JP5598245B2 - Acid gas treatment method - Google Patents

Acid gas treatment method Download PDF

Info

Publication number
JP5598245B2
JP5598245B2 JP2010232342A JP2010232342A JP5598245B2 JP 5598245 B2 JP5598245 B2 JP 5598245B2 JP 2010232342 A JP2010232342 A JP 2010232342A JP 2010232342 A JP2010232342 A JP 2010232342A JP 5598245 B2 JP5598245 B2 JP 5598245B2
Authority
JP
Japan
Prior art keywords
concentration
hcl
acid gas
control
bag filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010232342A
Other languages
Japanese (ja)
Other versions
JP2012086105A (en
Inventor
光博 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010232342A priority Critical patent/JP5598245B2/en
Priority to CN201110307903.0A priority patent/CN102451616B/en
Priority to TW100137175A priority patent/TWI450754B/en
Publication of JP2012086105A publication Critical patent/JP2012086105A/en
Application granted granted Critical
Publication of JP5598245B2 publication Critical patent/JP5598245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、都市ごみ廃棄物焼却炉、産業廃棄物焼却炉、発電ボイラ、炭化炉、民間工場等の燃焼施設において発生する有害な塩化水素や硫黄酸化物等の酸性ガスの処理方法に関する。詳しくは、酸性ガスを処理するアルカリ剤の添加量を効率的に制御する方法に関する。   The present invention relates to a method for treating acidic gases such as harmful hydrogen chloride and sulfur oxide generated in combustion facilities such as municipal waste waste incinerators, industrial waste incinerators, power generation boilers, carbonization furnaces, and private factories. Specifically, the present invention relates to a method for efficiently controlling the addition amount of an alkaline agent for treating acid gas.

有害な塩化水素や硫黄酸化物を含む排ガスは消石灰や重曹等のアルカリ剤で処理され、その後バグフィルター(BF)等の集塵機で除塵された後、煙突から排出される。一方、集塵機で集塵された飛灰は、有害なPb、Cd等の重金属類を含有しており、これら有害重金属を安定化処理した後、埋立処分されている。   Exhaust gas containing harmful hydrogen chloride and sulfur oxide is treated with an alkaline agent such as slaked lime or baking soda, and then removed by a dust collector such as a bag filter (BF), and then discharged from the chimney. On the other hand, the fly ash collected by the dust collector contains harmful heavy metals such as Pb and Cd, and is disposed of in landfill after stabilizing these harmful heavy metals.

酸性ガスを処理するアルカリ剤である5〜30μmに微粉加工された重曹は、消石灰に比べ反応性が高く、酸性ガスを安定的に処理できるとともに未反応分が少なく、埋立処分量を削減でき環境負荷低減に有効な手段である。また、重金属処理方法としてはジエチルジチオカルバミン酸塩等のキレートで不溶化処理する方法が一般的であり、短期的には重金属固定効果は高いが、最終処分場における酸性雨によるpH低下及びキレートの酸化自己分解により、鉛等の重金属が再溶出する問題が残る。一方、リン酸等のリン酸化合物による重金属固定は、無機鉱物であるヒドロキシアパタイト形態まで変化させる為、最終処分場における長期安定性に優れ、環境保護の観点から非常に価値の高い処理方法である。さらに、前記微粉重曹で処理した飛灰をリン酸等の重金属固定剤で処理する方法は、多くの環境負荷低減効果を持つ有効な手段である。   Sodium bicarbonate finely processed to 5 to 30 μm, which is an alkaline agent for treating acid gas, has higher reactivity than slaked lime, can stably treat acid gas, has less unreacted content, and can reduce the amount of landfill disposal. This is an effective means for reducing the load. In addition, heavy metals are generally treated by insolubilization with a chelate such as diethyldithiocarbamate, and the effect of fixing heavy metals is high in the short term. The problem of re-elution of heavy metals such as lead due to decomposition remains. On the other hand, heavy metal fixation with phosphoric acid compounds such as phosphoric acid is a highly valuable treatment method from the viewpoint of environmental protection, because it changes to the form of hydroxyapatite, which is an inorganic mineral, and has excellent long-term stability at the final disposal site. . Further, the method of treating fly ash treated with fine powdered sodium bicarbonate with a heavy metal fixing agent such as phosphoric acid is an effective means having many environmental load reducing effects.

ところで、塩化水素や硫黄酸化物等の酸性ガスを処理する消石灰や重曹等のアルカリ剤の添加量を制御することは、酸性ガス処理費用を削減できるだけでなく、アルカリ剤の未反応分を低減し、飛灰の埋立処分量を削減する効果が期待できる。   By the way, controlling the addition amount of alkaline agents such as slaked lime and baking soda that treat acidic gases such as hydrogen chloride and sulfur oxides not only reduces the cost of treating acidic gases, but also reduces the unreacted content of alkaline agents. The effect of reducing fly ash landfill disposal can be expected.

塩化水素や硫黄酸化物等の酸性ガスを処理するアルカリ剤の添加量は、一般的に、バグフィルターの後段に設置されたイオン電極式の塩化水素測定装置で測定された塩化水素濃度をもとにPID制御装置によりフィードバック制御されている。しかしながら、焼却施設等の燃焼施設においては通常入口の酸性ガス濃度を測定する装置は設置されておらず、入口の変動状況がわからない状態でPID制御のパラメーターを設定し制御出力を調整する。ところがPID制御装置はP、I、D、添加量(出力)下限、添加量(出力)上限の5つの設定項目があるとともに各項目の設定値が複合して制御出力値を決めることから適正な添加制御を検討するのに多大な時間を要する。このため、一般的にPID制御装置による設定は、制御目標値(SV)を超えた際に添加量が大幅に増加する制御を実施している施設が多い。   The amount of alkali agent added to treat acidic gases such as hydrogen chloride and sulfur oxide is generally based on the concentration of hydrogen chloride measured with an ion electrode type hydrogen chloride measuring device installed after the bag filter. The feedback control is performed by the PID control device. However, in a combustion facility such as an incineration facility, a device for measuring the concentration of acidic gas at the entrance is usually not installed, and PID control parameters are set and the control output is adjusted without knowing the state of fluctuation at the entrance. However, the PID control device has five setting items of P, I, D, addition amount (output) lower limit and addition amount (output) upper limit, and the setting value of each item is combined to determine the control output value. It takes a lot of time to study the addition control. For this reason, in general, the setting by the PID control apparatus has many facilities that perform control in which the amount of addition is greatly increased when the control target value (SV) is exceeded.

しかしながら、通常のPID制御装置の制御出力は、単一の上限しか設定できず、例えばHCl濃度の制御目標値(SV)を40ppmに設定した場合、40ppm以上の濃度で制御出力の単一の上限を限度としてアルカリ剤の添加をすることとなり、アルカリ剤を過剰添加する原因となる。また、上記フィードバック制御は、酸性ガス測定装置の計測遅れの影響を受ける。バグフィルター出口の塩化水素濃度は通常イオン電極法(例えば京都電子工業製HL−36)で測定され、硫黄酸化物濃度は赤外線吸収法(例えば島津製作所製NSA−3080)で測定されているが、試料排ガスのサンプリング時間、及び計測器の応答時間を含めると5〜10分の多大な計測遅れがある。本計測遅れは、アルカリ剤の添加ラグを引き起こし、酸性ガスの処理不良につながるとともにアルカリ剤の過剰添加を引き起こす原因となる。   However, the control output of a normal PID control device can only set a single upper limit. For example, when the control target value (SV) of the HCl concentration is set to 40 ppm, the single upper limit of the control output at a concentration of 40 ppm or more. As a result, the alkali agent is added to the limit, causing excessive addition of the alkali agent. The feedback control is affected by measurement delay of the acid gas measuring device. The hydrogen chloride concentration at the bag filter outlet is usually measured by an ion electrode method (for example, HL-36 manufactured by Kyoto Electronics Industry), and the sulfur oxide concentration is measured by an infrared absorption method (for example, NSA-3080 manufactured by Shimadzu Corporation). Including the sampling time of the sample exhaust gas and the response time of the measuring instrument, there is a great measurement delay of 5 to 10 minutes. This measurement delay causes an addition lag of the alkaline agent, leading to poor processing of the acid gas and causing excessive addition of the alkaline agent.

本課題を解決するため種々制御手法が検討されている。特許文献1においては通常のPID制御式にPを更に加える「P+PID制御」が提案されている。本提案は、通常のPID制御で困難な酸性ガスの突発的発生の対応を考えてのものである。また、特許文献2及び3においては、入口の酸性ガス濃度をもとにアルカリ剤の添加量を決めるフィードフォワード制御と、アルカリ剤が処理した後の酸性ガス濃度をもとにアルカリ剤の添加量を補うフィードバック制御と、を組み合わせる制御方式が提案されている。本制御方式はフィードバック制御の過剰添加を抑制する効果が見込まれ、酸性ガスの安定処理とアルカリ剤の過剰添加を削減する効果は得られるものと考える。   Various control methods have been studied in order to solve this problem. Patent Document 1 proposes “P + PID control” in which P is further added to a normal PID control expression. This proposal is intended to cope with the sudden generation of acidic gas, which is difficult with normal PID control. In Patent Documents 2 and 3, feedforward control for determining the addition amount of the alkaline agent based on the acidic gas concentration at the inlet, and the addition amount of the alkaline agent based on the acidic gas concentration after the alkaline agent has been processed. A control method that combines feedback control that compensates for this problem has been proposed. This control method is expected to have an effect of suppressing the excessive addition of feedback control, and an effect of reducing the acid gas stabilization treatment and the excessive addition of the alkaline agent is obtained.

特開2002−113327号公報JP 2002-113327 A 特開平10−165752号公報Japanese Patent Laid-Open No. 10-165552 特開2006−75758号公報JP 2006-75758 A

しかしながら、特許文献1においては、入口の突発的対応はある程度可能であるが、前記測定装置の計測遅れは加味されておらず、計測遅れによるアルカリ剤の添加ラグによる酸性ガスの処理不良には対応することができない。また、特許文献2及び3においては、焼却施設等の燃焼施設において、出口の酸性ガス濃度しか計測していない施設が多くを占めており、本制御方式を実施するためには、入口の酸性ガス濃度を計測する新たに高価な酸性ガス測定装置を導入する必要がある。   However, in Patent Document 1, it is possible to cope suddenly with the entrance to some extent, but the measurement delay of the measuring device is not taken into account, and it is possible to deal with the acid gas processing failure due to the addition lag of the alkaline agent due to the measurement delay. Can not do it. In Patent Documents 2 and 3, in the combustion facilities such as incineration facilities, most of the facilities measure only the acidic gas concentration at the outlet, and in order to implement this control method, the acidic gas at the inlet is used. It is necessary to introduce a new and expensive acid gas measuring device for measuring the concentration.

上記従来を勘案し、本発明は、新たな高価な酸性ガス測定装置を導入する必要のないフィードバック形式において、従来のフィードバック制御が抱える計測遅れによる酸性ガスの発生並びにアルカリ剤の過剰添加を抑制する酸性ガス処理方法を提供することを目的とする。   In consideration of the above-described conventional technology, the present invention suppresses generation of acidic gas and excessive addition of an alkaline agent due to measurement delays of conventional feedback control in a feedback format that does not require the introduction of a new and expensive acidic gas measuring device. An object is to provide an acid gas treatment method.

