JP5834469B2 - Acid gas treatment method - Google Patents
Acid gas treatment method Download PDFInfo
- Publication number
- JP5834469B2 JP5834469B2 JP2011100194A JP2011100194A JP5834469B2 JP 5834469 B2 JP5834469 B2 JP 5834469B2 JP 2011100194 A JP2011100194 A JP 2011100194A JP 2011100194 A JP2011100194 A JP 2011100194A JP 5834469 B2 JP5834469 B2 JP 5834469B2
- Authority
- JP
- Japan
- Prior art keywords
- acid gas
- gas concentration
- measuring device
- value
- hcl concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/30—Controlling by gas-analysis apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/38—Removing components of undefined structure
- B01D53/40—Acidic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Treating Waste Gases (AREA)
- Control Of Non-Electrical Variables (AREA)
Description
本発明は、都市ごみ廃棄物焼却炉、産業廃棄物焼却炉、発電ボイラ、炭化炉、民間工場等の燃焼施設において発生する有害な塩化水素や硫黄酸化物等の酸性ガスの処理方法に関する。詳しくは、酸性ガスを処理するアルカリ剤の添加量を効率的に制御する方法に関する。 The present invention relates to a method for treating acidic gases such as harmful hydrogen chloride and sulfur oxide generated in combustion facilities such as municipal waste waste incinerators, industrial waste incinerators, power generation boilers, carbonization furnaces, and private factories. Specifically, the present invention relates to a method for efficiently controlling the addition amount of an alkaline agent for treating acid gas.
有害な塩化水素や硫黄酸化物を含む排ガスは消石灰や重曹等のアルカリ剤で処理され、その後バグフィルター(BF)等の集塵機で除塵された後、煙突から排出される。一方、集塵機で集塵された飛灰は、有害なPb、Cd等の重金属類を含有しており、これら有害重金属を安定化処理した後、埋立処分されている。 Exhaust gas containing harmful hydrogen chloride and sulfur oxide is treated with an alkaline agent such as slaked lime or baking soda, and then removed by a dust collector such as a bag filter (BF), and then discharged from the chimney. On the other hand, the fly ash collected by the dust collector contains harmful heavy metals such as Pb and Cd, and is disposed of in landfill after stabilizing these harmful heavy metals.
酸性ガスを処理するアルカリ剤である5〜30μmに微粉加工された重曹は、消石灰に比べ反応性が高く、酸性ガスを安定的に処理できると共に未反応分が少なく、埋立処分量を削減でき環境負荷低減に有効な手段である。また、重金属処理方法としてはジエチルジチオカルバミン酸塩等のキレートで不溶化処理する方法が一般的であり、短期的には重金属固定効果は高いが、最終処分場における酸性雨によるpH低下及びキレートの酸化自己分解により、鉛等の重金属が再溶出する問題が残る。一方、リン酸等のリン酸化合物による重金属固定は、無機鉱物であるヒドロキシアパタイト形態まで変化させる為、最終処分場における長期安定性に優れ、環境保護の観点から非常に価値の高い処理方法である。さらに、前記微粉重曹で処理した飛灰をリン酸等の重金属固定剤で処理する方法は、多くの環境負荷低減効果を持つ有効な手段である。 Sodium bicarbonate finely processed to 5 to 30 μm, which is an alkaline agent for treating acid gas, has higher reactivity than slaked lime, can stably treat acid gas, has little unreacted content, and can reduce the amount of landfill disposal. This is an effective means for reducing the load. In addition, heavy metals are generally treated by insolubilization with a chelate such as diethyldithiocarbamate, and the effect of fixing heavy metals is high in the short term. The problem of re-elution of heavy metals such as lead due to decomposition remains. On the other hand, heavy metal fixation with phosphoric acid compounds such as phosphoric acid is a highly valuable treatment method from the viewpoint of environmental protection, because it changes to the form of hydroxyapatite, which is an inorganic mineral, and has excellent long-term stability at the final disposal site. . Further, the method of treating fly ash treated with fine powdered sodium bicarbonate with a heavy metal fixing agent such as phosphoric acid is an effective means having many environmental load reducing effects.
ところで、塩化水素や硫黄酸化物等の酸性ガスを処理する消石灰や重曹等のアルカリ剤の添加量を制御することは、酸性ガス処理費用を削減できるだけでなく、アルカリ剤の未反応分を低減し、飛灰の埋立処分量を削減する効果が期待できる。 By the way, controlling the addition amount of alkaline agents such as slaked lime and baking soda that treat acidic gases such as hydrogen chloride and sulfur oxides not only reduces the cost of treating acidic gases, but also reduces the unreacted content of alkaline agents. The effect of reducing fly ash landfill disposal can be expected.
塩化水素や硫黄酸化物等の酸性ガスを処理するアルカリ剤の添加量は、一般的に、バグフィルターの後段に設置されたイオン電極式の塩化水素測定装置で測定されたHCl濃度をもとにPID制御装置によりフィードバック制御されている。しかしながら、焼却施設等の燃焼施設においては通常入口の酸性ガス濃度を測定する装置は設置されておらず、入口の変動状況がわからない状態でPID制御のパラメーターを設定し制御出力を調整する。ところがPID制御装置はP、I、D、添加量(出力)下限、添加量(出力)上限の5つの設定項目があると共に各項目の設定値が複合して制御出力値を決めることから適正な添加制御を検討するのに多大な時間を要する。このため、一般的にPID制御装置による設定は、制御目標値(SV)を超えた際に添加量が大幅に増加する制御を実施している施設が多い。 The amount of alkali agent added to treat acidic gases such as hydrogen chloride and sulfur oxide is generally based on the HCl concentration measured by an ion electrode type hydrogen chloride measuring device installed after the bag filter. Feedback control is performed by the PID control device. However, in a combustion facility such as an incineration facility, a device for measuring the concentration of acidic gas at the entrance is usually not installed, and PID control parameters are set and the control output is adjusted without knowing the state of fluctuation at the entrance. However, the PID control device has five setting items of P, I, D, additive amount (output) lower limit, and additive amount (output) upper limit, and the set value of each item is combined to determine the control output value. It takes a lot of time to study the addition control. For this reason, in general, the setting by the PID control apparatus has many facilities that perform control in which the amount of addition is greatly increased when the control target value (SV) is exceeded.
しかしながら、通常のPID制御装置の制御出力は、単一の上限しか設定できず、例えばHCl濃度の制御目標値(SV)を40ppmに設定した場合、40ppm以上の濃度で制御出力の単一の上限を限度としてアルカリ剤の添加をすることとなり、アルカリ剤を過剰添加する原因となる。また、上記フィードバック制御は、酸性ガス測定装置の計測遅れの影響を受ける。バグフィルター出口のHCl濃度は通常イオン電極法(例えば京都電子工業製HL−36)で測定され、硫黄酸化物濃度は赤外線吸収法(例えば島津製作所製NSA−3080)で測定されているが、試料排ガスのサンプリング時間、及び計測器の応答時間を含めると5〜10分の多大な計測遅れがある。本計測遅れは、アルカリ剤の添加ラグを引き起こし、酸性ガスの処理不良につながると共にアルカリ剤の過剰添加を引き起こす原因となる。 However, the control output of a normal PID control device can only set a single upper limit. For example, when the control target value (SV) of the HCl concentration is set to 40 ppm, the single upper limit of the control output at a concentration of 40 ppm or more. As a result, the alkali agent is added to the limit, causing excessive addition of the alkali agent. The feedback control is affected by measurement delay of the acid gas measuring device. The HCl concentration at the bag filter outlet is usually measured by an ion electrode method (for example, HL-36 manufactured by Kyoto Electronics Industry), and the sulfur oxide concentration is measured by an infrared absorption method (for example, NSA-3080 manufactured by Shimadzu Corporation). Including the sampling time of the exhaust gas and the response time of the measuring instrument, there is a great measurement delay of 5 to 10 minutes. This measurement delay causes an addition lag of the alkaline agent, which leads to poor processing of the acid gas and causes excessive addition of the alkaline agent.
本課題を解決するため種々制御手法が検討されている。特許文献1においては通常のPID制御式にPをさらに加える「P+PID制御」が提案されている。本提案は、通常のPID制御で困難な酸性ガスの突発的発生の対応を考えてのものである。また、特許文献2及び3においては、入口の酸性ガス濃度をもとにアルカリ剤の添加量を決めるフィードフォワード制御と、アルカリ剤が処理した後の酸性ガス濃度をもとにアルカリ剤の添加量を補うフィードバック制御と、を組み合わせる制御方式が提案されている。本制御方式はフィードバック制御の過剰添加を抑制する効果が見込まれ、酸性ガスの安定処理とアルカリ剤の過剰添加を削減する効果は得られるものと考える。
Various control methods have been studied in order to solve this problem.
しかしながら、特許文献1においては、入口の突発的対応はある程度可能であるが、前記測定装置の計測遅れは加味されておらず、計測遅れによるアルカリ剤の添加ラグによる酸性ガスの処理不良には対応することができない。さらに、特許文献2及び3においては、集塵前の煙道の測定環境は、集塵後の測定環境に比べ、酸性ガス濃度が高く、高温であり、測定機器材の腐食対策を講じる必要がある。また、除塵前の排ガスには大量の煤塵が存在することから、除塵対策並びに例えば除塵フィルターの交換等メンテナンスに労力が必要となる。また、これらの測定機器の不具合により生じる測定不良は、酸性ガス濃度の測定信号がアルカリ剤の添加量に直接影響を与えるため、出口の酸性ガス濃度を安定して管理するうえで大きな問題となる。
However, in
上記現状を勘案し、本発明は、酸性ガスを安定的に測定できる測定環境、すなわち集塵工程後の酸性ガス濃度測定信号に基づいてアルカリ剤の添加量を制御するフィードバック形式において、現状のフィードバック制御が抱える計測遅れによる酸性ガスの処理不良並びにアルカリ剤の過剰添加を削減する酸性ガスの処理方法を提供することを目的とする。 In consideration of the above-described present situation, the present invention provides a measurement environment in which acid gas can be stably measured, that is, a feedback form that controls the amount of alkali agent added based on an acid gas concentration measurement signal after the dust collection process. An object of the present invention is to provide a method for treating an acidic gas that reduces acid gas treatment failures due to measurement delays in control and excessive addition of an alkaline agent.
(1) 酸性ガスが含まれる燃焼排ガスにアルカリ剤を添加し、粉塵を集塵した後の酸性ガス濃度を測定するように設置された酸性ガス濃度測定機器の測定信号に基づいてアルカリ剤の添加量をフィードバック制御する酸性ガスの処理方法であって、計測遅延時間がそれぞれ異なる複数の酸性ガス濃度測定機器(例えば、後述するHCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15など)により同一種の酸性ガス濃度を測定する工程と、前記複数の酸性ガス濃度測定機器の測定信号に基づいてアルカリ剤の添加量出力値をフィードバック演算により算出する工程と、を有する酸性ガスの処理方法。 (1) Addition of alkali agent based on measurement signal of acid gas concentration measuring equipment installed to measure acid gas concentration after adding alkali agent to combustion exhaust gas containing acid gas and collecting dust A method for treating an acid gas in which the amount is feedback-controlled, and a plurality of acid gas concentration measuring devices having different measurement delay times (for example, an HCl concentration measuring device (low speed) 14 and an HCl concentration measuring device (high speed) 15 described later) ) Measuring the concentration of the same kind of acid gas, and calculating the output value of the added amount of the alkaline agent by feedback calculation based on the measurement signals of the plurality of acid gas concentration measuring devices. Method.
従来のバグフィルター出口の酸性ガス濃度は、例えば計測遅延時間が5〜10分であるイオン電極法による単一の測定機器で測定され、その測定信号に基づいてアルカリ剤の添加量をフィードバックで制御している。本手法は、測定機器の計測遅延によりアルカリ剤の過剰添加を引き起こす。 The acid gas concentration at the exit of the conventional bag filter is measured with a single measuring instrument based on the ion electrode method with a measurement delay time of 5 to 10 minutes, for example, and the amount of alkali agent added is controlled by feedback based on the measurement signal doing. This method causes excessive addition of alkaline agent due to measurement delay of the measuring instrument.
これに対し、(1)の発明によれば、計測遅延時間が長い測定機器と計測遅延時間が短い測定機器、すなわち酸性ガス濃度の計測遅延時間の異なる複数の測定機器の測定信号に基づいてアルカリ剤の添加量出力値をフィードバック演算により算出する。これにより、計測遅延時間の長い測定機器単一ではなく、計測遅延時間の短い測定機器を組み合わせることができるので、フィードバック制御における酸性ガス濃度の測定機器の計測遅延によるアルカリ剤の過剰添加を軽減することができる。 On the other hand, according to the invention of (1), the alkali is based on the measurement signals of the measuring device having a long measurement delay time and the measuring device having a short measurement delay time, that is, a plurality of measuring devices having different measurement delay times of the acid gas concentration. The addition amount output value of the agent is calculated by feedback calculation. As a result, it is possible to combine measurement devices with a short measurement delay time instead of a single measurement device with a long measurement delay time, thus reducing the excessive addition of alkaline agent due to the measurement delay of the acid gas concentration measurement device in feedback control. be able to.
また、(1)の発明によれば、計測遅延時間がそれぞれ異なる複数の酸性ガス濃度測定機器を備えているので、計測遅延時間は長いが測定信頼度の高い測定機器によりバグフィルター出口の酸性ガス濃度を適切に測定できることに加えて、計測遅延時間は短いが測定信頼度の低い測定機器単独でフィードバック制御するよりも測定信頼度を向上させることができる。よって、アルカリ剤の添加を適切に行うことができ酸性ガスの処理効率をより向上させることができる。 In addition, according to the invention of (1), since a plurality of acid gas concentration measuring devices having different measurement delay times are provided, the acid gas at the bag filter outlet is measured by a measuring device having a long measurement delay time but high measurement reliability. In addition to being able to measure the concentration appropriately, it is possible to improve the measurement reliability as compared to feedback control with a measurement device having a short measurement delay time but low measurement reliability. Therefore, the alkali agent can be added appropriately, and the treatment efficiency of the acidic gas can be further improved.
さらに、計測遅延時間の長い測定機器に、計測遅延時間の短い測定機器を組み合わせることにより、酸性ガス増加時にアルカリ剤を添加するタイミングを従来制御に比べはやくでき、酸性ガス測定装置の計測遅れによる酸性ガスの処理不良を改善することができる。 In addition, by combining a measuring instrument with a long measurement delay time with a measuring instrument with a short measurement delay time, the timing of adding an alkaline agent when the acid gas increases can be made faster than in the conventional control, and the acid delay due to the measurement delay of the acid gas measuring device can be reduced. Gas processing defects can be improved.
(2) 前記添加量出力値をフィードバック演算により算出する工程は、前記複数の測定信号に基づいてそれぞれ演算される複数の添加量出力値の上限値(例えば、後述する複数の添加量出力値の100%の値)を算出する工程と、前記算出した複数の上限値のうち少なくとも1つの上限値について当該上限値より小さい値(例えば、後述する50%の出力制限をかけた値)の添加量出力値を算出する工程と、を有する(1)に記載の酸性ガスの処理方法。 (2) The step of calculating the addition amount output value by feedback calculation includes an upper limit value of a plurality of addition amount output values calculated based on the plurality of measurement signals (for example, a plurality of addition amount output values to be described later). (100% value) and an addition amount of a value smaller than the upper limit value (for example, a value obtained by applying a 50% output limit described later) with respect to at least one of the calculated upper limit values A method for treating an acidic gas according to (1), comprising a step of calculating an output value.
