KR101640372B1 - Method for stabilizing acid gas and combustion effluent gas treating apparatus - Google Patents

Method for stabilizing acid gas and combustion effluent gas treating apparatus Download PDF

Info

Publication number
KR101640372B1
KR101640372B1 KR1020140047446A KR20140047446A KR101640372B1 KR 101640372 B1 KR101640372 B1 KR 101640372B1 KR 1020140047446 A KR1020140047446 A KR 1020140047446A KR 20140047446 A KR20140047446 A KR 20140047446A KR 101640372 B1 KR101640372 B1 KR 101640372B1
Authority
KR
South Korea
Prior art keywords
addition amount
gas
concentration
gas concentration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020140047446A
Other languages
Korean (ko)
Other versions
KR20140126261A (en
Inventor
미쓰히로 마시코
Original Assignee
쿠리타 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쿠리타 고교 가부시키가이샤 filed Critical 쿠리타 고교 가부시키가이샤
Publication of KR20140126261A publication Critical patent/KR20140126261A/en
Application granted granted Critical
Publication of KR101640372B1 publication Critical patent/KR101640372B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Analytical Chemistry (AREA)

Abstract

(과제) 산성가스에 첨가하는 서로 성질이 다른 2개의 알칼리제의 첨가량을 적절하게 제어하는 산성가스 안정화처리방법 및 연소배기가스 처리시설을 제공하는 것.
(해결수단) 산성가스 안정화처리방법이 적용되는 연소배기가스 처리시설(10)은, 유입로(3)에 설치된 제2산성가스 측정장치(30b), 제1첨가장치(42) 및 제2첨가장치(44)와, 배출로(4)에 설치된 제1산성가스 측정장치(30a)와, 첨가량 제어장치(50)를 포함한다. 첨가량 제어장치(50)는, 제1산성가스농도 신호(S0a)를 수신하고, 제1첨가량 신호(S21)를 출력하는 제1첨가량 산출부(60)와, 제2산성가스농도 신호(S0b) 및 제1첨가량 신호(S21)를 수신하고, 제2첨가량 신호(S13)를 출력하는 제2첨가량 산출부(70)를 구비한다. 제1첨가장치(42) 및 제2첨가장치(44)는, 각각 제1첨가량 신호(S21) 및 제2첨가량 신호(S13)에 의거하여 유입로(3)내를 흐르는 연소배기가스에 제1알칼리제 및 제2알칼리제를 첨가한다.
(PROBLEMS) To provide an acid gas stabilization treatment method and a combustion exhaust gas treatment facility which appropriately control addition amounts of two alkaline agents having different properties to be added to an acid gas.
A combustion exhaust gas treatment facility 10 to which an acid gas stabilization treatment method is applied is provided with a second acid gas measurement device 30b provided in an inflow path 3, a first addition device 42, A first acid gas measurement device 30a provided in the discharge passage 4, and an addition amount control device 50. The first acid gas measurement device 30a, The addition amount control device 50 includes a first addition amount calculation unit 60 that receives the first acid gas concentration signal S0a and outputs a first addition amount signal S21 and a second addition amount calculation unit 60 that outputs a second acid gas concentration signal S0b, And a second addition amount calculating unit 70 for receiving the first addition amount signal S21 and outputting the second addition amount signal S13. The first adding device 42 and the second adding device 44 add the first alkaline solution to the combustion exhaust gas flowing in the inflow passage 3 based on the first addition amount signal S21 and the second addition amount signal S13, And a second alkaline agent are added.

Figure R1020140047446
Figure R1020140047446

Description

산성가스 안정화처리방법 및 연소배기가스 처리시설{Method for stabilizing acid gas and combustion effluent gas treating apparatus}TECHNICAL FIELD The present invention relates to an acid gas stabilization treatment method and a combustion exhaust gas treatment apparatus,

본 발명은, 도시쓰레기 폐기물 소각로, 산업 폐기물 소각로, 발전보일러(發電boiler), 탄화로(炭化爐), 민간공장 등의 연소시설에서 발생하는 유해한 염화수소(鹽化水素), 유황산화물(硫黃酸化物) 등의 산성가스를 포함하는 연소배기가스의 안정화처리방법 및 연소배기가스 처리시설에 관한 것으로서, 상세하게는 산성가스를 처리하는 알칼리제의 첨가량을 효율적으로 제어하는 연소배기가스의 안정화처리방법 및 연소배기가스 처리시설에 관한 것이다.
The present invention relates to a method for producing harmful hydrogen chloride (hydrogenated hydrogen), sulfur oxide (sulfur oxide) generated in a combustion facility such as a municipal waste incinerator, an industrial waste incinerator, a generation boiler, a carbonization furnace, The present invention relates to a stabilization treatment method of a combustion exhaust gas containing an acidic gas such as an acidic gas and an exhaust gas treatment facility and more particularly to a stabilization treatment method of a combustion exhaust gas which efficiently controls an addition amount of an alkali agent for treating an acidic gas, Facilities.

도시쓰레기 폐기물 소각로, 산업 폐기물 소각로, 발전보일러, 탄화로, 민간공장 등에 있어서 연소시설의 연소로에서 발생하는 연소배기가스는, 유해한 염화수소가스, 유황산화물가스 등의 산성가스를 포함한다. 그리고 연소시설은, 산성가스에 소석회(消石灰), 중조(重曹, 탄산수소나트륨) 등의 서로 성질이 다른 2개의 알칼리제를 첨가하고, 그 후에 백필터(bag filter)와 같은 집진기(集塵機)에서 제진(除塵)하고, 그 후에 유해한 산성가스가 거의 포함되지 않는 상태에서 굴뚝으로부터 배출시킨다.Combustion gases generated from the combustion furnace in the combustion facilities in urban waste incinerators, industrial waste incinerators, power generation boilers, carbonization furnaces, and civilian factories contain acidic gases such as harmful hydrogen chloride gas and sulfur oxide gas. In the combustion facility, two alkaline agents with different properties such as calcium hydroxide (calcium hydroxide) and sodium bicarbonate (sodium bicarbonate) are added to the acid gas, and thereafter the alkaline agent is decomposed in a dust collector such as a bag filter (Dust removal), and then discharged from the chimney in a state in which almost no harmful acid gas is contained.

집진기에 집진된 비산재(飛散灰)는 유해한 팔라듐(Pd), 카드뮴(Cd) 등의 중금속류를 함유하고 있다. 이들 유해한 중금속류는 안정화 처리된 후 최종처분장소에서 매립해 처분된다(예를 들면 특허문헌1 참조).Fly ash collected in the dust collector contains harmful heavy metals such as palladium (Pd) and cadmium (Cd). These harmful heavy metals are stabilized and then buried and disposed at the final disposal site (see, for example, Patent Document 1).

산성가스를 처리하는 소석회는, 염화수소가스와의 반응속도가 염화수소가스의 농도와 함께 증가하는 성질을 구비(예를 들면 비특허문헌1 참조)하지만, 산성가스와의 반응성이 낮고, 유황산화물과의 반응성이 특히 낮은 성질을 구비한다.The slaked lime for treating the acidic gas has a property that the reaction rate with the hydrogen chloride gas increases with the concentration of the hydrogen chloride gas (for example, see Non-Patent Document 1), but the reactivity with the acid gas is low, The reactivity is particularly low.

산성가스를 처리하는 알칼리제인 중조는 소석회에 비하여 산성가스와의 반응성이 높고, 5∼30μm로 미분가공(微分加工)된 중조는 산성가스와의 반응성이 특히 높은 성질을 구비한다(예를 들면 특허문헌2 참조). 환언하면, 중조는 산성가스를 안정적으로 처리할 수 있고, 또한 산성가스의 미반응분(未反應分)이 적다. 따라서 산성가스의 농도가 격렬하게 변동하더라도 산성가스의 농도에 따라서 적절한 양의 중조를 첨가함으로써, 산성가스를 안정적으로 처리하면서 중조의 첨가량을 삭감할 수 있다. 이 때문에 집진된 비산재의 양 나아가서는 매립처분량을 삭감할 수 있으므로, 중조를 산성가스에 첨가하는 것은 환경부하(環境負荷)의 감소에 유효한 수단이다.
The alkaline agent, which is an alkaline agent for treating acid gas, has a high reactivity with acid gas compared with the slaked lime, and the sodium hydroxide which is subjected to differential processing with 5 to 30 m has particularly high reactivity with acid gas (for example, patent See Document 2). In other words, the baffle can stably treat the acid gas, and the unreacted portion of the acid gas is less. Therefore, even if the concentration of the acid gas fluctuates violently, it is possible to reduce the addition amount of the acidic gas while stably processing the acid gas by adding an appropriate amount of the acidic gas in accordance with the concentration of the acid gas. Therefore, it is possible to reduce the amount of collected fly ash and furthermore, the amount of the landfill. Therefore, adding the sulfuric acid to the acidic gas is an effective means for reducing the environmental load (environmental load).

일본국 공개특허 특개평9-99215호 공보Japanese Patent Application Laid-Open No. 9-99215 일본국 공개특허 특개2000-218128호 공보Japanese Patent Application Laid-Open No. 2000-218128

사단법인 화학공학회 발행, 화학공학논문집 33(2), 154-159, 2007-03-20(http://ci.nii.ac.jp/naid/10018903497)Journal of Chemical Engineering, 33 (2), 154-159, 2007-03-20 (http://ci.nii.ac.jp/naid/10018903497)

그런데, 일반적으로 산업 폐기물 소각로, 민간공장 등의 연소로로부터 배출되는 산성가스의 농도는 격렬하게 변동한다. 소석회는, 경제적으로는 저렴하지만, 산성가스와의 반응이 늦고 유황산화물과의 반응이 특히 느리다. 이 때문에 소석회만을 산성가스에 첨가하는 방법을 산성가스의 농도의 변동이 심한 산업 폐기물 소각로, 민간공장 등에 적용하기는 어렵다.However, in general, the concentration of the acid gas emitted from combustion furnaces such as industrial waste incinerators and private factories fluctuates violently. Thin lime is economically inexpensive, but its reaction with acid gas is slow and its reaction with sulfur oxides is particularly slow. For this reason, it is difficult to apply only the slaked lime to the acid gas because it is difficult to apply to industrial waste incinerators or civilian factories where the concentration of acid gas fluctuates greatly.

또한, 중조는 산성가스와의 반응성이 높음과 아울러 반응이 빨라서 산성가스를 안정적으로 처리할 수 있다. 그러나 나트륨(Na)은 칼슘(Ca)에 비해서 고가이다. 이 때문에 중조만을 산성가스에 첨가해서 안정적으로 처리하는 방법을 특히 대량의 산성가스가 발생하는 산업 폐기물 소각로, 민간공장 등에 적용하면, 경제적인 부담이 커지게 된다.In addition, since the reaction with the acid gas is high and the reaction with the acid gas is fast, the acid gas can be stably treated. However, sodium (Na) is higher than calcium (Ca). For this reason, the method of adding only the sulfuric acid to the acidic gas and stably treating it is particularly economically burdened when applied to an industrial waste incinerator or a private factory where a large amount of acid gas is generated.

본 발명은, 산성가스에 첨가하는 서로 성질이 다른 2개의 알칼리제의 첨가량을 적절하게 제어하는 산성가스 안정화처리방법 및 연소배기가스 처리시설을 제공하는 것을 목적으로 한다.
An object of the present invention is to provide an acid gas stabilization treatment method and a combustion exhaust gas treatment facility which appropriately control addition amounts of two alkaline agents having different properties to be added to an acidic gas.

본 발명자들은, 서로 성질이 다른 2개의 알칼리제 중, 제1알칼리제의 첨가량은 산성가스에 관한 정보에 의거하여 산출하고, 제2알칼리제의 첨가량은 제1알칼리제의 첨가량의 정보에 의거하여 산출하고, 그 산출한 첨가량의 알칼리제를 산성가스에 첨가함으로써, 상기 목적이 달성되는 것을 찾아내어 본 발명을 완성했다.The inventors of the present invention found that the addition amount of the first alkali agent is calculated based on the information on the acid gas and the addition amount of the second alkaline agent is calculated on the basis of the information of the addition amount of the first alkaline agent, And found that the above object can be achieved by adding the calculated amount of the alkaline agent to the acid gas, thereby completing the present invention.

본 발명은 이하의 것을 제공한다.The present invention provides the following.

본 발명에 관한 산성가스 안정화처리방법은 산성가스가 포함되는 연소배기가스를 연소배기가스 처리시설에서 안정적으로 처리하는 것이다. 안정화처리방법은, 상기 연소배기가스를 집진기에서 처리한, 처리후 연소배기가스중의 제1산성가스농도를 측정하는 제1산성가스농도 측정공정과, 상기 제1산성가스농도에 의거하여 산성가스에 관한 정보인 제1산성가스정보를 산출하고, 상기 제1산성가스정보에 의거하여 제1알칼리제의 통상첨가량을 산출하고, 상기 통상첨가량에 의거하여 제1첨가량정보를 산출하는 제1산출공정과, 상기 연소배기가스를 집진기에서 처리하지 않은 미처리 연소배기가스인 제2산성가스중의 제2산성가스농도를 측정하는 제2산성가스농도 측정공정과, 상기 제2산성가스농도에 의거하여 산성가스에 관한 정보인 제2산성가스정보를 산출하고, 상기 제2산성가스정보에 의거하여 제2알칼리제의 첨가량을 산출하고, 상기 첨가량에 의거하여 제2첨가량정보를 산출하는 제2산출공정과, 상기 제1첨가량의 상기 제1알칼리제를 상기 연소배기가스에 첨가하는 제1첨가공정과, 상기 제2첨가량의 상기 제2알칼리제를 상기 연소배기가스에 첨가하는 제2첨가공정을 포함한다.The acid gas stabilization treatment method according to the present invention stably treats a combustion exhaust gas containing an acidic gas in a combustion exhaust gas treatment facility. The stabilization treatment method includes a first acidic gas concentration measuring step of measuring a concentration of the first acidic gas in the treated exhaust gas after treatment of the flue gas discharged from the dust collector and a second acidic gas concentration measuring step of measuring the concentration of the acidic gas A first calculation step of calculating first additive amount information on the basis of the first additive amount information on the basis of the first acid gas information and on the basis of the first additive amount information on the basis of the first acid gas information, A second acidic gas concentration measuring step of measuring a concentration of the second acidic gas in the second acidic gas which is an untreated combustion exhaust gas not treated in the dust collector, and a second acidic gas concentration measuring step of measuring the concentration of the acidic gas A second calculation for calculating the second acid gas information, calculating an addition amount of the second alkali agent based on the second acid gas information, and calculating second addition amount information based on the addition amount, A first adding step of adding the first alkaline agent of the first added amount to the combusted exhaust gas; and a second adding step of adding the second alkaline agent of the second added amount to the combusted exhaust gas.

상기 제1첨가량정보는, 상기 처리후 연소배기가스의 상기 제1산성가스농도의 목적값인 제어목표치를 포함하고, 상기 제2산출공정은, 상기 제2산성가스농도로부터 상기 제어목표치를 감산한 농도에 의거하여 상기 제2첨가량을 산출하는 것이 바람직하다.Wherein the first adding amount information includes a control target value which is a target value of the first acid gas concentration in the post-treatment exhaust gas stream, and the second calculating step includes a step of calculating a concentration by subtracting the control target value from the second acid gas concentration It is preferable to calculate the second addition amount.

상기 제2산성가스정보는, 상기 제2산성가스농도 측정공정에 있어서 측정된 리얼타임의 산성가스농도인 순간산성가스농도의 변화의 비율을 나타내는 산성가스농도량을 포함하고, 상기 제1산출공정은, 상기 제1산성가스정보에 의거하여 제1알칼리제의 통상첨가량을 산출한 후, 상기 산성가스농도량에 따라 상기 통상첨가량을 소정의 보정방법에 의거하여 보정하고, 그 후에 상기 통상첨가량에 의거하여 제1첨가량정보를 산출하는 것이 바람직하다.Wherein the second acidic gas information includes an acidic gas concentration amount indicating a rate of change of an instantaneous acidic gas concentration which is a real time acidic gas concentration measured in the second acidic gas concentration measuring step, After the normal addition amount of the first alkali agent is calculated on the basis of the first acid gas information, the normal addition amount is corrected on the basis of the predetermined correction method in accordance with the acid gas concentration amount , It is preferable to calculate the first addition amount information .

산성가스 안정화처리방법은, 미리, 상기 순간산성가스농도와 상기 제1알칼리제의 첨가량을 관련짓는 기본첨가량 대응정보를 규정하고, 상기 제1산출공정은, 상기 산성가스농도량이 일정상태를 유지하고 있거나 또는 감소하고 있는 하강상태인 경우에, 상기 순간산성가스농도와 감소용의 기본첨가량 대응정보에 의거하여 상기 통상첨가량을 산출하고, 또한 상기 산성가스농도량이 증가하고 있는 상승상태인 경우에, 상기 순간산성가스농도와, 상기 기본첨가량 대응정보에 있어서의 산성가스농도의 값을 소정의 보정방법에 의하여 작게 한 증가용의 기본첨가량 대응정보에 의거하여 상기 통상첨가량을 산출하는 것이 바람직하다. Wherein the acid gas stabilization treatment method specifies basic addition amount correspondence information that associates the instant acid gas concentration and the addition amount of the first alkaline agent in advance and the first calculation step is a step of determining whether or not the acid gas concentration amount remains constant Or in a decreasing descent state, the normal addition amount is calculated on the basis of the instantaneous acid gas concentration and the base addition amount information for reduction, and in the ascending state in which the acid gas concentration amount is increasing, It is preferable to calculate the normal addition amount on the basis of the basic addition amount corresponding information for increasing the acid gas concentration and the value of the acid gas concentration in the basic addition amount correspondence information by a predetermined correction method.

상기 제1산출공정은, 상기 산성가스농도량이 일정상태를 유지하고 있거나 또는 감소하고 있는 하강상태인 경우에, 상기 통상첨가량을, 미리 규정된 0을 초과하고 1미만의 범위에 있는 하강보정치에 의하여 보정하는 것이 바람직하다.Wherein the first calculation step is a step of calculating the normal addition amount by a descending correction value in a range exceeding a predetermined value and falling within a range of less than 1 in the case of the descending state in which the acid gas concentration amount is kept constant or decreasing It is preferable to correct it.

상기 제1첨가공정에 있어서 첨가할 수 있는 최대첨가량과 최소첨가량 사이에 복수의 대응첨가량 상한치가 설정되고, 상기 복수의 대응첨가량 상한치는, 각각 복수의 산성가스농도에 대응하고 있어, 상기 제2산성가스정보는, 상기 제2산성가스농도 측정공정에 있어서 측정된 산성가스농도인 순간산성가스농도를 포함하고 있어, 상기 제1산출공정은, 상기 순간산성가스농도가 상기 복수의 산성가스농도 중에서 인접하는 2개의 산성가스농도의 범위내에 있을 경우에, 그 인접하는 2개의 산성가스농도 중에서 높은 농도에 대응하는 대응첨가량 상한치에 의거하여 상기 통상첨가량을 산출하는 것이 바람직하다.A plurality of corresponding additive upper limit values are set between a maximum additive amount and a minimum additive amount that can be added in the first additive step and the plurality of corresponding additive amount upper limit values each correspond to a plurality of acidic gas concentrations, Wherein the gas information includes an instantaneous acid gas concentration which is an acid gas concentration measured in the second acid gas concentration measuring step, and the first calculating step includes a step of calculating the concentration of the instant acid gas, It is preferable to calculate the normal addition amount on the basis of the upper limit value of the corresponding addition amount corresponding to the higher concentration among the two adjacent acid gas concentrations.

상기 제1산성가스정보는, 소정의 시간에 있어서의 상기 제1산성가스농도의 평균치인 평균산성가스농도를 포함하고, 상기 제1산출공정은, 상기 평균산성가스농도가 미리 규정된 긴급첨가농도를 넘으면, 상기 통상첨가량 대신에, 미리 규정된 긴급첨가량에 의거하여 상기 제1첨가량정보로서 산출하는 것이 바람직하다.Wherein the first acid gas information includes an average acid gas concentration which is an average value of the first acid gas concentration at a predetermined time, and the first calculation step is a step of calculating the average acid gas concentration, , It is preferable to calculate the first addition amount information based on the predetermined emergency addition amount instead of the normal addition amount.

상기 제2산성가스는, 염화수소가스 및/또는 유황산화물가스를 포함하고, 상기 제2산성가스농도 측정공정은, 상기 제2산성가스중의 염화수소가스농도를 측정하는 염화수소가스농도 측정공정 및/또는 상기 제2산성가스중의 유황산화물농도를 측정하는 유황산화물농도 측정공정을 포함하고, 상기 제2산성가스정보는, 상기 염화수소가스에 관한 염화수소정보 및/또는 상기 유황산화물가스에 관한 유황산화물정보를 포함하고, 상기 제1산출공정은, 상기 염화수소정보에 의거하여 산출한 염화수소가스 첨가량 및/또는 상기 유황산화물정보에 의거하여 산출한 유황산화물가스 첨가량 및/또는 기초첨가량에 의거하여 상기 통상첨가량을 산출하고, 상기 기초첨가량은, 소정의 시간에 있어서의 상기 제1첨가량정보의 평균첨가량에 의거하여 산출되는 것이 바람직하다.Wherein the second acidic gas includes a hydrogen chloride gas and / or a sulfur oxide gas, and the second acidic gas concentration measuring step includes a hydrogen chloride gas concentration measuring step of measuring the concentration of the hydrogen chloride gas in the second acidic gas and / And a sulfur oxide concentration measuring step of measuring a sulfur oxide concentration in the second acidic gas, wherein the second acidic gas information includes hydrogen chloride information on the hydrogen chloride gas and / or sulfur oxide information on the sulfur oxide gas And the first calculation step calculates the normal addition amount based on the hydrogen chloride gas addition amount calculated on the basis of the hydrogen chloride information and / or the sulfur oxide gas addition amount and / or the basic addition amount calculated on the basis of the sulfur oxide information , And the base addition amount is determined based on the amount of the first addition amount information It is preferably calculated on the basis of the average addition amount.

상기 제1알칼리제의 첨가량이, 알칼리제를 첨가하기 전의 산성가스농도당 0.1∼0.6당량이며, 상기 제2알칼리제의 첨가량이 알칼리제를 첨가하기 전의 산성가스농도당 0.5∼3.0당량인 것이 바람직하다.The addition amount of the first alkaline agent is preferably 0.1 to 0.6 equivalents per acidic gas concentration before the addition of the alkali agent and the addition amount of the second alkaline agent is preferably 0.5 to 3.0 equivalents per acidic gas concentration before the addition of the alkali agent.

산성가스 안정화처리방법은, 또한 상기 집진기에 있어서 집진된 비산재에, 철계 화합물, 인산함유 화합물 및 중화제로부터 선택되는 적어도 1종이상을 첨가하는 고정화 처리공정을 포함하는 것이 바람직하다. The acid gas stabilization treatment method preferably further includes a fixing treatment step of adding at least one selected from an iron-based compound, a phosphoric acid-containing compound and a neutralizing agent to the fly ash collected in the dust collector.

