JP5837010B2 - Resin sealing method for electronic parts - Google Patents

Resin sealing method for electronic parts Download PDF

Info

Publication number
JP5837010B2
JP5837010B2 JP2013160407A JP2013160407A JP5837010B2 JP 5837010 B2 JP5837010 B2 JP 5837010B2 JP 2013160407 A JP2013160407 A JP 2013160407A JP 2013160407 A JP2013160407 A JP 2013160407A JP 5837010 B2 JP5837010 B2 JP 5837010B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
holding member
electronic component
side holding
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013160407A
Other languages
Japanese (ja)
Other versions
JP2015032654A (en
Inventor
知之 高島
知之 高島
拓也 釼持
拓也 釼持
富春 鈴木
富春 鈴木
Original Assignee
日本合成化工株式会社
クリエス精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化工株式会社, クリエス精機株式会社 filed Critical 日本合成化工株式会社
Priority to JP2013160407A priority Critical patent/JP5837010B2/en
Publication of JP2015032654A publication Critical patent/JP2015032654A/en
Application granted granted Critical
Publication of JP5837010B2 publication Critical patent/JP5837010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばコンデンサ素子などの電子部品を熱硬化性樹脂組成物で封止する樹脂封止方法に関する。 The invention, for example, relates to a resin sealing method for sealing electronic parts such as a capacitor element with a thermosetting resin composition.

従来より、例えばコンデンサ素子などの電子部品においては、防湿,絶縁,劣化防止などを目的とし、合成樹脂による封止が行われている。
このような樹脂封止の方法として例えば特許文献1では、図9に示したように、まず熱可塑性樹脂製のケース本体110を用意し、このケース本体110内に端子リード104,104が接続されたコンデンサ素子102を入れ、その後、ケース本体110とコンデンサ素子102との隙間に液状の熱硬化性樹脂120を充填して硬化させることで、ケース本体110とコンデンサ素子102とを熱硬化性樹脂120を介して一体化させ、コンデンサ素子102を樹脂封止している。
Conventionally, for example, electronic parts such as capacitor elements have been sealed with a synthetic resin for the purpose of moisture proofing, insulation, and prevention of deterioration.
As such a resin sealing method, for example, in Patent Document 1, as shown in FIG. 9, first, a case body 110 made of a thermoplastic resin is prepared, and terminal leads 104 and 104 are connected in the case body 110. The capacitor element 102 is put in, and then the liquid thermosetting resin 120 is filled in the gap between the case body 110 and the capacitor element 102 and cured, so that the case body 110 and the capacitor element 102 are cured. And the capacitor element 102 is resin-sealed.

特開平3−156909号公報Japanese Patent Laid-Open No. 3-156909

ところが上記したような従来の樹脂封止方法で得られたコンデンサ100は、ケース本体110が「熱可塑性樹脂」から成るのに対し、ケース本体110内に充填された樹脂は「熱硬化性樹脂」であり両者樹脂の材質が異なる。   However, in the capacitor 100 obtained by the conventional resin sealing method as described above, the case body 110 is made of “thermoplastic resin”, whereas the resin filled in the case body 110 is “thermosetting resin”. The materials of the two resins are different.

したがって、樹脂の組合せによっては熱可塑性樹脂と熱硬化性樹脂との間における密着性が不足して両者の間に隙間が生じ、この隙間から水分が浸透して内部のコンデンサ素子102を劣化させてしまうおそれがあった。   Therefore, depending on the combination of the resins, the adhesiveness between the thermoplastic resin and the thermosetting resin is insufficient, and a gap is formed between the two, and moisture penetrates through the gap to deteriorate the internal capacitor element 102. There was a risk of it.

また、ケース本体110内に充填された熱硬化性樹脂を硬化させるのに要する時間は、数時間とかなりの時間を要するものであるため、生産効率の低いものであった。
さらに上記したような樹脂封止方法では、コンデンサ素子102に接続された端子リード104,104を把持してコンデンサ素子102を宙吊りした状態で、熱硬化性樹脂120をケース本体110内に充填する必要があるが、端子リード104,104が柔らかく、破損の可能性を有する場合には、このようにコンデンサ素子102を宙吊りする樹脂封止方法は採用することができない。
In addition, the time required to cure the thermosetting resin filled in the case main body 110 requires several hours and a considerable time, so that the production efficiency is low.
Furthermore, in the resin sealing method as described above, it is necessary to fill the case main body 110 with the thermosetting resin 120 in a state where the terminal leads 104 and 104 connected to the capacitor element 102 are held and the capacitor element 102 is suspended in the air. However, when the terminal leads 104 and 104 are soft and have a possibility of breakage, the resin sealing method for suspending the capacitor element 102 in this way cannot be employed.

このように従来の樹脂封止方法は、多くの問題点を有するため、更なる樹脂封止方法が求められているのが実情である。
本発明は、このような実情に鑑み、電子部品の樹脂封止を確実でしかも短時間に行うことができ、端子リードを有する場合であっても端子リードを把持して宙吊りする必要のない電子部品の樹脂封止方法を提供することを目的としている。
As described above, since the conventional resin sealing method has many problems, a further resin sealing method is actually required.
In view of such circumstances, the present invention can reliably perform resin sealing of electronic components in a short time, and does not need to hold the terminal lead and suspend it even if it has a terminal lead. It aims at providing the resin sealing method of components.

本発明は、前述したような従来技術における問題点を解決するために発明されたものであって、
本発明の電子部品の樹脂封止方法は、
電子部品の樹脂封止方法であって、
前記電子部品の底面側を保持する底面側保持部材と、前記電子部品の上面側を保持する上面側保持部材とを、常温で固体の熱硬化性樹脂組成物を加圧および加温することで完全には硬化しないように成形する工程と、
前記完全には硬化しないように成形する工程で得られた前記底面側保持部材と上面側保持部材とで前記電子部品を挟み、これを金型の内部空間に配置する工程と、
前記金型の内部空間に配置する工程の後、前記金型を閉じ、前記金型の内部空間に、前記底面側保持部材および上面側保持部材を形成する熱硬化性樹脂組成物と同材質の溶融熱硬化性樹脂組成物を流入させ、前記電子部品を挟み込んだ前記底面側保持部材と上面側保持部材を溶融熱硬化性樹脂組成物とで被覆する工程と、
前記被覆する工程で流入された溶融熱硬化性樹脂組成物と底面側保持部材と上面側保持部材とを前記金型内で一体化させて完全に硬化させ、前記電子部品の周囲に一体的な熱硬化性樹脂被覆層を形成する工程と、
を少なくとも有することを特徴とする。
The present invention was invented to solve the problems in the prior art as described above,
The resin sealing method of the electronic component of the present invention is:
A resin sealing method for electronic components,
By pressing and heating a thermosetting resin composition that is solid at room temperature, a bottom surface side holding member that holds the bottom surface side of the electronic component and a top surface side holding member that holds the top surface side of the electronic component. Forming so as not to be completely cured;
Sandwiching the electronic component between the bottom-side holding member and the top-side holding member obtained in the step of molding so as not to be completely cured, and placing the electronic component in an internal space of a mold;
After the step of placing in the inner space of the mold, the mold is closed, and the same material as the thermosetting resin composition forming the bottom surface side holding member and the upper surface side holding member in the inner space of the mold Injecting a molten thermosetting resin composition, and covering the bottom side holding member and the top side holding member sandwiching the electronic component with a molten thermosetting resin composition;
The molten thermosetting resin composition, the bottom-side holding member, and the top-side holding member that are introduced in the coating step are integrated in the mold and completely cured, and are integrated around the electronic component. Forming a thermosetting resin coating layer;
It is characterized by having at least.

このような方法であれば、電子部品を熱硬化性樹脂組成物のみで封止するため、電子部品を確実に一体的に封止することができる。
また、底面側保持部材と上面側保持部材とを先に用意しておき、この底面側保持部材と上面側保持部材とで電子部品を挟んでから、溶融熱硬化性樹脂組成物を流入させているため、電子部品の全体を確実に熱硬化性樹脂組成物で被覆することができる。
With such a method, since the electronic component is sealed only with the thermosetting resin composition, the electronic component can be reliably sealed integrally.
In addition, the bottom side holding member and the top side holding member are prepared in advance, and after sandwiching the electronic component between the bottom side holding member and the top side holding member, the molten thermosetting resin composition is allowed to flow. Therefore, the entire electronic component can be reliably coated with the thermosetting resin composition.

さらに底面側保持部材と上面側保持部材とを形成する熱硬化性樹脂組成物と溶融熱硬化性樹脂組成物とが同材質であるため、金型内でこれらが確実に一体化され、電子部品の封止における防湿,絶縁,劣化防止などの信頼性をより高めることができる。   Further, since the thermosetting resin composition and the melt thermosetting resin composition forming the bottom side holding member and the top side holding member are the same material, they are reliably integrated in the mold, and the electronic component The reliability such as moisture prevention, insulation, and prevention of deterioration in the sealing of the resin can be further enhanced.

