described in the above formula is not included, the calculation is performed with the element as zero.

なお、Nb,V析出物の歪誘起析出を、肉厚中心部までに効率的に生じさせるために、析出誘起処理工程では、少なくとも1パスの熱間圧延後に、鋼材の表面温度と中心温度の温度差を30℃以上、すなわち表面温度が中心温度よりも30℃以上低くする、ことが望ましい。
また、少なくとも1パスの熱間圧延の圧下率が、1.0%未満では、Nb,V析出物の歪誘起析出量が少ない。一方、10%を超えると、圧延負荷が増加し、熱間圧延が困難となる。このため、少なくとも1パスの熱間圧延の圧下率は1.0〜10%の範囲に限定した。なお好ましくは2〜8%である。
In order to efficiently generate strain-induced precipitation of Nb and V precipitates up to the center of the wall thickness, in the precipitation induction treatment step, the surface temperature and the center temperature of the steel material are reduced after at least one pass of hot rolling. It is desirable that the temperature difference be 30 ° C. or higher, that is, the surface temperature be 30 ° C. lower than the center temperature.
Further, when the rolling reduction of at least one pass of hot rolling is less than 1.0%, the amount of strain-induced precipitation of Nb and V precipitates is small. On the other hand, if it exceeds 10%, the rolling load increases and hot rolling becomes difficult. For this reason, the rolling reduction of at least one pass of hot rolling is limited to a range of 1.0 to 10%. It is preferably 2 to 8%.

析出誘起処理工程後は、空冷で室温まで冷却する。
以下、実施例に基づいて、さらに本発明について説明する。
After the precipitation inducing treatment step, it is cooled to room temperature by air cooling.
Hereinafter, based on an Example, this invention is demonstrated further.

表1に示す組成を有する溶鋼を、転炉で溶製し、連続鋳造法で鋳片(スラブまたはビームブランク)とした。これら鋳片を表2に示す加熱温度に加熱したのち、表2に示す条件で、熱延工程、冷却工程、析出誘起処理工程を施し、表2に示す板厚(肉厚)の鋼材(厚鋼板、H形鋼)とした。得られた鋼材から、JIS Z 2201の規定に準拠して、圧延方向と平行方向が試験片長さ方向となるように、JIS1A号試験片を採取し、JIS Z 2241の規定に準拠して、室温(25℃)で引張試験を実施し、引張特性(降伏強さYP、引張強さTS、降伏比)を求めた。また、得られた鋼材から、JIS G 0567の規定に準拠して、圧延方向と平行方向が試験片長さ方向となるように、高温引張試験片(直径:10mmφ、GL:50 mm)を採取し、JIS G 0567の規定に準拠して、高温引張試験(試験温度:600℃)を実施し、高温耐力(600℃)(0.2%耐力σ600)を求めた。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (slab or beam blank) by a continuous casting method. These slabs are heated to the heating temperature shown in Table 2, and then subjected to a hot rolling step, a cooling step, and a precipitation inducing treatment step under the conditions shown in Table 2, and a steel material (thickness) shown in Table 2 (thickness) Steel plate, H-shaped steel). From the obtained steel, in accordance with the provisions of JIS Z 2201, a JIS 1A test piece is collected so that the direction parallel to the rolling direction is the length direction of the test piece, and at room temperature in accordance with the provisions of JIS Z 2241. A tensile test was performed at (25 ° C.) to determine tensile properties (yield strength YP, tensile strength TS, yield ratio). In addition, in accordance with the provisions of JIS G 0567, a high-temperature tensile test piece (diameter: 10 mmφ, GL: 50 mm) is taken from the obtained steel so that the direction parallel to the rolling direction is the length direction of the test piece. In accordance with the provisions of JIS G 0567, a high temperature tensile test (test temperature: 600 ° C.) was carried out to obtain a high temperature proof stress (600 ° C.) (0.2% proof stress σ 600 ).