본 발명에 관한 연소배기가스 처리시설은, 상기의 어느 하나에 기재된 산성가스 안정화처리방법을 실행하는 시설이다. 연소배기가스 처리시설은, 집진기와, 상기 연소배기가스를 상기 집진기로 유입시키는 유입로와, 상기 집진기에서 처리된 처리후 연소배기가스를 상기 집진기로부터 배출하는 배출로와, 상기 제1산성가스농도 측정공정을 실행하고 제1산성가스정보 신호로서 출력하는 제1산성가스 측정장치와, 상기 제2산성가스농도 측정공정을 실행하고 제2산성가스정보 신호로서 출력하는 제2산성가스 측정장치와, 상기 제1산성가스정보 신호에 의거하여 상기 제1산출공정을 실행하고 상기 제1첨가량을 제1첨가량 신호로서 출력하는 제1첨가량 산출부 및 상기 제2산성가스정보 신호에 의거하여 상기 제2산출공정을 실행하고 상기 제2첨가량을 제2첨가량 신호로서 출력하는 제2첨가량 산출부를 구비하는 첨가량 제어장치와, 상기 제1첨가량 신호에 의거하여 상기 제1첨가공정을 실행하는 제1첨가장치와, 상기 제2첨가량 신호에 의거하여 상기 제2첨가공정을 실행하는 제2첨가장치를 구비한다.
The combustion exhaust gas treatment facility according to the present invention is a facility for executing the acid gas stabilization treatment method described in any one of the above. The combustion exhaust gas treatment facility comprises a dust collector, an inlet passage for introducing the exhaust gas to the dust collector, an exhaust passage for discharging the treated exhaust gas from the dust collector after being treated in the dust collector, A second acid gas measurement device for performing the second acid gas concentration measurement step and outputting the second acid gas concentration measurement signal as a second acid gas information signal; A first adding amount calculating unit for executing the first calculating step on the basis of the acid gas information signal and outputting the first added amount as a first adding amount signal and a second adding amount calculating unit for executing the second calculating step on the basis of the second acid gas information signal And a second additive amount calculating unit that outputs the second additive amount as a second additive amount signal based on the first additive amount signal, And a first adding unit for executing the process on the basis of the second amount signal and a second addition device for performing the second addition step.

본 발명에 의하면, 산성가스에 첨가하는, 서로 성질이 다른 2개의 알칼리제의 첨가량을 적절하게 제어하는 산성가스 안정화처리방법 및 연소배기가스 처리시설을 제공할 수 있다.
According to the present invention, it is possible to provide an acid gas stabilization treatment method and a combustion exhaust gas treatment facility for appropriately controlling addition amounts of two alkaline agents having different properties, which are added to an acid gas.

도1은 본 발명에 관한 산성가스 안정화처리방법 및 연소배기가스 처리시설을 나타내는 개념도이다.
도2는 도1에 나타낸 산성가스 안정화처리방법 및 연소배기가스 처리시설의 일부의 상세개념도이다.
도3은 도1에 나타낸 산성가스 안정화처리방법 및 연소배기가스 처리시설의 다른 일부의 상세개념도이다.
도4는 도1에 나타낸 산성가스 안정화처리방법 및 연소배기가스 처리시설의 기본첨가량 대응정보와 그 보정을 나타내는 그래프이다.
도5는 도1에 나타낸 산성가스 안정화처리방법 및 연소배기가스 처리시설의 기본첨가량 대응정보와 그에 대한 다른 보정을 나타내는 그래프이다.
도6은 도1에 나타낸 산성가스 안정화처리방법을 설명하는 플로우차트이다.
도7은 도6에 이어지는 산성가스 안정화처리방법을 설명하는 플로우차트이다.
도8은 비교예의 결과를 나타내는 그래프이다.
도9는 실시예의 결과를 나타내는 그래프이다.
도10은 비교예의 결과를 나타내는 시계열 그래프이다.
도11은 실시예의 결과를 나타내는 시계열 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a conceptual diagram showing an acid gas stabilization treatment method and a combustion exhaust gas treatment facility according to the present invention. Fig.
Fig. 2 is a detailed conceptual diagram of a part of the acid gas stabilization treatment method and the combustion exhaust gas treatment facility shown in Fig. 1;
Fig. 3 is a detailed conceptual diagram of the acid gas stabilization processing method shown in Fig. 1 and another part of the combustion exhaust gas processing facility.
Fig. 4 is a graph showing the basic addition amount correspondence information and correction of the acid gas stabilization method and the combustion exhaust gas treatment facility shown in Fig. 1; Fig.
5 is a graph showing the basic addition amount correspondence information of the acid gas stabilization treatment method and the combustion exhaust gas treatment facility shown in FIG. 1, and other corrections thereto.
Fig. 6 is a flowchart for explaining the acid gas stabilization processing method shown in Fig. 1;
Fig. 7 is a flowchart for explaining the acid gas stabilization processing method following Fig. 6;
8 is a graph showing the results of the comparative example.
9 is a graph showing the results of the embodiment.
10 is a time-series graph showing the results of the comparative example.
11 is a time-series graph showing the results of the embodiment.

이하, 본 발명에 관한 실시형태를, 첨부된 도면을 참조하여 설명한다. 이하에서 실시형태를 들어서 구체적으로 설명하지만, 본 발명은 이에 한정되는 것은 아니다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Hereinafter, embodiments will be described concretely, but the present invention is not limited thereto.

[연소배기가스 처리시설][Combustion gas processing facility]

도1에 나타나 있는 바와 같이, 본 발명에 관한 산성가스 안정화처리방법이 적용되는 연소배기가스 처리시설(10)은, 예를 들면 도시쓰레기 폐기물 소각로, 산업 폐기물 소각로, 발전보일러, 탄화로, 민간공장 등의 연소시설이다. 연소배기가스 처리시설(10)은, 도시쓰레기와 같은 연소물을 연소시켜, 유해한 산성가스를 포함하는 고온의 연소배기가스를 발생시키는 연소로(燃燒爐)(12)와, 연소배기가스의 열을 이용하는 보일러(14)와, 연소배기가스의 열을 감온시키는 감온탑(減溫塔)(16)과, 1개 이상의 집진기(集塵機)(18)와, 연소배기가스를 집진기(18)에서 처리한 처리후 연소배기가스를 배기(排氣)하는 굴뚝(22)과, 제거된 비산재를 회수하는 비산재 집적장치(飛散灰 集積裝置)(19)를 구비한다.As shown in Fig. 1, the combustion exhaust gas treatment facility 10 to which the acid gas stabilization method according to the present invention is applied includes, for example, a municipal waste incinerator, an industrial waste incinerator, a generation boiler, . The combustion exhaust gas treatment facility 10 includes a combustion furnace 12 for combusting a combustible material such as municipal waste to generate a high temperature combustion exhaust gas containing harmful acidic gas and a boiler A reducing tower 16 for reducing the temperature of the combustion exhaust gas, at least one dust collector 18, and a post-treatment burning exhaust gas treated by the dust collector 18, A chimney 22 for discharging exhaust gas, and a fly ash accumulation device 19 for recovering the removed fly ash.

연소배기가스 처리시설(10)은, 연소로(12)에서 발생한 고온의 연소배기가스를 보일러(14)를 경유해서 감온탑(16)으로 보내는 배관(2)과, 감온탑(16)으로부터 집진기(18)에 접속하고 있는 유입로(3)와, 집진기(18)로부터 굴뚝(22)에 접속하고 있는 배출로(4)를 포함한다. 연소배기가스 처리시설(10)이 복수의 집진기(18)를 구비할 경우에, 유입로(3)의 종단(終端)은, 복수의 집진기(18)중 감온탑(16)으로부터 가장 먼 위치에 설치된 집진기(18)의 위치를 말한다.The combustion exhaust gas treatment facility 10 includes a pipe 2 for sending a high temperature combustion exhaust gas generated in the combustion furnace 12 to the glowing tower 16 via the boiler 14 and a pipe 2 for sending the glowing gas from the glowing tower 16 to the dust collector 18 And an exhaust passage 4 connected to the chimney 22 from the dust collector 18. The terminating end of the inflow path 3 is installed at a position farthest from the suction tower 16 among the plurality of dust collectors 18 when the combustion gas treating facility 10 includes a plurality of the dust collectors 18 Refers to the position of the dust collector 18.

연소배기가스 처리시설(10)은, 배관(2) 및 유입로(3)내의 연소배기가스를 효율적으로 집진기(18)로 보내고 또한 배출로(4)내의 처리후 연소배기가스를 효율적으로 굴뚝(22)으로부터 배출하도록, 배출로(4)에 팬(20)을 구비한다.The combustion exhaust gas treatment facility 10 efficiently sends the combustion exhaust gas in the pipe 2 and the inflow passage 3 to the dust collector 18 and efficiently discharges the treated combustion exhaust gas in the exhaust passage 4 from the chimney 22 And a fan 20 is provided in the discharge passage 4 so as to discharge it.

연소배기가스 처리시설(10)은, 또한 연소로(12)로부터 배출되는 연소배기가스중의 산성가스를 안정화 처리하기 위해서, 유입로(3)에 설치된 제1첨가장치(42) 및 제2첨가장치(44)와, 배출로(4)에 설치된 제1산성가스 측정장치 (30a)와, 유입로(3)에 설치된 제2산성가스 측정장치(30b)와, 첨가량 제어장치 (50)를 포함한다.The combustion exhaust gas treatment facility 10 is further provided with a first addition device 42 and a second addition device 42 provided in the inflow path 3 for stabilizing the acid gas in the combustion exhaust gas discharged from the combustion furnace 12 A first acid gas measurement device 30a provided in the discharge passage 4 and a second acid gas measurement device 30b provided in the inflow passage 3 and an addition amount control device 50. The first acid gas measurement device 30a,

제1첨가장치(42)는, 첨가량 제어장치(50)로부터의 제1첨가량 신호(S21)에 의거하여 유입로(3)내를 흐르는 연소배기가스에 제1알칼리제를 첨가하는 첨가장치이다. 제2첨가장치(44)는, 첨가량 제어장치(50)로부터의 제2첨가량 신호(S13)에 의거하여 유입로(3)내를 흐르는 연소배기가스에 제2알칼리제를 첨가하는 첨가장치이다.The first adding device 42 is an adding device for adding the first alkaline agent to the combustion exhaust gas flowing in the inflow passage 3 based on the first addition amount signal S21 from the addition amount control device 50. [ The second adding device 44 is an adding device for adding the second alkaline agent to the combustion exhaust gas flowing in the inflow path 3 based on the second addition amount signal S13 from the addition amount control device 50. [

제1알칼리제는 산성가스의 적정처리를 목적으로 해서 첨가되므로 그 종류에 특히 제한은 없지만, 산성가스와의 반응성이 비교적 높은 알칼리제가 바람직하다. 제1알칼리제로서는, 평균 입자지름이 5∼30μm로 조정된 미분중조(微粉重曹), 비표면적 30m2/g 이상의 고반응 소석회 및/또는 이들 반응성이 높은 알칼리제를 혼합, 배합한 약제를 예시할 수 있다. 특히, 평균 입자지름 5∼30μm의 미분중조는, 염화수소뿐만 아니라 유황산화물과도 높은 반응성을 나타내기 때문에, 유황산화물의 처리가 필요한 시설에 있어서는 미분중조를 적용하는 것이 바람직하다. 또한, 예를 들면 중조 등의 이들 알칼리제는, 입도(粒度)가 거친 알칼리제를 현지에서 분쇄해서 이용하더라도 좋다.The first alkali agent is added for the purpose of titration of an acidic gas, and therefore there is no particular limitation on its kind, but an alkaline agent having a relatively high reactivity with an acidic gas is preferable. As the first alkali agent, a mean particle size of the finely divided sodium bicarbonate adjusted to 5~30μm (微粉重曹), a specific surface area of 30m 2 / g or more and the reaction of calcium hydroxide and / or their reactivity can be mentioned a mixture, a medicament formulated for high alkaline agent have. Particularly, since the differential boiling tank having an average particle diameter of 5 to 30 占 퐉 exhibits high reactivity with not only hydrogen chloride but also sulfur oxide, it is preferable to apply a differential boiling tank in a facility where treatment with sulfur oxide is required. Further, for example, these alkaline agents such as sulfuric acid may be used by locally grinding an alkaline agent having a large particle size.

제2알칼리제는 산성가스의 개략적인 제거를 목적으로 해서 첨가되므로 그 종류에는 특히 제한은 없지만, 산성가스와의 반응성이 비교적 낮아도 괜찮아서 저렴한 알칼리제가 경제적으로 바람직하다. 제2알칼리제로서는, 예를 들면 JIS 특호 소석회(特號 消石灰), 비표면적 30m2/g이상의 고반응 소석회, 수산화나트륨, 조중조(粗重曹), 세스퀴탄산나트륨(sodium sesquicarbonate), 천연소다, 산화마그네슘, 수산화마그네슘 및/또는 이들 알칼리제를 혼합, 배합한 약제를 예시할 수 있다. 또한 제2알칼리제는 각알칼리제를 물에 용해한 슬러리 또는 수용액이어도 좋다.The second alkali agent is added for the purpose of roughly eliminating the acidic gas, so that there is no particular limitation on its kind. However, it is economically preferable that an alkaline agent which is relatively low in reactivity with an acidic gas is available. Examples of the second alkaline agent include JIS special lime lime, high-reacting lime having a specific surface area of 30 m 2 / g or more, sodium hydroxide, crude sesame oil, sodium sesquicarbonate, natural soda, Magnesium, magnesium hydroxide, and / or an alkaline agent are mixed and blended. The second alkaline agent may be a slurry or an aqueous solution in which each alkali agent is dissolved in water.

제2알칼리제가 소석회일 경우에 있어서, 제2알칼리제는, 발생하는 산성가스농도(HCl, SO2)당 0.5∼3당량, 바람직하게는 1∼2당량이 되도록 첨가하는 것이 바람직하다.In the case where the second alkali agent is a calcium hydroxide, the second alkali agent is preferably added in an amount of 0.5 to 3 equivalents, preferably 1 to 2 equivalents, per the acid gas concentration (HCl, SO 2 ) generated.

제1알칼리제가 미분중조일 경우에 있어서, 제1알칼리제는, 염화수소와 유황산화물 모두에 대해 안정하게 처리할 수 있도록, 발생하는 산성가스농도(HCl, SO2)당 0.10∼0.60당량, 바람직하게는 0.15∼0.50당량이 되도록 첨가하는 것이 바람직하다.In the case where the first alkaline agent is precipitated in a fine powder, the first alkaline agent is preferably used in an amount of 0.10 to 0.60 equivalents per equivalent of the acid gas concentration (HCl, SO 2 ) generated, so that the first alkaline agent can be stably treated with both hydrogen chloride and sulfur oxide, It is preferable to add it in an amount of 0.15 to 0.50 equivalents.

제1첨가장치(42) 및 제2첨가장치(44)는, 모두 유입로(3)에 설치되어 있으면 좋고, 예를 들면 산성가스의 흐름 방향(W)에 있어서 제1첨가장치(42)가 제2첨가장치(44)의 상류측이어도 좋고 제2첨가장치(44)가 제1첨가장치(42)의 상류측이어도 좋다.The first adding device 42 and the second adding device 44 may all be provided in the inflow path 3. For example, the first adding device 42 may be provided in the flow direction W of the acid gas The second addition device 44 may be on the upstream side of the first addition device 42, or the second addition device 44 may be on the upstream side of the first addition device 42.

집진기(18)는, 예를 들면 연소배기가스로부터 비산재를 제거하는 백필터이다. 연소배기가스 처리시설(10)이 복수의 집진기(18)를 구비할 경우에는, 산성가스가 적정하게 처리되도록, 유입로(3)에서 제2첨가장치(44)를 제1첨가장치(42)의 상류측에 설치하고, 복수의 집진기(18)중 1개를 제1첨가장치(42)와 제2첨가장치(44)의 사이에 설치하고, 다른 1개를 제1첨가장치(42)의 하류측에 설치하는 것이 바람직하다.The dust collector 18 is, for example, a bag filter for removing fly ash from the combustion exhaust gas. In the case where the combustion exhaust gas treating facility 10 is provided with a plurality of dust collectors 18, the second adding device 44 in the inflow path 3 is connected to the first adding device 42 One of the plurality of dust collectors 18 is disposed between the first adding device 42 and the second adding device 44 and the other one is disposed downstream of the first adding device 42 As shown in Fig.

제1산성가스 측정장치(30a)는, 연소배기가스를 집진기(18)에서 처리한 처리후 연소배기가스중의 산성가스농도를 측정하고, 측정된 산성가스농도를 제1산성가스농도 신호(S0a)로서 출력한다. 구체적으로, 제1산성가스 측정장치(30a)는 제1염화수소가스농도 측정장치(32a)와 제1유황산화물가스농도 측정장치(34a)를 포함한다. 제1염화수소가스농도 측정장치(32a)는, 배출로(4)내를 흐르는 처리후 연소배기가스중의 리얼타임의 염화수소가스농도인 순간염화수소가스농도를 측정하고, 측정된 순간염화수소가스농도를 제1염화수소가스농도 신호(S1a)로서 출력한다. 마찬가지로, 제1유황산화물가스농도 측정장치(34a)는, 배출로(4)내를 흐르는 처리후 연소배기가스중의 리얼타임의 유황산화물가스농도인 순간유황산화물가스농도를 측정하고, 측정된 순간유황산화물가스농도를 제1유황산화물가스농도 신호(S2a)로서 출력한다.The first acid gas measuring device 30a measures the concentration of the acid gas in the treated exhaust gas after treatment of the exhaust gas by the dust collector 18 and measures the measured acid gas concentration as the first acid gas concentration signal S0a Output. Specifically, the first acid gas measuring device 30a includes a first hydrogen chloride gas concentration measuring device 32a and a first sulfur oxide gas concentration measuring device 34a. The first hydrogen chloride gas concentration measuring device 32a measures the instantaneous hydrogen chloride gas concentration which is the concentration of real time hydrogen chloride gas in the treated exhaust gas flowing through the discharge path 4 and measures the instantaneous hydrogen chloride gas concentration And outputs it as the hydrogen chloride gas concentration signal S1a. Similarly, the first sulfur oxide gas concentration measuring device 34a measures the instantaneous sulfur oxide gas concentration, which is the real time sulfur oxide gas concentration in the treated exhaust gas flowing through the discharge passage 4, And outputs the oxide gas concentration as the first sulfur oxide gas concentration signal S2a.

제2산성가스 측정장치(30b)는, 연소배기가스를 집진기(18)에서 처리하지 않은 미처리 연소배기가스중의 산성가스농도를 측정하고, 측정된 산성가스농도를 제2산성가스농도 신호(S0b)로서 출력한다. 구체적으로, 제2산성가스 측정장치(30b)는 제2염화수소가스농도 측정장치(32b)와 제2유황산화물가스농도 측정장치(34b)를 포함한다. 제2염화수소가스농도 측정장치(32b)는 유입로(3)내를 흐르는 미처리 연소배기가스중의 리얼타임의 염화수소가스농도인 순간염화수소가스농도를 측정하고, 측정된 순간염화수소가스농도를 제2염화수소가스농도 신호(S1b)로서 출력한다. 마찬가지로, 제2유황산화물가스농도 측정장치(34b)는 유입로(3)내를 흐르는 미처리 연소배기가스중의 리얼타임의 유황산화물가스농도인 순간유황산화물가스농도를 측정하고, 측정된 순간유황산화물가스농도를 제2유황산화물가스농도 신호(S2b)로서 출력한다.The second acid gas measuring device 30b measures the concentration of the acid gas in the untreated exhaust gas which has not been treated in the dust collector 18 by the combustion exhaust gas and the measured acid gas concentration as the second acid gas concentration signal S0b Output. Specifically, the second acid gas measuring device 30b includes a second hydrogen chloride gas concentration measuring device 32b and a second sulfur oxide gas concentration measuring device 34b. The second hydrogen chloride gas concentration measuring device 32b measures the instantaneous hydrogen chloride gas concentration which is the real time hydrogen chloride gas concentration in the untreated exhaust gas flowing in the inflow channel 3 and measures the instantaneous hydrogen chloride gas concentration as the second hydrogen chloride gas And outputs it as the density signal S1b. Similarly, the second sulfur oxide gas concentration measuring device 34b measures the instantaneous sulfur oxide gas concentration, which is the real time sulfur oxide gas concentration in the raw unburned exhaust gas flowing in the inflow path 3, and measures the instantaneous sulfur oxide gas And outputs the concentration as the second sulfur oxide gas concentration signal S2b.

제1, 제2염화수소가스농도 측정장치(32a, 32b) 및 제1, 제2유황산화물가스농도 측정장치(34a, 34b)는, 각각 염화수소가스농도 및 유황산화물가스농도를 측정할 수 있는 측정장치라면 좋고, 측정장치의 형식은 한정되지 않는다. 염화수소가스농도는 이온전극법(ion電極法), 레이저에 의한 단일흡수선 흡수분광법(單一吸收線 吸收分光法) 등으로 측정가능하고, 유황산화물가스농도는 비분산형 적외선흡수법(非分散型 赤外線吸收法), 자외선 형광법(紫外線 螢光法) 등으로 측정가능하다.The first and second hydrogen chloride gas concentration measuring devices 32a and 32b and the first and second sulfur oxide gas concentration measuring devices 34a and 34b are devices for measuring a hydrogen chloride gas concentration and a sulfur oxide gas concentration, And the type of the measuring apparatus is not limited. The concentration of hydrogen chloride gas can be measured by ion electrode method, single absorption line absorption spectroscopy by laser, and sulfur oxide gas concentration by non-dispersive infrared absorption method (non-dispersive infrared absorption method ), And ultraviolet fluorescence (ultraviolet fluorescence).

연소배기가스 처리시설(10)은, 보통 배출로(4)에 설치되어 있는 제1염화수소가스농도 측정장치(32a)의 제1염화수소가스농도 신호(S1a)와 제1유황산화물가스농도 측정장치(34a)의 제1유황산화물가스농도 신호(S2a)에 따라 제1알칼리제의 첨가량을 피드백 제어하고, 제2알칼리제의 첨가량은 유입로(3)에 설치된 제2염화수소가스농도 측정장치(32b)의 제2염화수소가스농도 신호(S1b)와 제2유황산화물가스농도 측정장치(34b)의 제2유황산화물가스농도 신호(S2b)에 따라 제어됨으로써, 각 알칼리제의 첨가량을 적정하게 제어할 수 있다.The combustion exhaust gas treatment facility 10 is connected to the first hydrogen chloride gas concentration measuring device S1a of the first hydrogen chloride gas concentration measuring device 32a and the first sulfuric acid gas concentration measuring device 34a ) Of the second hydrogen chloride gas concentration measuring device (32b) provided in the inflow passage (3), and the amount of the second alkaline agent to be added is controlled by feedback control of the amount of the first alkaline agent added in accordance with the first sulfur- The addition amount of each alkali agent can be properly controlled by being controlled in accordance with the hydrogen chloride gas concentration signal S1b and the second sulfur oxide gas concentration signal S2b of the second sulfur oxide gas concentration measuring device 34b.