また、本発明の電子部品の樹脂封止方法は、
電子部品の樹脂封止方法であって、
前記電子部品の底面側を保持する底面側保持部材を、常温で固体の熱硬化性樹脂組成物を加圧および加温することで完全には硬化しないように成形する工程と、
前記完全には硬化しないように成形する工程で得られた前記底面側保持部材上に前記電子部品を載置させ、これを金型の内部空間に配置する工程と、
前記金型の内部空間に配置する工程の後、前記金型を閉じ、前記金型の内部空間に、前記底面側保持部材を形成する熱硬化性樹脂組成物と同材質の溶融熱硬化性樹脂組成物を流入させ、前記底面側保持部材とともに前記底面側保持部材上に載置された電子部品を完全に溶融熱硬化性樹脂組成物とで被覆する工程と、
前記被覆する工程で流入された溶融熱硬化性樹脂組成物と前記底面側保持部材とを前記金型内で一体化させて完全に硬化させ、前記電子部品の周囲に一体的な熱硬化性樹脂被覆層を形成する工程と、
を少なくとも有することを特徴とする。
Moreover, the resin sealing method of the electronic component of the present invention is as follows.
A resin sealing method for electronic components,
Molding the bottom-side holding member that holds the bottom side of the electronic component so as not to be completely cured by pressurizing and heating a solid thermosetting resin composition at room temperature; and
Placing the electronic component on the bottom-side holding member obtained in the step of molding so as not to be completely cured, and placing the electronic component in an internal space of a mold; and
After the step of disposing in the inner space of the mold, the mold is closed, and the thermosetting resin of the same material as the thermosetting resin composition that forms the bottom surface holding member in the inner space of the mold Flowing the composition and completely covering the electronic component placed on the bottom-side holding member together with the bottom-side holding member with the melt thermosetting resin composition;
The molten thermosetting resin composition and the bottom-side holding member introduced in the coating step are integrated in the mold and completely cured, and the thermosetting resin is integrated around the electronic component. Forming a coating layer;
It is characterized by having at least.

このような方法であれば、電子部品を熱硬化性樹脂組成物のみで封止するため、電子部品を確実に一体的に封止することができる。
また、底面側保持部材を先に用意しておき、この底面側保持部材上に電子部品を載置させてから溶融熱硬化性樹脂組成物を流入させているため、電子部品の全体を確実に熱硬化性樹脂組成物で被覆することができる。
With such a method, since the electronic component is sealed only with the thermosetting resin composition, the electronic component can be reliably sealed integrally.
In addition, since the bottom-side holding member is prepared in advance and the molten thermosetting resin composition is allowed to flow after the electronic component is placed on the bottom-side holding member, the entire electronic component is surely secured. It can be coated with a thermosetting resin composition.

さらに底面側保持部材を形成する熱硬化性樹脂組成物と溶融熱硬化性樹脂組成物とが同材質であるため、金型内で両者が確実に一体化され、電子部品の封止における防湿,絶縁,劣化防止などの信頼性をより高めることができる。   Furthermore, since the thermosetting resin composition and the melt thermosetting resin composition that form the bottom-side holding member are the same material, both are reliably integrated in the mold, and moisture-proofing in sealing of electronic components, Reliability such as insulation and prevention of deterioration can be further improved.

また、本発明の電子部品の樹脂封止方法は、
前記溶融熱硬化性樹脂組成物の溶融温度が、50〜130℃の範囲内であることを特徴とする。
このような溶融温度の範囲内であれば、電子部品が熱によって壊れてしまうおそれがなく、歩留まり良く確実に電子部品の樹脂封止を行うことができる。
Moreover, the resin sealing method of the electronic component of the present invention is as follows.
The melting temperature of the molten thermosetting resin composition is in the range of 50 to 130 ° C.
If it is in the range of such melting temperature, there is no possibility that an electronic component may be broken by heat, and the resin sealing of an electronic component can be performed reliably with a high yield.

また、本発明の電子部品の樹脂封止方法は、
前記溶融熱硬化性樹脂組成物および常温で固体の熱硬化性樹脂組成物に含まれる熱硬化性樹脂が、エポキシ樹脂であることを特徴とする。
このような熱硬化性樹脂組成物であれば、特に電子部品の封止における防湿,絶縁,劣化防止などの信頼性を高めることができる。
Moreover, the resin sealing method of the electronic component of the present invention is as follows.
The thermosetting resin contained in the molten thermosetting resin composition and the thermosetting resin composition that is solid at room temperature is an epoxy resin.
With such a thermosetting resin composition, it is possible to improve reliability such as moisture proofing, insulation and prevention of deterioration particularly in sealing of electronic parts.

また、本発明の電子部品の樹脂封止方法は、
前記底面保持部材の底面の厚みが、前記金型内で電子部品が熱硬化性樹脂組成物で封止された際に、封止された前記熱硬化性樹脂組成物の略中央に位置するよう、前記金型の内部空間の高さおよび前記電子部品の高さに応じて設定されていることを特徴とする。
Moreover, the resin sealing method of the electronic component of the present invention is as follows.
The thickness of the bottom surface of the bottom surface holding member is positioned substantially at the center of the sealed thermosetting resin composition when the electronic component is sealed with the thermosetting resin composition in the mold. The inner space of the mold is set according to the height of the electronic component and the height of the electronic component.

このように底面保持部材の底面の厚みが設定されていれば、電子部品を被覆する熱硬化性樹脂組成物の層厚が少なくとも高さ方向において略同厚にすることができるため、電子部品が片側に偏ることもなく、確実に略中央に位置させ、製品の品質を一定に保つことができる。   In this way, if the thickness of the bottom surface of the bottom surface holding member is set, the layer thickness of the thermosetting resin composition covering the electronic component can be made substantially the same in at least the height direction. Without being biased to one side, it can be surely positioned substantially in the center and the product quality can be kept constant.

また、本発明の電子部品の樹脂封止方法は、
前記常温で固体の熱硬化性樹脂組成物を加圧および加温することで完全には硬化しないように成形する工程において、
少なくとも前記常温で固体の熱硬化性樹脂組成物に加えられる圧力が5〜300MPaの範囲内、温度が20〜120℃の範囲内であることを特徴とする。
Moreover, the resin sealing method of the electronic component of the present invention is as follows.
In the step of molding so as not to be completely cured by pressurizing and heating the solid thermosetting resin composition at room temperature,
At least the pressure applied to the solid thermosetting resin composition at normal temperature is in the range of 5 to 300 MPa, and the temperature is in the range of 20 to 120 ° C.

このような加圧圧力および加温温度の範囲内であれば、粉末状の熱硬化性樹脂組成物を完全に硬化させてしまうことがない。すなわち、硬化が不完全な状態で粉末状の熱硬化性樹脂組成物を成形しているが故に、その後の溶融熱硬化性樹脂組成物との一体化が確実になされ、電子部品を確実に樹脂封止することができる。   If it is in the range of such pressurization pressure and heating temperature, a powdery thermosetting resin composition will not be hardened completely. That is, since the powdery thermosetting resin composition is molded in an incompletely cured state, the subsequent integration with the molten thermosetting resin composition is ensured, and the electronic component is reliably resinated. It can be sealed.

また、本発明の電子部品の樹脂封止方法は、
前記電子部品がコンデンサ素子であることを特徴とする。
このようにコンデンサ素子であれば、特に防湿,絶縁,劣化防止などが高精度で求められるため、本発明の樹脂封止方法を好適に用いることができる。
Moreover, the resin sealing method of the electronic component of the present invention is as follows.
The electronic component is a capacitor element.
In this way, since the moisture resistance, insulation, prevention of deterioration and the like are required with high accuracy in the case of the capacitor element, the resin sealing method of the present invention can be suitably used.

本発明によれば、硬化が不完全な状態の固体状の熱硬化性樹脂組成物と、この熱硬化性樹脂組成物と同材質で溶融状態の溶融熱硬化性樹脂組成物を用いることにより両者を確実に一体化させて、電子部品の樹脂封止を確実でしかも短時間に行うことができ、端子リードを有する場合であっても端子リードを把持して宙吊りする必要のない電子部品の樹脂封止方法を提供することができる。 According to the present invention, by using a solid thermosetting resin composition in an incompletely cured state and a molten thermosetting resin composition in the same material as the thermosetting resin composition and in a molten state, The resin of the electronic component that can be reliably sealed in a short time, and does not need to hold the terminal lead and hang it even if it has a terminal lead. A sealing method can be provided.

図1は、本発明の樹脂封止方法で電子部品を封止して成る樹脂封止電子部品の概略図である。FIG. 1 is a schematic view of a resin-encapsulated electronic component obtained by encapsulating an electronic component by the resin sealing method of the present invention. 図2は、底面側保持部材の製造工程を示した工程図である。FIG. 2 is a process diagram illustrating a manufacturing process of the bottom-side holding member. 図3は、上面側保持部材の製造工程を示した工程図である。FIG. 3 is a process diagram showing a manufacturing process of the upper surface side holding member. 図4は、樹脂封止電子部品の第1の実施形態における樹脂封止工程を示した工程図である。FIG. 4 is a process diagram showing a resin sealing process in the first embodiment of the resin-encapsulated electronic component. 図5は、樹脂封止電子部品の第1の実施形態における樹脂封止工程を示した工程図である。FIG. 5 is a process diagram showing a resin sealing process in the first embodiment of the resin-encapsulated electronic component. 図6は、樹脂封止電子部品の第2の実施形態における樹脂封止工程を示した工程図である。FIG. 6 is a process diagram showing a resin sealing process in the second embodiment of the resin-encapsulated electronic component. 図7は、樹脂封止電子部品の第2の実施形態における樹脂封止工程を示した工程図である。FIG. 7 is a process diagram showing a resin sealing process in the second embodiment of the resin-encapsulated electronic component. 図8は、底面側保持部材の別の形態を示した概略図である。FIG. 8 is a schematic view showing another form of the bottom side holding member. 図9は、従来の樹脂封止方法でコンデンサ素子を封止して成るコンデンサの概略図である。FIG. 9 is a schematic view of a capacitor formed by sealing a capacitor element by a conventional resin sealing method.