(2)の発明によれば、算出した複数の添加量出力値の上限値のうち少なくとも1つの上限値について当該上限値より小さい値の添加量出力値を算出する。 According to the invention of (2), an addition amount output value having a value smaller than the upper limit value is calculated for at least one upper limit value among the calculated upper limit values of the plurality of addition amount output values.
これにより、計測遅延時間の長い並びに計測遅延時間の短い測定機器の測定信号に基づいて算出される添加量出力値の両方を上限値(100%)で稼動させることに比べ、例えば計測遅延時間の長い測定機器の測定信号に基づいて算出される添加量出力値のみに制限(例えば50%の出力制限)をかけることにより、酸性ガスの処理の安定化を図りつつアルカリ剤の過剰添加をより防止することができる。 As a result, compared to operating both of the additive amount output values calculated based on the measurement signal of the measuring instrument having a long measurement delay time and a short measurement delay time at the upper limit value (100%), for example, the measurement delay time By restricting only the added amount output value calculated based on the measurement signal of a long measuring instrument (for example, 50% output limit), the excessive addition of alkaline agent is further prevented while stabilizing the treatment of acid gas. can do.
さらにまた、計測遅延時間の長い測定機器、並びに計測遅延時間の短い測定機器の測定信号に基づいて算出される添加量出力値の両方に制限(例えば50%の出力制限)をかけることによっても、酸性ガスの処理の安定化を図りつつアルカリ剤の過剰添加をより防止することができる。 Furthermore, by applying a limit (for example, a 50% output limit) to both the measurement device with a long measurement delay time and the additive amount output value calculated based on the measurement signal of the measurement device with a short measurement delay time, It is possible to further prevent the excessive addition of the alkaline agent while stabilizing the treatment of the acid gas.
(3) 前記添加量出力値をフィードバック演算により算出する工程は、少なくとも2つの酸性ガス濃度の傾きの範囲(例えば、後述する直近のHCl濃度の傾きの6秒平均が正の範囲及び負の範囲など)を設定する工程と、前記少なくとも2つの傾きの範囲毎に酸性ガス濃度の制御目標値(例えば、後述する実施例8における180ppm、220ppmなど)を設定する工程と、少なくとも前記測定信号及び前記傾きの範囲毎の制御目標値に基づいてアルカリ剤の添加量出力値を算出する工程と、をさらに有し、前記制御目標値を設定する工程において、前記酸性ガス濃度の傾きの範囲が大きい場合(例えば、後述する直近のHCl濃度の傾きの6秒平均が正の場合(酸性ガス濃度上昇時))に設定する制御目標値は、前記酸性ガス濃度の傾きの範囲が小さい場合(例えば、後述する直近のHCl濃度の傾きの6秒平均が負の場合(酸性ガス濃度下降時))に設定する制御目標値より小さい(1)または(2)に記載の酸性ガスの処理方法。 (3) The step of calculating the added amount output value by feedback calculation includes at least two acid gas concentration gradient ranges (for example, a 6-second average of the latest HCl concentration gradient described later is a positive range and a negative range). A control target value of acid gas concentration (for example, 180 ppm, 220 ppm, etc. in Example 8 described later) for each of the at least two slope ranges, and at least the measurement signal and the A step of calculating an addition amount output value of an alkaline agent based on a control target value for each inclination range, and the step of setting the control target value has a large inclination range of the acidic gas concentration The control target value to be set (for example, when the 6-second average of the slope of the latest HCl concentration described later is positive (when the acid gas concentration is increased)) is the acid gas concentration (1) or (2) smaller than the control target value set when the slope range is small (for example, when the 6-second average of the slope of the latest HCl concentration described later is negative (when the acid gas concentration is lowered)) Acid gas treatment method.
(3)の発明によれば、バグフィルター出口の酸性ガス濃度の傾きが正の時(酸性ガス濃度上昇時)には、傾きが負の時(酸性ガス濃度下降時)よりも酸性ガス濃度の制御目標値を小さくしたので、酸性ガス濃度上昇時でのアルカリ剤添加量を、酸性ガス濃度下降時よりも多くできる。また、逆に酸性ガス濃度下降時でのアルカリ剤添加量を、酸性ガス濃度上昇時よりも少なくできる。よって、フィードバック演算によるアルカリ剤の添加出力を前倒しで実施することができ、計測遅延による影響をさらに軽減することができる。 According to the invention of (3), when the slope of the acid gas concentration at the bag filter outlet is positive (when the acid gas concentration is increased), the acid gas concentration is lower than when the slope is negative (when the acid gas concentration is lowered). Since the control target value is reduced, the amount of alkali agent added when the acid gas concentration is increased can be increased more than when the acid gas concentration is decreased. Conversely, the amount of the alkali agent added when the acidic gas concentration is lowered can be made smaller than when the acidic gas concentration is increased. Therefore, the alkaline agent addition output by feedback calculation can be implemented ahead of schedule, and the influence of measurement delay can be further reduced.
(4) 前記添加量出力値をフィードバック演算により算出する工程は、前記測定信号に基づいて演算される添加量出力値の下限値(例えば、後述する図21、図23、図31のLO[制御出力下限])と上限値(例えば、後述する図21、図23、図31のLH[制御出力上限])との間に、前記酸性ガス濃度(例えば、後述する図21、図23、図31のBF出口HCl濃度)に対応して前記添加量出力値の新たな上限値(例えば、後述する図21、図23、図31のLM1[出力制限1]、LM2[出力制限2])を1つ以上設定する工程をさらに有する(1)から(3)のいずれかに記載の酸性ガスの処理方法。 (4) The step of calculating the addition amount output value by a feedback calculation includes a lower limit value of the addition amount output value calculated based on the measurement signal (for example, LO [control in FIG. 21, FIG. 23, FIG. Output lower limit]) and an upper limit value (for example, LH [control output upper limit] in FIGS. 21, 23, and 31 described later), the acidic gas concentration (for example, FIGS. 21, 23, and 31 described later). Corresponding to the BF outlet HCl concentration) (for example, LM1 [output limit 1], LM2 [output limit 2] in FIGS. 21, 23, and 31 described later) 1). The acidic gas treatment method according to any one of (1) to (3), further including a step of setting one or more.
通常のフィードバック演算における出力上限は1つしかなく、酸性ガスが制御目標値以上になると入口の酸性ガス濃度の大きさにかかわらず、上限値までアルカリ剤は添加可能となり、過剰添加を引き起こす。
これに対し、(4)の発明によれば、添加量出力値の下限値と上限値との間に、現在の酸性ガス濃度に応じた制御出力の制限を加えることにより、酸性ガス濃度の大きさに応じてアルカリ剤の適正な添加が可能となり、添加量の削減が可能となる。
There is only one output upper limit in the normal feedback calculation, and when the acidic gas exceeds the control target value, the alkaline agent can be added up to the upper limit value regardless of the magnitude of the acidic gas concentration at the inlet, causing excessive addition.
On the other hand, according to the invention of (4), the restriction of the control output according to the current acid gas concentration is added between the lower limit value and the upper limit value of the addition amount output value, thereby increasing the acid gas concentration. Accordingly, it is possible to appropriately add an alkali agent, and it is possible to reduce the amount of addition.
(5) 前記アルカリ剤が平均粒子径5〜30μmの微粉重曹である(1)から(4)のいずれかに記載の酸性ガスの処理方法。 (5) The method for treating acidic gas according to any one of (1) to (4), wherein the alkaline agent is fine powdered baking soda having an average particle diameter of 5 to 30 μm.
本発明に用いるアルカリ剤は、特に酸性ガスとの反応が速い平均粒子径が5〜30μmに調整された微粉重曹であることが好ましい。微粉重曹の反応が速いことから制御応答性が良く、本発明の性能を効果的に発揮することができる。ただし、本発明は制御手法によるものであり、消石灰でも適用が可能である。消石灰は、酸性ガスとの反応性が高い比表面積が例えば30m2/g以上である高比表面積の消石灰である方が、本発明の性能を発揮できる。 The alkaline agent used in the present invention is preferably finely powdered baking soda having an average particle size of 5 to 30 μm, which is particularly fast in reaction with acid gas. Since the reaction of fine baking soda is fast, the control responsiveness is good and the performance of the present invention can be exhibited effectively. However, the present invention is based on a control method and can be applied to slaked lime. The slaked lime can exhibit the performance of the present invention when it is a high specific surface area slaked lime having a high specific surface area with high reactivity with acid gas, for example, 30 m 2 / g or more.
(6) 前記微粉重曹とは異なる他のアルカリ剤を併用する(5)に記載の酸性ガスの処理方法。 (6) The processing method of acidic gas as described in (5) which uses together the other alkaline agent different from the said fine powder baking soda.
本発明の効果を発揮するアルカリ剤としては特に制限はない。微粉重曹以外のアルカリ剤としては、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、セスキ炭酸ナトリウム、天然ソーダ、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、水酸化マグネシウム等が例示できる。また、アルカリ剤が粉体の場合、酸性ガスとの反応性が高い粒子径が30μm未満、特に5〜20μmの微粉のほうが好ましい。あらかじめ粒径を調整した剤を適用しても良いし、現地に粉砕設備を設け、粒径の粗いアルカリ剤を現地で粉砕しながら添加しても良い。また、各アルカリ剤を水に溶解したスラリーまたは水溶液でも実施が可能である。 There is no restriction | limiting in particular as an alkaline agent which exhibits the effect of this invention. Examples of the alkali agent other than fine powdered sodium bicarbonate include sodium carbonate, potassium hydrogen carbonate, potassium carbonate, sodium sesquicarbonate, natural soda, sodium hydroxide, potassium hydroxide, magnesium oxide, magnesium hydroxide and the like. When the alkaline agent is a powder, a fine powder having a particle size with a high reactivity with an acid gas of less than 30 μm, particularly 5 to 20 μm is preferable. An agent having a particle size adjusted in advance may be applied, or a pulverization facility may be provided on site, and an alkaline agent having a coarse particle size may be added while being crushed on site. Further, the present invention can also be carried out with a slurry or an aqueous solution in which each alkaline agent is dissolved in water.
(7) 前記他のアルカリ剤は、消石灰、水酸化ナトリウム、水酸化マグネシウム、酸化マグネシウム、炭酸ナトリウム、セスキ炭酸ナトリウム、天然ソーダ、及び粗重曹からなる群より選ばれる少なくとも1種のアルカリ剤である(6)に記載の酸性ガスの処理方法。 (7) The other alkaline agent is at least one alkaline agent selected from the group consisting of slaked lime, sodium hydroxide, magnesium hydroxide, magnesium oxide, sodium carbonate, sodium sesquicarbonate, natural soda, and crude sodium bicarbonate. The processing method of the acidic gas as described in (6).
本発明による制御を実施するアルカリ剤とは異なる安価なアルカリ剤を併用することも経済的に有効な手段となる。一般的に用いられる安価なアルカリ剤としては、消石灰、水酸化ナトリウム、水酸化マグネシウム、酸化マグネシウム、炭酸ナトリウム、セスキ炭酸ナトリウム、天然ソーダ、粗重曹が例示できる。 It is also economically effective to use an inexpensive alkaline agent different from the alkaline agent for carrying out the control according to the present invention. Examples of generally used inexpensive alkali agents include slaked lime, sodium hydroxide, magnesium hydroxide, magnesium oxide, sodium carbonate, sodium sesquicarbonate, natural soda, and crude baking soda.
本発明により、酸性ガスを安定的に測定できる測定環境、すなわち集塵工程後の酸性ガス濃度測定信号に基づいてアルカリ剤の添加量を制御するフィードバック形式において、現状のフィードバック制御が抱える測定機器の計測遅延による酸性ガスの処理不良の改善並びにアルカリ剤の過剰添加を削減し、効率的なアルカリ剤の添加で安定した酸性ガスの処理が可能となる。 According to the present invention, in a measurement environment in which acid gas can be stably measured, that is, in a feedback format in which the amount of alkali agent added is controlled based on an acid gas concentration measurement signal after the dust collection process, the current feedback control Improvement of acid gas processing failure due to measurement delay and reduction of excessive addition of alkaline agent are possible, and stable addition of acidic gas becomes possible by the efficient addition of alkaline agent.
以下に実施形態を挙げて本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to embodiments, but the present invention is not limited thereto.
図1は、焼却施設における排ガスであるHClに微粉重曹を添加する酸性ガス処理システム1の構成を表すブロック図である。
FIG. 1 is a block diagram showing the configuration of an acidic
酸性ガス処理システム1は、制御装置11、微粉重曹添加装置12、バグフィルター13、HCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15から構成されている。制御装置11は、HCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15から送信されるHCl濃度測定信号に基づいて微粉重曹の添加量出力値をフィードバック制御(PID制御方式またはステップ方式)により算出する。微粉重曹添加装置12は、制御装置11が算出した微粉重曹の添加量出力値に基づいて排ガス中のHClに微粉重曹を添加する。
The acid
バグフィルター13は、排ガス中のHClと微粉重曹の反応後の粉塵を除去する。HCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15は、バグフィルター13上に蓄積した微粉重曹(排ガス中のHClとの反応によって残存した微粉重曹がバグフィルター13上に蓄積される)と排ガス反応後のHClとが反応した後のHCl濃度(後述するバグフィルター出口HCl濃度)を測定して、HCl濃度測定信号を制御装置11に送信する。
The
酸性ガス処理システム1は、このようなサイクルを繰り返してフィードバック制御を行うことで、制御装置11は、微粉重曹添加量の制御出力値を適切なものとする制御を行う。
The acidic
なお、HCl濃度測定機器(低速)14は、例えばイオン電極式のHCl濃度測定装置であり、HCl濃度測定機器(高速)15は、例えばレーザー方式のHCl濃度測定装置である。また、HCl濃度の計測遅延時間は、HCl濃度測定機器(低速)14の方がHCl濃度測定機器(高速)15よりも長い。 The HCl concentration measuring device (low speed) 14 is, for example, an ion electrode type HCl concentration measuring device, and the HCl concentration measuring device (high speed) 15 is, for example, a laser type HCl concentration measuring device. The HCl concentration measurement delay time of the HCl concentration measuring device (low speed) 14 is longer than that of the HCl concentration measuring device (high speed) 15.
また、図1に示すように、バグフィルター13上に蓄積した微粉重曹と排ガス反応後のHClとが反応した後のHCl濃度(後述するバグフィルター出口HCl濃度)を測定するようにHCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15を設置するのが好ましい。これは、排ガス中のHClとの反応によって残存した微粉重曹がバグフィルター13上に蓄積され、この蓄積された微粉重曹が排ガス反応後のHClと反応するため、より正確にHCl濃度の測定ができるからである。
Further, as shown in FIG. 1, an HCl concentration measuring device is used to measure the HCl concentration (bag filter outlet HCl concentration described later) after the fine powdered baking soda accumulated on the
さらに、制御装置11が行う制御について詳細に説明する。
Further, the control performed by the
制御装置11は、HCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15のそれぞれから送信されるHCl濃度測定信号に基づいて微粉重曹添加量の各々の添加量出力値の上限値を算出する。この場合に、算出した各々の上限値の両方または一方について出力制限(例えば、50%の出力制限)を行ってもよい。
Based on the HCl concentration measurement signal transmitted from each of the HCl concentration measuring device (low speed) 14 and the HCl concentration measuring device (high speed) 15, the
これにより、HCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15のそれぞれから送信されるHCl濃度測定信号に基づいて算出される複数の添加量出力値の両方を上限値(100%)で稼動させることに比べ、例えば計測遅延時間の長いHCl濃度測定機器(低速)14の測定信号に基づいて算出される添加量出力値のみに制限(例えば50%の出力制限)をかけることにより、酸性ガスの処理の安定化を図りつつアルカリ剤の過剰添加をより防止することができる。 Thus, both of the plurality of added amount output values calculated based on the HCl concentration measurement signal transmitted from each of the HCl concentration measuring device (low speed) 14 and the HCl concentration measuring device (high speed) 15 are set to the upper limit value (100% ), For example, by limiting only the added amount output value calculated based on the measurement signal of the HCl concentration measuring device (low speed) 14 having a long measurement delay time (for example, 50% output limitation). Further, it is possible to further prevent the excessive addition of the alkaline agent while stabilizing the treatment of the acid gas.