(1) 燃焼排ガスに含まれる酸性ガスにアルカリ剤を添加した後の工程に設置された酸性ガス測定装置の測定信号を基にアルカリ剤の添加量をフィードバック制御する酸性ガス処理方法において、少なくとも2つの酸性ガス濃度の傾きの範囲(例えば、後述する直近のHCl濃度の傾きの6秒平均が正の範囲及び負の範囲など)を設定する工程と、前記少なくとも2つの傾きの範囲毎に酸性ガス濃度の制御目標値(例えば、後述する実施例1における30ppm、40ppmなど)を設定する工程と、少なくとも前記測定信号及び前記制御目標値に基づいてアルカリ剤の添加量を示す制御出力値を算出する工程と、を有し、前記制御目標値を設定する工程において、前記酸性ガス濃度の傾きの範囲が大きい場合(例えば、後述する直近のHCl濃度の傾きの6秒平均が正の場合(酸性ガス増加傾向時))に設定する制御目標値は、前記酸性ガス濃度の傾きの範囲が小さい場合(例えば、後述する直近のHCl濃度の傾きの6秒平均が負の場合(酸性ガス減少傾向時))に設定する制御目標値より小さいことを特徴とする。   (1) In an acidic gas treatment method in which the addition amount of an alkaline agent is feedback controlled based on a measurement signal of an acidic gas measuring device installed in a process after adding the alkaline agent to the acidic gas contained in combustion exhaust gas, at least 2 Setting a range of slopes of two acidic gas concentrations (for example, a 6-second average of the latest HCl concentration slopes described later is a positive range and a negative range), and acidic gas for each of the at least two slope ranges A step of setting a concentration control target value (for example, 30 ppm, 40 ppm, etc. in Example 1 to be described later), and a control output value indicating the addition amount of the alkaline agent based on at least the measurement signal and the control target value are calculated. And the step of setting the control target value has a large slope of the acidic gas concentration (for example, the latest H described later) The control target value to be set when the 6-second average of the l-concentration slope is positive (when the acid gas tends to increase) is set when the range of the acid gas concentration slope is small (for example, the latest HCl concentration slope described later) This is characterized by being smaller than the control target value set when the 6-second average is negative (when acid gas is decreasing).

従来のPID制御では、例えば酸性ガス濃度の制御目標値(SV)を40ppmに設定した場合、40ppmに達してから制御出力が増加しアルカリ剤が添加され、添加されたアルカリ剤が酸性ガスと反応することで酸性ガス濃度が40ppm以下に達してから制御出力が減少する挙動となる。よって、酸性ガス濃度の増減の傾向が考慮されていなかった。   In the conventional PID control, for example, when the control target value (SV) of the acid gas concentration is set to 40 ppm, the control output increases after reaching 40 ppm, the alkali agent is added, and the added alkali agent reacts with the acid gas. As a result, the control output decreases after the acid gas concentration reaches 40 ppm or less. Therefore, the tendency of increase / decrease in acid gas concentration has not been considered.

これに対し、(1)によれば、酸性ガス増加傾向時の酸性ガス濃度制御目標値を、減少傾向時の酸性ガス濃度目標値より小さくしたので、酸性ガス増加傾向時のアルカリ剤添加量の制御出力値が、酸性ガス減少傾向時の制御出力値に比べ大きくなる。   On the other hand, according to (1), the acid gas concentration control target value when the acid gas is increasing tends to be smaller than the acid gas concentration target value when the acid gas is increasing. The control output value becomes larger than the control output value when acid gas is decreasing.

(2) (1)に記載の酸性ガス処理方法において、アルカリ剤の添加量を示す制御出力値の下限値(例えば、後述する図15、図17、図19のLO[制御出力下限](微粉重曹の最小添加量))と上限値(例えば、後述する図15、図17、図19のLO[制御出力上限](微粉重曹の最大添加量))との間に、前記酸性ガス濃度(例えば、後述する図15、図17、図19のBF出口HCl濃度)に対応して前記制御出力値の新たな上限値(例えば、後述する図15、図17、図19の制御出力添加量)を1つ以上設定する工程をさらに有することを特徴とする酸性ガスの処理方法。   (2) In the acidic gas treatment method according to (1), the lower limit value of the control output value indicating the addition amount of the alkaline agent (for example, LO [control output lower limit] (fine powder in FIGS. 15, 17, and 19 described later) Between the acid gas concentration (for example, the minimum addition amount of baking soda) and the upper limit value (for example, LO [control output upper limit] (maximum addition amount of fine baking soda) in FIGS. 15, 17, and 19 to be described later)). Corresponding to the BF outlet HCl concentration in FIGS. 15, 17, and 19 to be described later, a new upper limit value of the control output value (for example, the control output addition amount in FIGS. 15, 17, and 19 to be described later) is set. A method for treating acid gas, further comprising a step of setting one or more.

通常のPID制御装置は一つの制御出力上限しかなく、例えば酸性ガスの制御目標値(SV)が一定であると酸性ガス濃度の大きさにかかわらず、その上限値を限度としてアルカリ剤が添加されるため、過剰添加を引き起こす。これに対し、(2)によれば、現在の酸性ガス濃度に応じた制御出力の制限を加える(後述するステップ制御方式)ことにより、酸性ガス濃度の大きさに応じてアルカリ剤の適正な添加が可能となり、添加量の削減が可能となる。   A normal PID control device has only one control output upper limit. For example, if the control target value (SV) of the acid gas is constant, the alkaline agent is added up to the upper limit value regardless of the size of the acid gas concentration. Therefore, excessive addition is caused. On the other hand, according to (2), by adding a restriction on the control output according to the current acid gas concentration (step control method to be described later), an appropriate addition of an alkaline agent according to the size of the acid gas concentration Therefore, the amount of addition can be reduced.

(3) (1)または(2)に記載の酸性ガス処理方法において、前記酸性ガス測定装置がイオン電極法による塩化水素濃度測定装置であることを特徴とする。   (3) The acidic gas treatment method according to (1) or (2), wherein the acidic gas measuring device is a hydrogen chloride concentration measuring device by an ion electrode method.

(4) (1)ないし(3)に記載の酸性ガス処理方法において、前記酸性ガス測定装置が赤外線吸収法もしくは紫外線蛍光法による硫黄酸化物濃度測定装置であることを特徴とする酸性ガスの処理方法。   (4) The acid gas treatment method according to any one of (1) to (3), wherein the acid gas measurement device is a sulfur oxide concentration measurement device by an infrared absorption method or an ultraviolet fluorescence method. Method.

本発明に用いる酸性ガスの測定装置は計測方式によらず実施が可能である。塩化水素濃度は、イオン電極法、レーザーによる単一吸収線吸収分光法等で測定可能であり、硫黄酸化物は、赤外線吸収法、紫外線蛍光法等で測定が可能である。なお、本発明は、酸性ガスの計測遅れの改善を主な目的としていることから計測遅れが大きいイオン電極法による塩化水素測定装置や赤外線吸収法もしくは紫外線蛍光法による硫黄酸化物測定装置を用いてバグフィルター後段の酸性ガスを測定し、フィードバック制御を行っている施設において特に効果を発揮する。   The acidic gas measuring device used in the present invention can be implemented regardless of the measuring method. The hydrogen chloride concentration can be measured by an ion electrode method, single absorption line absorption spectroscopy using a laser, or the like, and sulfur oxide can be measured by an infrared absorption method, an ultraviolet fluorescence method, or the like. Since the main purpose of the present invention is to improve the measurement delay of acid gas, it uses a hydrogen chloride measurement device based on the ion electrode method or a sulfur oxide measurement device based on the infrared absorption method or ultraviolet fluorescence method, which has a large measurement delay. It is especially effective in facilities that measure the acidic gas after the bag filter and perform feedback control.

なお、燃焼施設のバグフィルター後段の塩化水素濃度を計測遅れのないレーザー形式で測定しフィードバック制御することによりフィードバック制御の過剰添加を改善できる可能性がある。しかしながら、レーザー方式は、JIS認定に技術的課題を残し、最終排ガスの酸性ガス濃度を判定する測定装置として普及が進んでいないのが従来である。   In addition, there is a possibility that the excessive addition of feedback control can be improved by measuring the hydrogen chloride concentration after the bag filter in the combustion facility in a laser form without measurement delay and performing feedback control. However, the laser method has not been widely used as a measuring device that leaves a technical problem in JIS certification and determines the concentration of acid gas in the final exhaust gas.

(5) (1)ないし(4)に記載の酸性ガス処理方法において、制御目標値を設定する酸性ガス濃度の傾きを直近7分以内の平均値とすることを特徴とする。   (5) The acidic gas treatment method according to any one of (1) to (4), wherein the slope of the acidic gas concentration for setting the control target value is an average value within the latest 7 minutes.

制御目標値を設定する酸性ガス濃度の傾きは、直近7分以内の平均値を用いるのが望ましい。7分以内の酸性ガスの傾きの平均値を用いた場合、適正な選択が可能となり、酸性ガスを安定して処理することができる。   It is desirable to use the average value within the last 7 minutes as the slope of the acidic gas concentration that sets the control target value. When the average value of the inclination of the acid gas within 7 minutes is used, an appropriate selection can be made and the acid gas can be treated stably.

(6) (1)ないし(5)に記載の酸性ガス処理方法において、塩化水素濃度から演算された制御出力と硫黄酸化物濃度から演算された制御出力の両出力を用いてアルカリ剤の添加量を制御することを特徴とする。   (6) In the acid gas treatment method according to any one of (1) to (5), the amount of alkali agent added using both the control output calculated from the hydrogen chloride concentration and the control output calculated from the sulfur oxide concentration It is characterized by controlling.

産業廃棄物焼却炉や民間工場の燃焼施設においては、塩化水素と硫黄酸化物が高濃度で発生することが多い。この際には、塩化水素と硫黄酸化物の両方が処理対象となり、バグフィルター後段に設けられた塩化水素濃度測定装置の塩化水素濃度をもとに求められた制御出力と硫黄酸化物濃度をもとに求められた制御出力を例えば加算することにより、塩化水素並びに硫黄酸化物の両酸性ガスを安定して処理することができる。   In combustion facilities of industrial waste incinerators and private factories, hydrogen chloride and sulfur oxides are often generated at high concentrations. In this case, both hydrogen chloride and sulfur oxide are treated, and the control output and sulfur oxide concentration obtained based on the hydrogen chloride concentration of the hydrogen chloride concentration measuring device provided at the back of the bag filter are also included. For example, both the hydrogen chloride and sulfur oxide acidic gases can be treated stably by adding the control outputs obtained in the above.

(7) (1)ないし(6)に記載の酸性ガス処理方法において、酸性ガスを処理するアルカリ剤は、平均粒子径が5〜30μmの微粉重曹であることを特徴とする酸性ガスの処理方法。   (7) In the acidic gas processing method as described in (1) thru | or (6), the alkaline agent which processes acidic gas is the fine powder baking soda whose average particle diameter is 5-30 micrometers, The processing method of acidic gas characterized by the above-mentioned. .