以下、本発明の実施形態について、図面に基づいてより詳細に説明する。
本発明は、例えばコンデンサ素子などの電子部品を熱硬化性樹脂組成物で封止する樹脂封止方法である。
Hereinafter, embodiments of the present invention will be described in more detail based on the drawings.
The present invention is a resin sealing method for sealing an electronic component such as a capacitor element with a thermosetting resin composition.

<樹脂封止電子部品10>
図1(a)に示したように、本発明の樹脂封止方法で電子部品を封止して成る樹脂封止電子部品10は、略直方体であり、その内部構造については、図1(b)に示した図1(a)のA−A線断面図のように、内部の電子部品12を隙間なく熱硬化性樹脂被覆層14が覆ってなるものである。
<Resin encapsulated electronic component 10>
As shown in FIG. 1A, a resin-encapsulated electronic component 10 formed by encapsulating an electronic component by the resin-encapsulating method of the present invention is a substantially rectangular parallelepiped, and the internal structure thereof is shown in FIG. 1A is a cross-sectional view taken along line AA in FIG. 1A, and the thermosetting resin coating layer 14 covers the internal electronic component 12 without a gap.

この時、電子部品12の周りを覆う熱硬化性樹脂被覆層14は、少なくとも電子部品12の上下において、同程度の厚みで設けられている。
なお、樹脂封止電子部品10は、略直方体に限定されるものではなく、如何なる形態でも良いものである。しかしながら、樹脂封止電子部品10は基板などに固定されることが想定されるため、図1(a)に示したような安定性の良い形態であることが好ましい。
At this time, the thermosetting resin coating layer 14 covering the periphery of the electronic component 12 is provided with a similar thickness at least above and below the electronic component 12.
The resin-encapsulated electronic component 10 is not limited to a substantially rectangular parallelepiped, and may take any form. However, since it is assumed that the resin-encapsulated electronic component 10 is fixed to a substrate or the like, it is preferable that the resin-encapsulated electronic component 10 has a good stability as shown in FIG.

このような構造とすることにより、内部の電子部品12を熱硬化性樹脂被覆層14によって防湿,絶縁,劣化防止などすることができる。
なお、電子部品12としては特に限定されるものではなく、例えばコンデンサ素子、コイル、回路基板などが挙げられる。中でもコンデンサ素子は、特に上記した防湿,絶縁,劣化防止などの効果を必要とするためこの構造が好適である。
With this structure, the internal electronic component 12 can be moisture-proof, insulated, and prevented from deterioration by the thermosetting resin coating layer 14.
The electronic component 12 is not particularly limited, and examples thereof include a capacitor element, a coil, and a circuit board. In particular, this structure is suitable because the capacitor element particularly requires the above-described effects such as moisture prevention, insulation, and prevention of deterioration.

電子部品12がコンデンサ素子の場合には、通常、コンデンサ素子に端子リードが接続されてなるが、端子リードの接続位置は様々であって、広くその形態が知られたものであるから、本明細書中では特に図示しないものとする。
次にこのようにして成る樹脂封止電子部品10における電子部品12の具体的な樹脂封止方法について説明する。
When the electronic component 12 is a capacitor element, a terminal lead is usually connected to the capacitor element, but the connection position of the terminal lead is various, and its form is widely known. It is not specifically shown in the book.
Next, a specific resin sealing method of the electronic component 12 in the resin-encapsulated electronic component 10 thus configured will be described.

<電子部品12の樹脂封止方法>
まず、電子部品12の底面側を保持する底面側保持部材30aの製造方法について説明する。
<Resin sealing method of electronic component 12>
First, a method for manufacturing the bottom surface side holding member 30a that holds the bottom surface side of the electronic component 12 will be described.

図2(a)に示したように、予め用意しておいた金型20,22内に常温で固体の熱硬化性樹脂組成物30を収容する。金型20,22は、底面側保持部材30aの反転形状が付されて成るものである。なお、常温で固体とは、20℃において固体で取り扱え、液状ではないことを意味する。常温で固体の熱硬化性樹脂組成物は、取り扱いの容易さ等の観点から、通常、ペレット状、タブレット状、フレーク状、パウダー状等の粒状の形状を有している。   As shown in FIG. 2A, a thermosetting resin composition 30 that is solid at room temperature is accommodated in molds 20 and 22 prepared in advance. The molds 20 and 22 are formed by attaching the inverted shape of the bottom surface side holding member 30a. The term “solid at normal temperature” means that it can be handled as a solid at 20 ° C. and is not liquid. A thermosetting resin composition that is solid at room temperature usually has a granular shape such as a pellet shape, a tablet shape, a flake shape, or a powder shape from the viewpoint of ease of handling and the like.

次いで図2(b)に示したように金型20,22を閉じ、内部の常温で固体の熱硬化性樹脂組成物30を加圧および加温する。この時、粉末状の熱硬化性樹脂組成物30に加えられる圧力および温度は、圧力が通常5〜300MPaの範囲内、好ましくは5〜200MPaの範囲内であり、温度が通常40〜50℃の範囲内、好ましくは45〜50℃の範囲内である。   Next, as shown in FIG. 2 (b), the molds 20 and 22 are closed, and the solid thermosetting resin composition 30 is pressurized and heated at the normal temperature inside. At this time, the pressure and temperature applied to the powdery thermosetting resin composition 30 are usually in the range of 5 to 300 MPa, preferably in the range of 5 to 200 MPa, and the temperature is usually 40 to 50 ° C. Within the range, preferably within the range of 45-50 ° C.

このような範囲内に圧力および温度を設定することにより、熱硬化性樹脂組成物30を完全には硬化しないように成形することができる。
そして図2(c)に示したように、金型20,22を開くことにより、完全には硬化しないように成形された熱硬化性樹脂組成物30から成る底面側保持部材30aが得られる。
By setting the pressure and temperature within such a range, the thermosetting resin composition 30 can be molded so as not to be completely cured.
And as shown in FIG.2 (c), the bottom face side holding member 30a which consists of the thermosetting resin composition 30 shape | molded so that it may not harden | cure completely is obtained by opening the metal mold | dies 20 and 22.

次いで底面側保持部材30aと同様にして、電子部品12の上面側を保持する上面側保持部材50aを製造する。
まず、図3(a)に示したように、予め用意しておいた金型40,42内に常温で固体の熱硬化性樹脂組成物50を収容する。金型40,42は、上面側保持部材50aの反転形状が付されて成るものである。
Next, the upper surface side holding member 50a that holds the upper surface side of the electronic component 12 is manufactured in the same manner as the bottom surface side holding member 30a.
First, as shown in FIG. 3A, a thermosetting resin composition 50 that is solid at room temperature is accommodated in molds 40 and 42 prepared in advance. The molds 40 and 42 are formed by inverting the upper surface side holding member 50a.

次いで図3(b)に示したように金型40,42を閉じ、内部の常温で固体の熱硬化性樹脂組成物50を加圧および加温する。この時、熱硬化性樹脂組成物50に加えられる圧力および温度は、圧力が通常5〜300MPaの範囲内、好ましくは5〜200MPaの範囲内であり、温度が通常20〜120℃の範囲内、好ましくは40〜50℃の範囲内である。   Next, as shown in FIG. 3B, the molds 40 and 42 are closed, and the solid thermosetting resin composition 50 is pressurized and heated at the normal temperature inside. At this time, the pressure and temperature applied to the thermosetting resin composition 50 are usually in the range of 5 to 300 MPa, preferably in the range of 5 to 200 MPa, and the temperature is usually in the range of 20 to 120 ° C. Preferably it exists in the range of 40-50 degreeC.

このような範囲内に圧力および温度を設定することにより、熱硬化性樹脂組成物50を完全には硬化しないように成形することができる。
なお、「完全には硬化しない」状態とは、本明細書中では熱硬化性樹脂組成物に含まれる熱硬化性樹脂が完全には硬化しておらず、例えば、加温加圧すると後述する溶融熱硬化性樹脂組成物と一体となり成形可能な状態のことを指すものである。
By setting the pressure and temperature within such a range, the thermosetting resin composition 50 can be molded so as not to be completely cured.
In the present specification, the “not completely cured” state means that the thermosetting resin contained in the thermosetting resin composition is not completely cured. It refers to a state where it can be molded integrally with the melt thermosetting resin composition.

そして図3(c)に示したように、金型40,42を開くことにより、完全には硬化しないように成形された熱硬化性樹脂組成物50から成る上面側保持部材50aが得られる。   And as shown in FIG.3 (c), by opening the metal mold | die 40,42, the upper surface side holding member 50a which consists of the thermosetting resin composition 50 shape | molded so that it may not harden | cure completely is obtained.