첨가량 제어장치(50)는, 산성가스농도(ppm)를 제어목표치(제어출력개시농도 라고도 한다)(SV)(ppm)이하로 하는 피드백 제어가 수행되도록, 제1산성가스농도 신호(S0a)를 수신하고 제1첨가량 신호(S21)를 출력하는 제1첨가량 산출부(60)와, 제2산성가스농도 신호(S0b) 및 제1첨가량 신호(S21)를 수신하고 제2첨가량 신호(S13)를 출력하는 제2첨가량 산출부(70)를 구비한다.The addition amount control device 50 sets the first acid gas concentration signal S0a so as to perform the feedback control such that the acid gas concentration (ppm) is equal to or less than the control target value (also referred to as the control output start concentration) (SV) A second additive amount calculating unit 60 for receiving the second additive amount signal S21 and a second additive amount calculating unit 60 for receiving the second additive amount signal S21 and the second additive amount signal S0b, And a second addition amount calculating unit 70 for outputting the second addition amount.

제1첨가량 신호(S21)는 제1첨가장치(42)가 첨가하는 제1알칼리제의 단위시간당의 제1첨가량(kg/h)을 나타낸다. 제2첨가량 신호(S13)는 제2첨가장치(44)가 첨가하는 제2알칼리제의 단위시간당의 제2첨가량(kg/h)을 나타낸다.The first addition amount signal S21 represents the first addition amount (kg / h) per unit time of the first alkaline agent added by the first addition device 42. [ The second addition amount signal S13 represents the second addition amount (kg / h) per unit time of the second alkaline agent added by the second addition device 44. [

첨가량 제어장치(50)는, 처리후 연소배기가스의 산성가스농도(ppm)가 제어목표치(SV)(ppm)이하가 되도록, 제1산성가스농도 신호(S0a)와 제2산성가스농도 신호(S0b)의 산성가스농도에 의거하여 제1첨가량 신호(S21)와 제2첨가량 신호(S13)를 출력한다.The addition amount control device 50 controls the addition amount control device 50 so that the first acid gas concentration signal S0a and the second acid gas concentration signal S0b (ppm) become equal to or less than the control target value SV (ppm) And outputs the first addition amount signal S21 and the second addition amount signal S13.

여기에서, 일반적으로 제1, 제2염화수소가스농도 측정장치(32a, 32b)는, 계측지연시간이 5∼10분으로 긴 이온전극법을 채용하고 있는 장치가 주류이다. 또한, 일반적으로 제1, 제2유황산화물가스농도 측정장치(34a, 34b)는, 계측지연시간이 3∼5분인 적외선흡수법을 채용하고 있는 장치가 주류이다.Here, in general, the first and second hydrogen chloride gas concentration measuring devices 32a and 32b are main devices employing the ion electrode method with a measurement delay time of 5 to 10 minutes. In general, the first and second sulfur oxide gas concentration measuring devices 34a and 34b are main devices that employ an infrared absorption method with a measurement delay time of 3 to 5 minutes.

첨가량 제어장치(50)는, 제1, 제2염화수소가스농도 측정장치(32a, 32b)나 제1, 제2유황산화물가스농도 측정장치(34a, 34b)의 계측지연시간, 제1첨가장치(42) 및 제2첨가장치(44)로부터 유입로(3)까지의 첨가지연시간 등 지연시간이 커지게 됨에 따라, 피드백 제어에 악영향을 받아서, 제1첨가장치(42) 및 제2첨가장치(44)가 각각 첨가하는 제1알칼리제 및 제2알칼리제의 첨가량을 증가시킬 우려가 있다.The additive amount control device 50 controls the addition delay time of the first and second hydrogen chloride gas concentration measuring devices 32a and 32b and the first and second sulfur oxide gas concentration measuring devices 34a and 34b, 42 and the second adding device 44 to the inflow passage 3 are increased, the first adding device 42 and the second adding device 42 44 may increase the addition amount of the first alkali agent and the second alkali agent, respectively.

그래서 첨가량 제어장치(50)는, 후술하는 바와 같이, 계측지연시간이나 피드백 제어의 연산에 필요로 하는 시간을 고려한, 계측지연시간에 의한 안정적인 제어를 실행한다.Thus, as described later, the addition amount control device 50 performs stable control based on the measurement delay time in consideration of the measurement delay time and the time required for the calculation of the feedback control.

제1첨가량 산출부(60)는, 제1메인첨가량 산출부(61)와 기초첨가량 산출부(63)와 통상첨가량 산출부(64)와 긴급시 판단부(65)와 가첨가량 산출부(66)와 기기첨가량 제한부(67)를 구비한다.The first addition amount calculating unit 60 includes a first main addition amount calculating unit 61, a base addition amount calculating unit 63, a normal addition amount calculating unit 64, an emergency time determining unit 65, And an apparatus addition amount restricting section 67. [

제1메인첨가량 산출부(61)는 제1산성가스농도 신호(S0a)에 의거하여 제1알칼리제의 기본이 되는 첨가량을 산출한다. 제1메인첨가량 산출부(61)는, 제1산성가스농도 신호(S0a)중 제1염화수소가스농도 신호(S1a)를 수신하는 제1염화수소가스 산출부(62a)와, 제1유황산화물가스농도 신호(S2a)를 수신하는 제1유황산화물가스 산출부(62b)를 구비한다.The first main additive amount calculating section 61 calculates an additive amount to be the basis of the first alkaline agent based on the first acid gas concentration signal S0a. The first main additive amount calculating section 61 includes a first hydrogen chloride gas calculating section 62a for receiving the first hydrogen chloride gas concentration signal S1a of the first acid gas concentration signal S0a, And a first sulfur oxide gas calculation unit 62b for receiving the signal S2a.

제1염화수소가스 산출부(62a)는, 후술하는 바와 같이, 제1염화수소가스농도 신호(S1a)에 의거하여 단위시간당의 첨가량(kg/h)인 염화수소측 첨가량(AgS1)(kg/h)을 산출하고 제1염화수소 첨가량 신호(S3)로서 출력한다.The first hydrogen chloride gas calculating section 62a calculates the hydrogen chloride addition amount AgS1 (kg / h), which is the addition amount (kg / h) per unit time, based on the first hydrogen chloride gas concentration signal S1a, And outputs it as the first hydrogen chloride addition amount signal S3.

제1유황산화물가스 산출부(62b)는, 후술하는 바와 같이, 제1유황산화물가스농도 신호(S2a)에 의거하여 단위시간당의 첨가량(kg/h)인 유황산화물측 첨가량(AgS2)(kg/h)을 산출하고 제1유황산화물 첨가량 신호(S4)로서 출력한다.The first sulfur oxide gas calculating unit 62b calculates the sulfur oxide side additive amount AgS2 (kg / h) per unit time (kg / h) based on the first sulfur oxide gas concentration signal S2a, h) and outputs it as the first sulfur oxide additive amount signal S4.

도2에 나타나 있는 바와 같이, 제1염화수소가스 산출부(62a)는, 염화수소가스용의 기본첨가량 대응정보(도4 및 도5 참조)가 규정되어 있는 첨가량 대응 규정부(625a)와 농도량 산출부(622a)와 기초첨가량 산출부(623a)와 상승보정치 규정부(621a)와 하강보정치 규정부(624a)와 첨가량 산출부(626a)를 구비한다.As shown in FIG. 2, the first hydrogen chloride gas calculating unit 62a calculates the amount of hydrogen chloride gas to be added to the hydrogen chloride gas, based on the addition amount correspondence specifying unit 625a for defining the basic addition amount corresponding information (see FIGS. 4 and 5) A base addition amount calculating section 623a, a rising correction value specifying section 621a, a fall correction value specifying section 624a and an addition amount calculating section 626a.

첨가량 대응 규정부(625a)는, 순간 염화수소가스 농도(PV)에 대하여 첨가해야 할 제1알칼리제의 첨가량을 규정한 기본첨가량 대응정보를 규정하고 있다.The addition amount correspondence specifying unit 625a specifies basic addition amount correspondence information that defines the addition amount of the first alkali agent to be added to the instantaneous hydrogen chloride gas concentration (PV).

기본첨가량 대응정보는, 첨가량 제어장치(50)의 하한(최소첨가량(LOS)(kg/h))에 대응하는 산성가스농도와 상한(최대첨가량(LHS)(kg/h))에 대응하는 산성가스농도 사이에서의 어느 일정한 염화수소가스농도 범위에서, 어느 일정한 제어출력치를 초과하는 출력이 되지 않게, 제1알칼리제의 첨가량을 제한하도록 규정되어 있다.The basic addition amount correspondence information is information indicating the acidic gas concentration corresponding to the lower limit (the minimum addition amount LOS (kg / h)) of the addition amount control device 50 and the acidic gas concentration corresponding to the upper limit The amount of the first alkaline agent to be added is limited so as not to produce an output exceeding a certain control output value in a certain hydrogen chloride gas concentration range between the gas concentrations.

일반적인 PID 제어는, 제어출력 상한치가 1개밖에 없어서, 예를 들면 제어목표치를 40ppm으로 하고, 예를 들면 산성가스농도가 그 제어목표치 이상이 되면, 유입로내의 산성가스농도에 관계없이 그 제어출력 상한치까지 제1알칼리제를 첨가하여, 결과적으로는 과잉첨가를 초래한다.In general PID control, the upper limit value of the control output is only one. For example, when the control target value is set to 40 ppm, for example, when the acid gas concentration exceeds the control target value, The first alkaline agent is added to the upper limit value, resulting in an excessive addition.

이에 대하여, 첨가량 대응 규정부(625a)는, 현재의 산성가스농도에 따른 제어출력의 제한을 가할 수 있도록, 즉 유입로(3)의 산성가스농도에 따라서 적정한 양의 제1알칼리제를 첨가하거나 제1알칼리제의 첨가량을 삭감할 수 있도록, 기본첨가량 대응정보를 규정하고 있다.On the other hand, the additive amount countermeasure specifying section 625a is configured to add the appropriate amount of the first alkaline agent in accordance with the concentration of the acidic gas in the inflow path 3, 1 basic additive amount correspondence information is specified so that the addition amount of the alkaline agent can be reduced.

예를 들면, 기본첨가량 대응정보는, 구체적으로는 도4 및 도5에 나타나 있는 바와 같이, 염화수소가스농도 신호(S1a)의 순간염화수소가스농도(PV)에 대해서 첨가해야 할 첨가량(SQ)(kg/h)의 관계를 나타내는, 0 - 점a - 점b간을 연결하는 선, 점c - 점d간을 연결하는 선, 점e이후의 선으로 이루어지는 첨가량 대응정보선L에 의하여 나타내진다.For example, as shown in Figs. 4 and 5, the basic addition amount correspondence information is information indicating the addition amount SQ (kg) to be added to the instantaneous hydrogen chloride gas concentration PV of the hydrogen chloride gas concentration signal S1a / h), the line connecting the points 0 - point a - point b, the line connecting point c - point d, and the line after point e.

첨가량 대응정보선L은 구체적으로는 아래와 같이 되어 있다. 순간염화수소가스농도(PV)(ppm)가, 0ppm으로부터 제어목표치(제어출력개시농도 라고도 한다)(SV)(ppm)미만까지의 범위(0으로부터 점a까지의 범위)에서는, 첨가량(SQ)(kg/h)은 0으로 규정된다.The addition amount corresponding information line L is specifically as follows. In the range from 0 ppm to the control target value (also referred to as the control output start concentration) (SV) (ppm)) (the range from 0 to the point a), the addition amount SQ ( kg / h) is defined as zero.

순간염화수소가스농도(PV)(ppm)가, 제어목표치(SV)(ppm)이상이고 제1출력제한 첨가량(LM1)(kg/h)에 대응하는 제1출력제한 대응농도(SM1)(ppm)미만의 범위(점a로부터 점b까지의 범위)에서는, 첨가량(SQ)(kg/h)은 이하의 식에 의거하여 규정된다.The first output limit corresponding concentration SM1 (ppm) corresponding to the first output limit addition amount LM1 (kg / h) and the instantaneous hydrogen chloride gas concentration PV (ppm) (The range from point a to point b), the addition amount SQ (kg / h) is defined based on the following formula.

첨가량(SQ) = [제1출력제한 첨가량(LM1)] × [순간염화수소가스농도(PV) - 제어목표치(SV)] / [제1출력제한 대응농도(SM1) - 제어목표치(SV)]The addition amount SQ of the first output limit addition amount LM1 × the instantaneous hydrogen chloride gas concentration PV the control target value SV the first output limit correspondence concentration SM1 the control target value SV,

순간염화수소가스농도(PV)(ppm)가, 제1출력제한 첨가량(LM1)(kg/h)에 대응하는 제1출력제한 대응농도(SM1)(ppm)이상이고 제2출력제한 첨가량(LM2)(kg/h)에 대응하는 제2출력제한 대응농도(SM2)(ppm)미만인 범위(점c로부터 점d의 범위)에서는, 첨가량(SQ)(kg/h)은 제2출력제한 첨가량(LM2)(kg/h)으로 규정된다.The instantaneous hydrogen chloride gas concentration (PV) (ppm) is equal to or higher than the first output limit corresponding concentration SM1 (ppm) corresponding to the first output limit addition amount LM1 (kg / h) the addition amount SQ (kg / h) is smaller than the second output restricting addition amount LM2 (kg / h) in the range (from the point c to the point d) ) (kg / h).

순간염화수소가스농도(PV)(ppm)가, 제2출력제한 첨가량(LM2)(kg/h)에 대응하는 제2출력제한 대응농도(SM2)(ppm)이상(점e 이후의 범위)에서는, 첨가량(SQ)(kg/h)은 출력상한 첨가량(LM3)으로 규정된다. 출력상한 첨가량(LM2)과 출력상한 첨가량(LM3)은 모두 대응첨가량 상한치다.In the case where the instantaneous hydrogen chloride gas concentration (PV) (ppm) is equal to or higher than the second output limit corresponding concentration SM2 (ppm) corresponding to the second output limit addition amount LM2 (kg / h) The addition amount SQ (kg / h) is defined as the output upper limit addition amount LM3. The output upper limit addition amount LM2 and the output upper limit addition amount LM3 are both the upper limit of the corresponding addition amount.

도2에 나타나 있는 바와 같이, 농도량 산출부(622a)는 제1염화수소가스농도 신호(S1a)에 의거하여 순간염화수소가스 농도(ppm)가 상승하고 있을지 하강하고 있을지를 판단할 수 있도록, 순간염화수소가스농도(ppm)의 증감비율(순간염화수소가스농도에 있어서 변화의 기울기)을 나타내는 염화수소가스농도량(θ)을 산출한다.As shown in Fig. 2, the concentration-amount calculating unit 622a calculates an instantaneous hydrogen chloride gas concentration (ppm) based on the first hydrogen chloride gas concentration signal S1a, The hydrogen chloride gas concentration amount? Indicating the increase / decrease ratio of the gas concentration (ppm) (the slope of the change in the instantaneous hydrogen chloride gas concentration) is calculated.

기초첨가량 산출부(623a)는, 기초첨가량 산출부(63)와 마찬가지로, 예를 들면 10분간과 같은 소정의 시간에 있어서의 제1첨가량(kg/h)의 평균첨가량에 의거하여 기초첨가량(Fa)(kg/h)을 산출한다.Based on the average addition amount of the first addition amount (kg / h) at a predetermined time such as 10 minutes, for example, the basic addition amount calculation unit 623a calculates the basic addition amount Fa ) < / RTI > (kg / h).

상승보정치 규정부(621a)는, 염화수소가스농도량(θ)의 값이 플러스 값일 때, 즉 염화수소가스농도가 상승하고 있는 상승상태일 때, 기본첨가량 대응정보를 보정하는데 기본이 되는 상승보정치(SVA)(ppm)를 규정하고 있다.The ascending correction value defining section 621a specifies the ascending correction value SVA (hereinafter referred to as " SVA ") that is a basis for correcting the basic addition amount correspondence information when the hydrogen chloride gas concentration amount [ ) (ppm).

하강보정치 규정부(624a)는, 염화수소가스농도량(θ)의 값이 변화되지 않거나 마이너스 값일 때, 즉 염화수소가스농도가 안정하게 있거나 강하하고 있는 하강상태일 때, 기본첨가량 대응정보를 보정하는데 기본이 되는 강하보정계수(LMG)(단위는 무차원)를 규정하고 있다. 강하보정계수(LMG)는 1미만의 값으로 된다.When the value of the hydrogen chloride gas concentration amount [theta] is not changed or is a negative value, that is, when the hydrogen chloride gas concentration is stable or descending, the downward correction correction value specifying unit 624a corrects the basic addition amount correspondence information (Unit: dimensionless) is defined as the descending correction coefficient LMG. The descent correction coefficient LMG becomes a value less than 1.

첨가량산출부(626a)는, 산성가스농도량(θ), 기초첨가량(Fa), 상승보정치(SVA), 강하보정계수(LMG)에 의거하여 기본첨가량 대응정보를 보정하고, 제1염화수소 첨가량 신호(S3)를 출력한다.The addition amount calculating unit 626a corrects basic addition amount correspondence information based on the acid gas concentration amount [theta], the base addition amount Fa, the ascending correction value SVA and the descending correction coefficient LMG, (S3).

도3에 나타나 있는 바와 같이, 제1유황산화물가스 산출부(62b)도, 제1염화수소가스 산출부(62a)와 마찬가지로, 유황화합물용의 기본첨가량 대응정보(도4 및 도5와 마찬가지임)가 규정되어 있는 첨가량 대응 규정부(625b)와 농도량 산출부(622b)와 기초첨가량 산출부(623b)와 상승보정치 규정부(62lb)와 하강보정치 규정부(624b)와 첨가량 산출부(626b)를 구비한다.As shown in Fig. 3, the first sulfur oxide gas calculating section 62b is also provided with basic addition quantity correspondence information (similar to Figs. 4 and 5) for sulfur compounds, like the first hydrogen chloride gas calculating section 62a, A base amount addition calculating section 623b, an ascending correction value specifying section 62lb, a descending correction value specifying section 624b, and an addition amount calculating section 626b, which are defined in the adding amount calculating section 625b, the concentration amount calculating section 622b, Respectively.

첨가량 대응 규정부(625b)는 유황산화물가스농도에 대하여 첨가해야 할 제1알칼리제의 첨가량을 규정한 기본첨가량 대응정보를 규정하고 있다. 기본첨가량 대응정보인, 제1유황산화물가스농도 신호(S2a)의 순간유황산화물가스농도(PV)에 대하여 첨가해야 할 첨가량(SQ)(kg/h)의 관계는, 도4 및 도5에서 나타내는 첨가량 대응정보선L과 동일한 관계이다.The addition amount correspondence specifying section 625b specifies basic addition amount correspondence information that defines the addition amount of the first alkaline agent to be added to the sulfur oxide gas concentration. The relationship of the addition amount SQ (kg / h) to be added to the instantaneous sulfur oxide gas concentration PV of the first sulfur oxide gas concentration signal S2a, which is basic addition amount corresponding information, is shown in Figs. 4 and 5 The addition amount corresponding information line L has the same relationship.

도3에 나타나 있는 바와 같이, 농도량 산출부(622b)는 제1유황산화물가스농도 신호(S2a)에 의거하여 순간유황산화물가스농도(ppm)의 증감의 비율(순간유황산화물가스농도에 있어서 변화의 기울기)을 나타내는 유황산화물가스농도량(θ)을 산출하고, 순간유황산화물가스농도(ppm)가 상승하고 있을지 하강하고 있을지를 판단한다.3, the concentration-amount calculating unit 622b calculates the concentration of the instantaneous sulfur oxide gas concentration (ppm) based on the first sulfur oxide gas concentration signal S2a (the change in the instantaneous sulfur oxide gas concentration , And determines whether the instantaneous sulfur oxide gas concentration (ppm) is rising or declining.

기초첨가량 산출부(623b)는, 기초첨가량 산출부(63)와 마찬가지로, 예를 들면 10분간과 같은 소정의 시간에 있어서의 제1첨가량(kg/h)의 평균첨가량에 의거하여 기초첨가량(Fa)을 산출한다.Based on the average addition amount of the first addition amount (kg / h) at a predetermined time such as 10 minutes, for example, the basic addition amount calculation unit 623b calculates the basic addition amount Fa ).

상승보정치 규정부(62lb)는, 유황산화물가스농도량(θ)의 값이 플러스 값일 때, 즉 유황산화물가스농도가 상승하고 있을 때, 기본첨가량 대응정보를 보정하는데 기본이 되는 상승보정치(SVA)(ppm)를 규정하고 있다.The ascending correction value defining section 621b specifies the ascending correction value SVA that is a basis for correcting the basic addition amount correspondence information when the sulfur oxide gas concentration amount [theta] is a positive value, that is, when the sulfur oxide gas concentration is rising, (ppm).

하강보정치 규정부(624b)는, 유황산화물가스농도량(θ)의 값이 변화되지 않거나 마이너스 값일 때, 즉 유황산화물가스농도가 안정하게 있거나 강하하고 있을 때, 기본첨가량 대응정보를 보정하는데 기본이 되는 강하보정계수(LMG)(단위는 무차원)를 규정하고 있다. 강하보정계수(LMG)는 1미만의 값으로 된다.When the value of the sulfur oxide gas concentration amount [theta] is not changed or is a negative value, that is, when the sulfur oxide gas concentration is stable or dropping, the fall correction value specifying portion 624b basically corrects the basic addition amount correspondence information (LMG) (unit is dimensionless). The descent correction coefficient LMG becomes a value less than 1.

첨가량 산출부(626b)는, 유황산화물가스농도량(θ), 기초첨가량(Fa), 상승보정치(SVA), 강하보정계수(LMG)에 의거하여 기본첨가량 대응정보를 보정하고, 제1유황산화물 첨가량 신호(S4)를 출력한다.The addition amount calculating unit 626b corrects the basic addition amount corresponding information based on the sulfur oxide gas concentration amount [theta], the base addition amount Fa, the ascending correction value SVA and the descending correction coefficient LMG, And outputs the addition amount signal S4.

기초첨가량 산출부(63)는, 제1첨가량 신호(S21)의 제1첨가량(kg/h)에 의거하여 기초첨가량(Fa)(kg/h)을 산출하고, 산출한 기초첨가량(Fa)(kg/h)을 기초첨가량 신호(S5)로서 출력한다.The base addition amount calculating section 63 calculates the base addition amount Fa (kg / h) based on the first addition amount (kg / h) of the first addition amount signal S21 and calculates the basic addition amount Fa kg / h) as the basic addition amount signal S5.

기초첨가량(Fa)(kg/h)은, 예를 들면 10분간과 같은 소정의 시간당 제1첨가량(kg/h)의 평균첨가량(kg/h)이 된다.The base addition amount Fa (kg / h) is an average addition amount (kg / h) of the first addition amount (kg / h) per predetermined time such as 10 minutes, for example.

통상첨가량 산출부(64)는, 제1염화수소 첨가량 신호(S3), 제1유황산화물 첨가량 신호(S4), 기초첨가량 신호(S5)에 의거하여 단위시간당의 첨가량(kg/h)인 통상첨가량(AgSQ)을 산출하고 통상첨가량 신호(S6)로서 출력한다.The normal addition amount calculation unit 64 calculates the normal addition amount (i.e., the amount of addition (kg / h)) per unit time based on the first hydrogen chloride addition amount signal S3, the first sulfur oxide addition amount signal S4, AgSQ) and outputs it as a normal addition amount signal S6.