さらにまた、計測遅延時間の長いHCl濃度測定機器(低速)14、並びに計測遅延時間の短いHCl濃度測定機器(高速)15の測定信号に基づいて算出される添加量出力値の両方に制限(例えば50%の出力制限)をかけることによっても、酸性ガスの処理の安定化を図りつつアルカリ剤の過剰添加をより防止することができる。 Furthermore, it is limited to both the added amount output value calculated based on the measurement signal of the HCl concentration measuring device (low speed) 14 having a long measurement delay time and the HCl concentration measuring device (high speed) 15 having a short measurement delay time (for example, (50% output limitation) can also prevent the excessive addition of the alkaline agent while stabilizing the treatment of the acid gas.
さらに、制御装置11は、HCl濃度の傾き(濃度の時間変化率)が正の範囲と負の範囲の2つの範囲を設ける。そして、これら2つの範囲毎にHCl濃度の制御目標値を設定する。
Further, the
ここで、HCl濃度の制御目標値の設定は、HCl濃度の傾きが正の範囲に対して設ける制御目標値が、負の範囲に対する制御目標値よりも小さくなるように設定してもよい。このようにすることで、HCl濃度上昇時での微粉重曹添加量を、HCl濃度下降時よりも多くできる。また、逆にHCl濃度下降時での微粉重曹添加量を、HCl濃度上昇時よりも少なくできる。よって、フィードバック演算による微粉重曹の添加出力を前倒しで実施することができ、計測遅延による影響をさらに軽減することができる。 Here, the control target value of the HCl concentration may be set so that the control target value provided for the positive range of the HCl concentration is smaller than the control target value for the negative range. By doing in this way, the amount of fine sodium bicarbonate added when the HCl concentration is increased can be increased more than when the HCl concentration is decreased. Conversely, the amount of fine powdered sodium bicarbonate added when the HCl concentration is lowered can be made smaller than that when the HCl concentration is raised. Therefore, the addition output of the fine baking soda by the feedback calculation can be implemented ahead of schedule, and the influence of the measurement delay can be further reduced.
また、HCl濃度の傾きに応じて制御目標値を変更する設定は、HCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15の両方に対して行ってもよいし、いずれか一方に対してのみ行ってもよい。 The setting for changing the control target value in accordance with the gradient of the HCl concentration may be performed for both the HCl concentration measuring device (low speed) 14 and the HCl concentration measuring device (high speed) 15, or one of them. You may do it only for.
さらに、制御装置11は、ステップ方式によるフィードバック制御を行っても良い。ここで、ステップ方式は、HCl濃度に応じた制御出力を段階的に設定する制御方式である。具体的には、PID制御方式において設定されている制御出力値の上限値に加えて、制御出力値の新たな上限値をHCl濃度に対応して設定する。
Further, the
ここで、通常のPID制御における出力上限は1つしかなく、酸性ガスが制御目標値以上になると酸性ガス濃度の大きさにかかわらず、上限値までアルカリ剤は添加可能となり、過剰添加を引き起こす。そこで、ステップ制御方式を採用することにより、添加量出力値の下限値と上限値との間に、現在のHCl濃度に応じた新たな制御出力上限値を加えることにより、HCl濃度の大きさに応じて微粉重曹の適正な添加が可能となり、添加量の過剰添加の抑制が可能となる。 Here, there is only one output upper limit in the normal PID control, and when the acid gas exceeds the control target value, the alkaline agent can be added up to the upper limit value regardless of the magnitude of the acid gas concentration, causing excessive addition. Therefore, by adopting a step control method, a new control output upper limit value corresponding to the current HCl concentration is added between the lower limit value and the upper limit value of the addition amount output value, thereby increasing the HCl concentration. Accordingly, it is possible to appropriately add fine powdered baking soda, and it is possible to suppress excessive addition of the added amount.
ここで、HCl濃度に対応して新たな制御出力上限値が設定されるが、HCl濃度が高いほど新たな制御出力上限値も高く設定される。ただし、アルカリ剤の過剰添加の抑制のためには、PID制御方式において設定されている制御出力値の上限値(例えば、後述する図21、図23のLH[制御出力上限])より小さい値とすることが好ましい。 Here, a new control output upper limit value is set corresponding to the HCl concentration. However, the higher the HCl concentration, the higher the new control output upper limit value is set. However, in order to suppress the excessive addition of the alkaline agent, a value smaller than the upper limit value of the control output value set in the PID control method (for example, LH [control output upper limit] in FIGS. 21 and 23 described later) It is preferable to do.
新たな制御出力上限値の設定例としては、後述する図21、図23に記載のBF出口HCl濃度に対応する制御出力添加量のように、HCl濃度が高いほど新たな制御出力上限値も高く設定することが好ましい。 As an example of setting a new control output upper limit value, the higher the HCl concentration is, the higher the new control output upper limit value is, as in the control output addition amount corresponding to the BF outlet HCl concentration described in FIGS. It is preferable to set.
本実施形態で用いる酸性ガス濃度測定装置は計測方式によらず測定機器の遅延時間が異なれば実施が可能である。HCl濃度は、計測遅延時間が5〜10分と長いイオン電極法が主流である。なお、イオン電極部における応答は3分程度であるが、ガスサンプリングによる遅延を含めると5〜7分である。さらに産業廃棄物焼却炉のようにサンプリングガスに臭素が混入する可能性がある場合、塩化水素の測定値に多大な影響を与えるため、臭素除去する臭素スクラバーを設置する。本臭素スクラバー通過時間は3分程度で計測遅延時間は8〜10分程度となる。 The acidic gas concentration measuring device used in the present embodiment can be implemented if the delay time of the measuring device is different regardless of the measurement method. As for the HCl concentration, the ion electrode method with a long measurement delay time of 5 to 10 minutes is the mainstream. In addition, although the response in an ion electrode part is about 3 minutes, if the delay by gas sampling is included, it will be 5 to 7 minutes. Furthermore, if there is a possibility that bromine is mixed in the sampling gas as in an industrial waste incinerator, a bromine scrubber that removes bromine is installed to greatly affect the measured value of hydrogen chloride. The bromine scrubber passage time is about 3 minutes and the measurement delay time is about 8 to 10 minutes.
また、レーザーによる単一吸収線吸収分光法による塩化水素の計測遅延時間は数秒(1〜2秒)と非常に短い。本発明は、計測遅延時間が異なる二つの測定機器を用いフィードバック制御を実施することにより実施が可能であるが、現状の測定機器ではこれらの測定装置を組み合わせることが最適である。また、硫黄酸化物は、赤外線吸収法が主流であり、3分〜5分程度の遅延時間である。硫黄酸化物おいても塩化水素と同様に計測遅延時間の異なる測定機器を組み合わせることにより実施が可能である。 In addition, the measurement delay time of hydrogen chloride by single absorption line absorption spectroscopy using a laser is as short as a few seconds (1-2 seconds). The present invention can be implemented by performing feedback control using two measuring devices having different measurement delay times, but it is optimal to combine these measuring devices with the current measuring device. Moreover, the infrared absorption method is the mainstream for sulfur oxide, and the delay time is about 3 minutes to 5 minutes. Sulfur oxide can also be implemented by combining measuring instruments having different measurement delay times as with hydrogen chloride.
なお、本発明は、酸性ガスの計測遅れの改善を主な目的としていることから計測遅れが大きいイオン電極法による塩化水素測定装置を用いてバグフィルター後段の酸性ガスを測定し、フィードバック制御をおこなっている施設において特に効果を発揮する。 The main purpose of the present invention is to improve the measurement delay of acid gas. Therefore, the ion gas method hydrogen chloride measuring device with a large measurement delay is used to measure the acid gas after the bag filter and perform feedback control. It is particularly effective in facilities that have
また、産業廃棄物焼却炉や民間工場の燃焼施設においては、塩化水素と硫黄酸化物が高濃度で発生することが多い。この際には、塩化水素と硫黄酸化物の両方が処理対象となり、バグフィルター後段に設けられたHCl濃度測定装置のHCl濃度をもとに前記制御方式において求められた制御出力と硫黄酸化物濃度をもとに前記制御方式において求められた制御出力を例えば加算することにより、塩化水素並びに硫黄酸化物の両酸性ガスを安定して処理することができる。 In industrial waste incinerators and combustion facilities of private factories, hydrogen chloride and sulfur oxides are often generated at high concentrations. At this time, both hydrogen chloride and sulfur oxide are to be treated, and the control output and sulfur oxide concentration obtained in the above control method based on the HCl concentration of the HCl concentration measuring device provided at the rear stage of the bag filter. By adding, for example, the control outputs obtained in the control method based on the above, both acidic gases of hydrogen chloride and sulfur oxide can be treated stably.
さらに酸性ガスの排出濃度管理は各酸性ガス濃度(塩化水素、硫黄酸化物濃度)の1時間平均値で管理している施設がある。制御においては制御目標値(SV)を設けて制御するのが一般的であるが、制御目標値はあくまで目標であり、制御した結果目標値を超える濃度となるケースが往々にしてある。特に添加量削減と酸性ガスの安定処理は相反する思想であることから、添加量削減を求めれば求めるだけ、1時間平均値が管理値を超えるリスクが強まる。この場合、1時間平均管理値以上、もしくはそれに近い濃度に達した場合、多量の添加(ある一定添加量を規定)を添加することにより、添加量削減と酸性ガスの安定処理が両立できる安心度の高い制御が可能となる。 In addition, there are facilities that manage the discharge concentration of acid gas by the hourly average value of each acid gas concentration (hydrogen chloride, sulfur oxide concentration). In control, control is generally performed by setting a control target value (SV). However, the control target value is only a target, and there are many cases where the concentration exceeds the target value as a result of the control. In particular, since the reduction of the addition amount and the acid gas stabilization treatment are contradictory ideas, the risk that the one-hour average value exceeds the control value is increased only by obtaining the reduction of the addition amount. In this case, when the concentration reaches or exceeds the average control value for 1 hour, the amount of addition (predetermined a certain addition amount) is added, so that the amount of addition can be reduced and the acid gas can be stably treated. High control is possible.
本実施形態で用いる微粉重曹は、特に酸性ガスとの反応が速い平均粒子径が5〜30μmに調整された微粉重曹であることが好ましい。微粉重曹の反応が速いことから制御応答性が良く、本実施形態の性能を効果的に発揮することができるからである。ただし、本実施形態は制御手法によるものであり、消石灰でも適用が可能である。消石灰は、酸性ガスとの反応性が高い比表面積が例えば30m2/g以上である高比表面積の消石灰である方が、本実施形態の性能を発揮できる。 The fine powdered sodium bicarbonate used in the present embodiment is preferably fine powdered sodium bicarbonate having an average particle size that is particularly fast for reaction with an acidic gas and adjusted to 5 to 30 μm. This is because the control response is good because the reaction of the fine powdered baking soda is fast, and the performance of this embodiment can be exhibited effectively. However, this embodiment is based on a control method, and can be applied to slaked lime. The slaked lime is a slaked lime with a high specific surface area having a high specific surface area that is highly reactive with acid gas, for example, 30 m 2 / g or more, and can exhibit the performance of this embodiment.
本実施形態では、アルカリ剤として微粉重曹を用いたが、本実施形態の効果を発揮するアルカリ剤としては特に制限はない。微粉重曹以外のアルカリ剤としては、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、セスキ炭酸ナトリウム、天然ソーダ、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、水酸化マグネシウム等が例示できる。また、アルカリ剤が粉体の場合、酸性ガスとの反応性が高い粒子径が30μm未満、特に5〜20μmの微粉のほうが好ましい。あらかじめ粒径を調整した剤を適用しても良いし、現地に粉砕設備を設け、粒径の粗いアルカリ剤を現地で粉砕しながら添加しても良い。また、各アルカリ剤を水に溶解したスラリーまたは水溶液でも実施が可能である。 In the present embodiment, fine powder baking soda is used as the alkaline agent, but there is no particular limitation on the alkaline agent that exhibits the effect of the present embodiment. Examples of the alkali agent other than fine powdered sodium bicarbonate include sodium carbonate, potassium hydrogen carbonate, potassium carbonate, sodium sesquicarbonate, natural soda, sodium hydroxide, potassium hydroxide, magnesium oxide, magnesium hydroxide and the like. When the alkaline agent is a powder, a fine powder having a particle size with a high reactivity with an acid gas of less than 30 μm, particularly 5 to 20 μm is preferable. An agent having a particle size adjusted in advance may be applied, or a pulverization facility may be provided on site, and an alkaline agent having a coarse particle size may be added while being crushed on site. Further, the present invention can also be carried out with a slurry or an aqueous solution in which each alkaline agent is dissolved in water.
本実施形態による制御を実施する微粉重曹とは異なる安価なアルカリ剤を併用することも経済的に有効な手段となる。一般的に用いられる安価なアルカリ剤としては、消石灰、水酸化ナトリウム、水酸化マグネシウム、酸化マグネシウムが例示できる。 It is also economically effective to use an inexpensive alkaline agent different from the fine powder baking soda that performs the control according to the present embodiment. Examples of generally used inexpensive alkali agents include slaked lime, sodium hydroxide, magnesium hydroxide, and magnesium oxide.
シミュレーション反応系について説明する。 The simulation reaction system will be described.
[シミュレーション反応系]:排ガスとバグフィルター上における複合反応
シミュレーション反応系は、微粉重曹と塩化水素(HCL)との反応が排ガス中で瞬時におきる反応と、バグフィルター上に蓄積した未反応の微粉重曹とHCLとの二つの反応により構成した(図2参照)。また、バグフィルターにおける捕集物の滞留時間は、通常2時間程度である。従って、本シミュレーションにおいては、バグフィルター上の微粉重曹は、規定時間(約2時間で設定)で消滅する形とした。
[Simulation reaction system]: Combined reaction between exhaust gas and bag filter The simulation reaction system is a reaction in which the reaction between fine baking soda and hydrogen chloride (HCL) occurs instantaneously in the exhaust gas, and unreacted fine powder accumulated on the bag filter. It consisted of two reaction of baking soda and HCL (refer FIG. 2). Moreover, the residence time of the collected matter in the bag filter is usually about 2 hours. Therefore, in this simulation, the fine powdered baking soda on the bag filter is assumed to disappear in a specified time (set in about 2 hours).
図2を参照して、シミュレーション反応系の基本構成を説明する。
まず、焼却施設における薬注制御では、バグフィルター出口に設置されたイオン電極式のHCl濃度測定機器(低速)、及び例えばレーザー方式などのHCl濃度測定機器(高速)のHCl濃度(処理後)信号を元にPID等の制御式の演算により薬剤添加量(微粉重曹添加量(Ag))を決定し(下記式(1))、決定した添加量の微粉重曹(酸性ガス処理剤)を排ガス(入口HCl濃度(Hi))に添加する。煙道に添加された微粉重曹は排ガス中のHCl等の酸性ガスと反応し、排ガス中のHClが除去される。
The basic configuration of the simulation reaction system will be described with reference to FIG.