ここで、底面側保持部材30aと上面側保持部材50aを成形する際に用いる熱硬化性樹脂組成物30,50は同じものであることが好ましい。
熱硬化性樹脂組成物30,50は、例えば、熱硬化性樹脂に硬化剤、充填材、さらに必要に応じて、硬化促進剤、その他添加剤を添加して混合し、これを加熱ロールで混練した後、冷却・粉砕することにより、製造できる。また冷却後に所望の形状にし、さらに必要に応じて分級等の処理を施してもよい。
Here, it is preferable that the thermosetting resin compositions 30 and 50 used when molding the bottom surface holding member 30a and the top surface holding member 50a are the same.
The thermosetting resin compositions 30 and 50 are, for example, a curing agent, a filler, and, if necessary, a curing accelerator and other additives added to the thermosetting resin and mixed, and this is kneaded with a heating roll. Then, it can be manufactured by cooling and pulverizing. Moreover, after cooling, it may be made into a desired shape and further subjected to a treatment such as classification as necessary.

熱硬化性樹脂としては、例えば、エポキシ樹脂、熱硬化性ウレタン樹脂、ジアリルフタレート樹脂、アルキド樹脂、不飽和ポリエステル樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、およびベンゾグアナミン樹脂などが挙げられる。これら熱硬化性樹脂の中でも、電子部品の封止性などの観点から、エポキシ樹脂が好ましい。   Examples of the thermosetting resin include epoxy resins, thermosetting urethane resins, diallyl phthalate resins, alkyd resins, unsaturated polyester resins, phenol resins, urea resins, melamine resins, and benzoguanamine resins. Among these thermosetting resins, epoxy resins are preferable from the viewpoint of sealing performance of electronic components.

エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、多官能型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、ナフタレン骨格含有 ノボラック型エポキシ樹脂、ビフェニル骨格含有エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。これらエポキシ樹脂の中でも、成形性などの観点から、オルソクレゾールノボラック型エポキシ樹脂が好ましい。   Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, polyfunctional type epoxy resin, and the like. Glycidyl ether type epoxy resin, naphthalene skeleton-containing epoxy resin, naphthalene skeleton-containing novolak type epoxy resin, biphenyl skeleton-containing epoxy resin, dicyclopentadiene skeleton-containing epoxy resin, alicyclic epoxy resin, and the like. Among these epoxy resins, orthocresol novolac type epoxy resins are preferable from the viewpoint of moldability and the like.

なお、本発明で用いられる熱硬化性樹脂組成物は常温で固体であるため、上記エポキシ樹脂は常温で固体、典型的には常温で結晶を形成している状態であってもよい。一方、本発明では熱硬化性樹脂組成物が常温で固体であることが好ましい。   In addition, since the thermosetting resin composition used in the present invention is solid at normal temperature, the epoxy resin may be solid at normal temperature, typically in a state where crystals are formed at normal temperature. On the other hand, in the present invention, the thermosetting resin composition is preferably solid at room temperature.

硬化剤としては、熱硬化性樹脂がエポキシ樹脂である場合には、例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、m−フェニレンジアミン等のアミン;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水テトラヒドロフタル酸等の酸無水物;フェノールノボラック樹脂、アラルキルフェノール樹脂等のフェノール樹脂などが挙げられる。これら硬化剤の中でも、成形性および耐熱性、耐湿性の観点から、フェノールノボラック樹脂が好ましい。   As the curing agent, when the thermosetting resin is an epoxy resin, for example, amines such as diaminodiphenylmethane, diaminodiphenylsulfone, m-phenylenediamine; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, anhydrous Examples thereof include acid anhydrides such as tetrahydrophthalic acid; phenol resins such as phenol novolac resin and aralkylphenol resin. Among these curing agents, phenol novolac resins are preferable from the viewpoints of moldability, heat resistance, and moisture resistance.

硬化剤のエポキシ樹脂に対する化学当量比(硬化剤/エポキシ樹脂)は0.5〜1.5の範囲にあることが好ましく、0.7〜1.2の範囲にあることがより好ましい。
硬化促進剤としては、例えば、2−エチル−4−メチルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2'−メチルイミダゾリル−(1')]−エチル−s−トリアジン、2,4−ジアミノ−6−[2'−ウンデシルイミダゾリル−(1')]−エチル−s−トリアジン、2,4−ジアミノ−6−[2'−エチル−4'−メチルイミダゾリル−(1')]−エチル−s−トリアジン、2,4−ジアミノ−6−[2'−メチルイミダゾリル−(1')]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、2−メチルイミダゾリン、2−フェニルイミダゾリン、2,4−ジアミノ−6−ビニル−s−トリアジン、2,4−ジアミノ−6−ビニル−s−トリアジンイソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジン、エポキシ−イミダゾールアダクト、エポキシ−フェノール−ホウ酸エステル配合物等のイミダゾール化合物;3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素等の尿素化合物;1,8−ジアザ−ビシクロ[5,4,0]ウンデセン−7、シクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノールなどの3級アミン;トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート等のリン化合物;4級アンモニウム塩、および有機金属塩などが挙げられる。これら硬化促進剤の中でも、硬化の速さの観点から、イミダゾール化合物が好ましい。
The chemical equivalent ratio of the curing agent to the epoxy resin (curing agent / epoxy resin) is preferably in the range of 0.5 to 1.5, and more preferably in the range of 0.7 to 1.2.
Examples of the curing accelerator include 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2. -Phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2 -Undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2 , 4-Diamino-6- [2'-undecylimidazoli -(1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino -6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl -4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline, 2-Phenylimidazoline, 2,4-diamino-6-vinyl-s-triazine, 2,4-diamino-6-vinyl-s-triazine isocyanuric acid adduct Imidazole compounds such as 2,4-diamino-6-methacryloyloxyethyl-s-triazine, epoxy-imidazole adduct, epoxy-phenol-borate ester compound; 3- (3,4-dichlorophenyl) -1,1- Urea compounds such as dimethylurea; 1,8-diaza-bicyclo [5,4,0] undecene-7, cyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6-dimethylamino Tertiary amines such as methylphenol; phosphorus compounds such as triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate; quaternary ammonium salts, organometallic salts, etc. Is mentioned. Among these curing accelerators, an imidazole compound is preferable from the viewpoint of curing speed.

硬化促進剤は、エポキシ樹脂100重量部に対して、好ましくは0.1〜20重量部、より好ましくは0.5〜10重量部の範囲で配合する。
充填材としては、例えば、シリカ、アルミナ、ジルコニア、酸化チタン、炭酸カルシウム、窒化アルミニウム、水酸化マグネシウム、タルク、マイカおよびクレー等の無機充填材;ゴム、およびナイロン等の有機充填材などが挙げられる。
The curing accelerator is preferably blended in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin.
Examples of the filler include inorganic fillers such as silica, alumina, zirconia, titanium oxide, calcium carbonate, aluminum nitride, magnesium hydroxide, talc, mica, and clay; and organic fillers such as rubber and nylon. .

充填材は、エポキシ樹脂100重量部に対して、好ましくは100〜1000重量部、より好ましくは300〜1000重量部の範囲で配合する。
その他の添加剤としては、例えば、着色剤、離型剤、カップリング剤等が挙げられる。
The filler is preferably blended in the range of 100 to 1000 parts by weight, more preferably 300 to 1000 parts by weight, with respect to 100 parts by weight of the epoxy resin.
Examples of other additives include a colorant, a release agent, and a coupling agent.

このようにして製造された底面側保持部材30aと上面側保持部材50aは、両者全く同じ形態であっても構わないが、金型60,62の内部空間のゲートの位置などによって、底面側保持部材30aの厚みt1および上面側保持部材50aの厚みt2を調整することが好ましい。   The bottom-side holding member 30a and the top-side holding member 50a manufactured in this way may be in the same form, but depending on the position of the gate in the inner space of the molds 60 and 62, etc. It is preferable to adjust the thickness t1 of the member 30a and the thickness t2 of the upper surface side holding member 50a.

この理由としては、後述する樹脂封止工程において、電子部品12を底面側保持部材30aと上面側保持部材50aとで挟んだ状態で、この周りをさらに溶融熱硬化性樹脂組成物70で覆うことになるため、樹脂封止電子部品10が完成した際に、電子部品12を覆う熱硬化性樹脂被覆層14の厚みが、電子部品12の上下で同等となるようにするためである。   The reason for this is that in the resin sealing step described later, the electronic component 12 is sandwiched between the bottom surface side holding member 30a and the top surface side holding member 50a, and the periphery thereof is further covered with the melt thermosetting resin composition 70. Therefore, when the resin-encapsulated electronic component 10 is completed, the thickness of the thermosetting resin coating layer 14 covering the electronic component 12 is made equal on the upper and lower sides of the electronic component 12.

次に、上記工程で得られた底面側保持部材30aと上面側保持部材50aを用いた電子部品12の樹脂封止方法について説明する。
図4(a)に示したように、電子部品12を底面側保持部材30aと上面側保持部材50aとで挟む。
Next, a resin sealing method of the electronic component 12 using the bottom surface side holding member 30a and the top surface side holding member 50a obtained in the above process will be described.
As shown in FIG. 4A, the electronic component 12 is sandwiched between the bottom surface side holding member 30a and the top surface side holding member 50a.