일반적으로, 첨가량 제어장치에는 PID 제어가 잘 사용된다. 그리고 PID 제어는 단일의 상한출력치와 하한출력치밖에 설정할 수 없다. 이 때문에, 예를 들면 일반적인 PID 제어에 있어서, 배출로(4)에 있어서 염화수소가스농도의 제어목표치(ppm)를 40ppm으로 설정한 경우, PID 제어는, 염화수소가스농도가 제어목표치 이하일 때에 제어출력의 하한인 하한첨가량(kg/h)으로 첨가하도록 신호를 출력하고, 또한 염화수소가스농도가 제어목표치 이상일 때에 제어출력의 상한인 상한첨가량(kg/h)으로 첨가하도록 신호를 출력한다. 이때에, 염화수소가스농도가 단시간에 높아지거나 낮아지거나 하는 것이 반복하는 상태가 발생하면, 일반적인 PID 제어는 단시간에 하한첨가량과 상한첨가량 사이의 출력치를 반복해서 출력함으로써 알칼리제의 부적절한 첨가(과잉첨가, 부족첨가)를 유발한다. 이러한 경우에, 배출로에 있어서 염화수소가스농도가 크게 변동함과 아울러 유입로에 있어서 알칼리제가 과잉첨가되는 원인이 된다.Generally, PID control is well used for the addition amount control device. And the PID control can be set only to a single upper limit output value and a lower limit output value. Therefore, for example, in a general PID control, when the control target value (ppm) of the hydrogen chloride gas concentration in the discharge passage 4 is set to 40 ppm, the PID control is executed when the hydrogen chloride gas concentration is equal to or lower than the control target value (Kg / h), and when the hydrogen chloride gas concentration is equal to or higher than the control target value, a signal is output so that the upper limit addition amount (kg / h), which is the upper limit of the control output, is added. At this time, if a state in which the hydrogen chloride gas concentration is repeatedly increased or decreased in a short time occurs, the general PID control repeatedly outputs the output value between the lower limit addition amount and the upper limit addition amount in a short period of time so that the improper addition of the alkali agent Addition). In such a case, the concentration of the hydrogen chloride gas fluctuates greatly in the discharge passage, and the alkaline agent is excessively added in the inlet path.

그런데, 통상첨가량 산출부(64)는, 종래의 피드백 제어(PID 제어)에서는 고려할 수 없는, 유입로(3)에 있어서의 염화수소가스농도, 유황산화물가스농도에 관련되고 또한 타당성이 있는 값으로서 과거의 평균첨가량을 나타내는 기초첨가량(Fa)(kg/h)을 기초로 제1첨가량(kg/h)을 산출함으로써, 첨가량 제어장치(50)는 제1알칼리제의 첨가불량(과잉첨가, 부족첨가)에 의하여 초래되는 산화가스농도의 헌팅(hunting)을 억제하고 적절한 양의 제1알칼리제의 첨가를 안정적으로 실행할 수 있다.The normal addition amount calculating unit 64 calculates the addition amount of the sulfur oxide gas in the inflow pass 3 based on the hydrogen chloride gas concentration and the sulfur oxide gas concentration, The addition amount control device 50 calculates the addition amount (kg / h) of the addition of the first alkali agent (excessive addition or inadequate addition) by calculating the first addition amount (kg / h) It is possible to suppress the hunting of the concentration of the oxidizing gas caused by the oxidizing gas and stably carry out the addition of the appropriate amount of the first alkaline agent.

긴급시 판단부(65)는, 제1염화수소가스농도 신호(S1a)에 의거하여 산출한 평균농도(ppm)가 미리 규정한 긴급평균 염화수소가스농도(ppm)를 초과한 상태인지 아닌지를 판단하거나, 또는 제1유황산화물가스농도 신호S(2a)에 의거하여 산출한 평균농도(ppm)가 미리 규정한 긴급평균 유황산화물농도(ppm)를 초과한 상태인지 아닌지를 판단하여, 긴급 또는 정상을 나타내는 긴급시 판단신호(S7)를 출력한다.The emergency time judging unit 65 judges whether or not the average concentration (ppm) calculated based on the first hydrogen chloride gas concentration signal S1a exceeds the predetermined emergency average hydrogen chloride gas concentration (ppm) Or the average concentration (ppm) calculated on the basis of the first sulfur oxide gas concentration signal S (2a) exceeds the predetermined emergency average sulfur oxide concentration (ppm), and it is judged whether or not the emergency And outputs a time determination signal S7.

일반적으로, 연소배기가스 처리시설은, 배출되는 처리후 연소배기가스를 염화수소가스농도(ppm)나 유황산화물가스농도(ppm)의 1시간 평균농도(ppm)에 의하여 관리한다.Generally, the combustion exhaust gas treatment facility manages the exhaust gas discharged after the treatment by the average concentration (ppm) of the hydrogen chloride gas concentration (ppm) or the sulfur oxide gas concentration (ppm) for one hour.

이에 대하여, 본 발명의 연소배기가스 처리시설(10)은, 집진기(18)에서 처리된 처리후 연소배기가스의 농도(ppm)에 의거하여, 집진기(18)에서 처리되기 전의 연소배기가스에 제1알칼리제를 첨가하는 첨가량(kg/h)을 제어하는 피드백 제어를 한다. 이 피드백 제어는, 염화수소가스농도(ppm)나 유황산화물가스농도(ppm)의 순간값에 대하여 제어목표치(ppm)를 설정하는 것이 일반적이지만, 제어목표치(ppm)는 어디까지나 최종목표치이며, 최종목표치가 되도록 한창 제어하고 있는 중에 제어목표치(ppm)를 초과하는 염화수소가스농도(ppm)나 유황산화물가스농도(ppm)가 되는 경우가 있다.On the other hand, in the combustion exhaust gas treating facility 10 of the present invention, the first alkaline agent is added to the combustion exhaust gas before being treated in the dust collector 18, based on the concentration (ppm) of the treated exhaust gasses subjected to the treatment in the dust collector 18 The feedback control is performed to control the addition amount (kg / h) to be added. This feedback control generally sets the control target value (ppm) with respect to the instantaneous value of the hydrogen chloride gas concentration (ppm) or the sulfur oxide gas concentration (ppm), but the control target value (ppm) is the final target value, (Ppm) exceeding the control target value (ppm) or the sulfur oxide gas concentration (ppm) during the control in the early stage so that the concentration of the hydrogen chloride gas exceeds the control target value (ppm).

특히, 제1알칼리제의 첨가량(kg/h) 삭감과 염화수소가스나 유황산화물가스의 안정적인 처리는 상반되는 기술사상이기 때문에, 제1알칼리제의 첨가량(kg/h)을 삭감하면, 1시간 평균농도(ppm)가, 결정된 관리농도(ppm)를 초과할 가능성이 높다.Particularly, since reduction of the addition amount (kg / h) of the first alkali agent and stable treatment of the hydrogen chloride gas and the sulfur oxide gas are contradictory to each other, when the addition amount (kg / h) of the first alkali agent is reduced, ppm) is likely to exceed the determined management concentration (ppm).

그래서, 긴급시 판단부(65)는, 제1염화수소가스농도 신호(S1a)에 의거하여 산출했을 때, 예를 들면 1시간에 있어서의 염화수소가스농도의 평균농도(ppm)가 미리 규정한 긴급평균 염화수소가스농도(ppm)를 초과한 상태인지 아닌지를 판단하거나, 또는 제1유황산화물가스농도 신호(S2a)에 의거하여 산출했을 때, 예를 들면 1시간에 있어서의 유황산화물가스농도의 평균농도(ppm)가 미리 규정한 긴급평균 유황산화물농도(ppm)를 초과한 상태인지 아닌지를 판단하여, 적어도 어느 하나가 초과한 상태라고 판단한 경우에는 긴급을 나타내는 긴급시 판단신호(S7)를 출력하고, 그렇지 않을 경우에는 정상을 나타내는 긴급시 판단신호(S7)를 출력하여, 가첨가량 산출부(假添加量 算出部)(66)에 적절한 첨가량을 선택시킨다.Therefore, when the emergency concentration determination unit 65 calculates the first concentration based on the first hydrogen chloride gas concentration signal S1a, the average concentration (ppm) of the hydrogen chloride gas concentration in one hour, for example, It is determined whether or not the hydrogen chloride gas concentration (ppm) is exceeded or the average concentration of the sulfur oxide gas concentration in one hour (for example, ppm) exceeds the predetermined emergency average sulfur oxide concentration (ppm), and when it is judged that at least one of them has exceeded the predetermined value, the emergency-state determination signal S7 indicating the emergency is outputted. , The emergency judgment signal S7 indicating normal state is outputted and an appropriate amount of addition is given to the added amount calculating unit 66 Then select.

가첨가량 산출부(66)는, 정상을 나타내는 긴급시 판단신호(S7)를 수신하고 있을 경우에는 통상첨가량 신호(S6)에 의거하여 가제1첨가량 신호(S8)를 출력하고, 긴급을 나타내는 긴급시 판단신호(S7)를 수신하고 있을 경우에는 통상첨가량(kg/h)보다도 많은 미리 규정한 긴급첨가량(kg/h)을 가제1첨가량 신호(S8)로서 출력한다.When the urgent-time determination signal S7 indicating normal is received, the added-amount calculating unit 66 outputs the agent 1 addition amount signal S8 on the basis of the normal addition amount signal S6, (Kg / h) which is more than the normal addition amount (kg / h) is outputted as the agent 1 addition amount signal S8 when the judgment signal S7 is received.

즉, 가첨가량 산출부(66)는, 산성가스농도(ppm)의 평균치가, 미리 규정된 긴급첨가농도(ppm)를 초과하면, 통상첨가량(kg/h) 대신에, 미리 규정된 긴급첨가량(kg/h)을 첨가하도록 제1첨가량을 산출한다. 이 때문에, 알칼리제의 첨가량(kg/h)을 피드백 제어할 때에 1시간 평균치(ppm)가 관리농도(ppm)이상 또는 그것에 가까운 농도(ppm)에 도달한 경우에, 가첨가량 산출부(66)는 긴급시 판단부(65)로부터의 긴급시 판단신호(S7)에 의거하여 통상첨가량(kg/h)보다도 많은 긴급첨가량(kg/h)을 첨가하므로, 첨가량 삭감과 산성가스의 안정적인 처리를 양립시킬 수 있는 안심도가 높은 제어가 가능하게 된다.That is, when the average value of the acid gas concentration (ppm) exceeds the predetermined emergency addition concentration (ppm), the addition amount calculating section 66 calculates the addition amount lt; RTI ID = 0.0 > kg / h) < / RTI > Therefore, when the average value (ppm) for one hour reaches or exceeds the concentration (ppm) of the control concentration (ppm) when the addition amount (kg / h) of the alkali agent is feedback controlled, the addition amount calculating section 66 (Kg / h) higher than the normal addition amount (kg / h) is added based on the emergency-state determination signal S7 from the emergency-time judging unit 65, so that the addition amount reduction and the stable treatment of the acid gas are compatible It becomes possible to control with high degree of reliability.

기기첨가량 제한부(67)는, 가제1첨가량 신호(S8)에 의거하여 제1첨가량 (kg/h)을 산출한다. 구체적으로, 기기첨가량 제한부(67)는, 가제1첨가량(kg/h)이 제1첨가장치(42)의 최대첨가량(LHS)(kg/h)을 초과하고 있는 경우에는, 최대첨가량(LHS)(kg/h)을 제1첨가량(kg/h)으로 하여 제1첨가량 신호(S21)의 출력을 한다. 또한, 기기첨가량 제한부(67)는, 가제1첨가량(kg/h)이 제1첨가장치(42)의 최소첨가량(LOS)(kg/h)을 밑돌고 있는 경우에는, 최소첨가량(LOS)(kg/h)을 제1첨가량(kg/h)으로서 하여 제1첨가량 신호(S21)의 출력을 한다.The device addition amount restricting section 67 calculates the first addition amount (kg / h) based on the gauze 1 addition amount signal S8. Specifically, when the added amount of the agent 1 (kg / h) exceeds the maximum addition amount (LHS) (kg / h) of the first addition device 42, the device addition amount restricting section 67 restricts the maximum addition amount ) (kg / h) as the first addition amount (kg / h). When the addition amount (kg / h) of the gauze 1 is lower than the minimum addition amount LOS (kg / h) of the first addition device 42, the device addition amount restricting section 67 sets the minimum addition amount LOS kg / h) as the first addition amount (kg / h), and outputs the first addition amount signal S21.

이에 따라, 기기첨가량 제한부(67)는 제어목표치(SV)(ppm)이하가 되도록, 항상 최대첨가량(LHS)(kg/h)과 최소첨가량(LOS)(kg/h)의 사이에 있는 제1첨가량(kg/h)의 제1알칼리제를 첨가시키기 위해, 제1첨가량 신호(S21)의 출력을 한다.Accordingly, the device addition amount restricting section 67 always keeps the amount LHS between the maximum addition amount LHS (kg / h) and the minimum addition amount LOS (kg / h) so as to be equal to or smaller than the control target value SV The first additive amount signal S21 is output in order to add the first additive amount (kg / h) of the first alkaline agent.

제2첨가량 산출부(70)는, 평균 제2첨가량 산출부(72)와 기기첨가량 제한부(73)와 가제2첨가량 신호(S22)를 출력하는 제2첨가량 기초산출부(74)와 제어목표치 추출부(75)를 구비한다.The second addition amount calculating section 70 includes a second addition amount basis calculating section 74 for outputting the second addition amount signal S22 by the average second addition amount calculating section 72 and the device addition amount limiting section 73, And a target value extraction unit 75.

제어목표치 추출부(75)는, 통상첨가량 산출부(64)로부터 처리후 연소배기가스에 있어서 산성가스농도의 목적값인 제어목표치(SV)(ppm)를 추출하여, 염화수소가스 제어목표치(SVHCl)(ppm) 및 유황산화물가스 제어목표치(SVSO2)(ppm)를 출구제어 목표치 신호(S14)로서 출력한다.Control target value extraction unit 75, the normal amount after processing from the calculation section 64 extracts the acidic control target value of the gas concentration target value (SV) (ppm) in the combustion exhaust gas, hydrogen chloride gas control target value (SV HCl) (ppm) and the sulfur oxide gas control target value SV SO2 (ppm) as the outlet control target value signal S14.

제2첨가량 기초산출부(74)는, 제2산성가스농도 신호(S0b)와 출구제어 목표치 신호(S14)에 의거하여 제2첨가량(AgCQ)(kg/h)을 산출한다. 제2첨가량 기초산출부(74)는 제2첨가량(kg/h)의 제2알칼리제를 첨가시키기 위해 가제2첨가량 신호(S22)의 출력을 한다.The second addition amount basic calculation section 74 calculates the second addition amount AgCQ (kg / h) based on the second acid gas concentration signal S0b and the outlet control target value signal S14. The second additive amount basis calculating section 74 outputs the additive amount adding amount signal S22 to add the second additive amount (kg / h) of the second alkaline agent.

평균 제2첨가량 산출부(72)는, 가제2첨가량 신호(S22)에 의거하여, 예를 들면 10분과 같은 소정의 시간에 있어서 제2첨가량(kg/h)의 평균치인 평균 제2첨가량(kg/h)을 산출하고, 산출된 평균 제2첨가량(AgCQA)(kg/h)을 평균 제2첨가량 신호(S12)로서 출력한다.The average second additive amount calculating section 72 calculates an average second additive amount (kg), which is an average value of the second additive amount (kg / h) at a predetermined time, for example, 10 minutes, based on the gauzes 2 addition amount signal S22 / h), and outputs the calculated second average addition amount (AgCQA) (kg / h) as an average second addition amount signal S12.

기기첨가량 제한부(73)는, 평균 제2첨가량 신호(S12)에 의거하여 제2첨가량(kg/h)을 산출한다. 구체적으로, 기기첨가량 제한부(73)는, 평균 제2첨가량(kg/h)이 제2첨가장치(44)의 최대첨가량(LHS)(kg/h)을 초과하고 있는 경우에는, 최대첨가량(LHS)(kg/h)을 제2첨가량(kg/h)으로 하여 제2첨가량 신호(S13)의 출력을 한다. 또한, 기기첨가량 제한부(73)는, 평균 제2첨가량(kg/h)이 제2첨가장치(44)의 최소첨가량(LOS)(kg/h)을 밑돌고 있는 경우에는, 최소첨가량(LOS)(kg/h)을 제2첨가량(kg/h)으로 하여 제2첨가량 신호(S13)의 출력을 한다.The device addition amount restricting section 73 calculates the second addition amount (kg / h) based on the average second addition amount signal S12. Specifically, when the average second addition amount (kg / h) exceeds the maximum addition amount (LHS) (kg / h) of the second addition device 44, the device addition amount restricting section 73 restricts the maximum addition amount LHS) (kg / h) as a second addition amount (kg / h), and outputs the second addition amount signal S13. When the average second addition amount (kg / h) is less than the minimum addition amount (LOS) (kg / h) of the second addition device 44, the device addition amount restricting section 73 restricts the minimum addition amount LOS (kg / h) as the second addition amount (kg / h), and outputs the second addition amount signal S13.

제2첨가량(AgCQ)(kg/h)은, 미처리 연소배기가스중의 제2산성가스농도(제2염화수소농도(입구HCl) 및/또는 제2유황산화물농도(입구SOx))로부터, 제1알칼리제의 피드백 제어에 의해 설정되는 제1산성가스농도(제1염화수소농도(출구HCl) 및/또는 제1유황산화물농도(출구SOx))의 제어목표치(SV)(SVHCl, SVSO2)를 감산한 농도에 의거하여 산출된다. 제어목표치(SV)를 감산해서 제2첨가량AgCQ(kg/h)을 연산하는 수단은 제2알칼리제의 첨가량 손실을 줄이는 유효한 수단이다.The second addition amount (AgCQ) (kg / h) is calculated from the second acid gas concentration (the second hydrogen chloride concentration (inlet HCl) and / or the second sulfur oxide concentration (inlet SOx)) in the untreated combustible- (SV HCl , SV SO2 ) of the first acid gas concentration (the first hydrogen chloride concentration (outlet HCl) and / or the first sulfur oxide concentration (outlet SOx)) set by the feedback control Is calculated based on the concentration. The means for calculating the second addition amount AgCQ (kg / h) by subtracting the control target value SV is an effective means for reducing the addition amount of the second alkaline agent.

즉, 제2알칼리제의 이론필요량은, 제2염화수소농도(입구HCl)로부터 제1염화수소농도(출구HCl)를 감산하고 및/또는 제2유황산화물농도(입구SOx)로부터 제1유황산화물농도(출구SOx)을 감산해서 얻어진 농도에 의거하여 산출되는 제2첨가량(AgCQ)(kg/h)이다.That is, the theoretical required amount of the second alkaline agent is determined by subtracting the first hydrogen chloride concentration (the outlet HCl) from the second hydrogen chloride concentration (inlet HCl) and / or by subtracting the first sulfur oxide concentration (AgCQ) (kg / h) calculated on the basis of the concentration obtained by subtracting the concentration of SOx from the concentration of SOx.

종래에는 제2염화수소농도(입구HCl) 및 제2유황산화물농도(입구SOx)에 비례해서 제2알칼리제를 첨가하고 있었지만, 제1염화수소농도(출구HCl) 및 제1유황산화물농도(출구SOx)를 고려하고 있지 않기 때문에, 제2염화수소농도(입구HCl) 및 제2유황산화물농도(입구SOx)의 변동에 의하여 손실이 발생하고 있었다. 이에 대하여, 제1염화수소농도(출구HCl) 및 제1유황산화물농도(출구SOx)의 지표가 되는 제1알칼리제의 제어목표치(SV)를 제2염화수소농도(입구HCl) 및 제2유황산화물농도(입구SOx)로부터 감산해서 얻어진 농도에 의거하여 제2첨가량(AgCQ)(kg/h)을 연산함으로써, 제2알칼리제의 첨가량을 이론첨가량에 비례해서 제어하는 것이 가능해지고 제2알칼리제의 효율적인 첨가가 가능하게 된다. 또한 상기한 이론필요량은, 제1, 제2염화수소농도 및 제1, 제2유황산화물농도의 실측치(實測値)에 따라 연산하는 것이 타당하며, 제어목표치(SV)를 예를 들면 산소환산치로 제어하고 있는 경우에는 실측치로 환산해서 감산하는 것이 바람직하다.Conventionally, the second alkali agent is added in proportion to the second hydrogen chloride concentration (inlet HCl) and the second sulfur oxide concentration (inlet SOx), but the first hydrogen chloride concentration (outlet HCl) and the first sulfur oxide concentration The loss was caused by the fluctuation of the second hydrogen chloride concentration (inlet HCl) and the second sulfur oxide concentration (inlet SOx). On the other hand, the control target value SV of the first alkaline agent serving as the index of the first hydrogen chloride concentration (outlet HCl) and the first sulfur oxide concentration (outlet SOx) is set as the second hydrogen chloride concentration (inlet HCl) and the second sulfur oxide concentration The addition amount of the second alkaline agent can be controlled in proportion to the theoretical addition amount, and the second alkaline agent can be added efficiently by calculating the second addition amount (AgCQ) (kg / h) based on the concentration obtained by subtracting . It is also appropriate to calculate the theoretical required amount in accordance with the measured values of the first and second hydrogen chloride concentrations and the first and second sulfur oxide concentrations. The control target value SV is controlled by, for example, an oxygen conversion value It is preferable to perform the subtraction in terms of the measured value.

제1첨가장치(42)는 제1첨가량 신호(S21)에 의거하여 제1첨가량(kg/h)의 제1알칼리제를 연소배기가스에 첨가한다. 마찬가지로, 제2첨가장치(44)는 제2첨가량 신호(S13)에 의거하여 제2첨가량(kg/h)의 제2알칼리제를 연소배기가스에 첨가한다.The first adding device 42 adds the first alkaline agent of the first addition amount (kg / h) to the combustion exhaust gas based on the first addition amount signal S21. Likewise, the second adding device 44 adds the second alkaline agent of the second addition amount (kg / h) to the combustion exhaust gas based on the second addition amount signal S13.

비산재 혼련기(飛散灰 混練機)(19)는, 집진기(18)에 의하여 연소배기가스로부터 제거된 비산재에, 철계 화합물(鐵系 化合物), 인산함유 화합물(燐酸含有 化合物), 중화제(中和劑), 이산화규소 함유 화합물(二酸化硅素 含有 化合物) 및 유기 킬레이트제(有機 chelate劑)로부터 선택되는 적어도 1종 이상을 첨가하고 혼련하여, 비산재를 안정화 처리한다.The fly ash kneader 19 is a fly ash kneading machine which is composed of an iron-based compound (iron compound), a phosphoric acid-containing compound (phosphoric acid-containing compound), a neutralizing agent ), A silicon dioxide-containing compound (silicon dioxide-containing compound), and an organic chelating agent are added and kneaded to stabilize the fly ash.

구체적으로는, 비산재에 포함되는 중금속류는, 일반적으로 디에틸디티오카르바민산염(diethyldithiocarbamate) 등의 킬레이트의 첨가에 의하여 고정화(固定化)되어, 불용화(不溶化) 처리된다. 그러나, 중금속류의 킬레이트에 의한 고정효과는 단기적으로는 높지만, 최종처분장소에 있어서 산성비에 의하여 pH가 저하하고 킬레이트의 산화자기분해에 의하여 고정화된 중금속류로부터 납 등의 중금속류가 재용출할 우려가 있다.Specifically, the heavy metals contained in the fly ash are generally immobilized (immobilized) by the addition of a chelate such as diethyldithiocarbamate to be insolubilized. However, the fixation effect by the chelate of heavy metals is high in the short term, but there is a possibility that the pH is lowered due to the acid rain at the final disposal site and the heavy metals such as lead are re-eluted from the heavy metals immobilized by oxidative magnetization of the chelate.