本発明に用いるアルカリ剤は、特に酸性ガスとの反応性が速い平均粒子径が5〜30μmに調整された微粉重曹であることが好ましい。微粉重曹の反応性が速いことから制御応答性が良く、本発明の性能を効果的に発揮することができる。ただし、本発明は制御手法によるものであり、消石灰でも適用が可能である。消石灰は、酸性ガスとの反応性が高い比表面積が例えば30m/g以上である高比表面積の消石灰である方が、本発明の性能を発揮できる。 The alkaline agent used in the present invention is preferably finely powdered baking soda having an average particle diameter that is particularly fast with an acid gas and adjusted to 5 to 30 μm. Since the reactivity of the fine powdered baking soda is fast, the control responsiveness is good and the performance of the present invention can be exhibited effectively. However, the present invention is based on a control method and can be applied to slaked lime. The slaked lime can exhibit the performance of the present invention when it is a high specific surface area slaked lime having a high specific surface area of 30 m 2 / g or more, which is highly reactive with acid gas.

本発明により、新たな高価な酸性ガス測定装置を導入する必要のないフィードバック形式において、従来のフィードバック制御が抱える酸性ガス測定装置の計測遅れによる酸性ガスの処理不良の改善並びにアルカリ剤の過剰添加を削減し、効率的なアルカリ剤の添加で安定した酸性ガスの処理が可能となる。   According to the present invention, in a feedback type that does not require the introduction of a new and expensive acid gas measuring device, it is possible to improve the processing failure of the acid gas due to the measurement delay of the acid gas measuring device that the conventional feedback control has and to add an excessive amount of alkaline agent. Reduced and efficient acid gas addition enables stable treatment of acidic gas.

焼却施設における排ガスであるHClに微粉重曹を添加する酸性ガス処理システム1の構成を表すブロック図である。It is a block diagram showing the structure of the acidic gas processing system 1 which adds fine powder baking soda to HCl which is waste gas in incineration facilities. シミュレーション反応系1の基本構成図である。1 is a basic configuration diagram of a simulation reaction system 1. FIG. 微粉重曹添加当量とHCl除去率の関係を示すグラフである。It is a graph which shows the relationship between fine powder baking soda addition equivalent and HCl removal rate. 実機のバグフィルター出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of bag filter exit HCl concentration of a real machine. シミュレーション反応系1のバグフィルター出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the bag filter exit HCl concentration of the simulation reaction system 1. シミュレーション反応系2の基本構成図である。2 is a basic configuration diagram of a simulation reaction system 2. FIG. 排ガス反応における微粉重曹添加当量とHCl除去率の関係を示すグラフである。It is a graph which shows the relationship between fine powder baking soda addition equivalent and HCl removal rate in exhaust gas reaction. バグフィルター上反応における微粉重曹添加当量とHCl除去率の関係を示すグラフである。It is a graph which shows the relationship between fine powder baking soda addition equivalent and HCl removal rate in reaction on a bag filter. シミュレーション反応系2のバグフィルター出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the bag filter exit HCl concentration of the simulation reaction system 2. 比較例及び実施例ごとのバグフィルター出口HCl濃度等を示す表である。It is a table | surface which shows the bag filter exit HCl density | concentration etc. for every comparative example and an Example. 入口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of inlet HCl concentration. 比較例1における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。5 is a graph showing the behavior of the amount of fine powdered sodium bicarbonate added and the outlet HCl concentration in Comparative Example 1. 実施例1における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。4 is a graph showing the behavior of the amount of fine powdered baking soda added and the concentration of outlet HCl in Example 1. 実施例2における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the fine sodium bicarbonate addition amount in Example 2, and an exit HCl concentration. 比較例2におけるステップ制御方式の制御設定の表である。10 is a table of control settings for a step control method in Comparative Example 2. 比較例2における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the addition amount of fine powder sodium bicarbonate and the outlet HCl concentration in Comparative Example 2. 実施例3におけるステップ制御方式の制御設定の表である。10 is a table of control settings for a step control method according to the third embodiment. 実施例3における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the fine sodium bicarbonate addition amount in Example 3, and an exit HCl concentration. 実施例4等におけるステップ制御方式の制御設定の表である。It is a table | surface of the control setting of the step control system in Example 4 grade | etc.,. 実施例4における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the fine sodium bicarbonate addition amount in Example 4, and an outlet HCl density | concentration. 実施例5における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the fine powder sodium bicarbonate addition amount in Example 5, and an exit HCl concentration. 実施例6における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the fine sodium bicarbonate addition amount and the outlet HCl concentration in Example 6. 実施例7における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of fine powder baking soda addition amount and exit HCl concentration in Example 7. 実施例8における微粉重曹添加量および出口HCl濃度の挙動を示すグラフである。It is a graph which shows the behavior of the fine sodium bicarbonate addition amount in Example 8, and the exit HCl concentration.

以下に実施形態を挙げて本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to embodiments, but the present invention is not limited thereto.

図1は、焼却施設における排ガスであるHClに微粉重曹を添加する酸性ガス処理システム1の構成を表すブロック図である。   FIG. 1 is a block diagram showing the configuration of an acidic gas treatment system 1 that adds fine powdered baking soda to HCl that is an exhaust gas in an incineration facility.

酸性ガス処理システム1は、制御装置11、微粉重曹添加装置12、バグフィルター13及びHCl測定装置14から構成されている。制御装置11は、HCl濃度測定信号等に基づいて微粉重曹添加量の制御出力値をPID制御方式により算出する。微粉重曹添加装置12は、制御装置11が算出した微粉重曹添加量の制御出力値に基づいて排ガス中のHClに微粉重曹を添加する。   The acid gas treatment system 1 includes a control device 11, a fine powder baking soda addition device 12, a bag filter 13, and an HCl measurement device 14. The control device 11 calculates the control output value of the fine powdered sodium bicarbonate addition amount by the PID control method based on the HCl concentration measurement signal or the like. The fine powdered sodium bicarbonate adding device 12 adds fine powdered sodium bicarbonate to HCl in the exhaust gas based on the control output value of the fine powdered sodium bicarbonate added amount calculated by the control device 11.

バグフィルター13は、排ガス中のHClと微粉重曹の反応後の粉塵を除去する。HCl測定装置14は、バグフィルター13上に蓄積した微粉重曹(排ガス中のHClとの反応によって残存した微粉重曹がバグフィルター13上に蓄積される)と排ガス反応後のHClとが反応した後のHCl濃度(後述するバグフィルター出口HCl濃度)を測定して、HCl濃度測定信号を制御装置11に送信する。   The bag filter 13 removes dust after the reaction between HCl in the exhaust gas and fine baking soda. The HCl measuring device 14 is configured so that fine baking soda accumulated on the bag filter 13 (fine baking soda remaining by reaction with HCl in the exhaust gas is accumulated on the bag filter 13) and HCl after the exhaust gas reaction have reacted. The HCl concentration (bag filter outlet HCl concentration described later) is measured, and an HCl concentration measurement signal is transmitted to the control device 11.

酸性ガス処理システム1は、このようなサイクルを繰り返してフィードバック制御を行うことで、制御装置11は、微粉重曹添加量の制御出力値を適切なものとする制御を行う。   The acidic gas treatment system 1 repeats such a cycle and performs feedback control, so that the control device 11 performs control to make the control output value of the added amount of fine powder sodium bicarbonate appropriate.

なお、HCl濃度測定装置14は、イオン電極式の塩化水素濃度測定装置である。   The HCl concentration measuring device 14 is an ion electrode type hydrogen chloride concentration measuring device.

また、図1に示すように、バグフィルター13上に蓄積した微粉重曹と排ガス反応後のHClとが反応した後のHCl濃度(後述するバグフィルター出口HCl濃度)を測定するようにHCl濃度測定装置14を設置するのが好ましい。これは、排ガス中のHClとの反応によって残存した微粉重曹がバグフィルター13上に蓄積され、この蓄積された微粉重曹が排ガス反応後のHClと反応するため、より正確にHCl濃度の測定ができるからである。   Further, as shown in FIG. 1, an HCl concentration measuring device is used to measure the HCl concentration (bag filter outlet HCl concentration described later) after the fine baking soda accumulated on the bag filter 13 reacts with HCl after the exhaust gas reaction. 14 is preferably installed. This is because fine powdered sodium bicarbonate remaining due to the reaction with HCl in the exhaust gas is accumulated on the bag filter 13, and this accumulated fine powdered sodium bicarbonate reacts with HCl after the exhaust gas reaction, so the HCl concentration can be measured more accurately. Because.

なお、HCl濃度測定装置14の設置については、上記に限定されず、排ガス中のHClに微粉重曹添加装置12により添加された微粉重曹を添加した後の工程であれば、いずれの工程であってもよい。   The installation of the HCl concentration measuring device 14 is not limited to the above, and any step can be used as long as it is a step after adding the fine powdered sodium bicarbonate added by the fine powdered sodium bicarbonate addition device 12 to the HCl in the exhaust gas. Also good.

さらに、制御装置11が行う制御について詳細に説明する。   Further, the control performed by the control device 11 will be described in detail.

制御装置11は、HCl濃度の傾き(濃度の時間変化率)が正の範囲と負の範囲の2つの範囲を設ける。そして、これら2つの範囲毎にHCl濃度の制御目標値を設定する。   The control device 11 provides two ranges, a positive range and a negative range, for the gradient of HCl concentration (concentration change rate with time). Then, a control target value of HCl concentration is set for each of these two ranges.

ここで、HCl濃度の制御目標値の設定は、HCl濃度の傾きが正の範囲に対して設ける制御目標値が、負の範囲に対する制御目標値よりも小さくなるようにする。このようにすることで、HCl濃度が増加傾向時の微粉重曹添加量の制御出力値を、HCl濃度が減少傾向時の制御出力値よりも大きくすることができる。   Here, the control target value for the HCl concentration is set such that the control target value provided for the positive range of the HCl concentration is smaller than the control target value for the negative range. By doing in this way, the control output value of the fine powder sodium bicarbonate addition amount when the HCl concentration tends to increase can be made larger than the control output value when the HCl concentration tends to decrease.

なお、HCl濃度の減少傾向時において、微粉重曹添加量の出力値を例えば0.7倍とする制御を併せて実行することにより微粉重曹添加量を直接小さくしてもよい。このようにすることで、HCl濃度の減少傾向時に添加量をはやく低下させることができ、過剰添加を低減することができる。   In addition, when the HCl concentration tends to decrease, the amount of fine powdered sodium bicarbonate added may be directly reduced by executing a control to increase the output value of the amount of fine powdered sodium bicarbonate to 0.7 times, for example. By doing in this way, when the HCl concentration tends to decrease, the amount added can be quickly reduced, and excessive addition can be reduced.

次に、制御装置11における制御方式を、PID制御方式に変わりステップ制御方式について説明する。   Next, the control method in the control device 11 is changed to the PID control method, and the step control method will be described.

ステップ方式は、HCl濃度に応じた制御出力を段階的に設定する制御方式である。具体的には、PID制御方式において設定されている制御出力値の上限値に加えて、制御出力値の新たな上限値をHCl濃度に対応して設定する。   The step method is a control method in which a control output corresponding to the HCl concentration is set stepwise. Specifically, in addition to the upper limit value of the control output value set in the PID control method, a new upper limit value of the control output value is set corresponding to the HCl concentration.