これを図4(b)に示したように、金型60,62の内部空間64に配置し、図4(c)に示したように、金型60,62を閉じる。このとき、金型60,62の内部空間64は、電子部品12を挟んだ底面側保持部材30aと上面側保持部材50aより一回り大きく設定することが好ましい。   As shown in FIG. 4B, this is disposed in the internal space 64 of the molds 60 and 62, and the molds 60 and 62 are closed as shown in FIG. 4C. At this time, the inner space 64 of the molds 60 and 62 is preferably set to be slightly larger than the bottom surface side holding member 30a and the top surface side holding member 50a with the electronic component 12 interposed therebetween.

また内部空間64の左右の端部と、電子部品12を挟んだ底面側保持部材30aと上面側保持部材50aの左右の端部との隙間幅t3,t4は0.5〜2.0mm、好ましくは0.5〜1.0mm程度に設定することが好ましい。   The gap widths t3 and t4 between the left and right end portions of the internal space 64 and the left and right end portions of the bottom surface side holding member 30a and the top surface side holding member 50a sandwiching the electronic component 12 are preferably 0.5 to 2.0 mm. Is preferably set to about 0.5 to 1.0 mm.

このように左右の隙間幅t3,t4を設定すれば、電子部品12を挟んだ底面側保持部材30aと上面側保持部材50aは金型60,62の内部空間64での移動が大幅に制限されるため、内部空間64での位置固定を実質的に不要とすることができる。   If the left and right gap widths t3 and t4 are set in this way, the movement of the bottom surface side holding member 30a and the top surface side holding member 50a sandwiching the electronic component 12 in the internal space 64 of the molds 60 and 62 is greatly limited. Therefore, position fixing in the internal space 64 can be substantially eliminated.

また内部空間64の上部の端部と、電子部品12を挟んだ底面側保持部材30aと上面側保持部材50aの上部の端部との隙間幅t5は0.5〜2.0mm、好ましくは0.5〜1.0mm程度にすることが好ましい。   The gap width t5 between the upper end of the internal space 64 and the upper end of the bottom holding member 30a and the top holding member 50a sandwiching the electronic component 12 is 0.5 to 2.0 mm, preferably 0. It is preferable to make it about 5-1.0 mm.

このように図4(c)に示したように隙間幅t3,t4、t5を設定すれば、後述する溶融熱硬化性樹脂組成物70の金型60,62内部での流動性を高めることができるとともに、電子部品12を挟んだ底面側保持部材30aと上面側保持部材50aは、金型60,62の内部空間64での移動が大幅に制限されるため、内部空間64での位置固定を実質的に不要とすることができる。   Thus, if the gap widths t3, t4, and t5 are set as shown in FIG. 4C, the fluidity inside the molds 60 and 62 of the later-described molten thermosetting resin composition 70 can be improved. In addition, since the bottom surface side holding member 30a and the top surface side holding member 50a sandwiching the electronic component 12 are greatly restricted in movement of the molds 60 and 62 in the internal space 64, the position in the internal space 64 can be fixed. It can be substantially unnecessary.

なお内部空間64の高さh1については、電子部品12の高さh2と底面側保持部材30aの厚みt1と上面側保持部材50aの厚みt2との合計の厚みに応じて設定すれば良く、電子部品12の形態や大きさに応じて適宜設計変更すれば良いものである。   The height h1 of the internal space 64 may be set according to the total thickness of the height h2 of the electronic component 12, the thickness t1 of the bottom surface holding member 30a, and the thickness t2 of the top surface holding member 50a. What is necessary is just to change a design suitably according to the form and magnitude | size of the components 12. FIG.

次いで図5(a)に示したように、型締めした金型60,62内に溶融熱硬化性樹脂組成物70を流入させ、電子部品12を挟み込んだ底面側保持部材30aと上面側保持部材50aを溶融熱硬化性樹脂組成物70で被覆する。   Next, as shown in FIG. 5 (a), the bottom-side holding member 30a and the top-side holding member in which the molten thermosetting resin composition 70 is caused to flow into the clamped dies 60 and 62 and the electronic component 12 is sandwiched therebetween. 50 a is coated with the melt thermosetting resin composition 70.

溶融熱硬化性樹脂組成物70を金型60,62内に流入させる際の温度および圧力は、温度が通常100〜150℃の範囲内、好ましくは110〜130℃の範囲内であり、圧力が通常10MPa〜50MPaの範囲内、好ましくは10MPa〜20MPaの範囲内である。   The temperature and pressure when the molten thermosetting resin composition 70 is allowed to flow into the molds 60 and 62 are usually in the range of 100 to 150 ° C., preferably in the range of 110 to 130 ° C., and the pressure is Usually, it is in the range of 10 MPa to 50 MPa, preferably in the range of 10 MPa to 20 MPa.

ここで、金型60,62内に流入させた溶融熱硬化性樹脂組成物70は、上記した常温で固体の熱硬化性樹脂組成物30,50と同材質のものである。
そして図5(b)に示したように、溶融熱硬化性樹脂組成物70に加えられる温度および流入圧力により、底面側保持部材30aと上面側保持部材50aおよび溶融熱硬化性樹脂組成物70はまず一体化され、その後、完全に硬化される。
Here, the molten thermosetting resin composition 70 that has flowed into the molds 60 and 62 is made of the same material as the thermosetting resin compositions 30 and 50 that are solid at room temperature.
And as shown in FIG.5 (b), the bottom surface side holding member 30a, the upper surface side holding member 50a, and the melt | fusion thermosetting resin composition 70 are carried out by the temperature and inflow pressure which are added to the melt thermosetting resin composition 70. It is first integrated and then fully cured.

その後、図5(c)に示したように金型60,62を開けば、電子部品12が熱硬化性樹脂被覆層14で完全に覆われた樹脂封止電子部品10が得られる。
電子部品12を底面側保持部材30aと上面側保持部材50aとで挟んだ挟持物を金型60,62内にセットしてから樹脂封止電子部品10が得られるまでに要する時間、すなわちサイクルタイムは、大凡3〜10分程度である。
Thereafter, when the molds 60 and 62 are opened as shown in FIG. 5C, the resin-encapsulated electronic component 10 in which the electronic component 12 is completely covered with the thermosetting resin coating layer 14 is obtained.
The time required for obtaining the resin-encapsulated electronic component 10 after setting the sandwiched article sandwiching the electronic component 12 between the bottom-side holding member 30a and the top-side holding member 50a in the molds 60 and 62, that is, the cycle time Is about 3 to 10 minutes.

したがって、背景技術の欄に記載した従来技術のように、樹脂封止の硬化に数時間も要する樹脂封止方法と比べ、本発明の樹脂封止方法は、僅かな時間で済み、飛躍的に製造サイクルを向上することができる。   Therefore, the resin sealing method of the present invention requires only a short time compared to the resin sealing method that takes several hours to cure the resin sealing, as in the prior art described in the background art section, and dramatically The manufacturing cycle can be improved.

しかも、固体状と溶融状という異なる性状の樹脂組成物を用いるものの、同材質の熱硬化性樹脂組成物であるために両者を確実に一体化させることができ、電子部品12の樹脂封止を確実に行うことができる。   In addition, although resin compositions having different properties of solid and molten are used, since they are thermosetting resin compositions of the same material, both can be reliably integrated, and resin sealing of the electronic component 12 can be achieved. It can be done reliably.

次に上記した樹脂封止方法とは別の方法について説明する。
図6(a)〜図7(c)に示した樹脂封止方法は、基本的には図4(a)〜図5(c)に示した樹脂封止方法と同じであるので、同じ構成部材には、同じ参照番号を付してその詳細な説明を省略する。
Next, a method different from the resin sealing method described above will be described.
The resin sealing method shown in FIGS. 6A to 7C is basically the same as the resin sealing method shown in FIGS. 4A to 5C, and therefore has the same configuration. The same reference numerals are assigned to the members, and detailed descriptions thereof are omitted.

図6(a)〜図7(c)に示した樹脂封止方法では、底面側保持部材30aのみを用い、上面側保持部材50aを用いない点で、上記した樹脂封止方法とは異なっている。
この樹脂封止方法においては、まず図6(a)に示したように、底面側保持部材30a上に電子部品12を載置させ、これを図6(b)に示したように、金型60,62の内部空間64に配置し、図6(c)に示したように金型60,62を閉じる。
The resin sealing method shown in FIGS. 6A to 7C is different from the resin sealing method described above in that only the bottom surface side holding member 30a is used and the top surface side holding member 50a is not used. Yes.
In this resin sealing method, first, as shown in FIG. 6 (a), the electronic component 12 is placed on the bottom-side holding member 30a, and this is performed as shown in FIG. 6 (b). It arrange | positions in the interior space 64 of 60 and 62, and the metal mold | dies 60 and 62 are closed as shown in FIG.6 (c).

そして、図7(a)に示したように、金型60,62の内部空間64に溶融熱硬化性樹脂組成物70を流入させ、底面側保持部材30aと電子部品12を溶融熱硬化性樹脂組成物70で被覆する。   7A, the molten thermosetting resin composition 70 is caused to flow into the internal space 64 of the molds 60 and 62, and the bottom-side holding member 30a and the electronic component 12 are fused with the molten thermosetting resin. Coat with composition 70.

溶融熱硬化性樹脂組成物70を金型60,62内に流入させる際の温度および圧力は、温度が通常100〜150℃の範囲内、好ましくは110〜130℃の範囲内であり、圧力が通常10MPa〜50MPaの範囲内、好ましくは10MPa〜20MPaの範囲内である。   The temperature and pressure when the molten thermosetting resin composition 70 is allowed to flow into the molds 60 and 62 are usually in the range of 100 to 150 ° C., preferably in the range of 110 to 130 ° C., and the pressure is Usually, it is in the range of 10 MPa to 50 MPa, preferably in the range of 10 MPa to 20 MPa.