그래서, 인산 등의 인산화합물을 중금속류에 첨가함으로써, 첨가된 중금속류를 무기광물인 히드록시아파타이트(hydroxyapatite) 형태까지 변화시킬 수 있으므로, 최종처분장소에 있어서의 장기적인 안정성이 우수하다. 이 때문에 인산 등의 인산화합물을 중금속류에 첨가하는 안정화 처리는 환경보호의 관점에서 매우 가치가 높은 처리방법이다. 또한, 미분중조로 처리한 비산재를 인산 등의 중금속고정제로 처리하는 방법은 많은 환경부하 감소효과를 가지는 유효한 수단이다.Therefore, by adding a phosphate compound such as phosphoric acid to heavy metals, it is possible to change the added heavy metals to the form of hydroxyapatite, which is an inorganic mineral, so that the long-term stability at the final disposal site is excellent. Therefore, the stabilization treatment of adding phosphoric acid and other phosphoric acid compounds to heavy metals is a highly valuable treatment method from the viewpoint of environmental protection. In addition, the method of treating fly ash with a heavy metal fixing agent such as phosphoric acid is an effective means for reducing environmental load.

비산재에 포함되는 중금속을 고정하는 중금속고정제는, 특별한 제한 없이 비산재에 적용이 가능하며 중금속의 고정효과를 얻을 수 있는 것이면 좋다. 중금속고정제로서는, 일반적으로 유기 킬레이트제가 사용되고 있다. 유기 킬레이트제로서는, 피페라진 디티오카르바민산염(piperazine dithiocarbamate), 디에틸디티오카르바민산염(diethyldithiocarbamate), 디메틸디티오카르바민산염(dimethyldithiocarbamate), 디부틸디티오카르바민산염(dibutyldithiocarbamate) 등을 예시할 수 있다.The heavy metal fixing agent for fixing the heavy metal contained in the fly ash can be applied to fly ash without any particular limitation, and it is sufficient that the fixing effect of heavy metal can be obtained. As the heavy metal fixing agent, an organic chelating agent is generally used. Examples of the organic chelating agent include piperazine dithiocarbamate, diethyldithiocarbamate, dimethyldithiocarbamate, dibutyldithiocarbamate, and the like. For example.

또한, 처분단계에 있어서의 중금속의 장기고정화의 관점으로부터, 클로로피로모르파이트(chloropyromorphite)를 형성해 광물의 형태로 고정하는 인산화합물에 의한 중금속고정은 유효한 수단이다. 인산화합물로서, 인산 혹은 인산염은, 수용성의 인산화합물이면 좋고, 형상은 분체(粉體)라도 수용액이라도 좋지만, 예를 들면 정인산(오쏘인산), 폴리인산, 메타인산, 차인산, 아인산, 차아인산, 피로인산, 과인산, 제1인산소다, 제2인산소다, 제3인산소다, 제1인산칼륨, 제2인산칼륨, 제3인산칼륨, 제1인산칼슘, 제2인산칼슘, 제1인산마그네슘, 제2인산마그네슘, 제1인산암모늄, 제2인산암모늄, 과인산석회, 트리폴리인산나트륨, 트리폴리인산칼륨, 헥사메타인산나트륨, 헥사메타인산칼륨, 피로인산나트륨, 피로인산칼륨, 아인산나트륨, 아인산칼륨, 차아인산나트륨, 차아인산칼륨 등을 들 수 있다. 특히, 정인산, 제1인산염, 제2인산염, 제3인산염, 트리폴리인산염, 헥사메타인산염, 피로인산염은 양호한 중금속 고정효과를 나타낸다. 또한 산도가 높은 정인산 등은 배관으로의 부식 우려가 있기 때문에, 인산염의 수용액이나 수산화나트륨 등의 알칼리제를 혼합하여 pH를 3이상으로 해서 적용하는 것이 바람직하다.From the viewpoint of long-term immobilization of heavy metals in the disposal step, heavy metal immobilization by a phosphate compound which forms chloropyromorphite and fixes it in the form of mineral is an effective means. As the phosphoric acid compound, the phosphoric acid or the phosphate may be a water-soluble phosphoric acid compound and may be in the form of a powder or an aqueous solution, and examples thereof include polyphosphoric acid (orthophosphoric acid), polyphosphoric acid, metaphosphoric acid, polyphosphoric acid, , Sodium pyrophosphate, sodium pyrophosphate, sodium pyrophosphate, sodium secondary phosphate, sodium tertiary phosphate, potassium primary phosphate, potassium secondary phosphate, potassium tertiary phosphate, calcium primary phosphate, calcium secondary phosphate, magnesium primary phosphate , Magnesium phosphate monobasic, ammonium phosphate dibasic, ammonium dibasic, lime super phosphate, sodium tripolyphosphate, potassium tripolyphosphate, sodium hexametaphosphate, potassium hexametaphosphate, sodium pyrophosphate, sodium pyrophosphate, potassium phosphite , Sodium hypophosphite, potassium hypophosphite, and the like. Especially, Pure phosphoric acid, monophosphate, diphosphate, tribophosphate, tripolyphosphate, hexametaphosphate and pyrophosphate show good heavy metal fixing effect. In addition, it is preferable to mix an aqueous solution of phosphate or an alkaline agent such as sodium hydroxide to adjust the pH to 3 or more, because there is a risk of corrosion to the piping.

또한, 이산화규소 함유 화합물에 의하여 납의 용출을 방지할 수 있다. 이산화규소 함유 화합물은, 이산화규소 그 자체라도 좋고, 이산화규소가 가용성의 상태이면 이산화규소와 다른 재료와의 혼합물이나 복합물이더라도 좋다. 또한 이산화규소의 성상(性狀)은 분체(粉體)이더라도 액상이더라도 좋다. 분체의 이산화규소는 실리카퓸(silica fume), 실리카겔(silica gel), 활성백토(活性白土), 제올라이트(zeolite) 등을 들 수 있다. 액상의 이산화규소는 규산나트륨의 수용액(물유리)이나 규산칼륨의 수용액 등을 들 수 있다.In addition, the elution of lead can be prevented by the silicon dioxide-containing compound. The silicon dioxide-containing compound may be silicon dioxide itself, or may be a mixture or composite of silicon dioxide and another material if the silicon dioxide is soluble. The silicon dioxide may be in the form of a powder or a liquid. Silicon dioxide of the powder includes silica fume, silica gel, activated clay (active white), zeolite and the like. The liquid silicon dioxide may be an aqueous solution of sodium silicate (water glass) or an aqueous solution of potassium silicate.

또한, 6가크롬, 비소, 셀렌(Selen), 수은 등이 중금속으로부터 용출 하지 않도록, 이들 약제에 더하여 철계 화합물을 첨가하는 것이 바람직하다. 철계 화합물로서는 염화제1철, 염화제2철, 황산제1철, 황산제2철, 폴리 황산철, 철분 등을 들 수 있는데, 염화제1철이 가장 바람직하다.Further, it is preferable to add an iron-based compound in addition to these agents so that hexavalent chromium, arsenic, selenium, mercury, etc. do not elute from the heavy metal. Examples of the iron-based compound include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous sulfate and iron powder. Ferrous chloride is most preferred.

나아가, 비산재에 많은 알칼리 잔분(殘分)이 포함되어 있을 경우에는, 저렴한 염화알루미늄, 폴리염화알루미늄, 염산, 황산반토(黃酸礬土) 등의 중화제를 알칼리제와 함께 병용하는 것이 바람직하다.Furthermore, when the fly ash contains many alkali residues, it is preferable to use a neutralizing agent such as inexpensive aluminum chloride, polychlorinated aluminum, hydrochloric acid, and sulfuric acid alumina together with an alkaline agent.

비산재의 고화처리(固化處理)를 하는 때에는, 소석고(燒石膏), 포틀랜드시멘트(portland cement), 조강시멘트(rapid hardening cement), 제트시멘트(jet cement), 고로시멘트(blast furnace cement), 알루미나시멘트(alumina cement) 등의 시멘트류를 첨가해도 좋다. When solidification treatment of fly ash is carried out, it is possible to use calcined gypsum, portland cement, rapid hardening cement, jet cement, blast furnace cement, alumina cement cement such as alumina cement may be added.

특히 비산재중의 중금속에, 철계 화합물, 인산화합물, 중화제, 실리카함유 화합물을 적어도 1개 이상을 적용하여 중금속처리를 실시하는 경우에는, 미반응의 알칼리 잔분은 이들 중금속고정제의 첨가량을 증가시킨다. 이에 대해, 본 발명에 관한 안정화처리방법을 적용함으로써, 알칼리제의 첨가량을 적정화하고, 미반응의 알칼리 잔분을 감소시킬 수 있으며, 비산재중금속고정제의 첨가량을 삭감할 수 있고, 환경부하를 줄일 수 있다.Particularly, when heavy metal treatment is carried out by applying at least one iron-based compound, a phosphoric acid compound, a neutralizing agent and a silica-containing compound to heavy metals in fly ash, unreacted alkali residues increase the addition amount of these heavy metal fixing agents. On the contrary, by applying the stabilization treatment method of the present invention, it is possible to optimize the addition amount of the alkali agent, reduce the unreacted alkali residual, reduce the addition amount of the fly ash heavy metal fixing agent, and reduce the environmental load .

또한 비산재의 상기 중화제, 인산 등의 산성약제의 첨가량을 규정하는 수단으로, 비산재중의 알칼리 잔분을 측정하고, 측정된 알칼리 잔분의 값에 따라 첨가량을 조절하는 것이 바람직하다. 이에 따라, 중화제, 인산 등의 산성약제를 과하거나 부족하지 않게 첨가할 수 있고, 약품의 적정이용 및 안정적인 처리를 실현할 수 있다.
It is also preferable to measure the amount of the alkali residue in the fly ash and measure the amount of the additive in accordance with the value of the measured amount of the alkali residue with a means for specifying the amount of the acidic agent such as the neutralizing agent or phosphoric acid of the fly ash. As a result, an acidic agent such as a neutralizing agent or phosphoric acid can be added or not added in an insufficient manner, and appropriate use and stable treatment of the drug can be realized.

[산성가스 안정화처리방법][Acidic gas stabilization treatment method]

연소배기가스 처리시설(10)이 실행하는 산성가스 안정화처리방법을 설명한다.An acid gas stabilization treatment method executed by the combustion exhaust gas treatment facility (10) will be described.

<제1첨가량 산출> &Lt; Calculation of first additive amount >

우선, 연소배기가스 처리시설(10)이 작동하는 중에, 연소배기가스를 집진기(18)에서 처리하고, 배출로(4)내를 흐르는 처리후 연소배기가스중의 산성가스농도를 제1산성가스 측정장치(30a)로 측정하는 제1산성가스농도 측정공정이 실행된다.First, during operation of the combustion exhaust gas treatment facility 10, the exhaust gas is treated in the dust collector 18, and the concentration of the acid gas in the exhaust gas after treatment in the exhaust passage 4 is measured by the first acid gas measurement device 30a in the first acid gas concentration measuring step.

구체적으로는, 제1염화수소가스농도 측정장치(32a)가 산성가스중의 리얼타임의 염화수소가스농도인 순간염화수소가스농도를 측정하는 염화수소가스농도 측정공정을 실행하고, 순간염화수소가스농도를 염화수소가스농도 신호(S1a)로서 출력한다. 마찬가지로, 제1유황산화물가스농도 측정장치(34a)가 산성가스중의 리얼타임의 유황산화물가스농도인 순간유황산화물가스농도를 측정하는 유황산화물농도 측정공정을 실행하고, 측정된 순간유황산화물가스농도를 유황산화물가스농도 신호(S2a)로서 출력한다.Specifically, the first hydrogen chloride gas concentration measuring apparatus 32a executes a hydrogen chloride gas concentration measuring step for measuring the instantaneous hydrogen chloride gas concentration, which is the concentration of hydrogen chloride gas in real time in the acid gas, and measures the instantaneous hydrogen chloride gas concentration to the hydrogen chloride gas concentration And outputs it as a signal S1a. Similarly, the first sulfur oxide gas concentration measuring device 34a executes the sulfur oxide concentration measuring process for measuring the real time sulfur oxide gas concentration, which is the real time sulfur oxide gas concentration in the acid gas, and measures the instantaneous sulfur oxide gas concentration As the sulfur oxide gas concentration signal S2a.

제1염화수소가스 산출부(62a)는, 제1염화수소가스농도 신호(S1a)에 의거하여 단위시간당의 제1첨가제의 첨가량(kg/h)인 염화수소측 첨가량(AgS1)(kg/h)을 산출하고, 제1염화수소 첨가량 신호(S3)로서 출력한다.The first hydrogen chloride gas calculating unit 62a calculates the hydrogen chloride side addition amount AgS1 (kg / h), which is the addition amount (kg / h) of the first additive per unit time, based on the first hydrogen chloride gas concentration signal S1a And outputs it as the first hydrogen chloride addition amount signal S3.

도6에 나타나 있는 바와 같이, 기초첨가량 산출부(623a)에서는, 예를 들면 10분간과 같은 소정의 시간에 있어서의 제1첨가량(kg/h)의 평균첨가량에 의거하여 기초첨가량(Fa)을 산출한다(스텝ST01). 여기에서 산출된 기초첨가량(Fa)은 첨가량(SQ)(kg/h)을 낮추기 위한 기초가 되는 값이며, 스텝ST11 및 스텝ST15에서 사용된다.6, the base addition amount calculating section 623a calculates the base addition amount Fa in accordance with the average addition amount of the first addition amount (kg / h) at a predetermined time such as 10 minutes, for example (Step ST01). The base addition amount Fa calculated here is a value which is a basis for lowering the addition amount SQ (kg / h) and is used in steps ST11 and ST15.

다음에, 첨가량 산출부(626a)는, 농도량 산출부(622a)가 제1염화수소가스농도 신호(S1a)에 의거하여 산출한 순간염화수소가스농도(ppm)에 의거하여 순간염화수소가스농도(ppm)가 상승하고 있는 상승상태인지, 일정상태를 유지하고 있거나 또는 감소하고 있는 하강상태인지를 판단한다(스텝ST03). 첨가량 산출부(626a)는, 상승상태라고 판단한 경우에는 스텝ST04의 처리로 이동하고, 하강상태라고 판단한 경우에는 스텝ST18의 처리로 이동한다.Next, the addition amount calculating unit 626a calculates the addition amount of the hydrogen chloride gas concentration (ppm) based on the instantaneous hydrogen chloride gas concentration (ppm) calculated based on the first hydrogen chloride gas concentration signal S1a, (Step ST03). In the step ST03, it is judged whether or not the vehicle is in the ascending or descending state. The additive amount calculating unit 626a moves to the process of step ST04 when it is determined that it is in the ascending state, and moves to the process of step ST18 when it determines that it is in the descent state.

도4에 나타나 있는 바와 같이, 첨가량 산출부(626a)는, 스텝ST03에서 상승상태라고 판단하고 있으므로, 첨가량 대응정보선L을, 첨가량 대응정보선L1을 통하여 첨가량 대응정보선L2로 보정한다(스텝ST04). 4, the additive amount calculating unit 626a determines that the additive amount corresponding information line L is in the ascending state in step ST03, and corrects the additive amount corresponding information line L to the additive amount corresponding information line L2 through the additive amount corresponding information line L1 ST04).

구체적으로는, 첨가량 산출부(626a)는, 우선, 첨가량 대응정보선L(0 - 점a - 점b간을 연결하는 선, 점c - 점d간을 연결하는 선, 점e이후의 선)의 순간염화수소가스농도(PV)의 값을 상승보정치(SVA)만큼 감산하여 첨가량 대응정보선L1(0 - 점a1 - 점b1간을 연결하는 선, 점c1 - 점d1간을 연결하는 선, 점e1이후의 선)을 산출한다.Specifically, the addition amount calculating unit 626a first calculates the addition amount corresponding information line L (a line connecting 0-point a-point b, a line connecting point c -point d, a line after point e) , The line connecting the point C1 to the point d1, the point connecting the point C1 and the point B1, and the line connecting the point C1 and the point C1 are calculated by subtracting the value of the instantaneous hydrogen chloride gas concentration PV e1 and later).

다음에, 첨가량 산출부(626a)는 첨가량 대응정보선L1으로 얻어지는 첨가량(SQ)의 값을 기초첨가량(Fa)만큼 작게 한 첨가량 대응정보선L2(0 - 점a1 - 점b2사이를 연결하는 선, 점c2 - 점d2사이를 연결하는 선, 점e2이후의 선)를 산출한다.Next, the additive amount calculating unit 626a calculates the additive amount corresponding information line L2 (0-point a1-point b2) connecting the additive amount corresponding information line L2 made by the additive amount SQ obtained by the additive amount corresponding information line L1 by the base additive amount Fa , Line connecting point c2 - point d2, line after point e2).

도6에 나타나 있는 바와 같이, 다음에 첨가량 산출부(626a)는 첨가량 대응정보선L2에 의거하여 순간염화수소가스농도(PV)에 따라 첨가해야 할 첨가량(SQ)(kg/h)을 산출한다(스텝ST05∼ST17).6, the addition amount calculating unit 626a calculates the addition amount SQ (kg / h) to be added in accordance with the instantaneous hydrogen chloride gas concentration PV on the basis of the addition amount corresponding information line L2 Steps ST05 to ST17).

우선, 첨가량 산출부(626a)는, 순간염화수소가스농도(PV)가, 0부터 "제어목표치(SV)(ppm) - 상승보정치(SVA)(ppm)"까지의 범위에 있다고 판단하면(스텝ST05), 첨가량 대응정보선L2에 의거하여 첨가량(SQ)(kg/h)을 0이라고 산출한다(스텝ST07).First, when the instantaneous hydrogen chloride gas concentration PV is in the range from 0 to the "control target value SV (ppm) -incremental correction value SVA (ppm)" (step ST05 , And the addition amount SQ (kg / h) is calculated as 0 based on the addition amount corresponding information line L2 (step ST07).

또한, 첨가량 산출부(626a)는, 순간염화수소가스농도(PV)가, "제어목표치(SV)(ppm) - 상승보정치(SVA)(ppm)"부터 "제1출력제한 대응농도(SM1)(ppm) - 상승보정치(SVA)(ppm)"까지의 범위에 있다고 판단하면(스텝ST09), 첨가량 대응정보선L2에 의거하여 첨가량(SQ)(kg/h)을 산출한다(스텝ST11).Further, the addition amount calculating unit 626a calculates the addition amount of the hydrogen gas to be supplied to the first output limit corresponding concentration SM1 from the "control target value SV (ppm) -incremental correction value SVA (ppm) (kg / h) is calculated on the basis of the addition amount corresponding information line L2 (step ST11).

구체적으로는, 첨가량 대응정보선L2에 있어서, "제어목표치(SV)(ppm) - 상승보정치(SVA)(ppm)"로부터 "제1출력제한 대응농도(SM1)(ppm) - 상승보정치(SVA)(ppm)"까지 범위에서의 첨가량(SQ)(kg/h)은, 이하의 식에 의거하여 산출된다.Specifically, in the addition amount corresponding information line L2, the first output limitation corresponding concentration SM1 (ppm) - the rising correction value SVA (ppm) is calculated from the "control target value SV ) (ppm) "of the additive amount SQ (kg / h) is calculated based on the following formula.

첨가량(SQ) = [제1출력제한 첨가량(LM1) - 기초첨가량(Fa)] × [순간염화수소가스농도(PV) - [제어목표치(SV) - 상승보정치(SVA)]] / [제1출력제한 대응농도(SM1) - 제어목표치(SV)]The addition amount SQ = the first output limited addition amount LM1-the basic addition amount Fa 占 the instantaneous hydrogen chloride gas concentration PV - the control target SV-the first correction value SVA / Limit correspondence concentration (SM1) - Control target value (SV)]

또한 첨가량 산출부(626a)는, 순간염화수소가스농도(PV)가 "제1출력제한 대응농도SM1(ppm) - 상승보정치(SVA)(ppm)"부터 "제2출력제한 대응농도(SM2)(ppm) - 상승보정치(SVA)(ppm)"까지의 범위에 있다고 판단하면(스텝ST13), 첨가량 대응정보선L2에 의거하여 첨가량(SQ)(kg/h)을 산출한다(스텝ST15). 이때 첨가량 대응정보선L2에 있어서, "제1출력제한 대응농도(SM1)(ppm) - 상승보정치(SVA)(ppm)"로부터 "제2출력제한 대응농도(SM2)(ppm) - 상승보정치(SVA)(ppm)"까지 범위에서의 첨가량(SQ)(kg/h)은, 이하의 식에 의거하여 산출된다.The addition amount calculating unit 626a also calculates the addition amount of the hydrogen gas to be supplied so that the instantaneous hydrogen chloride gas concentration PV changes from the first output limit correspondence concentration SM1 (ppm) -upward correction value SVA (ppm) (kg / h) is calculated on the basis of the addition amount corresponding information line L2 (step ST15). At this time, the second output limit correspondence concentration SM2 (ppm) -incremental correction value (ppm) from the first output limit correspondence concentration SM1 (ppm) -upward correction value SVA SVA) (ppm) "is calculated on the basis of the following equation.

첨가량(SQ) = 출력상한 첨가량(LM2) - 기초첨가량(Fa)Addition amount (SQ) = output upper limit addition amount (LM2) -base addition amount (Fa)

또한, 첨가량 산출부(626a)는, 순간염화수소가스농도(PV)가, "제2출력제한 대응농도(SM2)(ppm) - 상승보정치(SVA)(ppm)"를 초과한다고 판단하면(스텝ST13), 첨가량 대응정보선L2에 의거하여 첨가량(SQ)(kg/h)을 산출한다(스텝ST17). 이때 첨가량 대응정보선L2에 있어서, "제2출력제한 대응농도(SM2)(ppm) - 상승보정치(SVA)(ppm)"를 초과하는 범위에서의 첨가량(SQ)(kg/h)은, 이하의 식에 의거하여 산출된다.When the instantaneous hydrogen chloride gas concentration PV exceeds the "second output limit correspondence concentration SM2 (ppm) -incremental correction value SVA (ppm)" (step ST13 , And the addition amount SQ (kg / h) is calculated based on the addition amount corresponding information line L2 (step ST17). At this time, the addition amount SQ (kg / h) in a range exceeding the "second output limit correspondence concentration (SM2) (ppm) - the upward correction value SVA (ppm) . &Lt; / RTI &gt;

첨가량(SQ) = 출력상한 첨가량(LM3) - 기초첨가량(Fa)Addition amount (SQ) = output upper limit addition amount (LM3) -base addition amount (Fa)

도7에 나타나 있는 바와 같이, 첨가량 산출부(626a)는, 스텝ST03에서 하강상태라고 판단하고 있으므로, 첨가량 대응정보선L에 의거하여 순간염화수소가스농도(PV)에 따라 첨가해야 할 첨가량(SQ)(kg/h)을 산출한다(스텝ST19∼ST31).7, the addition amount calculating unit 626a determines that the addition amount SQ to be added according to the instantaneous hydrogen chloride gas concentration PV based on the addition amount corresponding information line L is determined to be the descending state in step ST03, (kg / h) (steps ST19 to ST31).