また、得られた鋼材の圧延まま状態から試験片を採取して、Nb、Vの電解抽出残渣分析を行った。電解抽出条件は、10%AA系電解液(10vol%アセチルアセトン−1mass%塩化テトラメチルアンモニウム・メタノール)中で、定電流電解し、得られた電解液を最終的に20nmの多孔質フィルタを用いてろ過し、ろ過済みの電解液についてICP発光分光分析装置を用いて分析し、電解液中のNb、V量を測定し、得られたNb、V量を電解重量で除して、20nm未満の微細な析出物となっているNb、V量(析出Nb量、析出V量(質量%))とした。   Moreover, the test piece was extract | collected from the rolled state of the obtained steel materials, and the electrolytic extraction residue analysis of Nb and V was performed. Electrolytic extraction conditions were 10% AA electrolyte (10vol% acetylacetone-1mass% tetramethylammonium chloride / methanol) under constant current electrolysis, and the resulting electrolyte was finally used with a 20nm porous filter. Filter and analyze the filtered electrolyte using an ICP emission spectrophotometer, measure the amount of Nb and V in the electrolyte, divide the amount of Nb and V obtained by the electrolytic weight, and less than 20 nm The amount of Nb and V in the form of fine precipitates (the amount of precipitated Nb and the amount of precipitated V (mass%)) was used.

また、得られた鋼材(圧延まま)に、さらに、600℃×30minの熱処理を施し、Moの電解抽出残渣分析を行った。電解抽出残渣分析は、Nbの電解抽出残渣分析と同様な手法で行い、20nm未満の微細な析出Mo量(質量%)を得た。これらの値を用いて、得られた析出Mo量とMo含有量との比、析出Mo比率(Mo歩留)を算出した。
得られた結果を表4に示す。
In addition, the obtained steel material (as-rolled) was further subjected to heat treatment at 600 ° C. for 30 minutes, and an electrolytic extraction residue analysis of Mo was performed. Electrolytic extraction residue analysis was performed in the same manner as Nb electrolytic extraction residue analysis, and a fine amount of precipitated Mo (% by mass) of less than 20 nm was obtained. Using these values, the ratio of the obtained precipitated Mo amount to the Mo content and the precipitated Mo ratio (Mo yield) were calculated.
Table 4 shows the obtained results.

Figure 0005838693
Figure 0005838693

Figure 0005838693
Figure 0005838693

Figure 0005838693
Figure 0005838693

本発明例はいずれも、析出Mo比率が高く、高い高温耐力(600℃での耐力)を確保できている。本発明例はいずれも、低いMo含有量で優れた耐火性能を確保できている。一方、20nm未満の微細な析出物が少ない本発明の範囲を外れる比較例は、析出Mo比率が低くなり、所望の優れた耐火性能を確保できていない

In all of the examples of the present invention, the ratio of precipitated Mo is high, and high high temperature proof stress (proof strength at 600 ° C.) can be secured. In all of the examples of the present invention, excellent fire resistance can be secured with a low Mo content. On the other hand, in the comparative example which is out of the scope of the present invention with few fine precipitates of less than 20 nm, the precipitated Mo ratio is low, and the desired excellent fire resistance performance cannot be secured .

Claims (6)

鋼素材を、熱間圧延して所定寸法の鋼材とするに当たり、
前記鋼素材を、質量%で、
C:0.01〜0.1%、 Si:0.01〜1.0%、
Mn:0.1〜2.0%、 P:0.030%以下、
S:0.030%以下、 A1:0.003〜0.1%、
Mo:0.010〜0.30%、 Nb:0.010〜0.20%、
V:0.005〜0.50%
を、下記(1)式で定義される炭素当量Ceqが0.46%以下を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記熱間圧延が、1000〜1350℃の範囲の温度に加熱したのち、圧延終了温度が850℃以上となる熱間圧延を行う熱延工程と、該熱延工程後、
(Ar3変態点−30℃)〜(Ar3変態点−130℃)の範囲の温度まで空冷する冷却工程と、該冷却工程後、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の範囲の温度で圧下率:1.0〜10%とする、少なくとも1パスの熱間圧延を行う析出誘起処理工程と、
を順次施す工程であり、
前記鋼材が、前記組成と、鋼中に質量%で、粒径20nm未満の析出物として析出したNb量およびV量の合計が0.03〜0.15%である組織を有する鋼材であることを特徴とする高温強度に優れた耐火鋼材の製造方法。