そして図7(b)に示したように、溶融熱硬化性樹脂組成物70に加えられる温度および圧力により、底面側保持部材30aおよび溶融熱硬化性樹脂組成物70はまず一体化され、その後、完全に硬化される。   Then, as shown in FIG. 7 (b), the bottom-side holding member 30a and the molten thermosetting resin composition 70 are first integrated by the temperature and pressure applied to the molten thermosetting resin composition 70, and then Fully cured.

さらに図7(c)に示したように金型60,62を開けば、電子部品12が熱硬化性樹脂被覆層14で完全に覆われた樹脂封止電子部品10が得られる。
以上、本発明の電子部品12の樹脂封止方法およびこの樹脂封止方法で電子部品12を封止して成る樹脂封止電子部品10について説明したが、本発明は上記した方法に限定されるものではなく、本発明の目的を逸脱しない範囲で種々の変更が可能なものである。
Further, when the molds 60 and 62 are opened as shown in FIG. 7C, the resin-encapsulated electronic component 10 in which the electronic component 12 is completely covered with the thermosetting resin coating layer 14 is obtained.
As described above, the resin sealing method of the electronic component 12 of the present invention and the resin-encapsulated electronic component 10 formed by sealing the electronic component 12 by this resin sealing method have been described, but the present invention is limited to the above-described method. However, various modifications are possible without departing from the scope of the present invention.

例えば上記した底面側保持部材30aの替わりに、図8(a)に示した底面側保持部材30bのように、電子部品12の底面を支えるだけの形態としたり、図8(b)に示した底面側保持部材30cのように、電子部品12の上面付近まで覆う形態としても良いものである。   For example, instead of the above-described bottom surface side holding member 30a, the bottom surface side holding member 30b shown in FIG. 8A may be configured to only support the bottom surface of the electronic component 12, or as shown in FIG. 8B. It is good also as a form which covers to the upper surface vicinity of the electronic component 12 like the bottom face side holding member 30c.

さらに本明細書中では、溶融熱硬化性樹脂組成物70を金型60,62内に流入させる際、上方から金型60,62の内部に溶融樹脂を流入させるゲート位置として説明したが、これも特に限定されるものではなく、例えばサイドゲートとしたり、ゲート数を複数としたりしても良いものである。   Further, in the present specification, when the molten thermosetting resin composition 70 is caused to flow into the molds 60 and 62, the gate position for allowing the molten resin to flow into the molds 60 and 62 from above is described. There is no particular limitation, and for example, a side gate or a plurality of gates may be used.

また金型60,62は、樹脂封止電子部品10を1個取りする形態でも多数個取りする形態でも良く、生産サイクルに合わせて適宜設計変更が可能なものであることは明らかである。   The molds 60 and 62 may be in the form of taking one resin-encapsulated electronic component 10 or taking many pieces, and it is obvious that the design can be appropriately changed according to the production cycle.

さらに、電子部品12にリード端子(図示せず)が設けられている場合には、金型60,62にリード端子用の溝(図示せず)を形成しておき、金型60,62を閉じた際に、リード端子(図示せず)が金型60,62の上下で隙間なく挟まれるようにすれば良く、当業者が通常知り得る技術を採用すれば良いものである。   Further, when the electronic component 12 is provided with a lead terminal (not shown), a lead terminal groove (not shown) is formed in the mold 60, 62, and the mold 60, 62 is attached to the mold 60, 62. When closed, the lead terminals (not shown) may be sandwiched between the upper and lower dies 60 and 62 without any gap, and a technique that can be generally known by those skilled in the art may be employed.

また本発明の樹脂封止方法に用いる装置は、上述の金型を用いてトランスファー成形機,射出成形機などでトランスファー成形,射出成形をすることによって、前記電子部品の樹脂組成物による樹脂封止が可能となる。   The apparatus used in the resin sealing method of the present invention is a resin sealing with the resin composition of the electronic component by performing transfer molding and injection molding with a transfer molding machine, injection molding machine, etc. using the above-mentioned mold. Is possible.

以下、実施例に即してさらに具体的に本発明を説明するが、これら実施例により本発明は何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

[実施例1]
図4(a)〜図5(c)に示した本発明の樹脂封止方法を用いて、コンデンサ素子の樹脂封止を行った。
まず、図4(a)に示したように、コンデンサ素子を、予め用意しておいた底面側保持部材30aと上面側保持部材50aで挟み、挟持体を形成した。コンデンサ素子は、一端部に2本のリード端子が接続されてなるものであり、底面側保持部材30aと上面側保持部材50aには、リード端子用の溝が形成され、挟持した際にリード端子が底面側保持部材30aと上面側保持部材50aの外方に突出されるようになっている。
[Example 1]
The resin sealing of the capacitor element was performed using the resin sealing method of the present invention shown in FIGS. 4 (a) to 5 (c).
First, as shown in FIG. 4A, the capacitor element was sandwiched between a bottom surface holding member 30a and a top surface holding member 50a prepared in advance to form a sandwiching body. The capacitor element is formed by connecting two lead terminals at one end, and a groove for a lead terminal is formed in the bottom-side holding member 30a and the top-side holding member 50a. Is projected outward from the bottom surface side holding member 30a and the top surface side holding member 50a.

また底面側保持部材30aと上面側保持部材50aは、粉末状の熱硬化性樹脂組成物を金型内で180MPaに加圧および45℃に加温して成形されたものであり、完全には硬化されていないものである。
常温で固体の熱硬化性樹脂組成物の組成は表1のとおりである。
The bottom side holding member 30a and the top side holding member 50a are formed by pressurizing a powdered thermosetting resin composition to 180 MPa and heating to 45 ° C. in a mold. It is not cured.
Table 1 shows the composition of the thermosetting resin composition that is solid at room temperature.

Figure 0005837010
Figure 0005837010

さらに底面側保持部材30aの厚みt1は9mm、上面側保持部材50aの厚みt2は7mm、コンデンサ素子の高さh2は11.5mmであった。
次いでこの挟持体を図4(b)に示したように、金型60,62の内部空間64に載置させ、図4(c)に示したように金型60,62を閉じた。金型60,62にはリード端子用の逃がし溝が形成され、金型60,62を閉じた際にリード端子が金型60,62でつぶされないようになっている。
Further, the thickness t1 of the bottom surface side holding member 30a was 9 mm, the thickness t2 of the top surface side holding member 50a was 7 mm, and the height h2 of the capacitor element was 11.5 mm.
Next, the sandwiched body was placed in the internal space 64 of the molds 60 and 62 as shown in FIG. 4B, and the molds 60 and 62 were closed as shown in FIG. 4C. Relief grooves for lead terminals are formed in the molds 60 and 62 so that the lead terminals are not crushed by the molds 60 and 62 when the molds 60 and 62 are closed.

金型60,62の内部空間64の高さh1は18mm、内部空間64と挟持体との左の隙間幅は0.5mm、内部空間64と挟持体との右の隙間幅は0.5mm、内部空間64と挟持体との上部の隙間幅は0.5mmであった。   The height h1 of the inner space 64 of the molds 60 and 62 is 18 mm, the left gap width between the inner space 64 and the sandwiching body is 0.5 mm, the right gap width between the inner space 64 and the sandwiching body is 0.5 mm, The upper gap width between the internal space 64 and the sandwiching body was 0.5 mm.

この状態で、図5(a)に示したように120℃に加熱された金型60,62の内部空間64に、90℃の溶融熱硬化性樹脂組成物70を流入させた。溶融熱硬化性樹脂組成物70の組成は、底面側保持部材30aと上面側保持部材50aを成形した粉末状の熱硬化性樹脂組成物と同じである。   In this state, the 90 ° C. molten thermosetting resin composition 70 was caused to flow into the internal space 64 of the molds 60 and 62 heated to 120 ° C. as shown in FIG. The composition of the molten thermosetting resin composition 70 is the same as the powdery thermosetting resin composition obtained by molding the bottom surface side holding member 30a and the top surface side holding member 50a.

次いで図5(b)に示したように、金型60,62内の溶融熱硬化性樹脂組成物70と底面側保持部材30aと上面側保持部材50aとを溶融させて一体化させ、その後完全に硬化させた。   Next, as shown in FIG. 5B, the molten thermosetting resin composition 70, the bottom surface side holding member 30a and the top surface side holding member 50a in the molds 60 and 62 are melted and integrated, and then completely Cured.

そして図5(c)に示したように、金型60,62を開くことにより、コンデンサ素子が熱硬化性樹脂被覆層14で完全に覆われたコンデンサを得た。
本実施例の樹脂封止方法で得られたコンデンサを温度23℃、湿度50%の空間内に24時間放置し、その後、このコンデンサの導通試験を行ったところ、確実な導通が確認された。
またコンデンサは浸水の形跡が全く見当たらず、劣化もしていないことが確認された。
Then, as shown in FIG. 5C, by opening the molds 60 and 62, a capacitor in which the capacitor element was completely covered with the thermosetting resin coating layer 14 was obtained.
The capacitor obtained by the resin sealing method of this example was left in a space at a temperature of 23 ° C. and a humidity of 50% for 24 hours, and then a continuity test of this capacitor was performed. As a result, reliable conduction was confirmed.
It was also confirmed that there was no evidence of water immersion and no deterioration of the capacitor.