도5에 나타나 있는 바와 같이, 첨가량 산출부(626a)는, 스텝ST03에서 하강상태라고 판단하고 있으므로, 첨가량 대응정보선L을 첨가량 대응정보선L3를 통하여 첨가량 대응정보선L4로 보정한다(스텝ST18).5, the additive amount calculating unit 626a determines that the additive amount corresponding information line L is in the descending state in step ST03, and corrects the additive amount corresponding information line L to the additive amount corresponding information line L4 through the additive amount corresponding information line L3 (step ST18 ).

구체적으로는, 첨가량 산출부(626a)는, 우선, 첨가량 대응정보선L(0 - 점a - 점b간을 연결하는 선, 점c - 점d간을 연결하는 선, 점e이후의 선)의 순간염화수소가스농도(PV)의 값을 기초첨가량(Fa)만큼 낮추고, 첨가량 대응정보선L3(0 - 점a - 점b3사이를 연결하는 선, 점c3 - 점d3사이를 연결하는 선, 점e3이후의 선)를 산출한다.Specifically, the addition amount calculating unit 626a first calculates the addition amount corresponding information line L (a line connecting 0-point a-point b, a line connecting point c -point d, a line after point e) The amount of the hydrogen chloride gas concentration PV of the instantaneous hydrogen chloride gas is decreased by the base addition amount Fa and the line connecting the points between the addition amount corresponding information lines L3 (0 - point a - point b3, point c3 - point d3) e3 and later).

도7에 나타나 있는 바와 같이, 첨가량 산출부(626a)는, 우선 첨가량 대응정보선L3에 의거하여, 순간염화수소가스농도(PV)에 따라 첨가해야 할 첨가량(SQ1)(kg/h)을 산출하고, 다음에 산출된 첨가량(SQ1)에 강하보정계수(LMG)의 비율만큼 작게 한 값을 순간염화수소가스농도(PV)에 따라 첨가해야 할 첨가량(SQ)(kg/h)으로서 산출한다(스텝ST19~ST31). 도5에 있어서의 첨가량 대응정보선L4는, 첨가량 대응정보선L3를 강하보정계수(LMG)의 비율만큼 작게 한 선으로서, 0 - 점a - 점b4사이를 연결하는 선, 점c4 - 점d4사이를 연결하는 선, 점e4이후의 선이다.7, the addition amount calculating unit 626a first calculates the addition amount SQ1 (kg / h) to be added according to the instantaneous hydrogen chloride gas concentration PV on the basis of the addition amount corresponding information line L3 , A value obtained by decreasing the addition amount SQ1 calculated by the ratio of the descending correction coefficient LMG to the next addition amount SQ1 is calculated as the addition amount SQ (kg / h) to be added according to the instantaneous hydrogen chloride gas concentration PV (step ST19 ~ ST31). The additive amount corresponding information line L4 in Fig. 5 is a line connecting the additive amount corresponding information line L3 by the ratio of the descending correction coefficient LMG, the line connecting the 0-point a to the point b4, the point c4-point d4 And the line after point e4.

우선, 첨가량 산출부(626a)는, 순간염화수소가스농도(PV)가, 0으로부터 "제어목표치(SV)(ppm)"까지의 범위에 있다고 판단하면(스텝ST19), 첨가량 대응정보선L4에 의거하여 첨가량(SQ)(kg/h)을 0이라고 산출한다(스텝ST21).First, when determining that the instantaneous hydrogen chloride gas concentration PV is in the range from 0 to the "control target value SV (ppm)" (step ST19), the addition amount calculating unit 626a calculates, based on the addition amount corresponding information line L4 And the addition amount SQ (kg / h) is calculated as 0 (step ST21).

또한, 첨가량 산출부(626a)는, 순간염화수소가스농도(PV)가 "제어목표치(SV)(ppm)"로부터 "제1출력제한 대응농도(SM1)(ppm)"까지의 범위에 있다고 판단하면(스텝ST23), 첨가량 대응정보선L4에 의거하여 첨가량(SQ)(kg/h)을 산출한다(스텝ST25).If the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV is in the range from the " control target value SV (ppm) "to the " first output limitation corresponding concentration SM1 (ppm) (Step ST23), and the addition amount SQ (kg / h) is calculated on the basis of the addition amount corresponding information line L4 (step ST25).

구체적으로는, 첨가량 대응정보선L4의, "제어목표치SV(ppm)"부터 "제1출력제한 대응농도SM1(ppm)"까지 범위에서의 첨가량(SQ)(kg/h)은, 이하의 식에 의거하여 산출된다.Specifically, the addition amount SQ (kg / h) in the range from the "control target value SV (ppm)" to the "first output limit correspondence concentration SM1 (ppm)" of the addition amount corresponding information line L4 is expressed by the following equation .

첨가량(SQ) = [제1출력제한 첨가량(LM1) × 강하보정계수(LMG) - 기초첨가량(Fa)] × [순간염화수소가스농도(PV) - 제어목표치(SV)] / [제1출력제한 대응농도(SM1) - 제어목표치(SV)]The addition amount SQ = the first output limitation addition amount LM1 x the descending correction coefficient LMG base addition amount Fa x the instantaneous hydrogen chloride gas concentration control target value SV / Corresponding concentration (SM1) - control target value (SV)]

또한 첨가량 산출부(626a)는, 순간염화수소가스농도(PV)가 "제1출력제한 대응농도(SM1)(ppm)"로부터 "제2출력제한 대응농도(SM2)(ppm)"까지의 범위에 있다고 판단하면(스텝ST27), 첨가량 대응정보선L4에 의거하여 첨가량(SQ)(kg/h)을 산출한다(스텝ST29). 이때 첨가량 대응정보선L4에 있어서, "제1출력제한 대응농도(SM1)(ppm)"로부터 "제2출력제한 대응농도(SM2)(ppm)"까지 범위에서의 첨가량(SQ)(kg/h)은, 이하의 식에 의거하여 산출된다.The addition amount calculating unit 626a also calculates the addition amount of the hydrogen chloride gas in the range from the first output limit correspondence concentration SM1 (ppm) to the second output limit correspondence concentration SM2 (ppm) (Step ST27), the addition amount SQ (kg / h) is calculated on the basis of the addition amount corresponding information line L4 (step ST29). At this time, in the addition amount corresponding information line L4, the addition amount SQ (kg / h) in the range from the first output limit correspondence concentration SM1 (ppm) to the second output limit correspondence concentration SM2 (ppm) ) Is calculated on the basis of the following expression.

첨가량(SQ) = 출력상한 첨가량(LM2) × 강하보정계수(LMG) - 기초첨가량(Fa)Addition amount (SQ) = Output upper limit addition amount (LM2) × Reduction correction coefficient (LMG) - Base addition amount (Fa)

또한 첨가량 산출부(626a)는, 순간염화수소가스농도(PV)가 제2출력제한 대응농도(SM2)(ppm)를 초과한다고 판단하면(스텝ST27), 첨가량 대응정보선L4에 의거하여 첨가량(SQ)(kg/h)을 산출한다(스텝ST31). 이때 첨가량 대응정보선L4에 있어서, 제2출력제한 대응농도(SM2)(ppm)를 초과하는 범위에서의 첨가량(SQ)(kg/h)은, 이하의 식에 의거하여 산출된다.When the instantaneous hydrogen chloride gas concentration PV exceeds the second output limit corresponding concentration SM2 (ppm) (step ST27), the additive amount calculating unit 626a calculates the additive amount SQ ) (kg / h) (step ST31). At this time, the addition amount SQ (kg / h) in the range exceeding the second output limit correspondence concentration SM2 (ppm) in the addition amount corresponding information line L4 is calculated based on the following expression.

첨가량(SQ) = 출력상한 첨가량(LM3) × 강하보정계수(LMG) - 기초첨가량(Fa)Addition amount (SQ) = Output upper limit addition amount (LM3) × Reduction correction coefficient (LMG) - Base addition amount (Fa)

이렇게 해서, 첨가량 산출부(626a)는, 첨가량(SQ)(kg/h)을 염화수소측 첨가량(AgS1)(kg/h)으로 하여 염화수소측 첨가량(AgS1)(kg/h)을 나타내는 제1염화수소 첨가량 신호(S3)로서 출력한다.In this way, the addition amount calculating section 626a calculates the addition amount SQ (kg / h) as the hydrogen chloride side addition amount (AgS1) (kg / h) and the hydrogen chloride addition amount (AgS1) And outputs it as the addition amount signal S3.

제1유황산화물가스 산출부(62b)는, 제1유황산화물가스농도 신호(S2a)에 의거하여 단위시간당 제1첨가제의 첨가량(kg/h)인 유황산화물측 첨가량(AgS2)(kg/h)을 산출하고 제1유황산화물 첨가량 신호(S4)로서 출력한다. 제1유황산화물가스 산출부(62b)에 있어서 유황산화물측 첨가량(AgS2)을 산출하는 첨가량 산출부(626b)도, 첨가량 산출부(626a)와 마찬가지로, 제1유황산화물가스농도 신호(S2a)에 의거하여 첨가량(SQ)(kg/h)을 산출하고, 산출된 첨가량(SQ)(kg/h)을 유황산화물측 첨가량(AgS2)(kg/h)으로서 출력한다.The first sulfur oxide gas calculation unit 62b calculates the sulfur oxide side addition amount AgS2 (kg / h), which is the addition amount (kg / h) of the first additive per unit time, based on the first sulfur oxide gas concentration signal S2a, And outputs it as the first sulfur oxide additive amount signal S4. The addition amount calculating unit 626b for calculating the sulfur oxide side addition amount (AgS2) in the first sulfur oxide gas calculating unit 62b is also equivalent to the first sulfur oxide gas concentration signal S2a in the same way as the addition amount calculating unit 626a And the calculated addition amount SQ (kg / h) is output as the sulfur oxide side addition amount (AgS2) (kg / h).

기초첨가량 산출부(63)는, 항상 제1첨가량 신호(S21)의 제1첨가량(kg/h)에 의거하여 기초첨가량(Fa)(kg/h)을 기초첨가량 신호(S5)로서 출력한다.The basic addition amount calculating section 63 always outputs the basic addition amount Fa (kg / h) as the basic addition amount signal S5 on the basis of the first addition amount (kg / h) of the first addition amount signal S21.

통상첨가량 산출부(64)는, 이하의 식에 의해, 제1염화수소 첨가량 신호(S3)의 염화수소측 첨가량(AgS1), 제1유황산화물 첨가량 신호(S4)의 유황산화물측 첨가량(AgS2), 기초첨가량 신호(S5)의 기초첨가량(Fa)(kg/h)에 의거하여, 통상첨가량(AgSQ)(kg/h)을 산출한다. 이때, 염화수소측 첨가량(AgS1)(kg/h)과 유황산화물측 첨가량(AgS2)(kg/h)은, 모두 상기의 계산식에서 나타나 있는 바와 같이, 하한(기초첨가량(Fa)(kg/h))이 영향을 주지 않도록, 기초첨가량(Fa)를 감산하여 초과한 부분의 첨가량을 나타내고 있다. 이 때문에 통상첨가량(AgSQ)(kg/h)은, 통상첨가량(AgSQ)(kg/h)의 하한이 기초첨가량(Fa)(kg/h)이 되도록, 염화수소측 첨가량(AgS1)(kg/h)과 유황산화물측 첨가량(AgS2)(kg/h) 이외에 하한(기초첨가량)을 더하여, 제1염화수소가스농도 신호(S1a)와 제1유황산화물가스농도 신호(S2a)로부터 전달되는 첨가량의 하한을 조정하고 있다.The normal addition amount calculation unit 64 calculates the addition amount of hydrogen sulfide to the hydrogen sulfide addition amount signal S4 based on the hydrogen chloride side addition amount AgS1, the sulfur oxide side addition amount AgS2 of the first sulfuric acid addition amount signal S4, (AgSQ) (kg / h) is calculated on the basis of the base addition amount Fa (kg / h) of the addition amount signal S5. As shown in the above calculation formula, the lower limit (base addition amount (Fa) (kg / h)) of the hydrogen chloride side addition amount (AgS1) (kg / h) and the sulfur oxide side addition amount (AgS2) ) Is added, the amount of addition of the excess portion is subtracted from the base addition amount Fa. Therefore, the addition amount (AgSQ) (kg / h) of the hydrogen addition amount (Ag / kg) is usually such that the lower limit of the addition amount (AgSQ) (kg / (Base addition amount) in addition to the sulfur oxide side additive amount AgS2 (kg / h) and the sulfur oxide side additive amount AgS2 (kg / h) are added to obtain the lower limit of the addition amount transferred from the first hydrogen chloride gas concentration signal S1a and the first sulfur oxide gas concentration signal S2a .

통상첨가량(AgSQ)(kg/h) = 염화수소측 첨가량(AgS1)(kg/h) + 유황산화물측 첨가량(AgS2)(kg/h) + 기초첨가량(Fa)(kg/h)(Kg / h) = addition amount of hydrogen chloride side (AgS1) (kg / h) + sulfur oxide side addition amount (AgS2) (kg / h) + basic addition amount (Fa)

긴급시 판단부(65)는, 항상 제1염화수소가스농도 신호(S1a) 및 제1유황산화물가스농도 신호(S2a)에 의거하여 긴급 또는 정상을 나타내는 긴급시 판단신호(S7)를 출력한다.The emergency determination unit 65 always outputs an emergency determination signal S7 indicating an emergency or normal based on the first hydrogen chloride gas concentration signal S1a and the first sulfur oxide gas concentration signal S2a.

가첨가량 산출부(66)는, 정상을 나타내는 긴급시 판단신호(S7)를 수신하고 있을 경우에는 통상첨가량 신호(S6)에 의거하여 가제1첨가량 신호(S8)를 출력하고, 긴급을 나타내는 긴급시 판단신호(S7)를 수신하고 있을 경우에는 통상첨가량(AgSQ)(kg/h)보다도 많은 미리 규정한 긴급첨가량(kg/h)을 가제1첨가량 신호(S8)로서 출력한다.When the urgent-time determination signal S7 indicating normal is received, the added-amount calculating unit 66 outputs the agent 1 addition amount signal S8 on the basis of the normal addition amount signal S6, (Kg / h) larger than the normal addition amount (AgSQ) (kg / h) is output as the agent 1 addition amount signal S8 when the determination signal S7 is received.

기기첨가량 제한부(67)는, 가제1첨가량 신호(S8)에 의거하여, 제1첨가장치(42)의 최대첨가량(LHS)(kg/h)과 최소첨가량(LOS)(kg/h) 사이의 범위가 되도록, 제1첨가량(kg/h)을 산출하고 제1첨가량 신호(S21)로서 출력한다.The device addition amount restricting section 67 limits the addition amount LHS between the maximum addition amount LHS (kg / h) and the minimum addition amount LOS (kg / h) of the first additive device 42 based on the gauze 1 addition amount signal S8 (Kg / h) is calculated and output as the first addition amount signal S21.

<제2첨가량 산출>&Lt; Calculation of second addition amount >

연소배기가스 처리시설(10)이 작동하는 중에, 유입로(3)내를 흐르는 미처리 연소배기가스중의 산성가스농도를 제2산성가스 측정장치(30b)로 측정하는 제2산성가스농도 측정공정이 실행된다.During the operation of the combustion exhaust gas treating facility 10, a second acidic gas concentration measuring step for measuring the concentration of the acidic gas in the unburned exhaust gas flowing in the inflow passage 3 by the second acidic gas measuring device 30b is executed do.

구체적으로는, 제2염화수소가스농도 측정장치(32b)가 산성가스중의 리얼타임의 염화수소가스농도인 순간염화수소가스농도를 측정하는 염화수소가스농도 측정공정을 실시하여, 측정된 순간염화수소가스농도를 제2염화수소가스농도 신호(S1b)로서 출력한다. 마찬가지로, 제2유황산화물가스농도 측정장치(34b)가 산성가스중의 리얼타임의 유황산화물가스농도인 순간유황산화물가스농도를 측정하는 유황산화물농도측정공정을 실시하여, 측정된 순간유황산화물가스농도를 유황산화물가스농도 신호(S2b)로서 출력한다.Specifically, the second hydrogen chloride gas concentration measuring device 32b carries out a hydrogen chloride gas concentration measuring step for measuring the instantaneous hydrogen chloride gas concentration, which is the real time hydrogen chloride gas concentration in the acid gas, so as to measure the instantaneous hydrogen chloride gas concentration And outputs it as the hydrogen chloride gas concentration signal S1b. Similarly, the second sulfur oxide gas concentration measuring device 34b carries out a sulfur oxide concentration measuring step for measuring the instantaneous sulfur oxide gas concentration, which is the real time sulfur oxide gas concentration in the acid gas, and measures the measured instantaneous sulfur oxide gas concentration As the sulfur oxide gas concentration signal S2b.

여기에서는, 제2염화수소가스농도 신호(S1b) 및 유황산화물가스농도 신호(S2b)를 각각 출력하고 있지만, 어느 일방만의 출력이라도 상관없다.Although the second hydrogen chloride gas concentration signal S1b and the sulfur oxide gas concentration signal S2b are outputted here, the output may be any one of them.

제2첨가량 기초산출부(74)는, 제2산성가스농도 신호(S0b)와 출구제어 목표치 신호(S14)에 의거하여, 제2첨가량(AgCQ)(kg/h)을 산출하고 가제2첨가량 신호(S22)로서 출력한다.The second additive amount basis calculating section 74 calculates the second additive amount AgCQ (kg / h) on the basis of the second acid gas concentration signal S0b and the outlet control target value signal S14, (S22).

평균 제2첨가량 산출부(72)는, 가제2첨가량 신호(S22)에 의거하여 산출한 평균 제2첨가량(kg/h)을 평균 제2첨가량 신호(S12)로서 출력한다.The average second addition amount calculating section 72 outputs the average second addition amount (kg / h) calculated based on the gauze 2 addition amount signal S22 as an average second addition amount signal S12.

기기첨가량 제한부(73)는, 평균 제2첨가량 신호(S12)에 의거하여, 제2첨가장치(44)의 최대첨가량(LHS)(kg/h)과 최소첨가량(LOS)(kg/h) 사이의 범위가 되도록, 제2첨가량(kg/h)을 산출하고 제2첨가량 신호(S13)로서 출력한다.The apparatus addition amount restricting section 73 limits the maximum addition amount LHS (kg / h) and the minimum addition amount LOS (kg / h) of the second addition device 44, based on the average second addition amount signal S12, (Kg / h) and outputs it as the second addition amount signal S13.

<알칼리제 첨가> &Lt; Addition of alkaline agent &

제1첨가장치(42)는 제1첨가량 신호(S21)에 의거하여 제1첨가량의 제1알칼리제를 유입로(3)내의 연소배기가스에 첨가하고, 또한 제2첨가장치(44)는 제2첨가량 신호(S13)에 의거하여 제2첨가량의 제2알칼리제를 유입로(3)내의 연소배기가스에 첨가한다.The first adding device 42 adds the first additive amount of the first alkaline agent to the combustion exhaust gas in the inflow passage 3 based on the first addition amount signal S21 and the second addition device 44 adds the second additive amount The second additive amount of the second alkaline agent is added to the combustion exhaust gas in the inflow passage 3 based on the signal S13.

상기한 연소배기가스 처리시설(10)에 의하면, 서로 다른 2개의 알칼리제의 첨가량을 적절하게 제어할 수 있기 때문에, 산성가스의 안정적인 처리를 유지하면서 알칼리제의 과잉첨가를 방지할 수 있다. 또한 알칼리제의 첨가량을 적정하게 제어할 수 있기 때문에, 비산재중의 미반응 알칼리의 잔분을 감소시키고, 비산재의 발생량을 감소시킬 수 있으며, 중금속류를 고정화시키는 고정제의 사용량을 감소시키고, 나아가서는 환경부하를 감소시킬 수 있다.
According to the above-mentioned combustion exhaust gas treatment facility 10, since the addition amounts of the two different alkali agents can be appropriately controlled, it is possible to prevent excessive addition of the alkali agent while maintaining stable treatment of the acid gas. Further, since the amount of the alkali agent to be added can be appropriately controlled, the amount of unreacted alkali in the fly ash can be reduced, the amount of fly ash generated can be reduced, the amount of the fixing agent used to immobilize heavy metals can be reduced, Can be reduced.

[실시예][Example]

이하에서 실시예를 들어서 본 발명을 보다 구체적으로 설명하지만, 본 발명에 관한 연소배기가스 처리시설(10)은, 제1알칼리제 및 제2알칼리제의 적정한 첨가 및 산성가스의 안정적인 처리가 가능하도록, 집진기(18)의 하류측에서 제1염화수소가스농도 신호(S1a)와 제1유황산화물가스농도 신호(S2a)에 의거하여 제1알칼리제의 첨가량을 제어하고, 집진기(18)의 상류측에서 제2염화수소가스농도 신호(S1b)와 제2유황산화물가스농도 신호(S2b)에 의거하여 제2알칼리제의 첨가량을 제어하는 것으로서, 본 발명은 이에 한정되는 것은 아니다.Although the present invention will be described in more detail with reference to the following examples, the flue gas treating facility 10 according to the present invention is a facility for treating the exhaust gas of the present invention with a dust collector (not shown) so that proper addition of the first alkali agent and second alkali agent, The amount of the first alkaline agent to be added is controlled on the downstream side of the first hydrogen chloride gas concentration signal S1a and the first sulfur dioxide gas concentration signal S2a on the downstream side of the first hydrogen chloride gas concentration signal 18, The amount of the second alkaline agent to be added is controlled based on the concentration signal S 1 b and the second sulfur oxide gas concentration signal S 2 b, and the present invention is not limited thereto.

<비교예><Comparative Example>

산성가스의 변동이 심한 산업 폐기물 소각로에 있어서, 알칼리제 첨가장치가 설치되어 있는 위치보다, 상류측의 유입로(3)에 제2염화수소가스농도 측정장치(32b)(쿄토전자공업주식회사제품, KLA-1)를 설치하고, 제2염화수소가스농도(입구HCl)를 측정했다. 또한 소석회(제2알칼리제, JIS 특호 소석회)를 집진기(18)의 상류측에 338kg/h의 정량으로 첨가함과 아울러, 미분중조(제1알칼리제, 쿠리타공업주식회사제품, 하이퍼서B-200)에 있어서, 집진기(18) 하류측의 배출로(4)에 설치된 제1염화수소가스농도 측정장치(32a)(쿄토전자공업주식회사제품, KLA-1)로 측정된 제1염화수소가스농도(출구HCl)가 출력되는 제1염화수소가스농도 신호(S1a)와, 제1유황산화물가스 측정장치(34a)(후지전기주식회사제품, ZRG)로 측정된 제1유황산화물가스농도(출구SOx)가 출력되는 제1유황산화물가스농도 신호(S2a)에 의거하여, 배출로(4)내의 농도를 관리하는 산소환산치로 피드백 제어를 실시했다.The second hydrogen chloride gas concentration measuring device 32b (manufactured by Kyoto Electronics Industrial Co., Ltd., KLA-KIA Kogyo Kogyo Co., Ltd.) is connected to the upstream side inflow passage 3 in the industrial waste incinerator where the acid gas fluctuates significantly, 1), and the concentration of the second hydrogen chloride gas (inlet HCl) was measured. The precipitate (second alkali agent, JIS special lime slurry) was added to the upstream side of the dust collector 18 at a predetermined amount of 338 kg / h, and a differential sodium salt (first alkali agent, Hyperser B-200 manufactured by Kurita Kogyo Co., Ltd.) The first hydrogen chloride gas concentration (outlet HCl) measured by the first hydrogen chloride gas concentration measuring device 32a (KLA-1, manufactured by Kyoto Electronics Industrial Co., Ltd.) provided in the discharge passage 4 on the downstream side of the dust collector 18, The first sulfuric acid gas concentration signal S1a outputting the first sulfuric acid gas concentration signal S1a and the first sulfuric acid gas concentration signal SOq measured by the first sulfuric acid gas measuring device 34a (ZRG manufactured by Fuji Electric Co., Ltd.) Based on the sulfur oxide gas concentration signal S2a, feedback control was carried out with an oxygen conversion value for managing the concentration in the discharge passage 4.