First, in chemical injection control at an incineration facility, the HCl concentration (after processing) signal of an ion electrode type HCl concentration measuring device (low speed) installed at the bag filter outlet and an HCl concentration measuring device (high speed) such as a laser system, for example. Based on the above, the amount of chemical addition (fine powdered sodium bicarbonate addition amount (Ag)) is determined by calculation of a control equation such as PID (the following formula (1)), and the determined addition amount of fine powdered sodium bicarbonate (acid gas treatment agent) is exhausted ( To the inlet HCl concentration (Hi)). Fine powder baking soda added to the flue reacts with acidic gas such as HCl in the exhaust gas, and the HCl in the exhaust gas is removed.
Ag=(Ag1×K1÷100+Ag2×K2÷100)+LO (1)
Ag:微粉重曹添加量[kg/h]
Ag1:HCl濃度測定機器(低速)の出力から規定される添加量[kg/h]
Ag2:HCl濃度測定機器(高速)の出力から規定される添加量[kg/h]
LO:添加量下限[kg/h]
K1:HCl測定機器1(低速)用の調整係数[%]
K2:HCl測定機器2(高速)用の調整係数[%]
Ag = (Ag1 × K1 ÷ 100 + Ag2 × K2 ÷ 100) + LO (1)
Ag: Fine powder baking soda addition amount [kg / h]
Ag1: Addition amount [kg / h] defined by the output of the HCl concentration measuring device (low speed)
Ag2: Addition amount [kg / h] defined by the output of the HCl concentration measuring instrument (high speed)
LO: Lower limit of addition amount [kg / h]
K1: Adjustment factor for HCl measuring device 1 (low speed) [%]
K2: Adjustment coefficient for HCl measuring device 2 (high speed) [%]
また、微粉重曹による入口HCl濃度のHCl除去率は、弊社微粉重曹の適用知見から排ガス反応微粉重曹添加当量(Jg)と排ガス反応HCl除去率(αg)との関係(図3)及びバグフィルター上反応微粉重曹添加当量(Js)とバグフィルター上反応HCl除去率(αs)との関係(図4)から試算した。また、HClと微粉重曹との反応は瞬時とした。まず、排ガスにおける反応後のHCl濃度(Hg)は、排ガス反応の微粉重曹添加当量(Jg)と排ガス反応HCl除去率(αg)により導かれる(下記式(2))。なお、排ガス反応の微粉重曹添加当量(Jg)は、下記式(3)により算出される。 In addition, the HCl removal rate of the inlet HCl concentration with fine powdered sodium bicarbonate is based on the application knowledge of our fine powdered sodium bicarbonate, the relationship between the exhaust gas reaction fine powder sodium bicarbonate addition equivalent (Jg) and the exhaust gas reaction HCl removal rate (αg) (Figure 3) and on the bag filter It was estimated from the relationship (FIG. 4) between the reaction fine powder baking soda addition equivalent (Js) and the reaction HCl removal rate (αs) on the bag filter. The reaction between HCl and fine baking soda was instantaneous. First, the HCl concentration (Hg) after the reaction in the exhaust gas is derived from the fine powdered sodium bicarbonate addition equivalent (Jg) of the exhaust gas reaction and the exhaust gas reaction HCl removal rate (αg) (the following formula (2)). In addition, the fine powder baking soda addition equivalent (Jg) of exhaust gas reaction is computed by following formula (3).
Hg=Hi×(1−αg÷100) (2)
Hi:入口HCl濃度(ppm)
Hg:排ガス反応後HCl濃度(ppm)
αg:排ガス反応におけるHCl除去率(%)
[排ガス反応微粉重曹添加当量とHCl除去率の関係(図3)から設定]
Hg = Hi × (1−αg ÷ 100) (2)
Hi: Inlet HCl concentration (ppm)
Hg: HCl concentration after exhaust gas reaction (ppm)
αg: HCl removal rate in exhaust gas reaction (%)
[Set from the relationship between the exhaust gas reaction fine powder baking soda addition equivalent and HCl removal rate (Fig. 3)]
Jg=Ag÷{Hi÷0.614÷1000÷M1×M2×F÷1000} (3)
Jg:排ガス反応微粉重曹添加当量
Ag:微粉重曹添加量(kg/h)
Hi:入口HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm3/h)[55,000Nm3/hで設定]
Jg = Ag ÷ {Hi ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000} (3)
Jg: Exhaust gas reaction fine powder baking soda addition equivalent Ag: Fine powder sodium bicarbonate addition amount (kg / h)
Hi: Inlet HCl concentration (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of
また、排ガス反応により残存した微粉重曹は、バグフィルター上に随時蓄積する。BF上に蓄積した微粉重曹は、排ガス反応後のHClと反応し、バグフィルター出口のHCl濃度(Ho)が決まる。この際、BF上蓄積微粉重曹量(As)は、排ガス反応で蓄積した微粉重曹からBF上でHClと反応した微粉重曹量を差し引いた。また、本バグフィルター上蓄積微粉重曹量(As)と排ガス反応後のHCl濃度(Hg)から試算されるバグフィルター上微粉重曹添加当量(Js)(下記式(5))からバグフィルター上でのHCl除去率(αs)を決め、バグフィルター出口のHCl濃度(Ho)を決定した(下記式(4))。 Moreover, the fine baking soda remaining by the exhaust gas reaction accumulates on the bag filter as needed. Fine powder baking soda accumulated on BF reacts with HCl after the exhaust gas reaction, and the HCl concentration (Ho) at the bag filter outlet is determined. At this time, the amount of fine powdered sodium bicarbonate accumulated on BF (As) was obtained by subtracting the amount of fine powdered sodium bicarbonate reacted with HCl on BF from the fine powdered sodium bicarbonate accumulated in the exhaust gas reaction. In addition, the amount of fine powdered baking soda added on the bag filter (As) and the equivalent concentration of fine powdered sodium bicarbonate on the bag filter (Js) calculated from the amount of HCl (Hg) after the exhaust gas reaction (Equation (5) below) The HCl removal rate (αs) was determined, and the HCl concentration (Ho) at the bag filter outlet was determined (the following formula (4)).
Ho=Hg×(1−αs÷100) (4)
Hg:排ガス反応後HCl濃度(ppm)
Ho:バグフィルター出口HCl濃度(ppm)
αs:バグフィルター上反応のHCl除去率(%)
[バグフィルター上微粉重曹添加当量とHCl除去率の関係(図4)から設定]
Ho = Hg × (1−αs ÷ 100) (4)
Hg: HCl concentration after exhaust gas reaction (ppm)
Ho: HCl concentration at the outlet of the bag filter (ppm)
αs: HCl removal rate of the reaction on the bag filter (%)
[Set from the relationship between the equivalent weight of fine powdered sodium bicarbonate on the bag filter and the HCl removal rate (Fig. 4)]
Js=As÷{Hg÷0.614÷1000÷M1×M2×F÷1000} (5)
Js:バグフィルター上微粉重曹添加当量
As:バグフィルター上微粉重曹量(kg/h)
Hg:排ガス反応後HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm3/h)[55,000Nm3/hで設定]
Js = As ÷ {Hg ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000} (5)
Js: Equivalent amount of fine baking soda on bag filter As: Amount of fine baking soda on bag filter (kg / h)
Hg: HCl concentration after exhaust gas reaction (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of
As=Zn÷Ts×3600 (6)
Zn:バグフィルター上微粉重曹蓄積量(kg)
Ts:単位シミュレーション時間(=データサンプリング時間)(sec)
[0.5sec設定]
As = Z n ÷ Ts × 3600 (6)
Z n : Accumulated amount of baking soda on bag filter (kg)
Ts: Unit simulation time (= data sampling time) (sec)
[0.5 sec setting]
Zn=Zn’×(1−2.3÷T4×Ts) (7)
Zn’:未反応微粉重曹量(kg)
T4:バグフィルター上蓄積微粉重曹90%消滅時定数(sec)
[7,200sec設定]
Ts:単位シミュレーション時間(=データサンプリング時間)(sec)
[0.5sec設定]
Z n = Z n ′ × (1-2.3 ÷ T4 × Ts) (7)
Z n ′ : Amount of unreacted fine baking soda (kg)
T4: Accumulated fine powder baking soda on
[7,200sec setting]
Ts: Unit simulation time (= data sampling time) (sec)
[0.5 sec setting]
Zn’=(Ag÷3600×Ts−Rg)+(Zn−1−Rs) (8)
Ag:微粉重曹添加量(kg/h)
Ts:単位シミュレーション時間(=データサンプリング時間)(sec)
[0.5sec設定]
Rg:排ガス反応における重曹反応量(kg/h)
Zn−1:Ts(Sec)前のバグフィルター上微粉重曹蓄積量(kg)
Rs:バグフィルター上反応における重曹反応量(kg/h)
Z n ′ = (Ag ÷ 3600 × Ts−Rg) + (Z n−1 −Rs) (8)
Ag: Fine powder baking soda addition amount (kg / h)
Ts: Unit simulation time (= data sampling time) (sec)
[0.5 sec setting]
Rg: sodium bicarbonate reaction amount in exhaust gas reaction (kg / h)
Z n-1 : Accumulated amount of fine baking soda on the bag filter before Ts (Sec) (kg)
Rs: Amount of sodium bicarbonate reaction in bag filter reaction (kg / h)
Rg=(Hi÷0.614÷1000÷M1×M2×F÷1000)÷3600×Ts×αg÷100 (9)
Hi:入口HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm3/h)[55,000Nm3/hで設定]
αg:排ガス反応におけるHCl除去率(%)
Rg = (Hi ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000) ÷ 3600 × Ts × αg ÷ 100 (9)
Hi: Inlet HCl concentration (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of
αg: HCl removal rate in exhaust gas reaction (%)
Rs=(Hg÷0.614÷1000÷M1×M2×F÷1000)÷3600×Ts×αs÷100 (10)
Hg:排ガス反応後HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm3/h)[55,000Nm3/hで設定]
αs:バグフィルター上反応のHCl除去率(%)
Rs = (Hg ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000) ÷ 3600 × Ts × αs ÷ 100 (10)
Hg: HCl concentration after exhaust gas reaction (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of
αs: HCl removal rate of the reaction on the bag filter (%)
本反応後のバグフィルター出口のHCl濃度がイオン電極式のHCl濃度測定機器(低速)14及びHCl濃度測定機器(高速)15で測定される。ところで、イオン電極式のHCl濃度測定機器(低速)14では、施設による遅延時間(Ta)、排ガスサンプリングによる計測遅延時間(TBα)、及びイオン電極式の測定による計測遅延時間(Tbβ,応答時間)があり、フィードバック特有の制御遅れが発生する。 The HCl concentration at the bag filter outlet after this reaction is measured by an ion electrode type HCl concentration measuring device (low speed) 14 and an HCl concentration measuring device (high speed) 15. By the way, in the ion electrode type HCl concentration measuring device (low speed) 14, the delay time by the facility (Ta), the measurement delay time by the exhaust gas sampling (TBα), and the measurement delay time by the ion electrode type measurement (Tbβ, response time) There is a control delay specific to feedback.
そこで本シミュレーションのHCl濃度測定機器(低速)14の遅延時間(T1)は、施設による遅延時間(Ta)とHCl濃度測定機器(低速)14の計測遅延時間(Tb)の合計とした(下記式(11))。なお、HCl濃度測定機器(低速)14の計測遅延時間(Tb)は、HCl処理後の排ガスを煙道からのサンプリングする計測遅延時間(Tbα)とイオン電極式HCl濃度測定機器(Tbβ)の計測遅延時間(応答時間)を設定し、これらの和とした(下記式(12))。一般的に用いられているイオン電極式の90%応答時間(計測遅れ)は、HClガスの吸収液への拡散が影響するためTbβは(下記式(13))とした。本シミュレーションにおいて、計測遅延時間の長いイオン電極式は、実機施設の状況からTa=30秒,Tbα=390秒(サンプリング遅延210秒+臭素スクラバー通過遅延180秒),Tbβ=180秒の計600秒(10分:Ta=0.5分,Tb=9.5分)とした。
Therefore, the delay time (T1) of the HCl concentration measurement device (low speed) 14 in this simulation is the sum of the delay time (Ta) due to the facility and the measurement delay time (Tb) of the HCl concentration measurement device (low speed) 14 (the following equation) (11)). The measurement delay time (Tb) of the HCl concentration measuring device (low speed) 14 is the measurement delay time (Tbα) for sampling the exhaust gas after HCl treatment from the flue and the measurement of the ion electrode type HCl concentration measuring device (Tbβ). A delay time (response time) was set, and the sum of these was set (formula (12) below). The 90% response time (measurement delay) of the commonly used ion electrode type is affected by the diffusion of HCl gas into the absorbing solution, so Tbβ is set to (Formula (13) below). In this simulation, the ion electrode type with a long measurement delay time is 600 seconds in total, Ta = 30 seconds, Tbα = 390 seconds (
また、本シミュレーションのHCl濃度測定機器(高速)15の遅延時間(T2)は、施設による遅延時間(Ta)とHCl濃度測定機器(高速)15の計測遅延時間(Tc)の合計とした(下記式(15))。なお、イオン電極式より計測遅延時間の短いHCl濃度測定機器(高速)15の計測遅延時間(Tc)を変え、挙動を確認した。 Further, the delay time (T2) of the HCl concentration measuring device (high speed) 15 in this simulation is the sum of the delay time (Ta) by the facility and the measurement delay time (Tc) of the HCl concentration measuring device (high speed) 15 (the following) Formula (15)). The behavior was confirmed by changing the measurement delay time (Tc) of the HCl concentration measurement device (high speed) 15 having a measurement delay time shorter than that of the ion electrode type.
また、本フィードバックにより求められる微粉重曹添加量は、HCl濃度測定機器(低速)14から求められる添加出力(Ag1)とHCl濃度測定機器(高速)15から求められる添加出力(Ag2)に基づいて求められる(上記式(1))。 The amount of fine baking soda added obtained by this feedback is obtained based on the addition output (Ag 1) obtained from the HCl concentration measuring device (low speed) 14 and the addition output (Ag 2) obtained from the HCl concentration measuring device (high speed) 15. (The above formula (1)).