[実施例2]
図6(a)〜図7(c)に示した本発明の樹脂封止方法を用いて、コンデンサ素子の樹脂封止を行った。
[Example 2]
Resin sealing of the capacitor element was performed using the resin sealing method of the present invention shown in FIGS. 6 (a) to 7 (c).

まず、図6(a)に示したように、コンデンサ素子を、予め用意しておいた底面側保持部材30a上に載せ、載置体を形成した。コンデンサ素子は、一端部に2本のリード端子が接続されてなるものである。   First, as shown to Fig.6 (a), the capacitor | condenser element was mounted on the bottom face side holding member 30a prepared previously, and the mounting body was formed. The capacitor element has two lead terminals connected to one end.

また底面側保持部材30aは、粉末状の熱硬化性樹脂組成物を金型内で180MPaに加圧および45℃に加温して成形されたものであり、完全には硬化されていないものである。
常温で固体の熱硬化性樹脂組成物の組成は表2のとおりである。
The bottom-side holding member 30a is formed by pressing a powdery thermosetting resin composition to 180 MPa and heating to 45 ° C. in a mold, and is not completely cured. is there.
The composition of the thermosetting resin composition that is solid at room temperature is shown in Table 2.

Figure 0005837010
Figure 0005837010

さらに底面側保持部材30aの厚みt1は9mm、コンデンサ素子の高さh2は11.5mmであった。
次いでこの載置体を図6(b)に示したように、金型60,62の内部空間64に載置させ、図6(c)に示したように金型60,62を閉じた。金型60,62にはリード端子用の逃がし溝が形成され、金型60,62を閉じた際にリード端子が金型60,62でつぶされないようになっている。
Furthermore, the thickness t1 of the bottom-side holding member 30a was 9 mm, and the height h2 of the capacitor element was 11.5 mm.
Next, the mounting body was placed in the internal space 64 of the molds 60 and 62 as shown in FIG. 6B, and the molds 60 and 62 were closed as shown in FIG. 6C. Relief grooves for lead terminals are formed in the molds 60 and 62 so that the lead terminals are not crushed by the molds 60 and 62 when the molds 60 and 62 are closed.

金型60,62の内部空間64の高さh1は18mm、内部空間64と載置体との左の隙間幅は0.5mm、内部空間64と載置体との右の隙間幅は0.5mm、内部空間64と載置体との上部の隙間幅は0.5mmであった。   The height h1 of the inner space 64 of the molds 60 and 62 is 18 mm, the left gap width between the inner space 64 and the mounting body is 0.5 mm, and the right gap width between the inner space 64 and the mounting body is 0. The gap width of the upper part of 5 mm and the internal space 64 and the mounting body was 0.5 mm.

この状態で、図7(a)に示したように120℃に加熱された金型60,62の内部空間64に、90℃の溶融熱硬化性樹脂組成物70を流入させた。溶融熱硬化性樹脂組成物70の組成は、底面側保持部材30aを成形した粉末状の熱硬化性樹脂組成物と同じである。   In this state, the 90 ° C. molten thermosetting resin composition 70 was caused to flow into the internal space 64 of the molds 60 and 62 heated to 120 ° C. as shown in FIG. The composition of the molten thermosetting resin composition 70 is the same as the powdery thermosetting resin composition obtained by molding the bottom-side holding member 30a.

次いで図7(b)に示したように、金型60,62内の溶融熱硬化性樹脂組成物70と底面側保持部材30aとを溶融させて一体化させ、その後完全に硬化させた。
そして図7(c)に示したように、金型60,62を開くことにより、コンデンサ素子が熱硬化性樹脂被覆層14で完全に覆われたコンデンサを得た。
Next, as shown in FIG. 7B, the melt thermosetting resin composition 70 and the bottom-side holding member 30a in the molds 60 and 62 were melted and integrated, and then completely cured.
And as shown in FIG.7 (c), the capacitor | condenser element completely covered with the thermosetting resin coating layer 14 was obtained by opening the metal mold | die 60,62.

本実施例の樹脂封止方法で得られたコンデンサを温度23℃、湿度50%の空間内に24時間放置し、その後、このコンデンサの導通試験を行ったところ、確実な導通が確認された。
またコンデンサは浸水の形跡が全く見当たらず、劣化もしていないことが確認された。
The capacitor obtained by the resin sealing method of this example was left in a space at a temperature of 23 ° C. and a humidity of 50% for 24 hours, and then a continuity test of this capacitor was performed. As a result, reliable conduction was confirmed.
It was also confirmed that there was no evidence of water immersion and no deterioration of the capacitor.

[比較例1]
実施例1に示した樹脂封止方法は、図4(a)に示したように、コンデンサ素子を予め用意しておいた底面側保持部材30aと上面側保持部材50aで挟み、挟持体を形成し、120℃に加熱された金型60,62の内部空間64に配置し、90℃の溶融熱硬化性樹脂組成物70を流入させる方法であるが、挟持体を形成し、120℃に加熱された金型60,62の内部空間64に配置後、溶融熱硬化性樹脂組成物70を流入させずにコンデンサ素子を封止可能か確認した。
[Comparative Example 1]
In the resin sealing method shown in the first embodiment, as shown in FIG. 4A, the capacitor element is sandwiched between the bottom-side holding member 30a and the top-side holding member 50a prepared in advance to form a sandwiched body. Then, it is arranged in the inner space 64 of the molds 60 and 62 heated to 120 ° C., and the molten thermosetting resin composition 70 at 90 ° C. is allowed to flow, but a sandwich is formed and heated to 120 ° C. After being placed in the inner space 64 of the molds 60 and 62, it was confirmed whether or not the capacitor element could be sealed without allowing the molten thermosetting resin composition 70 to flow.

この結果、挟持体を金型60,62の内部空間64に配置しただけであるため、金型60,62を開くと底面側保持部材30aと上面側保持部材50aは溶融して一体化し、硬化するが、ボイドが発生した熱硬化性樹脂被覆層で覆われたコンデンサを得た。   As a result, since the sandwiching body is only disposed in the internal space 64 of the molds 60 and 62, when the molds 60 and 62 are opened, the bottom surface side holding member 30a and the top surface side holding member 50a are melted and integrated to be cured. However, a capacitor covered with a thermosetting resin coating layer with voids was obtained.

本比較例の樹脂封止方法で得られたコンデンサを温度23℃、湿度50%の空間内に24時間放置し、その後、このコンデンサの導通試験を行ったところ、一部において導通不良が確認された。
またコンデンサは、一部において浸水の形跡が確認された。
The capacitor obtained by the resin sealing method of this comparative example was left in a space at a temperature of 23 ° C. and a humidity of 50% for 24 hours, and then a continuity test of this capacitor was performed. It was.
In addition, traces of water immersion were confirmed in some of the capacitors.

10・・・樹脂封止電子部品
12・・・電子部品
14・・・熱硬化性樹脂被覆層
20・・・金型
22・・・金型
30・・・粉末状の熱硬化性樹脂組成物
30a・・底面側保持部材
30b・・底面側保持部材
30c・・底面側保持部材
40・・・金型
42・・・金型
50・・・粉末状の熱硬化性樹脂組成物
50a・・上面側保持部材
60・・・金型
62・・・金型
64・・・内部空間
70・・・溶融熱硬化性樹脂組成物
t1・・底面側保持部材の厚み
t2・・上面側保持部材の厚み
t3・・左の隙間幅
t4・・右の隙間幅
t5・・上部の隙間幅
h1・・内部空間の高さ
h2・・電子部品の高さ
100・・・コンデンサ
102・・・コンデンサ素子
104・・・端子リード
110・・・ケース本体
120・・・熱硬化性樹脂
DESCRIPTION OF SYMBOLS 10 ... Resin sealing electronic component 12 ... Electronic component 14 ... Thermosetting resin coating layer 20 ... Mold 22 ... Mold 30 ... Powdery thermosetting resin composition 30a ... Bottom side holding member 30b ... Bottom side holding member 30c ... Bottom side holding member 40 ... Mold 42 ... Mold 50 ... Powdered thermosetting resin composition 50a ... Side holding member 60 ... Mold 62 ... Mold 64 ... Internal space 70 ... Melt thermosetting resin composition t1 ·· Thickness of bottom side holding member t2 ·· Thickness of top side holding member t3 ·· Left gap width t4 ·· Right gap width t5 ·· Upper gap width h1 ·· Inner space height h2 ·· Electronic component height 100 ··· Capacitor 102 ··· Capacitor element 104 · ..Terminal lead 110 ... Case body 120 ... thermosetting resin

Claims (7)