또한, 이때에 미분중조(제1알칼리제)의 제1염화수소가스농도 신호(S1a) 및 제1유황산화물가스농도 신호(S2a)에 의한 피드백 제어는, 이하에 나타나 있는 설정에 의해 실행되었다.At this time, the feedback control by the first hydrogen chloride gas concentration signal S1a and the first sulfur oxide gas concentration signal S2a of the differential alkaline solution (first alkaline agent) was carried out by the setting shown below.

또한, 본 적용방법에 있어서의 비산재를 정기적으로 채취하고, 알칼리제의 미반응분의 지표(指標)가 되는 원재(原灰) INDEX(알칼리 잔분)를 측정했다. 또한 황산반토, 인산수용액을 첨가하여 중금속의 용출시험(일본 환경청고시13호 시험)을 실행하고, 필요첨가량을 평가했다.In addition, the fly ash in the present application method was periodically sampled and the raw material INDEX (alkali residue) serving as an index of unreacted components of the alkali agent was measured. In addition, an elution test of heavy metals (Test No. 13 of Japan Environment Agency) was carried out by adding an aqueous solution of sulfuric acid alum and phosphoric acid, and the required addition amount was evaluated.

본 평가조건에 있어서는, 소석회 1.88당량(338kg/h), 미분중조 0.28당량(115kg/h)을 첨가함으로써, 제1염화수소가스농도(출구HCl)를 195ppm(제어목표치 200ppm)으로 제어목표치와 동등의 처리를 할 수 있었고, 적정한 제어가 가능하였다.Under this evaluation condition, the first hydrogen chloride gas concentration (outlet HCl) was adjusted to 195 ppm (control target value of 200 ppm) by adding 1.88 equivalent (338 kg / h) of slaked lime and 0.28 equivalent (115 kg / It was possible to carry out the control, and proper control was possible.

도8 및 도10은 제2염화수소가스농도(입구HCl)와 소석회 첨가당량의 추이를 나타낸다.Figs. 8 and 10 show the transition of the second hydrogen chloride gas concentration (inlet HCl) and the addition amount of slaked lime.

도8의 그래프에 의하면, 제2염화수소가스농도(입구HCl)가 증가함에 따라서 소석회 첨가당량이 저하하는 경향이 있다. 이는, 제2염화수소가스농도(입구HCl)가 낮은 경우에 소석회가 과잉으로 분무되어, 제2염화수소가스농도(입구HCl)가 저하한 때에는 소석회가 부족하여, 비교적 비싼 제1알칼리제의 첨가량이 증가하는 것을 나타낸다.According to the graph of Fig. 8, the amount of hydrated lime added tends to decrease as the second hydrogen chloride gas concentration (inlet HCl) increases. This is because when the second hydrogen chloride gas concentration (inlet HCl) is low, the slaked lime is excessively sprayed, and when the second hydrogen chloride gas concentration (inlet HCl) is lowered, the slaked lime is insufficient and the addition amount of the relatively expensive first alkali agent is increased .

비산재의 중금속처리에 관해서는, 비산재중의 원재(原灰) INDEX(알칼리 잔분) 평균은 305이었다. 또한 75% 인산수용액 3%를 첨가하고, 27% 황산알루미늄수용액의 첨가량을 바꾸어 필요첨가량을 평가한 결과, 27% 황산알루미늄수용액의 필요첨가량은 평균 55%이었다.Regarding heavy metal treatment of fly ash, the average of the raw material INDEX (alkali residual) in fly ash was 305. Further, 3% of 75% phosphoric acid aqueous solution was added, and the necessary amount of 27% aluminum sulfate aqueous solution was changed by changing the addition amount of 27% aluminum sulfate aqueous solution.

<제어의 설정><Setting of control>

제2알칼리제 : 소석회 : 338(kg/h) 정량첨가
Second alkali agent: Calcium lime: 338 (kg / h) Quantitative addition

제1알칼리제 : 미분중조의 피드백 제어First alkaline agent: Feedback control of the differential salt bath

AgSO = AgSQ ÷ LHS × 100AgSO = AgSQ / LHS x 100

AgSO : 미분중조첨가출력(%)AgSO: Output power (%)

AgSQ : 미분중조첨가량(통상첨가량)(kg/h)AgSQ: Addition amount of fine powder (normal addition amount) (kg / h)

LHS : 미분중조첨가장치의 최대첨가량(제1첨가장치의 최대첨가량)(kg/h)
LHS: the maximum addition amount of the differential bead addition apparatus (the maximum addition amount of the first addition apparatus) (kg / h)

AgSQ = (AgS1 + AgS2) + FaAgSQ = (AgS1 + AgS2) + Fa

AgS1 : 출구HCl 측정기기의 출력으로부터 규정되는 첨가량(염화수소측 첨가량)(kg/h)AgS1: Addition amount (addition amount of hydrochloric acid side) (kg / h) specified from output of outlet HCl measuring device

AgS2 : 출구SOx 측정기기의 출력으로부터 규정되는 첨가량(유황산화물측 첨가량)(kg/h)AgS2: Addition amount (sulfur oxide added amount) (kg / h) specified from the output of the outlet SOx measuring device

Fa: 기초첨가량(kg/h) = n분 이동 평균 첨가량(kg/h) × 계수(%)÷100Fa: Base addition amount (kg / h) = n min. Moving average addition amount (kg / h) x coefficient (%) ÷ 100

n분 이동평균 : 10(분)n minutes Moving average: 10 (minutes)

계수 : 70.0(%)Coefficient: 70.0 (%)

여기에서 AgSQ가 LHS를 초과하는 경우에는 LHS로 했다.  Here, when the AgSQ exceeds the LHS, the LHS is set.

또한 AgSQ가 LOS(미분중조첨가장치의 최소첨가량(제1첨가장치의 최소첨가량))(kg/h) 이하의 경우에는, LOS로 했다.  Also, when AgSQ is equal to or less than LOS (the minimum addition amount of the first additive device) (kg / h) or less, the LOS was used.

LOS : 미분중조첨가장치의 최소첨가량(제1첨가장치의 최소첨가량) : 40kg/hLOS: Minimal addition amount of the additive for mineral base addition (minimum addition amount of the first addition device): 40 kg / h

또한 출구HCl농도(염화수소가스농도), 출구SOx농도(유황산화물가스농도)가 어느 일정 농도이상이 된 경우에는, 본 첨가출력과는 별도로 긴급첨가량의 첨가출력을 규정했다.
In addition, when the outlet HCl concentration (hydrogen chloride gas concentration) and the outlet SOx concentration (sulfur oxide gas concentration) become equal to or more than a predetermined concentration, addition output of the emergency addition amount is specified separately from this addition output.

긴급첨가량Emergency dose

긴급첨가[출구HCl 1시간 평균에 의한 제어]Emergency addition [control by 1 hour average of outlet HCl]

HCl긴급첨가농도 : 213(ppm)HCl Emergency addition concentration: 213 (ppm)

HCl긴급첨가량 : 260(kg/h)HCl Emergency addition level: 260 (kg / h)

긴급첨가[출구SO2 1시간 평균에 의한 제어]Emergency addition [control by outlet time SO2 1 hour average]

SO2 긴급첨가농도 : 200(ppm)SO2 Emergency addition concentration: 200 (ppm)

SO2 긴급첨가량 : 260(kg/h)SO2 Emergency class: 260 (kg / h)

제어설정을 표1 및 표2에 나타낸다.Table 1 and Table 2 show control settings.

[표1] 출구 HCl 피드백 제어 AgS1[Table 1] Exit HCl feedback control AgS1

Figure 112014037727601-pat00001
Figure 112014037727601-pat00001

[표2] 출구 SO2 피드백 제어 AgS2[Table 2] Exit SO 2 feedback control AgS2

Figure 112014037727601-pat00002
Figure 112014037727601-pat00002

<실시예> <Examples>

동일시설에서, 제2염화수소가스농도 신호(S1b)에 의거하여, 소석회(제2알칼리제, JIS 특호 소석회)의 필요첨가량을 연산하여 첨가한 것을 제외하고는 비교예와 동일한 방법으로 실행했다.The same procedure as in the comparative example was carried out except that the necessary amount of slaked lime (the second alkali agent, JIS special lime slag) was calculated and added in the same facility based on the second hydrogen chloride gas concentration signal S1b.

소석회(제2알칼리제)와 미분중조(제1알칼리제)의 제어는, 이하에 나타나 있는 제어설정에 의해 실행되었다.Control of the slaked lime (second alkaline agent) and the differential alkaline agent (first alkaline agent) was carried out by the control setting shown below.

또한, 본 적용방법에 있어서의 비산재도 정기적으로 채취하고, 비교예와 마찬가지로 알칼리제의 미반응분의 지표(指標)가 되는 원재(原灰) INDEX(알칼리 잔분) 평균을 측정함과 아울러 황산반토, 인산수용액을 사용하여 필요첨가량을 평가했다.The fly ash in this application method is also regularly sampled and the average of the raw material INDEX (alkali residue) which is an indicator of the unreacted components of the alkali agent as in the comparative example is measured, The required amount of addition was evaluated using an aqueous solution of phosphoric acid.

소석회의 첨가량을 미분중조의 첨가량에 의하여 제어한 조건에 있어서는, 소석회를 1.67당량(278kg/h), 미분중조 0.27당량(104kg/h)의 첨가에 의해서, 제1염화수소가스농도(출구HCl)가 196ppm(제어목표치 200ppm)으로 적정한 제어가 가능했다. 또한 본 발명에 따라 소석회를 제어함으로써 소석회의 필요첨가량을 비교예에 비해 크게 삭감할 수 있었다.The first hydrogen chloride gas concentration (the outlet HCl) was increased by adding 1.67 equivalents (278 kg / h) of slaked lime and 0.27 equivalents (104 kg / h) of the differential precipitation to the conditions under which the addition amount of the slaked lime was controlled by the addition amount of the differential liquor 196ppm (control target value 200ppm), and proper control was possible. Further, by controlling the slaked lime according to the present invention, the required addition amount of the slaked lime can be greatly reduced as compared with the comparative example.

도9 및 도11에, 제2염화수소가스농도(입구HCl)와 소석회 첨가당량의 추이를 나타내지만, 본 제어는 제2염화수소가스농도(입구HCl)의 변동에 상관없이 안정한 당량으로 소석회의 첨가가 가능하며, 매우 컨트롤성이 우수한 제어이다.9 and 11 show the transition of the second hydrogen chloride gas concentration (inlet HCl) and the addition amount of slaked lime, the present control shows that the addition of slaked lime to the stable equivalent of the second hydrogen chloride gas concentration (inlet HCl) This is a highly controllable control.

비산재의 중금속처리에 관해서는, 비산재중의 원재(原灰) INDEX(알칼리 잔분) 평균은 225로, 비교예에 비해 알칼리 잔분을 저하시킬 수 있었다. 또한 컨트롤성 향상에 의하여 변동도 적어지고 있어, 산성약제로 처리하기 쉬운 비산재성상(飛散灰性狀)이 되었다.Regarding the heavy metal treatment of fly ash, the average of the INDEX (alkali residual) of fly ash in the fly ash was 225, which was lower than that of the comparative example. In addition, due to the improvement in controllability, the fluctuation was reduced, and the product became scattered ash which is easy to be treated with an acidic medicament.

또한, 마찬가지로 75% 인산수용액 3%를 첨가하고, 27% 황산알루미늄수용액의 첨가량을 바꾸어 필요첨가량을 평가한 결과, 27% 황산알루미늄수용액의 필요첨가량은 평균 40%로서 중금속고정제의 첨가량을 줄일 수 있었다.Similarly, when 3% of 75% aqueous phosphoric acid solution was added and the amount of 27% aqueous aluminum sulfate solution was changed to evaluate the required amount of addition, the required amount of 27% aqueous aluminum sulfate solution was 40% on average, there was.

<제1알칼리제의 제어> &Lt; Control of first alkaline agent &

제1알칼리제(미분중조)의 제어는, 비교예와 동일한 설정으로 했다.
The control of the first alkaline agent (differential dyeing) was the same as that in the comparative example.

<제2알칼리제의 제어>&Lt; Control of the Second Alkali Agent &gt;

AgCO = AgCQ ÷ LHC × 100AgCO = AgCQ / LHC x 100

AgCO : 소석회 첨가출력(%)AgCO: Calcined addition power (%)

AgCQ : 소석회 첨가량(kg/h)AgCQ: Amount of lime added (kg / h)

LHC : 소석회 첨가장치의 최대첨가량(제2첨가장치의 최대첨가량) : 450(kg/h)
LHC: Maximum addition amount of slaked lime addition apparatus (maximum addition amount of the second addition apparatus): 450 (kg / h)

AgCQ = A ÷ 100 × {B ÷ 100 × (입구HCl - SVHCl)÷ 0.614 ÷ 1000 ÷ 36.5 × F × (100 - W)÷ 100 × Mc ÷ 1000}100? Mc? 1000? AgCQ = A? 100 占 B 100 占 (inlet HCl - SV HCl ) ÷ 0.614 ÷ 1000 ÷ 36.5 × F × (100 - W)

A : 전체조정계수A: total adjustment factor

B : 입구HCl조정계수B: inlet HCl adjustment factor

입구HCl : 입구HCl농도(ppm)[실측치]Inlet HCl: inlet HCl concentration (ppm) [found]

SVHCl : 제1알칼리제의 제어에 있어서의 출구HCl의 제어목표치(ppm)[실측치]SV HCl : Control target value (ppm) of the outlet HCl in the control of the first alkaline agent [measured value]

출구HCl농도신호가 산소환산치인 경우에, 이하의 식에 의해서 실측치로 변환해서 연산한다.When the outlet HCl concentration signal is an oxygen conversion value, it is converted into a measured value and calculated by the following equation.

SVHCl[실측치] = SVHCl [산소환산치] × 21 - 산소농도(%)÷(21-12)SV HCl [measured value] = SV HCl [in terms of oxygen] × 21 - oxygen concentration (%) ÷ (21-12)

F : 배기가스량(Nm3 - wet/h)F: Amount of exhaust gas (Nm3 - wet / h)

W : 가스중 수분(%)W: Moisture content in gas (%)

Mc : 약제계수(소석회) : 37Mc: Pharmaceutical Coefficient (Lime): 37

LMHC : 소석회 제어 최대첨가량LMHC: Maximum amount of slime control

LMOC : 소석회 제어 최소첨가량LMOC: Lime scale control minimum addition amount

여기에서, AgCQ가 LMHC를 초과하는 경우에는, LMHC로 했다.Here, when AgCQ exceeds LMHC, it is determined as LMHC.

또한, AgCQ가 LMOC이하의 경우에는, LMOC로 했다.
When AgCQ is equal to or less than LMOC, LMOC is used.

제2알칼리제(소석회)의 제어Control of secondary alkaline agent (slaked lime)

LOC : 소석회 기기 최소첨가량 : 45(kg/h)LOC: Minor additive amount of slaked lime: 45 (kg / h)

LHC : 소석회 기기 최대첨가량(kg/h) : 450(kg/h)LHC: Maximum amount of added lime equipment (kg / h): 450 (kg / h)

LMOC : 소석회 제어 최소첨가량 : 45(kg/h)LMOC: Calcined Lime Control Minimum Addition: 45 (kg / h)

LMHC : 소석회 제어 최대첨가량 : 405(kg/h)LMHC: Maximum amount of slime control added: 405 (kg / h)

A : 전체조정계수 : 200(%)A: Overall adjustment factor: 200 (%)

B : 입구HCl 조정계수 : 100 (%) B: inlet HCl adjustment factor: 100 (%)

산성가스 처리의 결과는 표3에서, 중금속처리 결과는 표4에서, 측정결과를 나타낸다.The acid gas treatment results are shown in Table 3, and the heavy metal treatment results are shown in Table 4 as the measurement results.

[표3] 비교예, 실시예, 산성가스 처리결과[Table 3] Comparative Example, Example, Result of Acidic Gas Treatment

Figure 112014037727601-pat00003
Figure 112014037727601-pat00003

[표4] 비교예, 실시예, 중금속 처리결과[Table 4] Comparative Example, Example, Heavy Metal Treatment Result

Figure 112014037727601-pat00004

Figure 112014037727601-pat00004

AgCQ - 제2첨가량; AgCQA - 평균 제2첨가량;
AgS1 - 염화수소측 첨가량; AgS2 - 유황산화물측 첨가량;
AgSQ - 제1첨가량, 통상첨가량; AgSQA - 평균 제1첨가량;
AgSQT - 목표첨가량; Fa - 기초첨가량;
L, L1, L2, L3, L4 - 첨가량 대응정보선; LHS - 최대첨가량;
LM1 - 제1출력제한 첨가량; LM2 - 출력상한 첨가량;
LM2 - 제2출력제한 첨가량; LM3 - 출력상한 첨가량;
LMG - 강하보정계수; LOS - 최소첨가량;
PV - 순간염화수소가스농도, 순간유황산화물가스농도;
S0a - 제1산성가스농도 신호; S0b - 제2산성가스농도 신호;
S1a - 제1염화수소가스농도 신호; S1b - 제2염화수소가스농도 신호;
S2a - 제1유황산화물가스농도 신호; S2b - 제2유황산화물가스농도 신호;
S3 - 염화수소 첨가량 신호; S4 - 유황산화물 첨가량 신호;
S5 - 기초첨가량 신호; S6 - 통상첨가량 신호; S7 - 긴급시 판단신호;
S8 - 가제1첨가량 신호; S11 - 평균 제1첨가량 신호;
S12 - 평균 제2첨가량 신호; S13 - 제2첨가량 신호;
S14 - 출구제어 목표치 신호; S21 - 제1첨가량 신호;
S22 - 가제2첨가량 신호; SM1 - 제1출력제한 대응농도;
SM2 - 제2출력제한 대응농도; SQ - 첨가량; SV - 제어목표치;
SV - 목표제어치; SVA - 상승보정치; 2 - 배관; 3 - 유입로;
4 - 배출로; 10 - 연소배기가스 처리시설; 12 - 연소로; 14 - 보일러;
16 - 감온탑; 18 - 집진기; 19 - 비산재 혼련기; 20 - 팬; 22 - 굴뚝;
30a - 제1산성가스 측정장치; 30b - 제2산성가스 측정장치;
32a - 제1염화수소가스농도 측정장치;
32b - 제2염화수소가스농도 측정장치;
34a - 제1유황산화물가스농도 측정장치;
34b - 제2유황산화물가스농도 측정장치; 42 - 제1첨가장치;
44 - 제2첨가장치; 50 - 첨가량 제어장치; 60 - 제1첨가량 산출부;
61 - 메인첨가량 산출부; 62a - 염화수소가스 산출부;
62b - 유황산화물가스 산출부; 63 - 기초첨가량 산출부;
64 - 통상첨가량 산출부; 65- 긴급시 판단부; 66 - 가첨가량 산출부;
67 - 기기첨가량 제한부; 70 - 제2첨가량 산출부;
72 - 평균 제2첨가량 산출부; 73 - 기기첨가량 제한부;
74 - 제2첨가량 기초산출부; 75 - 제어목표치 추출부;
621a, 62lb - 상승보정치 규정부; 622a, 622b - 농도량 산출부;
623a, 623b - 기초첨가량 산출부; 624a, 624b - 하강보정치 규정부;
625a, 625b - 첨가량 대응 규정부; 626a, 626b - 첨가량 산출부
AgCQ - second addition amount; AgCQA - average second addition amount;
AgS1 - hydrogen chloride added amount; AgS2 - Sulfur oxide side addition amount;
AgSQ - first added amount, usually added amount; AgSQA - average first addition amount;
AgSQT - target addition; Fa - base addition;
L, L1, L2, L3, L4 - additive amount corresponding information line; LHS - maximum addition amount;
LM1 - first output limit addition amount; LM2 - output upper limit additive amount;
LM2 - second output limit addition amount; LM3 - output upper limit additive amount;
LMG - Downward Correction Factor; LOS - minimum addition;
PV - instantaneous hydrogen chloride gas concentration, instantaneous sulfur oxide gas concentration;
S0a - first acid gas concentration signal; S0b - second acid gas concentration signal;
S1a - the first hydrogen chloride gas concentration signal; S1b - second hydrogen chloride gas concentration signal;
S2a - the first sulfur oxide gas concentration signal; S2b - second sulfur oxide gas concentration signal;
S3 - hydrogen chloride addition signal; S4 - Sulfur oxide addition signal;
S5 - Base additive signal; S6 - normal additive amount signal; S7 - emergency signal;
S8 - Additive amount signal of gauze 1; S11 - average first addition amount signal;
S12 - an average second addition amount signal; S13 - second addition amount signal;
S14 - the exit control target value signal; S21 - the first addition amount signal;
S22 - Gauge 2 addition amount signal; SM1 - first output limit corresponding concentration;
SM2 - second output limit corresponding concentration; SQ - Additive amount; SV - control target value;
SV - target value; SVA - rising correction value; 2 - piping; 3 - inflow path;
4 - discharge path; 10 - Combustion gas treatment facility; 12 - combustion furnace; 14 - Boilers;
16 - Sense Tower; 18 - dust collector; 19 - fly ash kneader; 20 - Fan; 22 - chimneys;
30a - a first acid gas measuring device; 30b - a second acid gas measuring device;
32a - a first hydrogen chloride gas concentration measuring device;
32b - a second hydrogen chloride gas concentration measuring device;
34a - a first sulfur oxide gas concentration measuring device;
34b - a second sulfur oxide gas concentration measuring device; 42 - a first addition device;
44 - a second addition device; 50 - Addition amount control device; 60 - a first additive amount calculating unit;
61 - main additive amount calculating unit; 62a - hydrogen chloride gas calculator;
62b - sulfur oxide gas calculator; 63 - base additive amount calculating unit;
64 - a normal additive amount calculating unit; 65- Emergency Case Judge; 66 - an affinity calculation unit;
67 - equipment addition limitations; 70 - a second addition amount calculating unit;
72 - an average second addition amount calculating unit; 73 - limit of addition of equipment;
74 - second addition amount basic calculation unit; 75 - a control target value extracting unit;
621a, 62lb - a rising correction value specification part; 622a, 622b - a concentration amount calculating unit;
623a, 623b - base additive amount calculating unit; 624a, 624b -Definition of downward correction value;
625a, 625b - Regulation for Additive Amount; 626a, 626b - Addition amount calculating section

Claims (13)