ここで、通常のPID制御では、微粉重曹の添加量の上限値は1つしかないため、HCl濃度にかかわらずその上限値に達する範囲内で微粉重曹を添加してしまうこととなり、過剰添加が引き起こされる。そこで、ステップ制御方式を採用することにより、現在のHCl濃度に応じた新たな制御出力上限値を加えることにより、酸性ガス濃度の大きさに応じてアルカリ剤の適正な添加が可能となり、添加量の過剰添加の抑制が可能となる。   Here, in normal PID control, since there is only one upper limit of the amount of fine powdered sodium bicarbonate added, fine powdered sodium bicarbonate is added within the range reaching the upper limit value regardless of the HCl concentration. Is caused. Therefore, by adopting a step control system, by adding a new control output upper limit value according to the current HCl concentration, it becomes possible to add an alkali agent appropriately according to the size of the acid gas concentration. It is possible to suppress excessive addition of.

ここで、HCl濃度に対応して新たな制御出力上限値が設定されるが、HCl濃度が高いほど新たな制御出力上限値も高く設定される。ただし、アルカリ剤の過剰添加の抑制のためには、PID制御方式において設定されている制御出力値の上限値(例えば、後述する図15、図17及び図19のLH[制御出力上限])より小さい値とすることが好ましい。   Here, a new control output upper limit value is set corresponding to the HCl concentration. However, the higher the HCl concentration, the higher the new control output upper limit value is set. However, in order to suppress the excessive addition of the alkaline agent, from the upper limit value of the control output value set in the PID control method (for example, LH [control output upper limit] in FIGS. 15, 17 and 19 described later). A small value is preferable.

新たな制御出力上限値の設定例としては、後述する図15、図17及び図19に記載のBF出口HCl濃度[演算入力値]に対応する制御出力添加量のように、HCl濃度が高いほど新たな制御出力上限値も高く設定することが好ましい。   As an example of setting a new control output upper limit value, the higher the HCl concentration, the higher the control output addition amount corresponding to the BF outlet HCl concentration [calculated input value] described in FIG. 15, FIG. 17 and FIG. It is preferable that the new control output upper limit value is also set high.

なお、本実施形態に用いる酸性ガス測定装置は、塩化水素(HCl)濃度測定装置(HCl測定装置14)に限られず、赤外線吸収法もしくは紫外線蛍光法による硫黄酸化物濃度測定装置であってもよい。   The acid gas measuring device used in the present embodiment is not limited to the hydrogen chloride (HCl) concentration measuring device (HCl measuring device 14), and may be a sulfur oxide concentration measuring device using an infrared absorption method or an ultraviolet fluorescence method. .

また、本実施形態では、HCl濃度の制御目標値を設定する酸性ガス濃度の傾きは、直近7分以内の平均値である。7分以内の酸性ガスの傾きの平均値を用いた場合、適正な選択が可能となり、酸性ガスを安定して処理することができるからである。   In this embodiment, the slope of the acidic gas concentration that sets the control target value for the HCl concentration is the average value within the last 7 minutes. This is because when an average value of the inclination of the acidic gas within 7 minutes is used, an appropriate selection can be made and the acidic gas can be treated stably.

また、本実施形態では、塩化水素から演算された制御出力のみを用いたが、塩化水素濃度から演算された制御出力と硫黄酸化物濃度から演算された制御出力の両出力を用いてアルカリ剤の添加量を制御してもよい。産業廃棄物焼却炉や民間工場の燃焼施設においては、塩化水素と硫黄酸化物が高濃度で発生することが多いからである。   In this embodiment, only the control output calculated from the hydrogen chloride is used. However, the alkaline agent using both the control output calculated from the hydrogen chloride concentration and the control output calculated from the sulfur oxide concentration is used. The amount added may be controlled. This is because hydrogen chloride and sulfur oxides are often generated at high concentrations in industrial waste incinerators and combustion facilities of private factories.

この場合には、塩化水素と硫黄酸化物の両方が処理対象となり、バグフィルター後段に設けられた塩化水素濃度測定装置の塩化水素濃度をもとに求められた制御出力と硫黄酸化物濃度をもとに求められた制御出力を例えば加算することにより、塩化水素並びに硫黄酸化物の両酸性ガスを安定して処理することができる。   In this case, both hydrogen chloride and sulfur oxide are treated, and the control output and sulfur oxide concentration obtained based on the hydrogen chloride concentration of the hydrogen chloride concentration measuring device provided at the rear stage of the bag filter are also included. For example, both the hydrogen chloride and sulfur oxide acidic gases can be treated stably by adding the control outputs obtained in the above.

本実施形態で用いる微粉重曹は、特に酸性ガスとの反応性が速い平均粒子径が5〜30μmに調整された微粉重曹であることが好ましい。微粉重曹の反応性が速いことから制御応答性が良いからである。   The fine baking soda used in the present embodiment is preferably fine baking soda having an average particle diameter of 5 to 30 μm, which is particularly fast in reactivity with acidic gas. This is because the control responsiveness is good because the reactivity of fine powdered baking soda is fast.

本実施形態では、アルカリ剤として微粉重曹を用いたが、本実施形態の効果を発揮するアルカリ剤としては特に制限はない。微粉重曹以外のアルカリ剤としては、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、セスキ炭酸ナトリウム、天然ソーダ、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、水酸化マグネシウム等が例示できる。また、アルカリ剤が粉体の場合、酸性ガスとの反応性が高い粒子径が30μm未満、特に5〜20μmの微粉のほうが好ましい。あらかじめ粒径を調整した剤を適用しても良いし、現地に粉砕設備を設け、粒径の粗いアルカリ剤を現地で粉砕しながら添加しても良い。   In the present embodiment, fine powder baking soda is used as the alkaline agent, but there is no particular limitation on the alkaline agent that exhibits the effect of the present embodiment. Examples of the alkali agent other than fine powdered sodium bicarbonate include sodium carbonate, potassium hydrogen carbonate, potassium carbonate, sodium sesquicarbonate, natural soda, sodium hydroxide, potassium hydroxide, magnesium oxide, magnesium hydroxide and the like. When the alkaline agent is a powder, a fine powder having a particle size with a high reactivity with an acid gas of less than 30 μm, particularly 5 to 20 μm is preferable. An agent having a particle size adjusted in advance may be applied, or a pulverization facility may be provided on site, and an alkaline agent having a coarse particle size may be added while being crushed on site.

また、入口の酸性ガスを測定している燃焼施設においては、フィードフォワード制御に加え、本制御方式でフィードバック制御するのも有効な手段である。更にバグフィルター後段に脱硝触媒設備が設置されている場合には200℃前後で適用する必要があることからバグフィルター温度を180〜230℃に調整することにより再加熱エネルギーの熱的ロスを削減でき、経済的な運用が可能となる。   In addition, in a combustion facility that measures acidic gas at the inlet, it is also an effective means to perform feedback control with this control method in addition to feedforward control. Furthermore, when a denitration catalyst facility is installed in the rear stage of the bag filter, it is necessary to apply it at around 200 ° C. Therefore, the thermal loss of reheating energy can be reduced by adjusting the bag filter temperature to 180 to 230 ° C. Economical operation is possible.

[試験例1]
実機検討結果からシミュレーション反応系を制作した。まず、第1のパターンとしてシミュレーション反応系1について説明する。なお、前記実機検討結果は、都市ごみ焼却施設において、平均粒子径8μmに調整した微粉重曹(栗田工業製ハイパーサーB−200)を従来制御であるPID装置を用いてイオン電極法で測定(京都電子工業製HL−36)された塩化水素濃度をもとにフィードバック制御したものである。
[Test Example 1]
A simulation reaction system was created from the results of actual machine studies. First, the simulation reaction system 1 will be described as a first pattern. In addition, the actual machine examination result measured in the municipal waste incineration facility by the ion electrode method using the PID apparatus which is a conventional control for fine powder baking soda (Hypercer B-200 manufactured by Kurita Kogyo Co., Ltd.) adjusted to an average particle size of 8 μm (Kyoto) This is feedback-controlled based on the concentration of hydrogen chloride produced by Denki Kogyo HL-36).

[シミュレーション反応系1]:排ガスにおける反応を想定
シミュレーション反応系1を検討するにあたり、重曹と塩化水素(HCl)の反応が排ガス中で瞬時におきる反応とし、シミュレーション反応系1を図2に示すように構成した。
[Simulation Reaction System 1]: Assuming Reaction in Exhaust Gas In examining the simulation reaction system 1, the reaction of sodium bicarbonate and hydrogen chloride (HCl) is an instantaneous reaction in the exhaust gas, and the simulation reaction system 1 is shown in FIG. Configured.

図2を参照して、シミュレーション反応系1の基本構成を説明する。
焼却施設における薬注制御は、バグフィルター出口に設置されたイオン電極式HCl濃度測定装置のHCl濃度(処理後)信号を元にPID等の制御式の演算により薬剤添加量(微粉重曹添加量(Ag))を決定し、決定した添加量の微粉重曹(酸性ガス処理剤)を排ガス(入口HCl濃度(Hi))に添加する。煙道に添加された微粉重曹は排ガス中のHCl等の酸性ガスと反応し、排ガス中のHClが除去される(HCl除去率(α)に基づいて除去される)。本反応後のバグフィルター出口HCl濃度(Ho)がイオン電極式HCl測定装置で測定されるが、施設による計測遅れ、排ガスサンプリングによる計測遅れ、及びイオン電極式の測定による計測遅れ(応答時間)があり、フィードバック特有の制御遅れが発生する。そこで、本シミュレーションにおけるHClの計測遅れ時間(T)を下記式(1)のように設定した。
The basic configuration of the simulation reaction system 1 will be described with reference to FIG.
The chemical injection control in the incineration facility is based on the calculation of the control expression such as PID based on the HCl concentration (after treatment) signal of the ion electrode type HCl concentration measuring device installed at the bag filter outlet (addition amount of fine sodium bicarbonate ( Ag)) is determined, and the determined addition amount of fine baking soda (acid gas treating agent) is added to the exhaust gas (inlet HCl concentration (Hi)). Fine powder baking soda added to the flue reacts with an acidic gas such as HCl in the exhaust gas to remove HCl in the exhaust gas (removed based on the HCl removal rate (α)). The bag filter outlet HCl concentration (Ho) after this reaction is measured with an ion electrode type HCl measuring device, but the measurement delay due to the facility, the measurement delay due to the exhaust gas sampling, and the measurement delay due to the ion electrode type measurement (response time) Yes, a feedback-specific control delay occurs. Therefore, the measurement delay time (T) of HCl in this simulation was set as the following formula (1).

T=T1+T2+T3 (1)

T:シミュレーション反応系の計測遅れ時間
T1:施設の遅れ時間(sec)[30sec設定]
T2:HCl測定装置の排ガスサンプリング時間(sec)[240sec設定]
T3:HCl測定装置の90%応答時間(sec)[180sec設定]
T = T1 + T2 + T3 (1)

T: Measurement delay time of simulation reaction system T1: Facility delay time (sec) [30 sec setting]
T2: Exhaust gas sampling time of the HCl measuring device (sec) [240 sec setting]
T3: 90% response time (sec) of HCl measuring device [180 sec setting]

なお、イオン電極式の90%応答時間(計測遅れ)には、HClガスの吸収液への拡散が影響するため、T3は下記式(2)とした。今回のシミュレーション検討において、本シミュレーションの計測遅れ時間は、施設の状況からT1=30秒,T2=240秒,T3=180秒と設定した。   In addition, since 90% response time (measurement delay) of the ion electrode type is affected by diffusion of HCl gas into the absorbing solution, T3 is set to the following formula (2). In this simulation examination, the measurement delay time of this simulation was set as T1 = 30 seconds, T2 = 240 seconds, and T3 = 180 seconds from the situation of the facility.