炭素当量Ceq(%)=C+Si/24+Mn/6+Mo/4+V/14+Ni/40+Cr/5‥‥(1)
ここで、C,Si,Mn,Mo,V,Ni,Cr:各元素の含有量(質量%)
なお、(1)式中のNi,Crについては、選択元素として含有する場合にはその含有量を、選択元素として含有しない場合には零として計算するものとする。
In hot rolling the steel material into a steel material of a predetermined size,
The steel material in mass%,
C: 0.01 to 0.1%, Si: 0.01 to 1.0%,
Mn: 0.1 to 2.0%, P: 0.030% or less,
S: 0.030% or less, A1: 0.003-0.1%,
Mo: 0.010 to 0.30%, Nb: 0.010 to 0.20%,
V: 0.005-0.50%
Is adjusted so that the carbon equivalent Ceq defined by the following formula (1) satisfies 0.46% or less, and a steel material having a composition consisting of the balance Fe and inevitable impurities,
After the hot rolling is heated to a temperature in the range of 1000 to 1350 ° C., a hot rolling step in which the rolling end temperature is 850 ° C. or higher, and after the hot rolling step,
A cooling step of air-cooling to a temperature in the range of (Ar3 transformation point-30 ° C) to (Ar3 transformation point-130 ° C), and (Ar3 transformation point-30 ° C) to (Ar3 transformation point-130 ° C) after the cooling step. A precipitation inducing treatment step in which at least one pass of hot rolling is performed at a temperature in the range of 1.0 to 10%;
Sequentially subjected to the process der the is,
The steel material is a steel material having the above composition and a structure in which the total amount of Nb and V precipitated as precipitates having a particle size of less than 20 nm in mass% in the steel is 0.03 to 0.15%. A method for producing refractory steel with excellent high-temperature strength.
Carbon equivalent Ceq (%) = C + Si / 24 + Mn / 6 + Mo / 4 + V / 14 + Ni / 40 + Cr / 5 (1)
Here, C, Si, Mn, Mo, V, Ni, Cr: Content of each element (% by mass) .
In addition, about Ni and Cr in (1) Formula, when it contains as a selective element, the content shall be calculated as zero when not containing as a selective element.
前記冷却工程における前記空冷に代えて、平均で20℃/s以下の冷却速度で冷却する加速冷却とすることを特徴とする請求項に記載の耐火鋼材の製造方法。 Wherein instead of the air cooling in the cooling step, the production method of the refractory steel according to claim 1, characterized in that the accelerated cooled cooling at an average at 20 ° C. / s or less cooling rate. 前記組成に加えてさらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜1.0%、Cr:0.05〜1.0%、B:0.0001〜0.003%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項またはに記載の耐火鋼材の製造方法。 In addition to the above composition, in addition to mass, one or more selected from Cu: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cr: 0.05 to 1.0%, B: 0.0001 to 0.003% The method for producing a refractory steel material according to claim 1 or 2 , characterized by comprising: 前記組成に加えてさらに、質量%で、Ti:0.003〜0.02%を含有することを特徴とする請求項ないしのいずれかに記載の耐火鋼材の製造方法。 The method for producing a refractory steel material according to any one of claims 1 to 3 , further comprising Ti: 0.003 to 0.02% by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%、REM:0.0005〜0.005%のうちから選ばれた1種または2種を含有することを特徴とする請求項ないしのいずれかに記載の耐火鋼材の製造方法。 In addition to the above composition, by mass%, Ca: 0.0005 to 0.005%, REM: claims 1, characterized by containing one or two selected from among 0.0005 to 0.005% to either 4 A method for producing a refractory steel material according to claim 1. 前記組成に加えてさらに、質量%で、Zr:0.0001〜0.003%、Mg:0.0001〜0.003%のうちから選ばれた1種または2種を含有することを特徴とする請求項ないしのいずれかに記載の耐火鋼材の製造方法。 In addition to the above composition, by mass%, Zr: 0.0001 to 0.003%, Mg: claims 1, characterized by containing one or two selected from among 0.0001 to 0.003% to either 5 A method for producing a refractory steel material according to claim 1.
JP2011212539A 2011-09-28 2011-09-28 Manufacturing method of steel with excellent high temperature strength Active JP5838693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212539A JP5838693B2 (en) 2011-09-28 2011-09-28 Manufacturing method of steel with excellent high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212539A JP5838693B2 (en) 2011-09-28 2011-09-28 Manufacturing method of steel with excellent high temperature strength