산성가스(酸性gas)가 포함되는 연소배기가스(燃燒排氣gas)를 연소배기가스 처리시설에서 안정적으로 처리하는 안정화처리방법으로서,
상기 연소배기가스를 집진기(集塵機)에서 처리한 처리후 연소배기가스중의 제1산성가스의 농도를 측정하는 제1산성가스농도 측정공정(第1酸性gas濃度 測定工程)과,
상기 제1산성가스농도에 의거하여 상기 제1산성가스에 관한 정보인 제1산성가스정보를 산출하고, 상기 제1산성가스정보에 의거하여 제1알칼리제의 통상첨가량을 산출하고, 상기 통상첨가량에 의거하여 제1첨가량정보를 산출하는 제1산출공정(第1産出工程)과,
상기 연소배기가스를 집진기에서 처리하지 않은 미처리 연소배기가스인 제2산성가스중의 제2산성가스농도를 측정하는 제2산성가스농도 측정공정(第2酸性gas濃度 測定工程)과,
상기 제2산성가스농도에 의거하여 상기 제2산성가스에 관한 정보인 제2산성가스정보를 산출하고, 상기 제2산성가스정보에 의거하여 제2알칼리제의 첨가량을 산출하고, 상기 첨가량에 의거하여 제2첨가량정보를 산출하는 제2산출공정(第2産出工程)과,
상기 제1첨가량의 상기 제1알칼리제를 상기 연소배기가스에 첨가하는 제1첨가공정(第1添加工程)과,
상기 제2첨가량의 상기 제2알칼리제를 상기 연소배기가스에 첨가하는 제2첨가공정(第2添加工程)을
포함하는 산성가스 안정화처리방법.
A stabilization treatment method for stably treating a combustion exhaust gas containing an acid gas in a combustion exhaust gas treatment facility,
A first acidic gas concentration measuring step (first acidic gas concentration measuring step) for measuring the concentration of the first acidic gas in the treated exhaust gas after the treatment of the discharged exhaust gas in a dust collector,
Calculating first acid gas information that is information on the first acid gas based on the first acid gas concentration, calculating a normal addition amount of the first alkali agent based on the first acid gas information, A first calculating step (first producing step) of calculating first adding amount information on the basis of the first adding amount information,
A second acidic gas concentration measuring step (second acidic gas concentration measuring step) for measuring the concentration of the second acidic gas in the second acidic gas, which is an untreated flue gas discharged from the dust collector,
Calculating second acid gas information that is information on the second acid gas based on the second acid gas concentration, calculating an addition amount of the second alkaline agent based on the second acid gas information, A second calculating step (second producing step) of calculating second adding amount information,
A first adding step (first adding step) of adding the first alkaline agent of the first addition amount to the combustion exhaust gas,
And a second adding step (second adding step) of adding the second alkaline agent of the second added amount to the combusted exhaust gas
&Lt; / RTI &gt;
제1항에 있어서,
상기 제1첨가량정보는, 상기 처리후 연소배기가스에 있어서 상기 제1산성가스농도의 목적값인 제어목표치를 포함하고,
상기 제2산출공정은, 상기 제2산성가스농도로부터 상기 제어목표치를 감산(減算)한 농도에 의거하여 상기 제2첨가량을 산출하는 산성가스 안정화처리방법.
The method according to claim 1,
Wherein the first additive amount information includes a control target value which is a target value of the first acidic gas concentration in the post-
Wherein the second calculation step calculates the second addition amount based on a concentration obtained by subtracting (subtracting) the control target value from the second acid gas concentration.
제1항 또는 제2항에 있어서,
상기 제2산성가스정보는, 상기 제2산성가스농도 측정공정에서 측정된 리얼타임(real time)의 산성가스농도인 순간산성가스농도(瞬間酸性gas濃度)의 변화의 비율을 나타내는 산성가스농도량을 포함하고,
상기 제1산출공정은, 상기 제1산성가스정보에 의거하여 제1알칼리제의 통상첨가량을 산출한 후, 상기 산성가스농도량에 따라 상기 통상첨가량을 소정의 보정방법에 의거하여 보정하고, 그 후에 상기 통상첨가량에 의거하여 제1첨가량정보를 산출하는 산성가스 안정화처리방법.
3. The method according to claim 1 or 2,
The second acidic gas information may include an acidic gas concentration (a concentration of acidic gas) indicating a rate of change of an instantaneous acidic gas concentration (instantaneous acidic gas concentration) which is a real time acidic gas concentration measured in the second acidic gas concentration measuring step / RTI &gt;
The first calculation step calculates the normal addition amount of the first alkali agent based on the first acid gas information and corrects the normal addition amount based on the predetermined correction method according to the acid gas concentration amount , And then the first addition amount information is calculated based on the normal addition amount .
제3항에 있어서,
미리, 상기 순간산성가스농도와 상기 제1알칼리제의 첨가량을 관련짓는 기본첨가량 대응정보를 규정하고,
상기 제1산출공정은, 상기 산성가스농도량이 일정상태를 유지하고 있거나 또는 감소하고 있는 하강상태인 경우에는, 상기 순간산성가스농도와 감소용의 기본첨가량 대응정보에 의거하여 상기 통상첨가량을 산출하고,
또한 상기 산성가스농도량이 증가하고 있는 상승상태인 경우에는, 상기 순간산성가스농도에 의거하고, 또 상기 기본첨가량 대응정보에 있어서의 산성가스농도의 값을 소정의 보정방법에 의하여 작게 한 증가용의 기본첨가량 대응정보에 의거하여 상기 통상첨가량을 산출하는 산성가스 안정화처리방법.
The method of claim 3,
The basic addition amount correspondence information associating the instant acid gas concentration and the addition amount of the first alkaline agent in advance is defined,
The first calculation step calculates the normal addition amount on the basis of the instantaneous acid gas concentration and the basic addition amount corresponding to reduction information when the acid gas concentration amount is in a descending state in which the amount of acid gas is kept constant or decreasing ,
In addition, for the acid when the rising state in which the gas concentration increases the amount of the moment based on the acid gas concentration and also the basic addition amount by increasing the value of the acid gas concentration in the correspondence information smaller by a predetermined correction method of And the normal addition amount is calculated on the basis of the basic addition amount correspondence information.
제3항에 있어서,
상기 제1산출공정은, 상기 산성가스농도량이 일정상태를 유지하고 있거나 또는 감소하고 있는 하강상태인 경우에, 상기 통상첨가량을, 미리 규정된, 0을 초과하고 1미만의 범위에 있는 하강보정치로 보정하는 산성가스 안정화처리방법.
The method of claim 3 ,
Wherein the first calculating step is a step of calculating the normal addition amount by a fall correction value that is in a range of more than 0 and less than 1, which is predefined, when the acid gas concentration amount is in a falling state, Wherein the acid gas stabilization treatment method comprises:
제4항에 있어서,
상기 제1산출공정은, 상기 산성가스농도량이 일정상태를 유지하고 있거나 또는 감소하고 있는 하강상태인 경우에, 상기 통상첨가량을, 미리 규정된, 0을 초과하고 1미만의 범위에 있는 하강보정치로 보정하는 산성가스 안정화처리방법.
5. The method of claim 4 ,
Wherein the first calculating step is a step of calculating the normal addition amount by a fall correction value that is in a range of more than 0 and less than 1, which is predefined, when the acid gas concentration amount is in a falling state, Wherein the acid gas stabilization treatment method comprises:
제3항에 있어서,
상기 제1첨가공정에서 첨가할 수 있는 최대첨가량과 최소첨가량 사이에 복수의 대응첨가량 상한치가 설정되고,
상기 복수의 대응첨가량 상한치는 각각 복수의 산성가스농도에 대응하고 있고,
상기 제2산성가스정보는, 상기 제2산성가스농도 측정공정에서 측정된 산성가스농도인 순간산성가스농도를 포함하고 있고,
상기 제1산출공정은, 상기 순간산성가스농도가 상기 복수의 산성가스농도 중에서 인접하는 2개의 산성가스농도의 범위내에 있을 경우에, 그 인접하는 2개의 산성가스농도 중에서 높은 농도에 대응하는 대응첨가량 상한치에 의거하여 상기 통상첨가량을 산출하는 산성가스 안정화처리방법.
The method of claim 3 ,
A plurality of corresponding additive upper limit values are set between a maximum addition amount and a minimum addition amount which can be added in the first addition step,
Wherein the plurality of upper limits of the corresponding additive amounts respectively correspond to a plurality of acidic gas concentrations,
Wherein the second acidic gas information includes an instantaneous acidic gas concentration which is an acidic gas concentration measured in the second acidic gas concentration measuring step,
Wherein the first calculation step is a step of calculating the concentration of the acid gas having the concentration corresponding to the higher concentration among the two adjacent acid gas concentrations when the instantaneous acid gas concentration is within the range of two adjacent acid gas concentrations out of the plurality of acid gas concentrations And the normal addition amount is calculated on the basis of the upper limit value.
제1항 또는 제2항에 있어서,
상기 제1산성가스정보는, 소정의 시간에 있어서의 상기 제1산성가스농도의 평균치인 평균산성가스농도를 포함하고,
상기 제1산출공정은, 상기 평균산성가스농도가 미리 규정된 긴급첨가농도를 초과하면, 상기 통상첨가량 대신에, 미리 규정된 긴급첨가량에 의거하여 상기 제1첨가량정보로서 산출하는 것을 특징으로 하는 산성가스 안정화처리방법.
3. The method according to claim 1 or 2 ,
Wherein the first acid gas information includes an average acid gas concentration which is an average value of the first acid gas concentration at a predetermined time,
Wherein the first calculation step calculates the first addition amount information based on a predetermined emergency addition amount instead of the normal addition amount when the average acid gas concentration exceeds the predetermined emergency addition concentration. Gas stabilization treatment method.
제1항 또는 제2항에 있어서,
상기 제2산성가스는, 염화수소가스(鹽化水素gas) 및/또는 유황산화물가스(硫黃酸化物gas)를 포함하고,
상기 제2산성가스농도 측정공정은, 상기 제2산성가스가 염화수소가스를 포함하는 경우에는 상기 제2산성가스중의 염화수소가스농도를 측정하는 염화수소가스농도 측정공정을 포함하고, 상기 제2산성가스가 유황산화물가스를 포함하는 경우에는 상기 제2산성가스중의 유황산화물농도를 측정하는 유황산화물농도 측정공정을 포함하고, 상기 제2산성가스가 상기 염화수소가스 및 유황산화물가스를 모두 포함하는 경우에는 상기 염화수소가스농도 측정공정 및 상기 유황산화물농도 측정공정을 포함하고,
상기 제2산성가스정보는, 상기 염화수소가스에 관한 염화수소정보 및/또는 상기 유황산화물가스에 관한 유황산화물정보를 포함하고,
상기 제1산출공정은, 상기 염화수소정보에 의거하여 산출한 염화수소가스 첨가량 및/또는 상기 유황산화물정보에 의거하여 산출한 유황산화물가스 첨가량 및/또는 기초첨가량에 의거하여 상기 통상첨가량을 산출하고,
상기 기초첨가량은, 소정의 시간에 있어서의 상기 제1첨가량정보의 평균첨가량에 의거하여 산출되는 산성가스 안정화처리방법.
3. The method according to claim 1 or 2,
The second acidic gas may include a hydrogen chloride gas (hydrogenated gas) and / or a sulfur oxide gas (sulfur oxide gas)
The second acidic gas concentration measuring step may include a hydrogen chloride gas concentration measuring step of measuring the concentration of the hydrogen chloride gas in the second acidic gas when the second acidic gas contains hydrogen chloride gas, And a sulfur oxide concentration measuring step of measuring a sulfur oxide concentration in the second acidic gas when the sulfuric acid gas contains sulfur oxide gas, and when the second acidic gas contains both the hydrogen chloride gas and the sulfur oxide gas The hydrogen chloride gas concentration measuring step and the sulfur oxide concentration measuring step ,
Wherein the second acidic gas information includes hydrogen chloride information on the hydrogen chloride gas and / or sulfur oxide information on the sulfur oxide gas,
Wherein the first calculation step calculates the normal addition amount based on the hydrogen chloride gas addition amount calculated on the basis of the hydrogen chloride information and / or the sulfur oxide gas addition amount and / or the basic addition amount calculated on the basis of the sulfur oxide information,
Wherein the base addition amount is calculated based on an average addition amount of the first addition amount information at a predetermined time.
제1항 또는 제2항에 있어서,
상기 제1알칼리제가, 적어도 5∼30μm의 미분(微粉)의 중조(重曹)를 함유한 알칼리제이며,
상기 제2알칼리제가 적어도 소석회(消石灰)를 함유한 알칼리제인 산성가스 안정화처리방법.
3. The method according to claim 1 or 2 ,
Wherein the first alkaline agent is an alkaline agent containing a fine powder of fine powder of at least 5 to 30 mu m,
Wherein the second alkaline agent is an alkaline agent containing at least slaked lime.
제1항 또는 제2항에 있어서,
상기 제1알칼리제의 첨가량이 알칼리제를 첨가하기 전의 산성가스농도당 0.1∼0.6당량이며,
상기 제2알칼리제의 첨가량이 알칼리제를 첨가하기 전의 산성가스농도당 0.5∼3.0당량인 산성가스 안정화처리방법.
3. The method according to claim 1 or 2 ,
The addition amount of the first alkaline agent is 0.1 to 0.6 equivalents per acidic gas concentration before adding the alkali agent,
Wherein the amount of the second alkaline agent added is 0.5 to 3.0 equivalents per acidic gas concentration before addition of the alkaline agent.
제1항 또는 제2항에 있어서,
상기 집진기에서 집진된 비산재(飛散灰)에, 철계 화합물(鐵系 化合物), 인산함유 화합물(燐酸含有 化合物) 및 중화제(中和劑)로부터 선택되는 적어도 1종 이상을 첨가하는 고정화 처리공정(固定化 處理工程)을 더 포함하는 산성가스 안정화처리방법.
3. The method according to claim 1 or 2 ,
(Immobilization process) in which at least one selected from iron-based compounds (iron compounds), phosphoric acid-containing compounds (phosphoric acid-containing compounds) and neutralizers is added to fly ash collected in the dust collector Further comprising the step of treating the acid gas.
제1항 또는 제2항의 산성가스 안정화처리방법을 실행하는 연소배기가스 처리시설로서,
집진기(集塵機)와,
상기 연소배기가스를 상기 집진기로 유입하는 유입로(流入路)와,
상기 집진기에서 처리된 처리후 연소배기가스를 상기 집진기로부터 배출하는 배출로(排出路)와,
상기 제1산성가스농도 측정공정을 실행하여 제1산성가스정보 신호로서 출력하는 제1산성가스 측정장치(第1酸性gas 測定裝置)와,
상기 제2산성가스농도 측정공정을 실행하여 제2산성가스정보 신호로서 출력하는 제2산성가스 측정장치(第2酸性gas 測定裝置)와,
상기 제1산성가스정보 신호에 의거하여 상기 제1산출공정을 실행하여 상기 제1첨가량을 제1첨가량 신호로서 출력하는 제1첨가량 산출부 및 상기 제2산성가스정보 신호에 의거하여 상기 제2산출공정을 실행하여 상기 제2첨가량을 제2첨가량 신호로서 출력하는 제2첨가량 산출부를 구비하는 첨가량 제어장치(添加量 制御裝置)와,
상기 제1첨가량 신호에 의거하여 상기 제1첨가공정을 실행하는 제1첨가장치(第1添加裝置)와,
상기 제2첨가량 신호에 의거하여 상기 제2첨가공정을 실행하는 제2첨가장치(第2添加裝置)를
구비하는 연소배기가스 처리시설.
A combustion exhaust gas treatment facility for executing the acid gas stabilization treatment method according to claim 1 or 2 ,
A dust collector,
An inflow path (inflow path) for introducing the combustion exhaust gas into the dust collector,
A discharge path (discharge path) for discharging the processed discharge gas from the dust collector after being treated in the dust collector,
A first acidic gas measurement device (first acidic gas measurement device) for performing the first acidic gas concentration measurement step and outputting the first acidic gas concentration measurement signal as a first acidic gas information signal,
A second acidic gas measurement device (second acidic gas measurement device) for performing the second acidic gas concentration measurement step and outputting the second acidic gas concentration measurement signal as a second acidic gas information signal,
A first addition amount calculation unit for executing the first calculation step on the basis of the first acid gas information signal to output the first addition amount as a first addition amount signal and a second addition amount calculation unit for calculating the second calculation amount And a second addition amount calculating section for executing the second addition amount signal and outputting the second addition amount as a second addition amount signal,
A first addition device (first addition device) for executing the first addition process on the basis of the first addition amount signal,
A second addition device (second addition device) for executing the second addition process based on the second addition amount signal
The combustion and exhaust gas treatment facility equipped.
KR1020140047446A 2013-04-22 2014-04-21 Method for stabilizing acid gas and combustion effluent gas treating apparatus Active KR101640372B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013089498A JP5880481B2 (en) 2013-04-22 2013-04-22 Acid gas stabilization method and flue gas treatment facility
JPJP-P-2013-089498 2013-04-22

Publications (2)

Publication Number Publication Date
KR20140126261A KR20140126261A (en) 2014-10-30
KR101640372B1 true KR101640372B1 (en) 2016-07-18

Family

ID=51704737

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140047446A Active KR101640372B1 (en) 2013-04-22 2014-04-21 Method for stabilizing acid gas and combustion effluent gas treating apparatus

Country Status (3)

Country Link
JP (1) JP5880481B2 (en)
KR (1) KR101640372B1 (en)
CN (1) CN104107630B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240003494A (en) 2022-07-01 2024-01-09 (주)청해소재 Neutralizing Agent Composition For Acid Gas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517290B2 (en) * 2017-09-04 2019-05-22 株式会社プランテック Exhaust gas treatment method and exhaust gas treatment apparatus
JP6908147B1 (en) * 2020-03-06 2021-07-21 栗田工業株式会社 Exhaust gas treatment system and exhaust gas treatment method
KR102299686B1 (en) * 2021-01-25 2021-09-09 주식회사 한 수 Composition for treating exhaust gas and method of treating exhaust gas using the same
KR102282158B1 (en) * 2021-01-26 2021-07-27 현대제철 주식회사 Composition for inhibiting the elution of heavy metals from desulfurization waste and method for inhibiting the elution of heavy metals from desulfurization waste using the same
CN113483339B (en) * 2021-06-16 2023-08-25 江苏凯丰新能源科技有限公司 Continuous electric heating furnace and method for recycling aluminum electrolysis carbon electrode waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075758A (en) 2004-09-10 2006-03-23 Jfe Engineering Kk Desalination control device and desalination control method
JP2007021442A (en) 2005-07-20 2007-02-01 Mitsubishi Heavy Ind Ltd Method and facilities for treating exhaust gas

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025528A (en) * 1983-07-22 1985-02-08 Hitachi Plant Eng & Constr Co Ltd Operation of exhaust gas treating apparatus
JPH084709B2 (en) * 1986-04-23 1996-01-24 バブコツク日立株式会社 Wet Flue Gas Desulfurization Controller
IT1254276B (en) * 1992-03-13 1995-09-14 Enichem Polimeri THERMOPLASTIC COMPOSITION BASED ON POLYPHENYLENETERE AND POLYAMIDE
JPH0999215A (en) * 1995-10-06 1997-04-15 Kanegafuchi Chem Ind Co Ltd Treatment of waste gas and smoke dust
JPH11165036A (en) * 1997-12-04 1999-06-22 Abb Kk Dual alkali treatment method for incinerator exhaust gas
JPH11188331A (en) * 1997-12-26 1999-07-13 Kurita Water Ind Ltd Treatment method for heavy metal-containing ash
JP3840858B2 (en) * 1998-11-26 2006-11-01 旭硝子株式会社 Acid component removal agent and acid component removal method
JP2001025637A (en) * 1999-07-14 2001-01-30 Kurita Water Ind Ltd Exhaust gas purification method
JP2003210934A (en) * 2002-01-23 2003-07-29 Mitsubishi Heavy Ind Ltd Equipment for exhaust-gas treatment
JP4363657B2 (en) * 2004-11-02 2009-11-11 荏原エンジニアリングサービス株式会社 Method and apparatus for stabilizing incineration fly ash
US7040891B1 (en) * 2005-06-08 2006-05-09 Giuliani Anthony J System for reducing fuel consumption and pollutant emissions from asphalt cement production
JP2007237019A (en) * 2006-03-06 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Exhaust gas treatment chemical supply amount control method and exhaust gas treatment apparatus
JPWO2008078722A1 (en) * 2006-12-27 2010-04-22 バブコック日立株式会社 Exhaust gas treatment method and apparatus
JP4329946B1 (en) * 2008-07-24 2009-09-09 荏原エンジニアリングサービス株式会社 Incineration fly ash treatment method
JP5302618B2 (en) * 2008-10-16 2013-10-02 三菱重工業株式会社 Nitrogen oxide treatment equipment
JP5338421B2 (en) * 2009-03-24 2013-11-13 栗田工業株式会社 Combustion exhaust gas treatment method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075758A (en) 2004-09-10 2006-03-23 Jfe Engineering Kk Desalination control device and desalination control method
JP2007021442A (en) 2005-07-20 2007-02-01 Mitsubishi Heavy Ind Ltd Method and facilities for treating exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240003494A (en) 2022-07-01 2024-01-09 (주)청해소재 Neutralizing Agent Composition For Acid Gas

Also Published As

Publication number Publication date
CN104107630B (en) 2017-03-01
KR20140126261A (en) 2014-10-30
CN104107630A (en) 2014-10-22
JP5880481B2 (en) 2016-03-09
JP2014213213A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP6020085B2 (en) Acid gas stabilization method and combustion exhaust gas treatment facility
KR101640372B1 (en) Method for stabilizing acid gas and combustion effluent gas treating apparatus
JP5338421B2 (en) Combustion exhaust gas treatment method and apparatus
JP5991677B2 (en) Exhaust gas treatment equipment
TWI450754B (en) Method for treating acidic gas
CN109092045A (en) A kind of limestone-gypsum method flue gas desulfurization slurries oxidation controlling method
WO2016203865A1 (en) Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method
JP5359955B2 (en) How to prevent elution of heavy metals
JP5975130B1 (en) Compound treatment agent for acid gas and heavy metal, and method for treating acid gas and heavy metal
JP2010075897A (en) Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system
JP2015178049A (en) Acidic waste gas-treating agent and method for preventing elution of heavy metals
KR101397428B1 (en) Method for treating acid gas
JP6020305B2 (en) Exhaust gas treatment method
CN105935550A (en) Composite treatment agent for acid gas and heavy metal and treating method for acid gas and heavy metal
JP2002113327A (en) Method for controlling feed rate of desalting agent for exhaust gas
JP5691211B2 (en) Combustion exhaust gas treatment method
JP5070815B2 (en) Exhaust gas treatment method
WO2022196728A1 (en) Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus
JP2009131726A (en) Method of treating flue gas
Themba et al. Optimizing Acid Gas Emission Control in Waste Incineration Through Calcium Hydroxide Injection.
KR101522525B1 (en) Method for treating acidic gas
Kim et al. Release of Ammonia Odor from AAFA (Ammonia Adsorbed Fly Ash) by Installation of NOx Reduction System
Schuttenhelm et al. Anthony Licata
JPH0775767A (en) Device for making dust harmless

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20140421

PG1501 Laying open of application
A201 Request for examination
A302 Request for accelerated examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20160303

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20140421

Comment text: Patent Application

PA0302 Request for accelerated examination

Patent event date: 20160303

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20140421

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20160314

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20160620

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20160712

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20160712

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20190619

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20200622

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20220620

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20230620

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20240620

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20250618

Start annual number: 10

End annual number: 10