T3=2.3×τ (2)

=Yn−1+(X−Yn−1)÷τ×Ts (3)

τ:時定数(sec)
Ts:単位シミュレーション時間(=データサンプリング時間)(sec)[0.5sec設定]
:現在の測定装置入力HCl濃度(ppm)
:現在の測定装置出力HCl濃度(ppm)
n−1:前回[Ts(sec)前]の測定装置出力HCl濃度(ppm)
T3 = 2.3 × τ (2)

Y n = Y n-1 + (X n -Y n-1) ÷ τ × Ts (3)

τ: Time constant (sec)
Ts: Unit simulation time (= data sampling time) (sec) [0.5 sec setting]
X n : Current measuring device input HCl concentration (ppm)
Y n : Current measuring device output HCl concentration (ppm)
Y n-1 : HCl concentration (ppm) output from the measuring device of the previous [before Ts (sec)]

また、微粉重曹による入口HCl濃度(Hi)のHCl除去率(α)は、栗田工業製微粉重曹の適用知見から微粉重曹添加当量(J)とHCl除去率の関係(図3)から試算した。また、HCl濃度と微粉重曹の反応は瞬時とした。なお、微粉重曹添加当量(J)は、下記式(4)により算出される。   Further, the HCl removal rate (α) of the inlet HCl concentration (Hi) by fine powdered baking soda was calculated from the relationship between the fine powdered sodium bicarbonate addition equivalent (J) and the HCl removal rate (FIG. 3) from the application knowledge of fine powdered baking soda manufactured by Kurita Kogyo. The reaction between HCl concentration and fine powdered sodium bicarbonate was instantaneous. In addition, fine powder baking soda addition equivalent (J) is computed by following formula (4).

J=Ag÷{Hi÷0.614÷1000÷M1×M2×F÷1000} (4)

J:微粉重曹添加当量
Ag:微粉重曹添加量(kg/h)
Hi:入口HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm/h)[25,000Nm/hで設定]
J = Ag ÷ {Hi ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000} (4)

J: Fine powder baking soda addition equivalent Ag: Fine powder sodium bicarbonate addition amount (kg / h)
Hi: Inlet HCl concentration (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of exhaust gas (Nm 3 / h) [set by 25,000Nm 3 / h]

本理論に基づき微粉重曹を添加した実機と同一のPID制御条件「P(比例ゲイン)=10%,I=0.1秒,D=0.1秒,添加量出力下限5kg/h,添加量出力上限100kg/h」でシミュレーションした結果、シミュレーションと実機とでは出口HCl濃度(Ho)の挙動は異なった(図4、図5)。なお、出口HCl濃度(Ho)は、下記式(5)により算出される。   Based on this theory, the same PID control conditions as the actual machine to which fine baking soda was added “P (proportional gain) = 10%, I = 0.1 seconds, D = 0.1 seconds, additive output lower limit 5 kg / h, additive amount As a result of the simulation with the “output upper limit 100 kg / h”, the behavior of the outlet HCl concentration (Ho) was different between the simulation and the actual machine (FIGS. 4 and 5). The outlet HCl concentration (Ho) is calculated by the following equation (5).

Ho=Hi×(1−αg÷100) (5)

Hi:入口HCl濃度(ppm)
Ho:バグフィルター出口HCl濃度(ppm)
α:HCl除去率(%)[添加当量とHCl除去率の関係(図3)から設定]
Ho = Hi × (1−αg ÷ 100) (5)

Hi: Inlet HCl concentration (ppm)
Ho: HCl concentration at the outlet of the bag filter (ppm)
α: HCl removal rate (%) [set from the relationship between added equivalent and HCl removal rate (FIG. 3)]

微粉重曹を添加したHCl処理後のHCl濃度の推移を比較すると、本シミュレーション反応系1のHCl濃度の上昇速度は、実機に比べはやい。上記の計測遅れ時間等のパラメーターを変え検討したが、実機とシミュレーションの結果は一致しなかった。従って、実機における上記のHCl濃度上昇速度が本シミュレーション反応系1に比べて遅くなる原因は、バグフィルターで捕集された未反応の微粉重曹が、HClと反応していることと考えられる。   Comparing the transition of the HCl concentration after the HCl treatment with the addition of fine baking soda, the increase rate of the HCl concentration in the simulation reaction system 1 is faster than that in the actual machine. Although the above parameters such as measurement delay time were changed and examined, the results of the actual machine and the simulation did not match. Therefore, the reason why the HCl concentration increase rate in the actual machine is slower than that in the simulation reaction system 1 is considered that unreacted fine baking soda collected by the bag filter is reacting with HCl.

[試験例2]
次に、第2のパターンとしてシミュレーション反応系2について説明する。
[Test Example 2]
Next, the simulation reaction system 2 will be described as a second pattern.

[シミュレーション反応系2]:排ガスとバグフィルター上における複合反応
上記検討結果から、バグフィルター上の未反応の微粉重曹とHClとの反応を勘案し、前記排ガスにおける反応に加え、バグフィルター上での反応を図6に示すように構成した。また、バグフィルターにおける捕集物の滞留時間は、通常2時間程度である。従って、本シミュレーション反応系2においては、バグフィルター上の微粉重曹は、規定時間(約2時間で設定)で消滅する形とした。
[Simulation reaction system 2]: Combined reaction on exhaust gas and bag filter From the above examination results, taking into account the reaction between unreacted fine baking soda on the bag filter and HCl, in addition to the reaction in the exhaust gas, The reaction was configured as shown in FIG. Moreover, the residence time of the collected matter in the bag filter is usually about 2 hours. Therefore, in this simulation reaction system 2, the fine baking soda on the bag filter disappears in a specified time (set in about 2 hours).

図6を参照して、シミュレーション反応系2の基本構成を説明する。
まず、焼却施設における薬注制御では、バグフィルター出口に設置されたイオン電極式HCl濃度測定装置のHCl濃度(処理後)信号を元にPID等の制御式の演算により薬剤添加量(微粉重曹添加量(Ag))を決定し、決定した添加量の微粉重曹(酸性ガス処理剤)を排ガス(入口HCl濃度(Hi))に添加する。
The basic configuration of the simulation reaction system 2 will be described with reference to FIG.
First, in chemical injection control at an incineration facility, the amount of added chemical (addition of fine baking soda) is calculated by the control formula such as PID based on the HCl concentration (after treatment) signal of the ion electrode type HCl concentration measuring device installed at the bag filter outlet. Amount (Ag)) is determined, and the determined addition amount of fine baking soda (acid gas treating agent) is added to the exhaust gas (inlet HCl concentration (Hi)).

排ガスにおける反応後のHCl濃度(Hg)は、排ガス反応の微粉重曹添加当量(Jg)と排ガス反応HCl除去率(αg)により導かれる(下記式(6))。なお、排ガス反応の微粉重曹添加当量(Jg)は、下記式(7)により算出される。   The HCl concentration (Hg) after reaction in the exhaust gas is derived from the fine powdered sodium bicarbonate addition equivalent (Jg) of the exhaust gas reaction and the exhaust gas reaction HCl removal rate (αg) (the following formula (6)). In addition, the fine powder baking soda addition equivalent (Jg) of exhaust gas reaction is computed by following formula (7).

Hg=Hi×(1−αg÷100) (6)

Hi:入口HCl濃度(ppm)
Hg:排ガス反応後HCl濃度(ppm)
αg:排ガス反応におけるHCl除去率(%)
[排ガス反応微粉重曹添加当量とHCl除去率の関係(図7)から設定]
Hg = Hi × (1−αg ÷ 100) (6)

Hi: Inlet HCl concentration (ppm)
Hg: HCl concentration after exhaust gas reaction (ppm)
αg: HCl removal rate in exhaust gas reaction (%)
[Set from the relationship between the exhaust gas reaction fine powder baking soda addition equivalent and HCl removal rate (Fig. 7)]

Jg=Ag÷{Hi÷0.614÷1000÷M1×M2×F÷1000} (7)

Jg:排ガス反応微粉重曹添加当量
Ag:微粉重曹添加量(kg/h)
Hi:入口HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm/h)[25,000Nm/hで設定]
Jg = Ag ÷ {Hi ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000} (7)

Jg: Exhaust gas reaction fine powder baking soda addition equivalent Ag: Fine powder sodium bicarbonate addition amount (kg / h)
Hi: Inlet HCl concentration (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of exhaust gas (Nm 3 / h) [set by 25,000Nm 3 / h]

また、排ガス反応により残存した微粉重曹は、バグフィルター上に随時蓄積する。バグフィルター上に蓄積した微粉重曹は、排ガス反応後のHClと反応し、バグフィルター出口のHCl濃度(Ho)が決まる。この際、バグフィルター上蓄積微粉重曹量(As)は、排ガス反応で蓄積した微粉重曹からバグフィルター上でHClと反応した微粉重曹量を差し引いて求めた。   Moreover, the fine baking soda remaining by the exhaust gas reaction accumulates on the bag filter as needed. The fine baking soda accumulated on the bag filter reacts with HCl after the exhaust gas reaction, and the HCl concentration (Ho) at the bag filter outlet is determined. At this time, the amount of fine baking soda accumulated on the bag filter (As) was obtained by subtracting the amount of fine baking soda reacted with HCl on the bag filter from the fine baking soda accumulated in the exhaust gas reaction.

また、本バグフィルター上蓄積微粉重曹量(As)と排ガス反応後のHCl濃度(Hg)から試算されるバグフィルター上微粉重曹添加当量(Js)からバグフィルター上でのHCl除去率(αs)を決め、バグフィルター出口のHCl濃度(Ho)を決定した(下記式(8))。なお、バグフィルター上微粉重曹添加当量(Js)は、下記式(9)により算出される。また、HCl計測の遅れはシミュレーション反応系1と同様にT(=T1+T2+T3)とした。   Also, the HCl removal rate (αs) on the bag filter is calculated from the amount of fine powdered sodium bicarbonate added on the bag filter (Js) calculated from the amount of fine powdered sodium bicarbonate accumulated on the bag filter (As) and the HCl concentration after the exhaust gas reaction (Hg). The HCl concentration (Ho) at the bag filter outlet was determined (the following formula (8)). In addition, the fine powder baking soda addition equivalent (Js) on a bag filter is computed by following formula (9). The delay in HCl measurement was set to T (= T1 + T2 + T3) as in the simulation reaction system 1.