[HCl濃度測定機器(低速応答、イオン電極式を模擬)]
T1=Ta+Tb (11)
T1:HCl濃度測定機器(低速)のシミュレーション反応系の遅延時間(sec)
Ta:施設の遅延時間(sec)[30sec設定]
Tb:HCl濃度測定機器(低速)の計測遅延時間(sec)
Tb=Tbα+Tbβ (12)
Tbα:HCl濃度測定機器(低速)の排ガスサンプリング時間(sec)
[390sec設定]
Tbβ:HCl濃度測定機器(低速)の90%応答時間(sec)
[180sec設定]
Tbβ=2.3×τ (13)
Yn=Yn−1+(Xn−Yn−1)÷τ×Ts (14)
τ:時定数(sec)
Ts:単位シミュレーション時間(=データサンプリング時間)(sec)
[0.5sec設定]
Xn:現在の測定装置入力HCl濃度(ppm)
Yn:現在の測定装置出力HCl濃度(ppm)
Yn−1:前回(Ts(sec)前)の測定装置出力HCl濃度(ppm)
[HCl concentration measuring device (low-speed response, simulating ion electrode type)]
T1 = Ta + Tb (11)
T1: Delay time of simulation reaction system of HCl concentration measuring device (low speed) (sec)
Ta: Facility delay time (sec) [30 sec setting]
Tb: Measurement delay time (sec) of HCl concentration measuring device (low speed)
Tb = Tbα + Tbβ (12)
Tbα: Exhaust gas sampling time (sec) of HCl concentration measuring device (low speed)
[390sec setting]
90% response time (sec) of Tbβ: HCl concentration measuring instrument (low speed)
[180sec setting]
Tbβ = 2.3 × τ (13)
Y n = Y n-1 + (X n -Y n-1) ÷ τ × Ts (14)
τ: Time constant (sec)
Ts: Unit simulation time (= data sampling time) (sec)
[0.5 sec setting]
Xn: Current measuring device input HCl concentration (ppm)
Yn: Current measuring device output HCl concentration (ppm)
Y n-1 : HCl output concentration (ppm) of the previous measurement device (before Ts (sec))
[HCl濃度測定機器(高速応答)]
T2=Ta+Tc (15)
T2:HCl濃度測定機器(高速)のシミュレーション反応系の遅延時間(sec)
Ta:施設の遅延時間(sec)[30sec設定]
Tc:HCl濃度測定機器(高速)の計測遅延時間(sec)
計測遅延時間の短い測定機器は、上記Tcのみを設定変更した。
[HCl concentration measuring instrument (high-speed response)]
T2 = Ta + Tc (15)
T2: Simulation reaction system delay time (sec) of HCl concentration measuring instrument (high speed)
Ta: Facility delay time (sec) [30 sec setting]
Tc: Measurement delay time (sec) of HCl concentration measuring device (high speed)
For the measuring instrument with a short measurement delay time, only Tc was changed.
また、図5に示すように変動する入口HCl濃度を用いて、実機におけるPIDの添加挙動並びにHCl発生状況(図6)及び本シミュレーション反応系の結果(図7)から排ガス反応とBF上反応のHClとの反応効率を設定した。本検討結果を図6及び図7に示す。本施設においては、排ガスのHCl除去効率が80%、BF上反応の除去効率が65%で実機とシミュレーションの挙動が一致した(図6、図7)。従って、本条件で以下シミュレーションを行った。なお、本シミュレーションにおいては、制御手法による制御応答性を明らかにするため、比較的変動の大きな時間帯の入口HCl濃度(Hi)を用いて実施した。 Moreover, using the inlet HCl concentration which fluctuates as shown in FIG. 5, the exhaust gas reaction and the reaction on the BF are determined from the addition behavior of PID in the actual machine, the state of HCl generation (FIG. 6), and the result of this simulation reaction system (FIG. 7). The reaction efficiency with HCl was set. The results of this study are shown in FIGS. In this facility, the exhaust gas HCl removal efficiency was 80% and the BF reaction removal efficiency was 65%, which matched the behavior of the actual machine and the simulation (FIGS. 6 and 7). Therefore, the following simulation was performed under these conditions. In this simulation, in order to clarify the control responsiveness by the control method, the simulation was performed using the inlet HCl concentration (Hi) in the time zone with relatively large fluctuation.
本シミュレーション反応系において各種制御手法を検討した結果を以下に示す。
なお、以下の実施例1〜12において用いた微粉重曹の平均粒子径は5〜30μmである。また、実施例1〜12において用いたHCl濃度測定機器14は、イオン電極法による。
The results of studying various control methods in this simulation reaction system are shown below.
In addition, the average particle diameter of the fine powder baking soda used in the following Examples 1-12 is 5-30 micrometers. Moreover, the HCl
[比較例1]
図9に示す入口HCl濃度を用いて、前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間計9.5分)のみで計測したHCl濃度を元にPID制御方式「P(比例ゲイン)=100%,I=0.1秒,D=0.1秒,添加量出力下限200kg/h,添加量出力上限480kg/h」において出口HCl濃度の制御目標値(SV)を200ppmに設定しフィードバック制御した。
[Comparative Example 1]
Using the inlet HCl concentration shown in FIG. 9, the PID control method “P (proportional) is based on the HCl concentration measured only by the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time meter 9.5 minutes) in the simulation. (Gain) = 100%, I = 0.1 sec, D = 0.1 sec, additive amount output
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度(平均,1時間平均最大,瞬時最大,1時間平均最少,瞬時最少)を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図10に示す。 FIG. 8 shows the amount of fine powdered sodium bicarbonate added and the HCl concentration at the bag filter outlet after treatment with fine powdered sodium bicarbonate (average, 1 hour average maximum, instantaneous maximum, 1 hour average minimum, instantaneous minimum). Further, FIG. 10 shows the behavior of the added amount of fine baking soda and the bag filter outlet HCl concentration during this control.
比較例1によれば、酸性ガスの排出管理値として良く用いられる1時間平均値のHClの最大値は、234ppm、瞬時最大は416ppmであった。 According to Comparative Example 1, the maximum value of 1-hour average HCl, which is often used as an acid gas emission control value, was 234 ppm, and the instantaneous maximum was 416 ppm.
[比較例2]
前記シミュレーションにおいてHCl濃度測定機器(高速)15(測定機器計測遅延時間2秒)のみで計測したHCl濃度を元にフィードバック制御した以外は比較例1と同様に制御した。
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図11に示す。
[Comparative Example 2]
Control was performed in the same manner as in Comparative Example 1 except that feedback control was performed based on the HCl concentration measured only with the HCl concentration measurement device (high speed) 15 (measurement device
FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. Further, FIG. 11 shows the behavior of the amount of fine powdered baking soda added and the bag filter outlet HCl concentration during this control.
比較例2のように、計測遅延の少ない高速応答のHCl濃度測定機器(高速)15のみを用いてフィードバック制御した場合、アルカリ剤の添加量変化と出口HCl濃度の変化は瞬時に起こるものと予測された。しかしながら、アルカリ剤添加変動によるハンチングは起こり、1時間平均値のHCl最大値は227ppm,瞬時最大では425ppmであった。 As in Comparative Example 2, when feedback control is performed using only the high-speed response HCl concentration measuring device (high speed) 15 with a small measurement delay, it is predicted that the change in the addition amount of the alkali agent and the change in the outlet HCl concentration will occur instantaneously. It was done. However, hunting occurred due to fluctuations in the addition of alkaline agent, and the maximum HCl value per hour average was 227 ppm, and the instantaneous maximum was 425 ppm.
[実施例1〜5]
前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間計9.5分)で計測したHCl濃度を元にPID制御方式「P(比例ゲイン)=100%,I=0.1秒,D=0.1秒,添加量出力下限200kg/h,添加量出力上限480kg/h」において出口のHCl濃度の制御目標値(SV)を200ppmに設定しフィードバック制御した添加出力と、HCl濃度測定機器(高速)15で計測したHCl濃度を元に同一設定で出口の制御目標値(SV)を200ppmとし、フィードバック制御した添加出力と、を加算してフィードバック制御した。
[Examples 1 to 5]
Based on the HCl concentration measured by the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time meter 9.5 minutes) in the simulation, the PID control method “P (proportional gain) = 100%, I = 0.1 seconds. , D = 0.1 second, additive amount output
なお、HCl濃度測定機器(高速)15の測定機器計測遅延時間は、実施例1が2秒、実施例2が1分、実施例3が3分、実施例4が5分、実施例5が7分であった。 The measuring device measurement delay time of the HCl concentration measuring device (high speed) 15 is 2 seconds for Example 1, 1 minute for Example 2, 3 minutes for Example 3, 5 minutes for Example 4, and 5 for Example 5. It was 7 minutes.
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図12〜16に示す。 FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. Moreover, the behavior of the fine powder baking soda addition amount and bag filter exit HCl concentration at the time of this control is shown in FIGS.
実施例1〜5によれば、計測遅延時間の異なる少なくとも二つの酸性ガス測定機器の測定信号を元に試算される添加出力を演算し、アルカリ剤の添加量を演算することにより酸性ガスの安定処理が可能となる。 According to Examples 1-5, the addition output calculated based on the measurement signal of the at least 2 acid gas measuring apparatus from which measurement delay time differs is calculated, and acid gas stability is calculated by calculating the addition amount of the alkaline agent. Processing is possible.
実施例1は、測定機器計測遅延時間(9.5分)と測定機器計測遅延時間が2秒(瞬時)のHCl計を組み合わせフィードバック制御した結果であるが、比較例1及び比較例2と異なり、出口のHCl濃度の目標値に応じた適切なアルカリ剤の添加が可能であった。また、本条件における出口HCl濃度の1時間平均値は193ppm,瞬時最大は272ppmと適切な薬注制御の結果、出口HCl濃度の変動が少ない管理の容易な制御手法であることが分かった。 Example 1 is the result of feedback control combining a measurement instrument measurement delay time (9.5 minutes) and a measurement instrument measurement delay time of 2 seconds (instantaneous), but unlike Comparative Examples 1 and 2. It was possible to add an appropriate alkaline agent according to the target value of the HCl concentration at the outlet. Moreover, as a result of appropriate chemical injection control, the hourly average value of the outlet HCl concentration under this condition was 193 ppm and the instantaneous maximum was 272 ppm, and as a result, it was found that the control method was easy to manage with little fluctuation in the outlet HCl concentration.
また、測定機器計測遅延時間は、7分(実施例5)でも比較例1及び比較例2に比べ改善されており、計測遅延時間が異なれば良い。ただし、薬注管理としては、短ければ短いほど酸性ガスの安定処理には効果的で、好ましくは、7分以下、より好ましくは3分以下であることが望ましい。 Moreover, the measurement device measurement delay time is improved as compared with Comparative Example 1 and Comparative Example 2 even at 7 minutes (Example 5), and the measurement delay time may be different. However, as a chemical injection management, the shorter it is, the more effective it is for the acid gas stabilization treatment, and it is preferable that it is 7 minutes or less, more preferably 3 minutes or less.
[実施例6]
前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間9.5分)で計測したHCl濃度を元にフィードバック制御した添加出力に50%の出力制限をし、HCl濃度測定機器(高速)15(測定機器計測遅延時間2秒)で計測したHCl濃度を元にフィードバック制御した添加出力は制限をかけず(100%)加算し、フィードバック制御した。
[Example 6]
In the simulation, 50% output restriction is applied to the addition output that is feedback-controlled based on the HCl concentration measured by the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time 9.5 minutes), and the HCl concentration measuring device (high speed) ) The addition output subjected to feedback control based on the HCl concentration measured at 15 (measuring instrument
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図17に示す。 FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. In addition, FIG. 17 shows the behavior of the added amount of fine powdered sodium bicarbonate and the bag filter outlet HCl concentration during this control.
[実施例7]
前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間9.5分)で計測したHCl濃度を元にフィードバック制御した添加出力に50%の出力制限をし、HCl濃度測定機器(高速)15(測定機器計測遅延時間2秒)で計測したHCl濃度を元にフィードバック制御した添加出力に50%の出力制限をして加算し、フィードバック制御した。
[Example 7]
In the simulation, 50% output restriction is applied to the addition output that is feedback-controlled based on the HCl concentration measured by the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time 9.5 minutes), and the HCl concentration measuring device (high speed) ) 50% output limit was added to the addition output that was feedback-controlled based on the HCl concentration measured at 15 (measuring instrument
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図18に示す。 FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. In addition, FIG. 18 shows the behavior of the added amount of fine baking soda and the bag filter outlet HCl concentration during this control.
ここで、実施例6及び7のように、計測遅延時間の異なる少なくとも二つの酸性ガス測定機器の測定信号を元に試算される添加出力の上限に少なくとも1つ以上の制限をかけた際の酸性ガス処理結果について説明する。 Here, as in Examples 6 and 7, the acidity when at least one restriction is applied to the upper limit of the addition output calculated based on the measurement signals of at least two acid gas measuring devices having different measurement delay times. The gas treatment result will be described.
実施例6はHCl濃度測定機器(低速)14の測定信号から試算された添加出力に50%の制限をかけた例である。また、実施例7はHCl濃度測定機器(低速)14並びにHCl濃度測定機器(高速)15の両添加出力に50%の制限をかけた例である。いずれの例においてもHClの処理レベルは実施例1とほぼ同等であると共に添加量が271〜300kg/hと実施例1(311kg/h)に比べアルカリ剤の添加量を削減できることが分かった。 Example 6 is an example in which a 50% limit is applied to the addition output calculated from the measurement signal of the HCl concentration measuring device (low speed) 14. Further, Example 7 is an example in which 50% limitation is applied to both the addition outputs of the HCl concentration measuring device (low speed) 14 and the HCl concentration measuring device (high speed) 15. In any of the examples, it was found that the treatment level of HCl was almost the same as that of Example 1, and the addition amount was 271 to 300 kg / h, and the addition amount of the alkaline agent could be reduced as compared with Example 1 (311 kg / h).
[実施例8]
前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間9.5分)で計測したHCl濃度を元にフィードバック制御する際に直近のHCl濃度の傾きの6秒平均が正の場合、制御目標値(SV)を180ppm(SV−20ppm)とし、直近のHCl濃度の傾きの6秒平均が負の場合、制御目標値(SV)を220ppm(SV+20ppm)として制御した添加出力に、HCl濃度測定機器(高速)15(測定機器計測遅延時間2秒)で計測したHCl濃度を元にフィードバック制御する際に制御目標値(SV)を200ppmとして制御した添加出力を加算し、フィードバック制御した。
[Example 8]
In the simulation, when feedback control is performed based on the HCl concentration measured by the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time 9.5 minutes), when the 6-second average of the latest HCl concentration slope is positive, When the control target value (SV) is 180 ppm (SV-20 ppm) and the 6-second average of the slope of the latest HCl concentration is negative, the control target value (SV) is controlled to 220 ppm (SV + 20 ppm), and the added output is controlled to the HCl concentration. When feedback control was performed based on the HCl concentration measured with the measuring device (high speed) 15 (measuring device
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図19に示す。 FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. Further, FIG. 19 shows the behavior of the added amount of fine powdered sodium bicarbonate and the bag filter outlet HCl concentration during this control.
[実施例9]
前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間9.5分)で計測したHCl濃度を元にフィードバック制御する際に直近のHCl濃度の傾きの6秒平均が正の場合、制御目標値(SV)を180ppm(SV−20ppm)とし、直近のHCl濃度の傾きの6秒平均が負の場合、制御目標値(SV)を220ppm(SV+20ppm)として制御した添加出力に50%に出力制限し、HCl濃度測定機器(高速)15(測定機器計測遅延時間2秒)で計測したHCl濃度を元にフィードバック制御する際に制御目標値(SV)を200ppmとして制御した添加出力に50%の出力制限をして加算し、フィードバック制御した。
[Example 9]
In the simulation, when feedback control is performed based on the HCl concentration measured by the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time 9.5 minutes), when the 6-second average of the latest HCl concentration slope is positive, When the control target value (SV) is 180 ppm (SV-20 ppm) and the 6-second average of the slope of the latest HCl concentration is negative, the control target value (SV) is set to 220 ppm (SV + 20 ppm), and the added output is controlled to 50%. The output is limited and the control output (SV) is controlled to 200 ppm when feedback control is performed based on the HCl concentration measured by the HCl concentration measuring device (high speed) 15 (measuring device
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図20に示す。 FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. Further, FIG. 20 shows the behavior of the amount of fine powdered baking soda added and the bag filter outlet HCl concentration during this control.