Publications (2)

Publication Number Publication Date
JP2013072118A JP2013072118A (en) 2013-04-22
JP5838693B2 true JP5838693B2 (en) 2016-01-06

Family

ID=48476866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212539A Active JP5838693B2 (en) 2011-09-28 2011-09-28 Manufacturing method of steel with excellent high temperature strength

Country Status (1)

Country Link
JP (1) JP5838693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257281B2 (en) 2019-08-05 2023-04-13 株式会社Lixil Drainage valve and fittings

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241361A (en) * 2019-06-24 2019-09-17 北京科技大学 A kind of 460MPa grades of antidetonation fire-resistive construction H profile steel and preparation method thereof
CN114080461B (en) * 2020-06-19 2023-04-14 现代制铁株式会社 Shaped steel and method for producing same
CN113278884A (en) * 2021-05-07 2021-08-20 石横特钢集团有限公司 Smelting process and production method of blank for refractory steel bar

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954507B2 (en) * 2004-07-28 2012-06-20 新日本製鐵株式会社 H-section steel excellent in fire resistance and method for producing the same
JP5194994B2 (en) * 2008-04-25 2013-05-08 新日鐵住金株式会社 Manufacturing method of welded structural steel with excellent high temperature strength
JP5453865B2 (en) * 2009-03-23 2014-03-26 Jfeスチール株式会社 High strength thick steel plate with excellent balance between strength and ductility and method for producing the same
JP5768595B2 (en) * 2011-08-25 2015-08-26 Jfeスチール株式会社 Method for producing refractory steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257281B2 (en) 2019-08-05 2023-04-13 株式会社Lixil Drainage valve and fittings

Also Published As

Publication number Publication date
JP2013072118A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5867651B2 (en) H-section steel and its manufacturing method
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP6225997B2 (en) H-section steel and its manufacturing method
JP5768595B2 (en) Method for producing refractory steel
WO2018117228A1 (en) H-steel and method for manufacturing same
JP5760519B2 (en) Rolled H-section steel with excellent toughness and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP5849846B2 (en) Refractory steel and manufacturing method thereof
JP6645107B2 (en) H-section steel and manufacturing method thereof
WO2013089089A1 (en) High-strength extra-thick steel h-beam
JP4072191B1 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
JP5838693B2 (en) Manufacturing method of steel with excellent high temperature strength
JP5741454B2 (en) Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof
JP6795083B2 (en) Steel plate and its manufacturing method
JP6295632B2 (en) High strength H-section steel with excellent toughness
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP6597450B2 (en) Abrasion-resistant steel plate and method for producing the same
KR102485117B1 (en) Ultra thick steel plate having excellent surface part nrl-dwt property and manufacturing method thereof
KR101400662B1 (en) Steel for pressure vessel and method of manufacturing the same
JP5494090B2 (en) Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness and method for producing the same
KR100868572B1 (en) HIGH TENSILE STEEL PRODUCT BEING EXCELLENT IN WELDABILITY AND TOUGHNESS AND HAVING TENSILE STRENGTH OF 550 MPa CLASS OR MORE, AND METHOD FOR PRODUCTION THEREOF
JP2007302978A (en) Method for manufacturing high-strength steel of tensile strength of 780 mpa class having excellent toughness of weld heat affected zone

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5838693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250