Ho=Hg×(1−αs÷100) (8)

Hg:排ガス反応後HCl濃度(ppm)
Ho:バグフィルター出口HCl濃度(ppm)
αs:バグフィルター上反応のHCl除去率(%)
[バグフィルター上微粉重曹添加当量とHCl除去率の関係(図8)から設定]
Ho = Hg × (1−αs ÷ 100) (8)

Hg: HCl concentration after exhaust gas reaction (ppm)
Ho: HCl concentration at the outlet of the bag filter (ppm)
αs: HCl removal rate of the reaction on the bag filter (%)
[Set from the relationship between the equivalent weight of fine powdered sodium bicarbonate on the bag filter and the HCl removal rate (Fig. 8)]

Js=As÷{Hg÷0.614÷1000÷M1×M2×F÷1000} (9)

Js:バグフィルター上微粉重曹添加当量
As:バグフィルター上微粉重曹量(kg/h)
Hg:排ガス反応後HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm/h)[25,000Nm/hで設定]
Js = As ÷ {Hg ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000} (9)

Js: Equivalent amount of fine baking soda on bag filter As: Amount of fine baking soda on bag filter (kg / h)
Hg: HCl concentration after exhaust gas reaction (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of exhaust gas (Nm 3 / h) [set by 25,000Nm 3 / h]

As=Z÷Ts×3600 (10)

:バグフィルター上微粉重曹蓄積量(kg)
Ts:単位シミュレーション時間(=データサンプリング時間)(sec)
[0.5sec設定]
As = Z n ÷ Ts × 3600 (10)

Z n : Accumulated amount of baking soda on bag filter (kg)
Ts: Unit simulation time (= data sampling time) (sec)
[0.5 sec setting]

=Zn’×(1−2.3÷T4×Ts) (11)

n’:未反応微粉重曹量(kg)
T4:バグフィルター上蓄積微粉重曹90%消滅時定数(sec)
[7,200sec設定]
Ts:単位シミュレーション時間(=データサンプリング時間)(sec)
[0.5sec設定]
Z n = Z n '× ( 1-2.3 ÷ T4 × Ts) (11)

Z n ′ : Unreacted fine baking soda amount (kg)
T4: Accumulated fine powder baking soda on bag filter 90% extinction time constant (sec)
[7,200sec setting]
Ts: Unit simulation time (= data sampling time) (sec)
[0.5 sec setting]

n’=(Ag÷3600×Ts−Rg)+(Zn−1−Rs) (12)

Ag:微粉重曹添加量(kg/h)
Ts:単位シミュレーション時間(=データサンプリング時間)(sec)
[0.5sec設定]
Rg:排ガス反応における重曹反応量(kg/h)
n−1:Ts(Sec)前のバグフィルター上微粉重曹蓄積量(kg)
Rs:バグフィルター上反応における重曹反応量(kg/h)
Z n ′ = (Ag ÷ 3600 × Ts−Rg) + (Z n−1 −Rs) (12)

Ag: Fine powder baking soda addition amount (kg / h)
Ts: Unit simulation time (= data sampling time) (sec)
[0.5 sec setting]
Rg: sodium bicarbonate reaction amount in exhaust gas reaction (kg / h)
Z n-1 : Accumulated amount of fine baking soda on the bag filter before Ts (Sec) (kg)
Rs: Amount of sodium bicarbonate reaction in bag filter reaction (kg / h)

Rg=(Hi÷0.614÷1000÷M1×M2×F÷1000)÷3600×Ts×αg÷100 (13)

Hi:入口HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm/h)[25,000Nm/hで設定]
αg:排ガス反応におけるHCl除去率(%)
Rg = (Hi ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000) ÷ 3600 × Ts × αg ÷ 100 (13)

Hi: Inlet HCl concentration (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of exhaust gas (Nm 3 / h) [set by 25,000Nm 3 / h]
αg: HCl removal rate in exhaust gas reaction (%)

Rs=(Hg÷0.614÷1000÷M1×M2×F÷1000)÷3600×Ts×αs÷100 (14)

Hg:排ガス反応後HCl濃度(ppm)
M1:HCl分子量[36.5で設定]
M2:重曹分子量[84で設定]
F:排ガス量(Nm/h)[25,000Nm/hで設定]
αs:バグフィルター上反応のHCl除去率(%)
Rs = (Hg ÷ 0.614 ÷ 1000 ÷ M1 × M2 × F ÷ 1000) ÷ 3600 × Ts × αs ÷ 100 (14)

Hg: HCl concentration after exhaust gas reaction (ppm)
M1: HCl molecular weight [set at 36.5]
M2: Sodium bicarbonate molecular weight [set at 84]
F: amount of exhaust gas (Nm 3 / h) [set by 25,000Nm 3 / h]
αs: HCl removal rate of the reaction on the bag filter (%)

本理論において、排ガスにおける反応とバグフィルター上における反応によるHCl除去率を変えシミュレーションを行った結果、排ガス反応とバグフィルター上反応は、図7、図8に示すHCl除去率[排ガス反応95%、バグフィルター上の反応75%]で実機におけるバグフィルター出口HCl濃度の挙動(図4)とほぼ一致した(図9)。これは、バグフィルター上の微粉重曹がHClと反応しているため、HCl上昇速度が緩和されていることを裏付ける結果である。また、本シミュレーションにおいてはバグフィルター上でのHClとの反応は排ガス反応に比べ劣る結果である。これは、バグフィルター上での反応は、処理すべきHCl濃度が排ガス反応に比べ低いためHCl除去率が低いことによると考えられる。また、バグフィルターに蓄積する微粉重曹は、排ガスの温度により熱分解し炭酸ナトリウムになっていると考えられる。炭酸ナトリウムのHCl除去率は、微粉重曹に比べ劣るためバグフィルター上での除去率が低下した可能性がある。   In this theory, as a result of performing a simulation by changing the HCl removal rate due to the reaction in the exhaust gas and the reaction on the bag filter, the exhaust gas reaction and the reaction on the bag filter are equivalent to the HCl removal rate [95% exhaust gas reaction, The reaction on the bag filter 75%] almost coincided with the behavior of the bag filter outlet HCl concentration in the actual machine (FIG. 4) (FIG. 9). This is a result confirming that the rate of HCl increase is mitigated because fine baking soda on the bag filter reacts with HCl. In this simulation, the reaction with HCl on the bag filter is inferior to the exhaust gas reaction. This is presumably because the reaction on the bag filter has a low HCl removal rate because the HCl concentration to be treated is lower than the exhaust gas reaction. Moreover, it is thought that the fine powder baking soda accumulate | stored in a bag filter is thermally decomposed into the sodium carbonate by the temperature of waste gas. The HCl removal rate of sodium carbonate is inferior to that of fine baking soda, so the removal rate on the bag filter may have decreased.

本検討結果から燃焼排ガスにおける微粉重曹とHClの反応は、排ガスにおける反応とバグフィルター上に蓄積した微粉重曹の反応が複合した反応系となっているものと考えられる。また、バグフィルター出口のHCl濃度の挙動が実機とほぼ一致したことから、本シミュレーション反応系2は、微粉重曹を用いた制御手法を評価するツールとして有効であることがわかる。   From the results of this study, it is considered that the reaction of fine baking soda and HCl in the combustion exhaust gas is a reaction system in which the reaction in the exhaust gas and the reaction of fine baking soda accumulated on the bag filter are combined. Further, since the behavior of the HCl concentration at the bag filter outlet almost coincided with the actual machine, it can be seen that the simulation reaction system 2 is effective as a tool for evaluating a control method using fine powdered sodium bicarbonate.

本シミュレーション反応系2において各種制御手法を検討した結果を以下に示す。
なお、以下の実施例1〜8において用いた微粉重曹の平均粒子径は5〜30μmである。また、実施例1〜8において用いたHCl測定装置14は、イオン電極法による塩化水素濃度測定装置である。
The results of examining various control methods in the simulation reaction system 2 are shown below.
In addition, the average particle diameter of the fine powder baking soda used in the following Examples 1-8 is 5-30 micrometers. Moreover, the HCl measuring device 14 used in Examples 1-8 is a hydrogen chloride concentration measuring device by the ion electrode method.

[比較例1]
図11に示す入口HCl濃度を用いて、シミュレーション反応系2においてPID制御方式「P(比例ゲイン)=10%,I=0.1秒,D=0.1秒,添加量出力下限5kg/h,添加量出力上限100kg/h」においてHCl処理の制御目標値(SV)を40ppmに設定し制御した。微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度(平均,1時間平均最大,瞬時最大)を図10に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図12に示す。
[Comparative Example 1]
In the simulation reaction system 2 using the inlet HCl concentration shown in FIG. 11, the PID control method “P (proportional gain) = 10%, I = 0.1 second, D = 0.1 second, additive output lower limit 5 kg / h , “Addition amount output upper limit 100 kg / h”, the control target value (SV) of HCl treatment was set to 40 ppm and controlled. FIG. 10 shows the amount of HCl added to the bag filter and the HCl concentration at the bag filter outlet (average, 1 hour average maximum, instantaneous maximum) after treatment with fine powdered sodium bicarbonate. In addition, FIG. 12 shows the behavior of the amount of fine powdered baking soda added and the bag filter outlet HCl concentration during this control.

[実施例1]
比較例1に示すPID同一設定条件において、直近のHCl濃度の傾きの6秒平均が正の場合、制御目標値(SV)を30ppmとし、直近のHCl濃度の傾きの6秒平均が負の場合、制御目標値(SV)を40ppmとして制御した。同様に微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度(平均,1時間平均最大,瞬時最大)を図10に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図13に示す。
[Example 1]
Under the same PID setting conditions shown in Comparative Example 1, when the 6-second average of the latest HCl concentration slope is positive, the control target value (SV) is 30 ppm, and the 6-second average of the latest HCl concentration slope is negative The control target value (SV) was controlled to 40 ppm. Similarly, FIG. 10 shows the added amount of fine baking soda and the HCl concentration (average, hourly average maximum, instantaneous maximum) at the bag filter outlet after treatment with fine powdered sodium bicarbonate. Further, FIG. 13 shows the behavior of the added amount of fine powdered sodium bicarbonate and the bag filter outlet HCl concentration during this control.

HCl濃度の傾きが正(増加傾向)の場合、制御目標値を低く設定したことにより、HCl濃度増加傾向時の微粉重曹添加量が多くなりHClのピークの発生を防止する効果があることがわかる。また、HCl平均並びに1時間平均最大も低下しており、狙いどおりHClを安定して処理する効果が得られた。ただし、従来制御(比較例1)に比べ微粉重曹の添加量は増加するため、本制御は、HCl濃度を例えば30ppm以下と安定して処理することが必要な施設において適した制御設定である。   When the slope of the HCl concentration is positive (increase tendency), it can be seen that by setting the control target value low, the amount of fine powdered sodium bicarbonate added when the HCl concentration tends to increase increases, and the effect of preventing the occurrence of HCl peaks can be seen. . Further, the HCl average and the one-hour average maximum were also lowered, and the effect of stably treating HCl as intended was obtained. However, since the addition amount of fine baking soda increases compared to the conventional control (Comparative Example 1), this control is a control setting suitable for facilities that require a stable treatment with an HCl concentration of, for example, 30 ppm or less.

[実施例2]
比較例1に示すPID同一設定条件において、直近のHCl濃度の傾きの6秒平均が正の場合、制御目標値(SV)を30ppmとし、直近のHCl濃度の傾きの6秒平均が負の場合、制御目標値(SV)を50ppmとして制御した。同様に微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度(平均,1時間平均最大,瞬時最大)を図10に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図14に示す。
[Example 2]
Under the same PID setting conditions shown in Comparative Example 1, when the 6-second average of the latest HCl concentration slope is positive, the control target value (SV) is 30 ppm, and the 6-second average of the latest HCl concentration slope is negative The control target value (SV) was controlled to 50 ppm. Similarly, FIG. 10 shows the added amount of fine baking soda and the HCl concentration (average, hourly average maximum, instantaneous maximum) at the bag filter outlet after treatment with fine powdered sodium bicarbonate. Further, FIG. 14 shows the behavior of the amount of fine baking soda added and the bag filter outlet HCl concentration during this control.