電子部品の樹脂封止方法であって、
前記電子部品の底面側を保持する底面側保持部材と、前記電子部品の上面側を保持する上面側保持部材とを、常温で固体の熱硬化性樹脂組成物を加圧および加温することで完全には硬化しないように成形する工程と、
前記完全には硬化しないように成形する工程で得られた前記底面側保持部材と上面側保持部材とで前記電子部品を挟み、これを金型の内部空間に配置する工程と、
前記金型の内部空間に配置する工程の後、前記金型を閉じ、前記金型の内部空間に、前記底面側保持部材および上面側保持部材を形成する熱硬化性樹脂組成物と同材質の溶融熱硬化性樹脂組成物を流入させ、前記電子部品を挟み込んだ前記底面側保持部材と上面側保持部材を溶融熱硬化性樹脂組成物とで被覆する工程と、
前記被覆する工程で流入された溶融熱硬化性樹脂組成物と底面側保持部材と上面側保持部材とを前記金型内で一体化させて完全に硬化させ、前記電子部品の周囲に一体的な熱硬化性樹脂被覆層を形成する工程と、
を少なくとも有することを特徴とする電子部品の樹脂封止方法。
A resin sealing method for electronic components,
By pressing and heating a thermosetting resin composition that is solid at room temperature, a bottom surface side holding member that holds the bottom surface side of the electronic component and a top surface side holding member that holds the top surface side of the electronic component. Forming so as not to be completely cured;
Sandwiching the electronic component between the bottom-side holding member and the top-side holding member obtained in the step of molding so as not to be completely cured, and placing the electronic component in an internal space of a mold;
After the step of placing in the inner space of the mold, the mold is closed, and the same material as the thermosetting resin composition forming the bottom surface side holding member and the upper surface side holding member in the inner space of the mold Injecting a molten thermosetting resin composition, and covering the bottom side holding member and the top side holding member sandwiching the electronic component with a molten thermosetting resin composition;
The molten thermosetting resin composition, the bottom-side holding member, and the top-side holding member that are introduced in the coating step are integrated in the mold and completely cured, and are integrated around the electronic component. Forming a thermosetting resin coating layer;
A resin sealing method for electronic parts, comprising:
電子部品の樹脂封止方法であって、
前記電子部品の底面側を保持する底面側保持部材を、常温で固体の熱硬化性樹脂組成物を加圧および加温することで完全には硬化しないように成形する工程と、
前記完全には硬化しないように成形する工程で得られた前記底面側保持部材上に前記電子部品を載置させ、これを金型の内部空間に配置する工程と、
前記金型の内部空間に配置する工程の後、前記金型を閉じ、前記金型の内部空間に、前記底面側保持部材を形成する熱硬化性樹脂組成物と同材質の溶融熱硬化性樹脂組成物を流入させ、前記底面側保持部材とともに前記底面側保持部材上に載置された電子部品を完全に溶融熱硬化性樹脂組成物とで被覆する工程と、
前記被覆する工程で流入された溶融熱硬化性樹脂組成物と前記底面側保持部材とを前記金型内で一体化させて完全に硬化させ、前記電子部品の周囲に一体的な熱硬化性樹脂被覆層を形成する工程と、
を少なくとも有することを特徴とする電子部品の樹脂封止方法。
A resin sealing method for electronic components,
Molding the bottom-side holding member that holds the bottom side of the electronic component so as not to be completely cured by pressurizing and heating a solid thermosetting resin composition at room temperature; and
Placing the electronic component on the bottom-side holding member obtained in the step of molding so as not to be completely cured, and placing the electronic component in an internal space of a mold; and
After the step of disposing in the inner space of the mold, the mold is closed, and the thermosetting resin of the same material as the thermosetting resin composition that forms the bottom surface holding member in the inner space of the mold Flowing the composition and completely covering the electronic component placed on the bottom-side holding member together with the bottom-side holding member with the melt thermosetting resin composition;
The molten thermosetting resin composition and the bottom-side holding member introduced in the coating step are integrated in the mold and completely cured, and the thermosetting resin is integrated around the electronic component. Forming a coating layer;
A resin sealing method for electronic parts, comprising:
前記溶融熱硬化性樹脂組成物の溶融温度が、50〜130℃の範囲内であることを特徴とする請求項1または2に記載の電子部品の樹脂封止方法。   3. The resin sealing method for an electronic component according to claim 1, wherein a melting temperature of the molten thermosetting resin composition is in a range of 50 to 130 ° C. 4. 前記溶融熱硬化性樹脂及び常温で固体の熱硬化性樹脂組成物に含まれる熱硬化性樹脂が、エポキシ樹脂であることを特徴とする請求項1〜3のいずれかに記載の電子部品の樹脂封止方法。   The resin for electronic parts according to claim 1, wherein the thermosetting resin contained in the molten thermosetting resin and the thermosetting resin composition that is solid at room temperature is an epoxy resin. Sealing method. 前記底面保持部材の底面の厚みが、前記金型内で電子部品が熱硬化性樹脂組成物で封止された際に、封止された前記熱硬化性樹脂組成物の略中央に位置するよう、前記金型の内部空間の高さおよび前記電子部品の高さに応じて設定されていることを特徴とする請求項1〜4のいずれかに記載の電子部品の樹脂封止方法。   The thickness of the bottom surface of the bottom surface holding member is positioned substantially at the center of the sealed thermosetting resin composition when the electronic component is sealed with the thermosetting resin composition in the mold. 5. The resin sealing method for an electronic component according to claim 1, wherein the method is set according to a height of an internal space of the mold and a height of the electronic component. 前記常温で固体の熱硬化性樹脂組成物を加圧および加温することで完全には硬化しないように成形する工程において、
少なくとも前記常温で固体の熱硬化性樹脂組成物に加えられる圧力が5〜300MPaの範囲内、温度が20〜120℃の範囲内であることを特徴とする請求項1〜5のいずれかに記載の電子部品の樹脂封止方法。
In the step of molding so as not to be completely cured by pressurizing and heating the solid thermosetting resin composition at room temperature,
The pressure applied to the thermosetting resin composition that is solid at least at the normal temperature is in the range of 5 to 300 MPa, and the temperature is in the range of 20 to 120 ° C. Resin sealing method for electronic parts.
前記電子部品がコンデンサ素子であることを特徴とする請求項1〜6のいずれかに記載の電子部品の樹脂封止方法。   The resin sealing method for an electronic component according to claim 1, wherein the electronic component is a capacitor element.
JP2013160407A 2013-08-01 2013-08-01 Resin sealing method for electronic parts Active JP5837010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013160407A JP5837010B2 (en) 2013-08-01 2013-08-01 Resin sealing method for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013160407A JP5837010B2 (en) 2013-08-01 2013-08-01 Resin sealing method for electronic parts

Publications (2)

Publication Number Publication Date
JP2015032654A JP2015032654A (en) 2015-02-16
JP5837010B2 true JP5837010B2 (en) 2015-12-24

Family

ID=52517753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013160407A Active JP5837010B2 (en) 2013-08-01 2013-08-01 Resin sealing method for electronic parts

Country Status (1)

Country Link
JP (1) JP5837010B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104503A (en) 2018-12-28 2020-07-09 株式会社マーレ フィルターシステムズ Double compression molding machine and manufacturing method of product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175380B2 (en) * 1993-02-12 2001-06-11 松下電器産業株式会社 Manufacturing method of chip-shaped tantalum solid electrolytic capacitor
JPH10139886A (en) * 1996-11-06 1998-05-26 Nippon Gosei Kako Kk Production of solid epoxy resin composition at ordinary temperature
JP2001237142A (en) * 2000-02-22 2001-08-31 Shizuki Electric Co Inc Film capacitor and resin molded part
JP5413165B2 (en) * 2009-12-07 2014-02-12 パナソニック株式会社 Manufacturing method of resin mold type capacitor and molding die used in this manufacturing method
JP2013118338A (en) * 2011-12-05 2013-06-13 Kyocera Chemical Corp Resin composition for film capacitor and film capacitor

Also Published As

Publication number Publication date
JP2015032654A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
KR101854501B1 (en) Composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
CN105074907B (en) The manufacturing method of electronic component encapsulation resin sheet and electron device package body
JP2018511932A (en) Mechatronic component and manufacturing method thereof
JP6794626B2 (en) Encapsulating resin composition, semiconductor device and in-vehicle electronic control unit
CN106674891A (en) High heat conduction and low stress type epoxy resin composition for fully encapsulated semiconductor device
TWI821334B (en) Resin composition for semiconductor sealing, semiconductor device, and production method of semiconductor device
JP5837010B2 (en) Resin sealing method for electronic parts
JP6575321B2 (en) Resin composition, circuit board, heating element mounting board, and circuit board manufacturing method
JP5525236B2 (en) Fiber reinforced resin case, manufacturing method thereof, and hollow resin package device for storing electronic components
CN109233211A (en) A kind of semiconductor-sealing-purpose epoxy molding plastic
JP6885068B2 (en) Encapsulating resin composition and semiconductor device
TW201323512A (en) Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same
JP2018002923A (en) Method for producing electric/electronic component, epoxy resin composition for injection molding, and electric/electronic component
JP2018044079A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2013118338A (en) Resin composition for film capacitor and film capacitor
JP2018188580A (en) Composition for heat-conductive epoxy resin sealing
JP6598519B2 (en) Manufacturing method of electronic / electrical component and electronic / electrical component
KR101526001B1 (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor apparatus using the same
KR101469265B1 (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor apparatus using the same
WO2021187240A1 (en) Resin composition for sealing, and semiconductor device
JP2013189490A (en) Epoxy resin composition for encapsulation and semiconductor device
WO2016002906A1 (en) Method for producing heat-generating element sealed article
JP6415233B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2016002905A1 (en) Heat-generating element sealed article
KR102052197B1 (en) Epoxy resin composition for encapsulating semicomductor device and semiconductor device encapsulated by using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5837010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250