ここで、実施例8及び9のように、計測遅延時間の異なる少なくとも二つの酸性ガス測定機器の測定信号を元に試算する際に直近のHCl濃度の傾きが正の場合、制御目標値を低下させ、直近のHCl濃度の傾きが負の場合、制御目標値を上げ、フィードバックによる添加出力を前倒しした際の酸性ガス処理結果について説明する。 Here, as in Examples 8 and 9, when the calculation is based on the measurement signals of at least two acid gas measuring instruments having different measurement delay times, the control target value is decreased when the latest gradient of HCl concentration is positive. When the latest HCl concentration slope is negative, the acid gas treatment result when the control target value is increased and the addition output by feedback is advanced will be described.
実施例8は、HCl濃度測定機器(低速)14の測定信号を元に試算する際に前記制御目標値(SV)変更し、演算された添加出力と、HCl濃度測定機器(高速)15の測定信号を元に200ppmの制御目標値のまま演算した添加出力を加算し、フィードバック制御した例である。また、実施例9は、実施例8におけるHCl濃度測定機器(低速)14とHCl濃度測定機器(高速)15の測定信号を元に演算された両添加出力に50%の制限をかけ加算したフィードバック制御である。 In the eighth embodiment, the control target value (SV) is changed when trial calculation is performed based on the measurement signal of the HCl concentration measuring device (low speed) 14, and the calculated addition output and the measurement of the HCl concentration measuring device (high speed) 15 are performed. This is an example in which the addition output calculated based on the signal with the control target value of 200 ppm is added and feedback control is performed. Further, in Example 9, feedback is obtained by adding a 50% limit to both addition outputs calculated based on measurement signals of the HCl concentration measuring device (low speed) 14 and the HCl concentration measuring device (high speed) 15 in Example 8. Control.
実施例8では、実施例1とほぼ同等の添加量で特に瞬時最大HClが272ppmから248ppmと低下し、本制御手法によりピーク対応強化されていることが分かった。また、実施例9では、実施例1に比べ瞬時最大が255ppmとピーク対応が強化されると共に添加量が実施例8の315kg/hから279kg/hに削減されており、バランスの良い制御が実施できることが分かった。 In Example 8, the instantaneous maximum HCl was reduced from 272 ppm to 248 ppm, particularly with the addition amount almost the same as in Example 1, and it was found that peak control was enhanced by this control method. Moreover, in Example 9, compared with Example 1, the peak maximum is enhanced to 255 ppm and the peak correspondence is strengthened, and the addition amount is reduced from 315 kg / h in Example 8 to 279 kg / h, and a balanced control is performed. I understood that I could do it.
以下、実施例10〜12について説明する。実施例10〜12ではPID制御方式に代わりステップ制御方式による制御を行う。 Hereinafter, Examples 10 to 12 will be described. In Examples 10-12, control by a step control method is performed instead of the PID control method.
ここで、ステップ制御方式の概要を説明する。ステップ方式はPID制御方式と異なり、出口のHCl濃度に応じて出力を段階的に規定する制御方式とした。実施例10(図21)で説明するとHCl濃度がSV制御目標値[制御出力開始濃度(出力下限以上)]〜SM1間は制御出力をLOとLM1間で段階的に出力する。HCl濃度がSM1〜SM2間ではLM2で設定した制御出力を出力し、SM2以上ではLH(制御出力上限)を出力する形式とした。なお、通常のPID制御式では出力制限がなく、LOとLHの設定だけである。また、HCl傾きによる制御演算で用いるHCl濃度と制御出力を決めるテーブルの補正はSVA1とSVA2で行い、HCl傾きが正の時は演算で用いるHCl濃度からSVA1を引き、HCl傾きが負の時は演算で用いるHCl濃度にSVA2を足した。これにより同一のHCl濃度を入力した際に演算される制御出力が、HCl傾きの値が大きい場合(酸性ガス濃度が増加傾向)の制御出力値がHCl傾きの値が小さい場合の制御出力値に比べ大きくなる形式とした。
なお、微粉重曹添加量(Ag)は、上記式(1)で求められる。
Here, an outline of the step control method will be described. Unlike the PID control method, the step method is a control method that regulates the output in stages according to the HCl concentration at the outlet. In the tenth embodiment (FIG. 21), when the HCl concentration is between the SV control target value [control output start concentration (above output lower limit)] and SM1, the control output is output stepwise between LO and LM1. A control output set by LM2 is output when the HCl concentration is between SM1 and SM2, and LH (control output upper limit) is output when SM2 is higher than SM2. Note that there is no output limitation in the normal PID control expression, and only LO and LH settings are set. The correction of the table for determining the HCl concentration and control output used in the control calculation based on the HCl gradient is performed by SVA1 and SVA2. When the HCl gradient is positive, SVA1 is subtracted from the HCl concentration used in the calculation, and when the HCl gradient is negative. SVA2 was added to the HCl concentration used in the calculation. As a result, the control output calculated when the same HCl concentration is input is the control output value when the HCl slope value is large (the acid gas concentration tends to increase), and the control output value when the HCl slope value is small. Compared to a larger format.
In addition, fine powder baking soda addition amount (Ag) is calculated | required by said Formula (1).
[実施例10]
前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間9.5分)で計測したHCl濃度を元にフィードバック制御する際にステップ方式の制御において制御目標値(本方式ではアルカリ剤の制御出力が出力下限以上に添加される濃度をSVと規定する)を200ppmに設定し制御した添加出力とHCl濃度測定機器(高速)15(測定機器計測遅延時間2秒)で計測したHCl濃度を元にフィードバック制御する際に同様にステップ方式の制御において制御目標値を200ppmに設定し制御した添加出力をして加算し、フィードバック制御した(図8及び図21参照)。
[Example 10]
When feedback control is performed based on the HCl concentration measured by the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time 9.5 minutes) in the simulation, the control target value (in this method, the alkaline agent The concentration of the control output added above the output lower limit is defined as SV), and the addition output controlled to 200 ppm and the HCl concentration measured by the HCl concentration measuring instrument (high speed) 15 (measuring instrument
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図22に示す。 FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. In addition, FIG. 22 shows the behavior of the amount of fine powder baking soda added and the bag filter outlet HCl concentration during this control.
[実施例11]
前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間9.5分)で計測したHCl濃度を元にフィードバック制御する際にステップ方式の制御において直近のHCl濃度の傾きの6秒平均が正の場合、制御目標値(SV)を180ppm(SV−20ppm)とし、直近のHCl濃度の傾きの6秒平均が負の場合、制御目標値(SV)を220ppm(SV+20ppm)として制御した添加出力に、HCl濃度測定機器(高速)15(測定機器計測遅延時間2秒)で計測したHCl濃度を元にフィードバック制御する際に同様にステップ方式の制御において制御目標値を200ppmに設定し制御した添加出力を加算し、フィードバック制御した(図8及び図23参照)。
[Example 11]
When feedback control is performed based on the HCl concentration measured with the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time 9.5 minutes) in the simulation, the 6-second average of the latest HCl concentration gradient in the step-type control is performed. When the control target value (SV) is positive, the control target value (SV) is 180 ppm (SV-20 ppm), and when the 6-second average of the latest HCl concentration slope is negative, the control target value (SV) is controlled to 220 ppm (SV + 20 ppm). Similarly, when feedback control is performed based on the HCl concentration measured by the HCl concentration measuring device (high speed) 15 (measuring device
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図24に示す。 FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. In addition, FIG. 24 shows the behavior of the amount of fine powdered baking soda added and the bag filter outlet HCl concentration during this control.
[実施例12]
前記シミュレーションにおいてHCl濃度測定機器(低速)14(測定機器計測遅延時間9.5分)で計測したHCl濃度を元にフィードバック制御する際にステップ方式の制御において直近のHCl濃度の傾きの6秒平均が正の場合、制御目標値(SV)を180ppm(SV−20ppm)とし、直近のHCl濃度の傾きの6秒平均が負の場合、制御目標値(SV)を220ppm(SV+20ppm)として制御した添加出力に50%の出力制限をし、HCl濃度測定機器(高速)15(測定機器計測遅延時間2秒)で計測したHCl濃度を元にフィードバック制御する際に同様にステップ方式の制御において制御目標値を200ppmに設定し制御した添加出力に50%の出力制限をして加算し、フィードバック制御した(図8及び図23参照)。
[Example 12]
When feedback control is performed based on the HCl concentration measured with the HCl concentration measuring device (low speed) 14 (measuring device measurement delay time 9.5 minutes) in the simulation, the 6-second average of the latest HCl concentration gradient in the step-type control is performed. When the control target value (SV) is positive, the control target value (SV) is 180 ppm (SV-20 ppm), and when the 6-second average of the latest HCl concentration slope is negative, the control target value (SV) is controlled to 220 ppm (SV + 20 ppm). When the output is limited to 50% and feedback control is performed based on the HCl concentration measured by the HCl concentration measuring device (high speed) 15 (measuring device
微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度を図8に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図25に示す。 FIG. 8 shows the added amount of fine powdered sodium bicarbonate and the HCl concentration at the bag filter outlet after the treatment with fine powdered sodium bicarbonate. In addition, FIG. 25 shows the behavior of the amount of fine powdered sodium bicarbonate added and the bag filter outlet HCl concentration during this control.
実施例10〜12は、ステップ方式でフィードバック制御した実施例である。ステップ方式は、添加出力の上限値に出力制限を複数設け、添加ロスを防止する方策である。 Examples 10 to 12 are examples in which feedback control is performed by a step method. The step method is a measure for preventing an addition loss by providing a plurality of output restrictions on the upper limit value of the addition output.
ステップ制御方式をベースとして制御した結果、比較例1及び比較例2(1時間平均227〜234ppm,瞬時最大416〜425ppm)に比べ、実施例10〜12は、1時間平均値206〜218ppm、瞬時最大253〜274ppmと安定した酸性ガス処理性能を示す。また、PIDをベースにして制御した実施例1、実施例8、及び実施例9(1時間平均193〜205ppm,瞬時最大248〜272ppm)に比べ、1時間平均(206〜218ppm,253〜274ppm)では、酸性ガスの管理性能は若干劣るものの添加量は、279〜315kg/hに対し、272〜297kg/hと削減されたことが分かった。 As a result of control based on the step control method, Examples 10 to 12 were compared with Comparative Example 1 and Comparative Example 2 (average for one hour: 227 to 234 ppm, instantaneous maximum: 416 to 425 ppm). Stable acid gas treatment performance with a maximum of 253 to 274 ppm is shown. Moreover, compared with Example 1, Example 8, and Example 9 (1 hour average 193-205 ppm, instantaneous maximum 248-272 ppm) controlled based on PID, 1 hour average (206-218 ppm, 253-274 ppm) Then, although the management performance of acid gas was a little inferior, it turned out that the addition amount was reduced to 272-297 kg / h with respect to 279-315 kg / h.
本発明は、PID方式においてもステップ方式においてもいずれも実施は可能であるが、本結果から酸性ガスの安定処理を求める場合はPID方式、添加量削減効果を求める場合はステップ方式が有効と考えられた。 The present invention can be implemented both in the PID method and in the step method, but it is considered that the PID method is effective when obtaining a stable treatment of acid gas from this result, and the step method is effective when obtaining an additive amount reduction effect. It was.
以下、実機検討結果である、比較例3、実施例13〜16について説明するにあたり、比較例3、実施例13〜16において用いられる酸性ガス処理システム2の構成について説明する。
Hereinafter, in describing Comparative Example 3 and Examples 13 to 16, which are actual machine examination results, the configuration of the acid
図26は、焼却施設における排ガスであるHClに微粉重曹を添加する酸性ガス処理システム2の構成を表すブロック図である。
FIG. 26 is a block diagram showing the configuration of the acidic
酸性ガス処理システム2は、制御装置21、微粉重曹添加装置22、微粉重曹添加装置26、バグフィルター23、HCl濃度測定機器(イオン電極方式)24及びHCl濃度測定機器(レーザー方式)25から構成されている。制御装置11は、HCl濃度測定機器(イオン電極方式)24及びHCl濃度測定機器(レーザー方式)25から送信されるHCl濃度測定信号に基づいて微粉重曹の添加量出力値をフィードバック制御(PID制御方式またはステップ方式)により算出する。微粉重曹添加装置22は、制御装置11が算出した微粉重曹の添加量出力値に基づいて排ガス中のHClに微粉重曹を添加する。また、微粉重曹添加装置26は、制御装置11が算出した微粉重曹の添加量出力値とは無関係に一定量の微粉重曹を排ガス中のHClに添加する。
The acid
バグフィルター23は、排ガス中のHClと微粉重曹の反応後の粉塵を除去する。HCl濃度測定機器(イオン電極方式)24及びHCl濃度測定機器(レーザー方式)25は、バグフィルター23上に蓄積した微粉重曹(排ガス中のHClとの反応によって残存した微粉重曹がバグフィルター23上に蓄積される)と排ガス反応後のHClとが反応した後のHCl濃度(後述するバグフィルター出口HCl濃度)を測定して、HCl濃度測定信号を制御装置21に送信する。
The
酸性ガス処理システム2は、このようなサイクルを繰り返してフィードバック制御を行うことで、制御装置21は、微粉重曹添加量の制御出力値を適切なものとする制御を行う。
The acidic
なお、HCl濃度の計測遅延時間は、HCl濃度測定機器(イオン電極方式)24の方がHCl濃度測定機器(レーザー方式)25よりも長い。 The HCl concentration measurement delay time of the HCl concentration measuring device (ion electrode method) 24 is longer than that of the HCl concentration measuring device (laser method) 25.
また、図26に示すように、バグフィルター23上に蓄積した微粉重曹と排ガス反応後のHClとが反応した後のHCl濃度(バグフィルター出口HCl濃度)を測定するようにHCl濃度測定機器(イオン電極方式)24及びHCl濃度測定機器(レーザー方式)25を設置するのが好ましい。これは、排ガス中のHClとの反応によって残存した微粉重曹がバグフィルター23上に蓄積され、この蓄積された微粉重曹が排ガス反応後のHClと反応するため、より正確にHCl濃度の測定ができるからである。
In addition, as shown in FIG. 26, an HCl concentration measuring instrument (ion ion) is used so as to measure the HCl concentration (bag filter outlet HCl concentration) after the fine baking soda accumulated on the
[比較例3]
産業廃棄物焼却炉において、減温塔出口〜バグフィルター間にレーザー形式のHCl濃度測定機器(京都電子工業製KLA−1)を設置し、入口HCl濃度を測定した。また、バグフィルター出口のイオン電極方式のHCl濃度測定機器(京都電子工業製HL−36N)で測定される信号を元に排出基準値を管理する酸素換算値にてフィードバック制御を実施した。なお、出口のSO2濃度信号によるフィードバック添加出力(SV180ppm)をHCl濃度による添加出力に加算して、実施したが、本施設においては、SO2が発生しなかった。
[Comparative Example 3]
In an industrial waste incinerator, a laser-type HCl concentration measuring device (KLA-1 manufactured by Kyoto Electronics Industry) was installed between the outlet of the temperature reducing tower and the bag filter, and the inlet HCl concentration was measured. In addition, feedback control was performed with an oxygen conversion value that manages the emission reference value based on a signal measured by an ion electrode type HCl concentration measuring device (HL-36N manufactured by Kyoto Electronics Industry) at the bag filter outlet. The feedback addition output (
また、酸性ガスを処理するアルカリ剤は、8μm微粉重曹[栗田工業製ハイパーサーB−200]を上記フィードバック制御により添加した。アルカリ剤の添加装置は、最大添加量の問題から2台活用し、1台は180kg/h定量添加とし、1台は前記出口HCl濃度信号を元に「下限を20kg/h上限300kg/h、PID制御設定P(比例ゲイン)=100%,I=0.1秒,D=0.1秒」でフィードバック制御した。 Moreover, the alkaline agent which processes acidic gas added 8 micrometer fine baking soda [Kurita Kogyo Hypercer B-200] by the said feedback control. Two alkali agent addition devices are used due to the problem of the maximum addition amount, one is 180 kg / h quantitative addition, and one is based on the outlet HCl concentration signal, “lower limit is 20 kg / h, upper limit is 300 kg / h, Feedback control was performed with PID control setting P (proportional gain) = 100%, I = 0.1 seconds, D = 0.1 seconds.