HCl濃度の傾きが正(増加傾向)の場合、実施例1と同様にHClピークの発生を防止する効果が得られるとともにHClも従来制御(比較例1)に比べ安定して処理することができた。また、HCl濃度の傾きが負(減少傾向)の場合、実施例1に比べて制御目標値(SV)を大きくしたので、微粉重曹添加量が少なくなり添加がはやめに終了し、微粉重曹の添加量は実施例1に比べて低下した。ただし、従来制御(比較例1)に比べ添加量は増加していることから、本制御は、HCl濃度を例えば30ppm以下と安定して処理することが必要な施設において適した制御設定である。   When the slope of the HCl concentration is positive (increase tendency), the effect of preventing the occurrence of the HCl peak can be obtained as in the case of Example 1, and HCl can be processed more stably than in the conventional control (Comparative Example 1). It was. Further, when the gradient of HCl concentration is negative (decreasing tendency), the control target value (SV) is increased as compared with Example 1, so that the addition amount of fine baking soda is reduced and the addition is finished, and the addition of fine baking soda is added. The amount was reduced compared to Example 1. However, since the addition amount is increased as compared with the conventional control (Comparative Example 1), this control is a control setting suitable for facilities that need to stably treat the HCl concentration at, for example, 30 ppm or less.

以下、比較例2及び実施例3〜8について説明する。比較例2及び実施例3〜8ではPID制御方式に代わりステップ制御方式による制御を行う。   Hereinafter, Comparative Example 2 and Examples 3 to 8 will be described. In Comparative Example 2 and Examples 3 to 8, control by the step control method is performed instead of the PID control method.

ここで、ステップ制御方式の概要を説明する。ステップ制御方式はPID制御方式と異なり、出口のHCl濃度に応じて出力を段階的に規定する制御方式とした。まず、比較例2(図15)で説明するとHCl濃度がSV制御目標値[制御出力開始濃度(出力下限以上)]〜SM1間は制御出力をLOとLM1間で段階的に出力する。HCl濃度がSM1〜SM2間ではLM2で設定した制御出力を出力し、SM2以上ではLH(制御出力上限)を出力する形式とした。なお、通常のPID制御式では出力制限がなく、LOとLHの設定だけである。また、HCl傾きによる制御演算で用いるHCl濃度と制御出力を決めるテーブルの補正はSVA1とSVB1で行い、HCl傾きが正の時は演算で用いるHCl濃度からSVA1を引き、HCl傾きが負の時は演算で用いるHCl濃度にSVB1を足した。これにより同一のHCl濃度を入力した際に演算される制御出力が、HCl傾きの値が大きい場合(酸性ガス濃度が増加傾向)の制御出力値がHCl傾きの値が小さい場合の制御出力値に比べ大きくなる形式とした。   Here, an outline of the step control method will be described. Unlike the PID control method, the step control method is a control method that regulates the output stepwise according to the HCl concentration at the outlet. First, in Comparative Example 2 (FIG. 15), when the HCl concentration is between the SV control target value [control output start concentration (output lower limit or higher)] and SM1, the control output is output stepwise between LO and LM1. A control output set by LM2 is output when the HCl concentration is between SM1 and SM2, and LH (control output upper limit) is output when SM2 is higher than SM2. Note that there is no output limitation in the normal PID control expression, and only LO and LH settings are set. Further, correction of the table for determining the HCl concentration and control output used in the control calculation by the HCl gradient is performed by SVA1 and SVB1, and when the HCl gradient is positive, SVA1 is subtracted from the HCl concentration used in the calculation, and when the HCl gradient is negative. SVB1 was added to the HCl concentration used in the calculation. As a result, the control output calculated when the same HCl concentration is input is the control output value when the HCl slope value is large (the acid gas concentration tends to increase), and the control output value when the HCl slope value is small. Compared to a larger format.

[比較例2]
図11に示す入口HCl濃度を用いて、シミュレーション反応系2においてステップ制御方式において制御目標値(本方式ではアルカリ剤の制御出力が出力下限以上に添加される濃度をSVと規定する)を40ppmに設定し制御した。微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度(平均,1時間平均最大,瞬時最大)を図10に示す。また、バグフィルター出口HCl濃度に応じた微粉重曹の制御出力添加量を図15に示す。さらに、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図16に示す。
[Comparative Example 2]
Using the inlet HCl concentration shown in FIG. 11, the control target value (in this method, the concentration at which the control output of the alkaline agent is added to the output lower limit or more is defined as SV) in the simulation reaction system 2 is 40 ppm. Set and controlled. FIG. 10 shows the amount of HCl added to the bag filter and the HCl concentration at the bag filter outlet (average, 1 hour average maximum, instantaneous maximum) after treatment with fine powdered sodium bicarbonate. Moreover, the control output addition amount of fine baking soda according to bag filter exit HCl concentration is shown in FIG. Furthermore, FIG. 16 shows the behavior of the amount of fine powder baking soda added and the bag filter outlet HCl concentration during this control.

本制御方式においては、制御出力の下限と上限の間にHCl濃度範囲により制御出力に制限を加えたことから、段階的にアルカリ剤が添加することができている。これより、アルカリ剤の過剰添加が防止され、微粉重曹の添加量は大幅に低下した。しかしながら、処理すべきHClの処理レベルは、従来制御(比較例1)に比べ大幅に悪化した。   In this control method, since the control output is limited by the HCl concentration range between the lower limit and the upper limit of the control output, the alkaline agent can be added step by step. From this, the excessive addition of the alkaline agent was prevented, and the addition amount of fine powdered sodium bicarbonate was greatly reduced. However, the treatment level of HCl to be treated was greatly deteriorated compared to the conventional control (Comparative Example 1).

[実施例3]
比較例2と同一のステップ制御方式において、直近のHCl濃度の傾きの6秒平均が正の場合、制御目標値(SV)を30ppmとし、直近のHCl濃度の傾きの6秒平均が負の場合、制御目標値(SV)を40ppmとして制御した。同様に微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度(平均,1時間平均最大,瞬時最大)を図10に示す。また、バグフィルター出口HCl濃度に応じた微粉重曹の制御出力添加量を図17に示す。さらに、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図18に示す。
[Example 3]
In the same step control method as in Comparative Example 2, when the 6-second average of the latest HCl concentration slope is positive, the control target value (SV) is 30 ppm, and the 6-second average of the latest HCl concentration slope is negative. The control target value (SV) was controlled to 40 ppm. Similarly, FIG. 10 shows the added amount of fine baking soda and the HCl concentration (average, hourly average maximum, instantaneous maximum) at the bag filter outlet after treatment with fine powdered sodium bicarbonate. Moreover, the control output addition amount of fine baking soda according to the bag filter exit HCl concentration is shown in FIG. Further, FIG. 18 shows the behavior of the added amount of fine baking soda and the bag filter outlet HCl concentration during this control.

本制御方式においては、比較例2と同様、段階的にアルカリ剤が添加され、従来制御(比較例1)に比べ微粉重曹添加量を削減する効果が得られた。また、HClが増加傾向時は、計測遅れを考慮して微粉重曹をはやく添加したことにより、安定してHClを処理する効果が得られた。本制御手法は、従来制御(比較例1)に比べHClの処理レベルが向上するとともに添加量削減効果が得られており、非常に有効な手法である。   In this control method, as in Comparative Example 2, an alkali agent was added stepwise, and the effect of reducing the amount of fine powdered sodium bicarbonate added compared to the conventional control (Comparative Example 1) was obtained. Moreover, when HCl was increasing, the effect of stably treating HCl was obtained by adding fine powdered sodium bicarbonate quickly in consideration of measurement delay. This control method is a very effective method because the treatment level of HCl is improved and the additive amount reduction effect is obtained as compared with the conventional control (Comparative Example 1).

なお、今回バグフィルター出口HCl濃度の測定値が40ppm〜50ppmの間はHCl濃度に応じた添加量を設定し制御したが、本範囲間をPIDにより制御しても制御出力の下限と上限の間にHCl濃度が50ppm以下では制御出力を50kg/h以下、50ppm〜60ppm間では制御出力を70kg/h以下と制限を加えていることから、同等のHCl処理効果と添加量削減効果が得られるものと考えられた。   In addition, this time, when the measured value of the HCl concentration at the bag filter was between 40 ppm and 50 ppm, the addition amount according to the HCl concentration was set and controlled, but even if this range was controlled by PID, it was between the lower limit and the upper limit of the control output. In addition, the control output is 50 kg / h or less when the HCl concentration is 50 ppm or less, and the control output is 70 kg / h or less between 50 ppm and 60 ppm, so that the same HCl treatment effect and addition amount reduction effect can be obtained. It was considered.

[実施例4]
比較例2と同一のステップ制御方式において、直近のHCl濃度の傾きの6秒平均が正の場合、制御目標値(SV)を30ppmとし、直近のHCl濃度の傾きの6秒平均が負の場合、制御目標値(SV)を50ppmとして制御した。同様に微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度(平均,1時間平均最大,瞬時最大)を図10に示す。また、バグフィルター出口HCl濃度に応じた微粉重曹の制御出力添加量を図19に示す。さらに、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図20に示す。
[Example 4]
In the same step control method as in Comparative Example 2, when the 6-second average of the latest HCl concentration slope is positive, the control target value (SV) is 30 ppm, and the 6-second average of the latest HCl concentration slope is negative. The control target value (SV) was controlled to 50 ppm. Similarly, FIG. 10 shows the added amount of fine baking soda and the HCl concentration (average, hourly average maximum, instantaneous maximum) at the bag filter outlet after treatment with fine powdered sodium bicarbonate. Moreover, the control output addition amount of the fine baking soda according to bag filter exit HCl concentration is shown in FIG. Further, FIG. 20 shows the behavior of the added amount of fine baking soda and the bag filter outlet HCl concentration during this control.

本制御方式においては、比較例2と同様、段階的に微粉重曹が添加されるとともにHClが減少傾向時は実施例3に比べて制御目標値(SV)を大きくしたので、微粉重曹添加量が少なくなり添加がはやめに終了し、従来制御(比較例1)に比べ添加量を削減する効果が得られた。また、添加量を削減できたにもかかわらずHClの処理レベルも従来制御(比較例1)と同等レベルの処理が可能であった。本制御方式も、従来制御とほぼ同等のHCl処理を行えるとともに添加量を削減する効果が得られており非常に有用な制御手法と考えられた。   In this control method, as in Comparative Example 2, fine powdered baking soda was added step by step and the control target value (SV) was increased compared to Example 3 when HCl was decreasing. The addition was completed, and the effect of reducing the amount added was obtained compared to the conventional control (Comparative Example 1). In addition, despite the fact that the addition amount could be reduced, the treatment level of HCl could be the same level as the conventional control (Comparative Example 1). This control method was also considered to be a very useful control method because it was able to perform the same HCl treatment as the conventional control and had the effect of reducing the addition amount.