バグフィルター入口HCl濃度並びにバグフィルター出口HCl濃度と微粉重曹の添加量(添加装置2台合算)を図27に示す。また、本制御実施時の微粉重曹添加量とバグフィルター入口出口のHCl濃度の挙動を図28に示す。 FIG. 27 shows the bag filter inlet HCl concentration, the bag filter outlet HCl concentration, and the amount of fine powdered sodium bicarbonate added (total of two addition devices). Further, FIG. 28 shows the behavior of the addition amount of fine baking soda and the HCl concentration at the bag filter inlet / outlet when this control is performed.
先に示したように微粉重曹の添加は、おおざっぱに行われ、出口のHCl濃度は大きく変化する無駄の多い制御であった。 As previously indicated, the addition of fine baking soda was performed roughly and was a wasteful control in which the HCl concentration at the outlet varied greatly.
[実施例13]
同一施設において、バグフィルター出口のイオン電極方式のHCl濃度測定機器(京都電子工業製HL−36N)で測定されるHCl濃度信号(酸素換算値)とバグフィルター出口のレーザー方式によるHCl濃度測定機器(京都電子工業製KLA−1)で測定されたHCl濃度信号(酸素換算値)にてフィードバック制御を実施した。なお、同様に出口のSO2濃度信号によるフィードバック添加出力(SV180ppm)をHCl濃度による添加出力に加算して、実施したが、本施設においては、SO2が発生しなかった。
[Example 13]
In the same facility, an HCl concentration signal (oxygen conversion value) measured by an ion electrode type HCl concentration measuring device (HL-36N manufactured by Kyoto Electronics Industry) at the bag filter outlet and an HCl concentration measuring device by the laser method at the bag filter exit ( Feedback control was performed using an HCl concentration signal (oxygen conversion value) measured with KLA-1 manufactured by Kyoto Electronics Industry. Similarly, the feedback addition output (
また、添加装置は、同様に1台は180kg/h定量添加とし、1台は前記出口HCl濃度信号を元に「下限20kg/h上限300kg/h、PID制御設定P(比例ゲイン)=100%,I=0.1秒,D=0.1秒」とし、イオン電極方式とレーザー方式の両測定機器の測定信号から演算される添加出力の両方に67%の制限をし加算すると共にさらに本制御とは別個に1時間平均値の施設管理濃度215ppmに対し、213ppm以上は300kg/h添加するフィードバック制御を実施した。
Similarly, one addition device is used for 180 kg / h quantitative addition, and one is based on the outlet HCl concentration signal, “
バグフィルター入口HCl濃度並びにバグフィルター出口HCl濃度と微粉重曹の添加量(添加装置2台合算)を図27に示す。また、本制御実施時の微粉重曹添加量とバグフィルター入口出口のHCl濃度の挙動を図29に示す。 FIG. 27 shows the bag filter inlet HCl concentration, the bag filter outlet HCl concentration, and the amount of fine powdered sodium bicarbonate added (total of two addition devices). In addition, FIG. 29 shows the behavior of the added amount of fine baking soda and the HCl concentration at the bag filter inlet / outlet when this control is performed.
[実施例14]
実施例13と同様に、バグフィルター出口のイオン電極方式のHCl濃度測定機器で測定されるHCl濃度信号(酸素換算値)とバグフィルター出口のレーザー方式によるHCl濃度測定機器(京都電子工業製KLA−1)で測定されたHCl濃度信号(酸素換算値)にてフィードバック制御を実施した。なお、同様に出口のSO2濃度信号によるフィードバック添加出力(SV180ppm)をHCl濃度による添加出力に加算して、実施したが、本施設においては、SO2が発生しなかった。
[Example 14]
As in Example 13, an HCl concentration signal (oxygen conversion value) measured by an ion electrode type HCl concentration measuring device at the bag filter outlet and an HCl concentration measuring device by a laser method at the bag filter outlet (KLA-manufactured by Kyoto Electronics Industry). Feedback control was performed using the HCl concentration signal (oxygen conversion value) measured in 1). Similarly, the feedback addition output (
また、制御を実施した添加装置の制御は、「下限を20kg/h上限300kg/h、PID制御設定P(比例ゲイン)=100%,I=0.1秒,D=0.1秒」とし、両測定機器の測定信号から演算される添加出力の両方に33%の制限をかけ加算すると共に本制御とは別個に1時間平均値213ppm以上は300kg/h添加するフィードバック制御を実施した。 In addition, the control of the adding apparatus that performed the control is “lower limit is 20 kg / h, upper limit is 300 kg / h, PID control setting P (proportional gain) = 100%, I = 0.1 second, D = 0.1 second”. In addition, both the addition output calculated from the measurement signals of both measuring devices were added with a limit of 33%, and separately from this control, feedback control was performed to add 300 kg / h for an hourly average value of 213 ppm or more.
バグフィルター入口HCl濃度並びにバグフィルター出口HCl濃度と微粉重曹の添加量(添加装置2台合算)を図27に示す。また、本制御実施時の微粉重曹添加量とバグフィルター入口出口のHCl濃度の挙動を図30に示す。 FIG. 27 shows the bag filter inlet HCl concentration, the bag filter outlet HCl concentration, and the amount of fine powdered sodium bicarbonate added (total of two addition devices). Further, FIG. 30 shows the behavior of the addition amount of fine baking soda and the HCl concentration at the bag filter inlet / outlet when this control is performed.
実施例13及び実施例14は、共に比較例3に比べ出口のHCl濃度の変動が少なくなり、添加ロスの少ない制御が実施できている。また、アルカリ剤の添加量は、入口HCl濃度により必要量が異なり、一般的に入口HCl濃度あたりの添加量を示す当量で評価する。本添加当量は、比較例に比べ削減されており効率的な添加ができているとがわかった。 In both Example 13 and Example 14, the change in the HCl concentration at the outlet is less than that in Comparative Example 3, and control can be performed with little addition loss. Further, the amount of the alkali agent added varies depending on the inlet HCl concentration, and is generally evaluated by an equivalent amount indicating the amount added per inlet HCl concentration. This addition equivalent was found to be reduced compared to the comparative example, and efficient addition was achieved.
以下、実施例15及び16について説明する。実施例15及び16ではPID制御方式に代わりステップ制御方式による制御を行う。なお、ステップ制御方式の概要は、実施例10で説明したのと同様である。 Examples 15 and 16 will be described below. In the fifteenth and sixteenth embodiments, control by the step control method is performed instead of the PID control method. The outline of the step control method is the same as that described in the tenth embodiment.
[実施例15]
同一施設において、バグフィルター出口のイオン電極方式のHCl濃度測定機器(京都電子工業製HL−36N)で測定されるHCl濃度信号(酸素換算値)とバグフィルター出口のレーザー方式によるHCl濃度測定機器(京都電子工業製KLA−1)で測定されたHCl濃度信号(酸素換算値)にてフィードバック制御を実施した。なお、同様に出口のSO2濃度信号によるフィードバック添加出力(SV180ppm)をHCl濃度による添加出力に加算して、実施したが、本施設においては、SO2が発生しなかった。
[Example 15]
In the same facility, an HCl concentration signal (oxygen conversion value) measured by an ion electrode type HCl concentration measuring device (HL-36N manufactured by Kyoto Electronics Industry) at the bag filter outlet and an HCl concentration measuring device by the laser method at the bag filter exit ( Feedback control was performed using an HCl concentration signal (oxygen conversion value) measured with KLA-1 manufactured by Kyoto Electronics Industry. Similarly, the feedback addition output (
また、添加装置は、同様に1台は180kg/h定量添加とし、1台はステップ方式とし、両測定器の測定信号から演算した添加出力の両方に50%の制限をかけ加算し、本制御とは別個に1時間平均値が213ppm以上は、300kg/h添加するフィードバック制御を実施した(図27及び図31参照)。 Similarly, one unit is 180 kg / h quantitative addition, and one unit is a step system, and adds 50% to both of the addition outputs calculated from the measurement signals of both measuring instruments. Separately, when the average value for 1 hour is 213 ppm or more, feedback control of adding 300 kg / h was performed (see FIGS. 27 and 31).
バグフィルター入口HCl濃度並びにバグフィルター出口HCl濃度と微粉重曹の添加量(添加装置2台合算)を図27に示す。また、本制御実施時の微粉重曹添加量とバグフィルター入口出口のHCl濃度の挙動を図32に示す。 FIG. 27 shows the bag filter inlet HCl concentration, the bag filter outlet HCl concentration, and the amount of fine powdered sodium bicarbonate added (total of two addition devices). Further, FIG. 32 shows the behavior of the addition amount of fine baking soda and the HCl concentration at the bag filter inlet / outlet when this control is performed.
実施例15は、ステップ方式による実施例である。比較例3に比べ出口のHCl濃度の変動が少なくなり、添加ロスの少ない制御が実施できている。本添加当量は、比較例に比べ削減されており効率的な添加ができている。 The fifteenth embodiment is an embodiment based on a step method. Compared with Comparative Example 3, fluctuations in the HCl concentration at the outlet are reduced, and control with little addition loss can be performed. This addition equivalent is reduced compared with the comparative example, and efficient addition has been achieved.
[実施例16]
同一施設において、バグフィルター出口のイオン電極方式のHCl濃度測定機器(京都電子工業製HL−36N)で測定されるHCl濃度信号(酸素換算値)とバグフィルター出口のレーザー方式によるHCl濃度測定機器(京都電子工業製KLA−1)で測定されたHCl濃度信号(酸素換算値)にてフィードバック制御を実施した。なお、同様に出口のSO2濃度信号によるフィードバック添加出力(SV180ppm)をHCl濃度による添加出力に加算して、実施したが、本施設においては、SO2が発生しなかった。
[Example 16]
In the same facility, an HCl concentration signal (oxygen conversion value) measured by an ion electrode type HCl concentration measuring device (HL-36N manufactured by Kyoto Electronics Industry) at the bag filter outlet and an HCl concentration measuring device by the laser method at the bag filter exit ( Feedback control was performed using an HCl concentration signal (oxygen conversion value) measured with KLA-1 manufactured by Kyoto Electronics Industry. Similarly, the feedback addition output (
また、添加装置1台は、比表面積が30m2/g以上の高反応消石灰(奥多摩工業(株)製タマカルクECO)を170kg/h定量添加とし、もう1台はステップ方式とし、両測定器の測定信号から演算した添加出力の両方に50%の制限をかけ加算し、本制御とは別個に1時間平均値が213ppm以上は300kg/h添加するフィードバック制御を実施した(図27及び図31参照)。 In addition, one addition device is a high-reaction slaked lime (Tamakaruku ECO manufactured by Okutama Kogyo Co., Ltd.) with a specific surface area of 30 m2 / g or more, and the other is a step method. In addition to the control, 50% was added to both of the addition outputs calculated from the signal, and the feedback control was performed separately from this control to add 300 kg / h when the average value for 1 hour is 213 ppm or more (see FIGS. 27 and 31). .
バグフィルター入口HCl濃度並びにバグフィルター出口HCl濃度と微粉重曹の添加量を図27に示す。また、本制御実施時の微粉重曹添加量とバグフィルター入口出口のHCl濃度の挙動を図33に示す。 FIG. 27 shows the bag filter inlet HCl concentration, the bag filter outlet HCl concentration, and the amount of fine powdered sodium bicarbonate added. Moreover, FIG. 33 shows the behavior of the added amount of fine baking soda and the HCl concentration at the bag filter inlet / outlet when this control is performed.
実施例16は、比較的工業的に安価な消石灰と微粉重曹を併用して活用した実施例である。本手法においても安定して酸性ガスの安定処理効果が得られた。安価な消石灰を活用し、酸性ガス処理費用が削減されることから工業的に有効な手法である。 Example 16 is an example in which slaked lime and fine powdered sodium bicarbonate, which are relatively industrially inexpensive, are used in combination. Also in this method, the stable treatment effect of acid gas was obtained stably. This is an industrially effective technique because it uses inexpensive slaked lime and reduces acid gas processing costs.
1 酸性ガス処理システム
11 制御装置
12 微粉重曹添加装置
13 バグフィルター
14 HCl濃度測定機器(低速)
15 HCl濃度測定機器(高速)
DESCRIPTION OF
15 HCl concentration measuring device (high speed)
Claims (7)
粉塵を集塵した後の酸性ガス濃度を測定するように設けられ、試料排ガスのサンプリング時間及び前記酸性ガス濃度測定機器の応答時間に起因する計測遅延時間が第1の遅延時間である第1の酸性ガス濃度測定機器、及び前記粉塵を集塵した後の前記酸性ガス濃度を測定するように設けられ、前記計測遅延時間が前記第1の遅延時間よりも長い第2の遅延時間である第2の酸性ガス濃度測定機器により同一種の酸性ガス濃度を測定する工程と、
前記第1の酸性ガス濃度測定機器の測定信号に基づいてアルカリ剤の第1添加量出力値をフィードバック演算により算出する工程と、
前記第2の酸性ガス濃度測定機器の測定信号に基づいてアルカリ剤の第2添加量出力値をフィードバック演算により算出する工程と、
前記第1添加量出力値と前記第2添加量出力値とを加算した値をアルカリ剤の添加量としてフィードバック制御する工程とを有し、
少なくとも、前記第2添加量出力値をフィードバック演算により算出する工程は、前記第2の酸性ガス濃度測定機器から送信される測定信号から算出される添加出力について出力制限を行い、前記添加出力より小さい値を前記第2添加量出力値とする工程を有する酸性ガスの処理方法。 Add an alkali agent to combustion exhaust gas containing acid gas, and measure the acid gas concentration after collecting dust. A processing method,
A first delay time is provided to measure the acid gas concentration after collecting the dust, and the measurement delay time due to the sampling time of the sample exhaust gas and the response time of the acid gas concentration measuring device is the first delay time. An acid gas concentration measurement device, and a second delay time provided to measure the acid gas concentration after collecting the dust, wherein the measurement delay time is a second delay time longer than the first delay time. Measuring the acid gas concentration of the same species with the acid gas concentration measuring device of
Calculating a first addition amount output value of the alkaline agent by a feedback calculation based on a measurement signal of the first acid gas concentration measuring device;
Calculating a second addition amount output value of the alkaline agent by a feedback calculation based on a measurement signal of the second acid gas concentration measuring device;
Feedback control of a value obtained by adding the first addition amount output value and the second addition amount output value as the addition amount of the alkaline agent ,
At least the step of calculating the second addition amount output value by feedback calculation performs output limitation on the addition output calculated from the measurement signal transmitted from the second acid gas concentration measurement device, and is smaller than the addition output. method of processing an acid gas having a value as engineering to the second amount output value.