[実施例5〜8]
実施例4と同一の制御条件で制御演算式を選択する直近のHCl濃度の傾きの適正な平均時間を検討するため、本HCl濃度の傾き平均時間を変えて検討を行った。同様に微粉重曹添加量と微粉重曹で処理した後のバグフィルター出口HCl濃度(平均,1時間平均最大,瞬時最大)を図10に示す。また、本制御時の微粉重曹添加量とバグフィルター出口HCl濃度の挙動を図21〜図24に示す。
[Examples 5 to 8]
In order to examine the appropriate average time of the latest gradient of HCl concentration for selecting the control arithmetic expression under the same control conditions as in Example 4, the gradient average time of this HCl concentration was changed and examined. Similarly, FIG. 10 shows the added amount of fine baking soda and the HCl concentration (average, hourly average maximum, instantaneous maximum) at the bag filter outlet after treatment with fine powdered sodium bicarbonate. In addition, FIGS. 21 to 24 show the behavior of the amount of fine powdered sodium bicarbonate added and the bag filter outlet HCl concentration during this control.

本検討の結果、制御式を選択するHCl濃度の傾きの平均時間を10分にした際に大きなHClピークが発生した(実施例8)。これは、傾きの平均時間を長くとることにより微粉重曹を添加するタイミングがずれていることを示しており、7分超に設定した場合、本制御に不具合を生じることを示す。一方、本平均時間が7分以下の際には異常なHClの発生は見られず、適正なHCl傾きの平均時間は7分以下と考えられた(実施例5〜7)。   As a result of this study, a large HCl peak was generated when the average time of the gradient of HCl concentration for selecting the control formula was 10 minutes (Example 8). This indicates that the timing of adding the fine powdered baking soda is deviated by increasing the average time of the inclination, and indicates that this control will fail when set to more than 7 minutes. On the other hand, when the average time was 7 minutes or less, abnormal HCl generation was not observed, and the average time of proper HCl inclination was considered to be 7 minutes or less (Examples 5 to 7).

Claims (7)

燃焼排ガスに含まれる酸性ガスにアルカリ剤を添加した後の工程に設置された酸性ガス測定装置の測定信号を基にアルカリ剤の添加量をフィードバック制御する酸性ガス処理方法において、
性ガス濃度の時間に対する傾きの範囲を少なくとも2つ設定する工程と、
前記少なくとも2つの傾きの範囲毎に酸性ガス濃度の制御目標値を設定する工程と、
少なくとも前記測定信号及び前記制御目標値に基づいてアルカリ剤の添加量を示す制御出力値を算出する工程と、を有し、
前記制御目標値を設定する工程において、前記少なくとも2つの傾きの範囲のうち、前記酸性ガス濃度の傾きが大きい場合の範囲に設定する制御目標値は、前記酸性ガス濃度の傾きが小さい場合の範囲に設定する制御目標値より小さいことを特徴とする酸性ガスの処理方法。
In the acid gas processing method for feedback control of the addition amount of the alkali agent based on the measurement signal of the acid gas measuring device installed in the process after adding the alkali agent to the acid gas contained in the combustion exhaust gas,
A step of at least two set a range of inclination with respect to time of the acid gas concentration,
Setting a control target value of the acid gas concentration for each of the at least two slope ranges;
Calculating a control output value indicating an addition amount of the alkaline agent based on at least the measurement signal and the control target value,
In the step of setting the control target value, the out of range of at least two slopes, the control target value to be set in a range where inclination Kiga larger of the acid gas concentration, the acid gas when the concentration of inclination outs small An acid gas processing method characterized by being smaller than a control target value set in a range of.
請求項1に記載の酸性ガス処理方法において、
アルカリ剤の添加量を示す制御出力値の下限値と上限値との間に、前記酸性ガス濃度に対応して前記制御出力値の新たな上限値を1つ以上設定する工程をさらに有することを特徴とする酸性ガスの処理方法。
The acid gas treatment method according to claim 1,
The method further includes the step of setting one or more new upper limit values of the control output value corresponding to the acid gas concentration between the lower limit value and the upper limit value of the control output value indicating the addition amount of the alkaline agent. A method for treating acidic gas, which is characterized.
請求項1または請求項2に記載の酸性ガス処理方法において、
前記酸性ガス測定装置がイオン電極法による塩化水素濃度測定装置であることを特徴とする酸性ガスの処理方法。
In the acidic gas processing method of Claim 1 or Claim 2,
The acid gas processing method, wherein the acid gas measuring device is a hydrogen chloride concentration measuring device by an ion electrode method.
請求項1ないし請求項3に記載の酸性ガス処理方法において、
前記酸性ガス測定装置が赤外線吸収法もしくは紫外線蛍光法による硫黄酸化物濃度測定装置であることを特徴とする酸性ガスの処理方法。
In the acid gas processing method of Claim 1 thru | or 3,
The acid gas processing method, wherein the acid gas measuring device is a sulfur oxide concentration measuring device by an infrared absorption method or an ultraviolet fluorescence method.
請求項1ないし請求項4に記載の酸性ガス処理方法において、
前記制御目標値を設定する酸性ガス濃度の傾きを直近7分以内の平均値とすることを特徴とする酸性ガスの処理方法。
The acid gas treatment method according to claim 1, wherein:
A method for treating acidic gas, wherein the slope of the acidic gas concentration for setting the control target value is an average value within the last 7 minutes.
請求項1ないし請求項5に記載の酸性ガス処理方法において、
塩化水素濃度から演算された制御出力と硫黄酸化物濃度から演算された制御出力の両出力を用いてアルカリ剤の添加量を制御することを特徴とする酸性ガスの処理方法。
In the acid gas processing method according to any one of claims 1 to 5,
A method for treating an acidic gas, characterized by controlling an addition amount of an alkali agent using both a control output calculated from a hydrogen chloride concentration and a control output calculated from a sulfur oxide concentration.
請求項1ないし請求項6に記載の酸性ガス処理方法において、
酸性ガスを処理するアルカリ剤は、平均粒子径が5〜30μmの微粉重曹であることを特徴とする酸性ガスの処理方法。
In the acidic gas processing method of Claim 1 thru | or 6,
The method for treating acidic gas, wherein the alkaline agent for treating acidic gas is fine powdered baking soda having an average particle diameter of 5 to 30 μm.
JP2010232342A 2010-10-15 2010-10-15 Acid gas treatment method Active JP5598245B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010232342A JP5598245B2 (en) 2010-10-15 2010-10-15 Acid gas treatment method
CN201110307903.0A CN102451616B (en) 2010-10-15 2011-10-12 The processing method of sour gas
TW100137175A TWI450754B (en) 2010-10-15 2011-10-13 Method for treating acidic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010232342A JP5598245B2 (en) 2010-10-15 2010-10-15 Acid gas treatment method

Publications (2)

Publication Number Publication Date
JP2012086105A JP2012086105A (en) 2012-05-10
JP5598245B2 true JP5598245B2 (en) 2014-10-01

Family

ID=46035546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010232342A Active JP5598245B2 (en) 2010-10-15 2010-10-15 Acid gas treatment method

Country Status (3)

Country Link
JP (1) JP5598245B2 (en)
CN (1) CN102451616B (en)
TW (1) TWI450754B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834469B2 (en) 2011-04-27 2015-12-24 栗田工業株式会社 Acid gas treatment method
JP6020085B2 (en) * 2012-11-20 2016-11-02 栗田工業株式会社 Acid gas stabilization method and combustion exhaust gas treatment facility
JP6316573B2 (en) * 2013-11-21 2018-04-25 アズビル株式会社 Particle detection apparatus and particle detection method
JP6316574B2 (en) * 2013-11-21 2018-04-25 アズビル株式会社 Particle detection apparatus and particle detection method
JP6117093B2 (en) 2013-12-20 2017-04-19 アズビル株式会社 Particle detection apparatus and particle detection method
JP6318026B2 (en) 2014-06-26 2018-04-25 アズビル株式会社 Particle detection apparatus and particle detection method
JP6420976B2 (en) 2014-06-26 2018-11-07 アズビル株式会社 Particle detection apparatus and particle detection method
JP6498626B2 (en) * 2016-03-28 2019-04-10 Jx金属株式会社 Desulfurization agent addition control method
JP6939677B2 (en) * 2018-03-28 2021-09-22 栗田工業株式会社 Method of controlling the amount of drug added

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256713A (en) * 1979-08-30 1981-03-17 Uop Inc. Flue gas treatment with intermittent addition of alkaline reagent to scrubbing liquor
JPH084709B2 (en) * 1986-04-23 1996-01-24 バブコツク日立株式会社 Wet Flue Gas Desulfurization Controller
JP3272565B2 (en) * 1995-04-21 2002-04-08 三菱重工業株式会社 Flue gas treatment equipment
JP3709073B2 (en) * 1998-05-26 2005-10-19 バブコック日立株式会社 Method and apparatus for controlling ammonia injection amount of denitration apparatus
JP3788038B2 (en) * 1998-06-18 2006-06-21 石川島播磨重工業株式会社 Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus
JP4821102B2 (en) * 2004-09-10 2011-11-24 Jfeエンジニアリング株式会社 Desalination control device and desalination control method
JP2007237019A (en) * 2006-03-06 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus
JP5338421B2 (en) * 2009-03-24 2013-11-13 栗田工業株式会社 Combustion exhaust gas treatment method and apparatus

Also Published As

Publication number Publication date
CN102451616A (en) 2012-05-16
TW201223623A (en) 2012-06-16
JP2012086105A (en) 2012-05-10
CN102451616B (en) 2016-05-11
TWI450754B (en) 2014-09-01

Similar Documents

Publication Publication Date Title
JP5598245B2 (en) Acid gas treatment method
KR101528743B1 (en) Method for Treating Acidic Gas
JP5834469B2 (en) Acid gas treatment method
Sliger et al. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species
JP6020085B2 (en) Acid gas stabilization method and combustion exhaust gas treatment facility
CN104815541B (en) Method and system for going the removal of mercury from flue gas
JP2010075897A (en) Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system
JP5677787B2 (en) Denitration control device and denitration control method
KR101640372B1 (en) Method for stabilizing acid gas and combustion effluent gas treating apparatus
WO2013136420A1 (en) Method for treating acidic gas
JP2014195790A (en) Exhaust gas treatment method
JP2010127598A (en) Treated object combustion system and method of controlling concentration of nitrogen oxide in exhaust gas
JP2007260553A (en) Treatment method of exhaust gas and fly ash of incineration plant
JP4284251B2 (en) Corrosion control method for waste power generation boiler
WO2021124592A1 (en) Flue gas treatment device
JP2010115588A (en) Melting treatment method of incineration ash and melting treatment equipment
Liu et al. Continuous Generation of HgCl2 by Dielectric Barrier Discharge Nonthermal Plasma. Part II: Influences of the Cl Source
Takaoka et al. Simultaneous control of polychlorinated dibenzo-p-dioxins/dibenzofurans, polychlorinated biphenyls, and nitrogen oxide in flue gas using urea
JP2015085258A (en) Insolubilization method of heavy metal in alkali fly ash
JP2008128539A (en) Combustion device using organic material containing chromium as fuel and combustion method for organic material fuel containing chromium using the same
JP2006272169A (en) Simultaneous treating agent and treating method of dioxins and heavy metals
JP2019171290A (en) Method for controlling addition amount of chemical agent
JP2015085259A (en) Insolubilization method of heavy metal in alkali fly ash and chemical used in the method
CN113958959A (en) Method for controlling dioxin emission in flying ash plasma melting process
JP2008249199A (en) Plastic-containing waste processing device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5598245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150