試料排ガスのサンプリング時間及び前記酸性ガス濃度測定機器の応答時間に起因する計測遅延時間が第1の遅延時間である第1の酸性ガス濃度測定機器、及び前記粉塵を集塵した後の前記酸性ガス濃度を測定するように設けられ、前記計測遅延時間が前記第1の遅延時間よりも長い第2の遅延時間である第2の酸性ガス濃度測定機器により同一種の酸性ガス濃度を測定する工程と、
前記第1の酸性ガス濃度測定機器及び前記第2の酸性ガス濃度測定機器の測定信号に基づいてアルカリ剤の添加量出力値をフィードバック演算により算出する工程と、を有し、
前記添加量出力値をフィードバック演算により算出する工程は、
前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の制御目標値を設定する工程と、
少なくとも前記測定信号及び前記制御目標値に基づいてアルカリ剤の添加量出力値を算出する工程と、を有し、
前記制御目標値を設定する工程は、前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の時間変化率が正である場合と、前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の時間変化率が負である場合の各々についてそれぞれ異なる制御目標値を設定する工程であり、
前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の時間変化率が正である場合に設定する制御目標値は、前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の時間変化率が負である場合に設定する制御目標値より小さく、
前記アルカリ剤の添加量出力値を算出する工程は、前記第2の酸性ガス濃度測定機器から送信される前記測定信号及び前記制御目標値に基づいて算出したアルカリ剤の添加量出力値に、前記第1の酸性ガス濃度測定機器から送信される前記測定信号を元にフィードバック制御する際に所定の制御目標値に基づいて制御したアルカリ剤の添加量出力値を加算する工程である、酸性ガスの処理方法。 Add an alkali agent to combustion exhaust gas containing acid gas, and measure the acid gas concentration after collecting dust. A processing method,
The first acid gas concentration measuring device whose measurement delay time is the first delay time due to the sampling time of the sample exhaust gas and the response time of the acid gas concentration measuring device, and the acid gas after collecting the dust A step of measuring an acidic gas concentration of the same species by a second acidic gas concentration measuring device provided to measure a concentration, wherein the measurement delay time is a second delay time longer than the first delay time; ,
Calculating an addition amount output value of the alkaline agent by feedback calculation based on measurement signals of the first acid gas concentration measuring device and the second acid gas concentration measuring device ,
The step of calculating the added amount output value by feedback calculation,
Setting a control target value of the acid gas concentration transmitted from the second acid gas concentration measuring device;
A step of calculating an addition amount output value of an alkaline agent based on at least the measurement signal and the control target value,
Step of setting the control target value, and when the time rate of change of the acid gas concentration to be transmitted from the second acid gas concentration measurement device is a positive, transmitted from the second acid gas concentration measuring instrument Is a step of setting different control target values for each of the cases where the time change rate of the acidic gas concentration is negative,
The control target value set when the time rate of change of the acid gas concentration transmitted from the second acid gas concentration measuring device is positive is the value of the acid gas concentration transmitted from the second acid gas concentration measuring device. Smaller than the control target value set when the rate of time change is negative,
Step of calculating the amount output value of the alkaline agent, the amount the output value of the measuring signal and the alkaline agent, calculated based on the control target value is transmitted from the second acid gas concentration measuring instrument, wherein The step of adding an addition amount output value of an alkaline agent controlled based on a predetermined control target value when feedback control is performed based on the measurement signal transmitted from the first acid gas concentration measuring device . Processing method.
前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の制御目標値を設定する工程と、
少なくとも前記測定信号及び前記制御目標値に基づいてアルカリ剤の添加量出力値を算出する工程と、を有し、
前記制御目標値を設定する工程は、前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の時間変化率が正である場合と、前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の時間変化率が負である場合の各々についてそれぞれ異なる制御目標値を設定する工程であり、
前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の時間変化率が正である場合に設定する制御目標値は、前記第2の酸性ガス濃度測定機器から送信される酸性ガス濃度の時間変化率が負である場合に設定する制御目標値より小さい、請求項1に記載の酸性ガスの処理方法。 The step of calculating the added amount output value by feedback calculation,
Setting a control target value of the acid gas concentration transmitted from the second acid gas concentration measuring device;
A step of calculating an addition amount output value of an alkaline agent based on at least the measurement signal and the control target value,
Step of setting the control target value, and when the time rate of change of the acid gas concentration to be transmitted from the second acid gas concentration measurement device is a positive, transmitted from the second acid gas concentration measuring instrument Is a step of setting different control target values for each of the cases where the time change rate of the acidic gas concentration is negative,
The control target value set when the time rate of change of the acid gas concentration transmitted from the second acid gas concentration measuring device is positive is the value of the acid gas concentration transmitted from the second acid gas concentration measuring device. time rate of change is less than the control target value to be set if it is negative, the processing method of the acid gases according to claim 1.
粉塵を集塵した後の酸性ガス濃度を測定するように設けられ、試料排ガスのサンプリング時間及び前記酸性ガス濃度測定機器の応答時間に起因する計測遅延時間が第1の遅延時間である第1の酸性ガス濃度測定機器、及び前記粉塵を集塵した後の前記酸性ガス濃度を測定するように設けられ、前記計測遅延時間が前記第1の遅延時間よりも長い第2の遅延時間である第2の酸性ガス濃度測定機器により同一種の酸性ガス濃度を測定する工程と、
前記第1の酸性ガス濃度測定機器の測定信号に基づいてアルカリ剤の第1添加量出力値をフィードバック演算により算出する工程と、
前記第2の酸性ガス濃度測定機器の測定信号に基づいてアルカリ剤の第2添加量出力値をフィードバック演算により算出する工程と、
前記第1添加量出力値と前記第2添加量出力値とを加算した値をアルカリ剤の添加量としてフィードバック制御する工程とを有し、
前記第1添加量出力値をフィードバック演算により算出する工程は、
前記第1の酸性ガス濃度測定機器による第1の測定信号に応じた複数段階の出力制限を行うことを含み、
前記第1の測定信号が所定の制限値以下である場合は、前記第1の測定信号に応じた第1段階の出力制限を行い、前記第1の測定信号に応じた第1段階の出力制限に応じて出力される値を前記第1添加量出力値として出力し、
前記第1の測定信号が所定の制限値以上である場合は、前記第1の測定信号に応じた第2段階の出力制限を行い、前記第2段階の出力制限に応じて出力される値を前記第1添加量出力値として出力する工程を含み、
前記第2添加量出力値をフィードバック演算により算出する工程は、
前記第2の酸性ガス濃度測定機器による第2の測定信号に応じた複数段階の出力制限を行うことを含み、
前記第2の測定信号が所定の制限値以下である場合は、前記第2の測定信号に応じた第1段階の出力制限を行い、前記第2の測定信号に応じた第1段階の出力制限に応じて出力される値を前記第2添加量出力値として出力し、
前記添加出力が所定の制限値以上である場合は、前記第2の測定信号に応じた第2段階の出力制限を行い、前記第2の測定信号に応じた第2段階の出力制限に応じて出力される値を前記第2添加量出力値として出力する工程を含む、酸性ガスの処理方法。 Add an alkali agent to combustion exhaust gas containing acid gas, and measure the acid gas concentration after collecting dust. A processing method,
A first delay time is provided to measure the acid gas concentration after collecting the dust, and the measurement delay time due to the sampling time of the sample exhaust gas and the response time of the acid gas concentration measuring device is the first delay time. An acid gas concentration measurement device, and a second delay time provided to measure the acid gas concentration after collecting the dust, wherein the measurement delay time is a second delay time longer than the first delay time. Measuring the acid gas concentration of the same species with the acid gas concentration measuring device of
Calculating a first addition amount output value of the alkaline agent by a feedback calculation based on a measurement signal of the first acid gas concentration measuring device;
Calculating a second addition amount output value of the alkaline agent by a feedback calculation based on a measurement signal of the second acid gas concentration measuring device;
Feedback control of a value obtained by adding the first addition amount output value and the second addition amount output value as the addition amount of the alkaline agent ,
The step of calculating the first addition amount output value by feedback calculation,
Performing a plurality of stages of output restriction according to a first measurement signal by the first acid gas concentration measuring instrument,
When the first measurement signal is less than or equal to a predetermined limit value, a first-stage output restriction is performed according to the first measurement signal, and a first-stage output restriction is performed according to the first measurement signal. In response to the output value as the first addition amount output value,
When the first measurement signal is greater than or equal to a predetermined limit value, a second stage output limit is performed according to the first measurement signal, and a value output according to the second stage output limit is set. Outputting as the first addition amount output value,
The step of calculating the second addition amount output value by feedback calculation,
Include performing output restriction of a plurality of steps in accordance with the second measurement signal by the second acid gas concentration measuring device,
When the second measurement signal is equal to or less than a predetermined limit value, first-stage output restriction is performed according to the second measurement signal, and first-stage output restriction is performed according to the second measurement signal. In response to the output value as the second addition amount output value,
When the addition output is equal to or greater than a predetermined limit value, a second-stage output restriction is performed according to the second measurement signal, and a second-stage output restriction according to the second measurement signal is performed. A method for treating acidic gas, comprising a step of outputting an output value as the second addition amount output value .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011100194A JP5834469B2 (en) | 2011-04-27 | 2011-04-27 | Acid gas treatment method |
KR1020120040292A KR101397428B1 (en) | 2011-04-27 | 2012-04-18 | Method for treating acid gas |
CN201210122441.XA CN102755831B (en) | 2011-04-27 | 2012-04-24 | The processing method of sour gas |
TW101114771A TWI465283B (en) | 2011-04-27 | 2012-04-25 | Treatment method for acidic gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011100194A JP5834469B2 (en) | 2011-04-27 | 2011-04-27 | Acid gas treatment method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012228680A JP2012228680A (en) | 2012-11-22 |
JP2012228680A5 JP2012228680A5 (en) | 2014-10-02 |
JP5834469B2 true JP5834469B2 (en) | 2015-12-24 |
Family
ID=47050621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011100194A Active JP5834469B2 (en) | 2011-04-27 | 2011-04-27 | Acid gas treatment method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5834469B2 (en) |
KR (1) | KR101397428B1 (en) |
CN (1) | CN102755831B (en) |
TW (1) | TWI465283B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122906B (en) * | 2014-07-07 | 2016-08-31 | 光大环保技术研究院(深圳)有限公司 | The control method of the lime white straying quatity in fume treatment reaction tower |
CN105289242B (en) * | 2015-09-25 | 2019-03-08 | 重庆长风化学工业有限公司 | Sustained release neutralization method for hydrogen chloride gas |
CN106512549B (en) * | 2016-11-22 | 2018-12-04 | 董建芬 | A kind of smoke filtration foamed material and its preparation method and application |
JP6439207B1 (en) * | 2018-06-29 | 2018-12-19 | 三菱重工環境・化学エンジニアリング株式会社 | Exhaust gas mercury removal system |
JP6760409B2 (en) * | 2019-01-15 | 2020-09-23 | 栗田工業株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
KR20240003494A (en) | 2022-07-01 | 2024-01-09 | (주)청해소재 | Neutralizing Agent Composition For Acid Gas |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61257222A (en) * | 1985-05-10 | 1986-11-14 | Ishikawajima Harima Heavy Ind Co Ltd | Controller for amount of ammonia to be fed in denitration apparatus |
JPH07328389A (en) * | 1994-06-03 | 1995-12-19 | Babcock Hitachi Kk | Ammonia injection amount control method and apparatus of denitration apparatus |
JP3568614B2 (en) * | 1995-03-03 | 2004-09-22 | バブコック日立株式会社 | Method and apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating coal combustion exhaust gas |
JP3626238B2 (en) * | 1995-03-31 | 2005-03-02 | アルストム | Method for dry or substantially dry purification of flue gas from waste incineration |
JP3272565B2 (en) * | 1995-04-21 | 2002-04-08 | 三菱重工業株式会社 | Flue gas treatment equipment |
JP4667577B2 (en) * | 2000-10-11 | 2011-04-13 | 三井造船株式会社 | Exhaust gas treatment desalting agent supply amount control method, supply amount control device, and waste treatment system |
JP4821102B2 (en) * | 2004-09-10 | 2011-11-24 | Jfeエンジニアリング株式会社 | Desalination control device and desalination control method |
JP2007237019A (en) * | 2006-03-06 | 2007-09-20 | Mitsui Eng & Shipbuild Co Ltd | Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus |
JP5045226B2 (en) * | 2006-08-18 | 2012-10-10 | 旭硝子株式会社 | Acid component removing agent and method for producing the same |
JP5302618B2 (en) * | 2008-10-16 | 2013-10-02 | 三菱重工業株式会社 | Nitrogen oxide treatment equipment |
JP5338421B2 (en) * | 2009-03-24 | 2013-11-13 | 栗田工業株式会社 | Combustion exhaust gas treatment method and apparatus |
JP5598245B2 (en) | 2010-10-15 | 2014-10-01 | 栗田工業株式会社 | Acid gas treatment method |
-
2011
- 2011-04-27 JP JP2011100194A patent/JP5834469B2/en active Active
-
2012
- 2012-04-18 KR KR1020120040292A patent/KR101397428B1/en active IP Right Grant
- 2012-04-24 CN CN201210122441.XA patent/CN102755831B/en active Active
- 2012-04-25 TW TW101114771A patent/TWI465283B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN102755831B (en) | 2016-09-28 |
CN102755831A (en) | 2012-10-31 |
TW201242657A (en) | 2012-11-01 |
JP2012228680A (en) | 2012-11-22 |
KR20120121836A (en) | 2012-11-06 |
TWI465283B (en) | 2014-12-21 |
KR101397428B1 (en) | 2014-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5720455B2 (en) | Acid gas treatment method | |
JP5598245B2 (en) | Acid gas treatment method | |
JP5834469B2 (en) | Acid gas treatment method | |
JP6020085B2 (en) | Acid gas stabilization method and combustion exhaust gas treatment facility | |
JP5991677B2 (en) | Exhaust gas treatment equipment | |
Xia et al. | Assessment of PCDD/Fs formation and emission characteristics at a municipal solid waste incinerator for one year | |
CN108905554A (en) | Minimum continuous ammonia spraying temperature online real-time prediction method for SCR flue gas denitration equipment | |
JP2010075897A (en) | Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system | |
JP2012050912A (en) | Denitration controller and denitration control method | |
Fujishima et al. | Performance Characteristics of Pilot-Scale Indirect Plasma and Chemical System Used for the Removal of $\hbox {NO} _ {\rm x} $ From Boiler Emission | |
JP2006075758A (en) | Desalination controlling apparatus and desalination controlling method | |
KR101640372B1 (en) | Method for stabilizing acid gas and combustion effluent gas treating apparatus | |
JP2014195790A (en) | Exhaust gas treatment method | |
JP4284251B2 (en) | Corrosion control method for waste power generation boiler | |
Wang et al. | Simultaneous multi-pollutants removal in flue gas by ozone | |
WO2013136420A1 (en) | Method for treating acidic gas | |
JP2010127598A (en) | Treated object combustion system and method of controlling concentration of nitrogen oxide in exhaust gas | |
JP2009247998A (en) | Exhaust gas treatment method | |
JP2002113327A (en) | Method for controlling feed rate of desalting agent for exhaust gas | |
Chianese et al. | Assessing Wet Scrubbing as Final Additional Stage for Dry Waste-to-energy Flue Gas Treatment Lines | |
JP2008196739A (en) | Acidic exhaust gas reduction method in refuse incinerator | |
JP2021166976A (en) | Exhaust gas treatment system and exhaust gas treatment method | |
JP2022143294A (en) | Method of processing flue gas and device for processing flue gas | |
Tao et al. | How to Improve Long-Term Operation Performance of Hazardous Waste Rotary Kiln Incineration Facilities | |
JPH0221852B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140813 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20140813 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141121 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20141120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150512 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5834469 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |