TW201242657A - Treatment method for acidic gas - Google Patents
Treatment method for acidic gas Download PDFInfo
- Publication number
- TW201242657A TW201242657A TW101114771A TW101114771A TW201242657A TW 201242657 A TW201242657 A TW 201242657A TW 101114771 A TW101114771 A TW 101114771A TW 101114771 A TW101114771 A TW 101114771A TW 201242657 A TW201242657 A TW 201242657A
- Authority
- TW
- Taiwan
- Prior art keywords
- concentration
- acid gas
- value
- amount
- control
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/30—Controlling by gas-analysis apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/38—Removing components of undefined structure
- B01D53/40—Acidic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Treating Waste Gases (AREA)
- Control Of Non-Electrical Variables (AREA)
Abstract
Description
201242657 42128pif 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種城市垃圾廢棄物焚燒爐、工業廢棄物 焚燒爐、發電謝盧、碳化爐、民間^^等賴燒設備中所 產生的有害的氣化氫或硫氧化物等酸性氣體的處理方法。 洋細而&,本發明涉及一種有效率地控制對酸性氣體進行 處理的鹼劑的添加量的方法。 【先前技術】 山^含有害的氣化氫或硫氧化物的排氣通過消石灰或 碳酸氫鈉等驗劑來進行處理後,通過袋式過濾器(吨 Filter BF) 4集塵器進行除塵,然後從煙囪排出。另一方 面,由集塵器所收集的飛灰含有有害的pb、Cd等重金屬 類,對這些有害重金屬進行穩定化處理後,實施填埋處理。 對酸性氣體進行處理的驗劑即被加工成5 μιη〜3〇 的,粉的碳酸氫_反紐高於、;肖减,可敎地處理3 性氣體,並且未反應成分少,從而可削減填埋處理量,= 對於降低環境負荷有效的手段。另外,作為重金屬處理疋 法,通常為利用二乙基二硫代氨基曱酸鹽等螯合物^〜方 溶化處理的方法,雜短期内4金屬固定效果高,^丁不 如下的問題:因最終處理場中的由酸雨所引起的pH召有 及螯合物的氧化自我分解,而導致鉛等重金屬再次溶:降 另一方面’利用磷酸等的磷酸化合物的重金屬固定=° 至作為無機礦物的羥基磷灰石的形態為止,故於最終^化 場中的長期穩定冊異,就魏賴峨點而言是價=理 4 201242657 ^ζιζδρίΐ 常高的處理方法。進而,利用磷酸等重金屬固定劑對由所 述石反酸氯納細粉進行了處理的飛灰進行處理的方法是具有 充分的環境負荷降低效果的有效手段。 一 ,另外,控制對氣化氫或硫氧化物等酸性氣體進行處理 的消石灰或碳酸氫鈉等鹼劑的添加量不僅可削減酸性氣體 處理費用,而且可期待減少鹼劑的未反應成分、_ 的填埋處理量的效果。 f氯化氫或硫氧化物等酸性氣體進行處理的鹼劑 添加量通常是根據由設置在袋式過濾器的後段的離子^極 式^氯化氫測定裝置所測定的HC1濃度,通過比例-積分 微分(Proportion Integral Differemia卜 piD )控制裝置來刀進 行反饋控制。但是’在魏設料職設備巾,通常未μ =定人口的酸性氣體濃度的裝置,而在不清楚人口^ 片况的狀態下,設^PID控制的參數並調整控制輸出。 匕而:PDD控制裝置具有ρ + D、添加量(輸出)下限、 輸出)上限這5個設定項目,並且將各項目的設 控制輸出值’因此研究適當的添加控制需 2置的時間。因此,通常,多數設備是在加控繼置 =定超過控制目標值(SV)時實施大幅度增加添加量的 但是’通常的pm控制裝置的控制輸出僅可設 4的〇上限’例如當將HC1歧的控制目標值(SV)設定為 上夺,在40 ppm以上的濃度下將控制輸出的單一的 义乍為限度來添加_,而柄過度添加_的原因。 201242657 42128plf 另外’所述反触制會受到酸性氣_定衫的計測延遲 的影響。袋式雜M D的Η⑴農度料是湘離子電極 法(例如京都電子工業製造的HL_36)來測定,硫氧化物 濃度是利用:广線吸收法(例⑹島津製作所製造的 說-誦)來測定,但若包含試樣排氣的採樣時間、及計 測器的應答時間,則會有5分鐘〜1〇分鐘的極大的計測延 =該計„為弓丨起鹼劑的添加延遲、導致酸性氣體 的處理不良、並且引起鹼劑的過度添加的原因。 為了解決該課題而研究了各種控制方法。在專利文獻 1中,提出有在通常的PID控制式中進 以‘:=,氣體是考慮 以應對的酸性乱體的_產生的提案。另外,在專利文獻 2及專敎獻3中提出有將前饋控制與反饋控制加以组合 饋控制是根據入口的酸性氣體濃度來 =劑,加篁的控制方式’所述反饋控制是根據鹼劑 ^订歧後敝性氣體濃絲補級_添加量的控制方 般 控制方式是可預期抑制反饋控制的過度添 二氣體的穩定處理與削減驗劑的過 [先前技術文獻] [專利文獻] !===,開2。。2·113327 號公報 __]a_=mi65752 號公報 —号引特開2006·75758號公報 201242657 42128pif 但是,在專利文獻1中,雖然在某種裎度上可應對入 口的突發狀況,但未考慮到所述測定裝置的計測延遲,而 無法應對由計測延遲所引起的驗劑的添加延遲而導致的酸 性氣體的處理不良。進而,在專利文獻2及專利文獻3中, 集塵前的煙道的測定環境與集塵後的測定環境相比,酸性 ,體濃度高、且溫度高,必須尋求測定機器材料的腐蝕對 策。另外,由於除塵前的排氣中存在大量的煤塵,因此需 要除塵對策,而且在例如除塵過濾器的更換等維護中需要 p。另外,由於酸性氣體濃度的測定信號對驗劑的添加 量造成直接影響,因此由這些測定機器的故障所產生的測 ,不良在穩定地管理出Π的酸性氣體濃度方面成為大問 題。 【發明内容】 巧愿,本發明的目的在於提供一種酸性; ,的處理方法,其在可穩定地測定酸性的測定環境 艮據集塵步職的酸性氣體濃度測定信號來控制驗劑I ί加量的反饋形式中,削減目前的反饋控制所具有的t 延遲所引起的酸性氣體的處理不m㈣過度添水 的檢i1)—種雜氣體的處理方法,其向含有酸性氣: 氣中添加驗劑’並根據酸性氣體濃度測定機器, 對驗_添加量進行反饋控制,所述酸性氣 =測f機11是以•收集粉驗的酸性氣體濃度的方 i時間:3理方法的特徵在於包括如下步驟:利用計測 ”此不同㈣個酸性氣體濃度測定機ϋ (例如, 201242657 42128pif 述的HC1濃度測定機裔(低速)14及HC1濃度測定機器 (高速)15等)測定同一種酸性氣體的濃度;以及根據所 述多個酸性氣體濃度測定機器的測定信號,通過反饋運算 來算出驗劑的添加量輸出值。 先前的袋式過濾器出口的酸性氣體濃度,是通過例如 計測延遲時間為5分鐘〜10分鐘的利用離子電極法的單一 的測定機器來測定,且根據其測定信號,通過反饋來控制 驗劑的添加量。該方法會因測定機器的計測延遲而引起驗 劑的過度添加。 相對於此’根據(1 )的發明,根據計測延遲時間長 的測定機器與計測延遲時間短的測定機器,即酸性氣體濃 度的計測延遲時間不同的多個測定機器的測定信號,通過 反饋運算來算出鹼劑的添加量輸出值。由此,可將計測延 遲時間長的測定機器與計測延遲時間短的測定機器加以組 合,而非單一的計測延遲時間長的測定機器,因此可減輕 反饋控制中的由酸性氣體濃度的測定機器的計測延遲所引 起的驗劑的過度添加。 另外,根據(1)的發明,由於具備計測延遲時間彼 此不同的多個酸性氣體濃度測定機器,因此可通過計測延 遲時間長但測定可靠度高的測定機器來適當地測定袋式過 濾器出口的酸性氣體濃度,而且與通過計測延遲時間短但 測定可靠度低的測定機器單獨進行反饋控制相比,可提升 測疋可罪度。由此,可適當地添加鹼劑,並可進一步提升 酸性氣體的處理效率。 8 201242657 42128pif 進而’通過將計測延遲時間長的測定機器與計測延遲 時間短的測定機器加以組合,當酸性氣體增加時比先前控 制更快地形成添加鹼劑的時機,可改善由酸性氣體測定裝 置的計測延遲所引起的酸性氣體的處理不良。 (2)根據(1)所述的酸性氣體的處理方法,其中 通過反饋運算來算出所述添加量輸出值包括如下步驟;算 出根據所述多個測定信號而分別進行運算的多個添加量輸 出值的上限值(例如,後述的多個添加量輸出值的 的值)’以及針對所述已鼻出的多個上限值中的至少1個上 限值’异出比該上限值小的值(例如,施加有後述的5〇% 的輸出限制的值)的添加量輸出值。 根據(2)的發明,針對已算出的多個添加量輸出值 的上限值中的至少1個上限值,算出比該上限值小的值的 添加量輸出值。 由此,與使根據計測延遲時間長的測定機器及計測延 遲時間短的败機定錢所算出的兩懈加量輸出 =上限值(100%)工作相比’通過僅對例如根據計測延 時間長的測定機H的測定錢所算ώ的添加量輸出值 力口巧(例如5G%的輸出限制),可謀求酸性氣體的處理 的穩疋化,亚進一步防止鹼劑的過度添加。 進而 、匕到很艨叶測延遲時間長的測定機器、 2遲時間短的測定機器的測定信號所算出的兩個添加^ 輪出值施加限制(例如5Q%的輸出限制),也可 性氣體的處理的敎化,並進―步防止__“二 9 201242657 42128pif (3) 根據(1)或(2)所述的酸性氣體的處理方法, 其特徵在於:通過反饋運算來算出所述添加量輸出值的步 驟更包括如下步驟:設定至少2個酸性氣體濃度的斜率的 範圍(例如,後述的最接近的HC1渡度的斜率的6秒平均 為正的範圍及負的範圍等);在所述至少2個斜率的各自的 範圍内設定酸性氣體濃度的控制目標值(例如,後述的實 例8中的180 ppm、220 ppm等);以及至少根據所述測定 信號及所述斜率的各自的範圍内的控制目標值,算出驗劑 的添加置輸出值;且在設定所述控制目標值的步驟中,所 述酸性氣體濃度的斜率的範圍大的情況(例如,後述的最 接近的HC1濃度的斜率的6秒平均為正的情況(酸性氣體 濃度上升時)下設定的控制目標值小於所述酸性氣體濃度 的斜率的範圍小的情況(例如,後述的最接近的HC1濃度 的斜率的6秒平均為負的情況(酸性氣體濃度下降時))下 設定的控制目標值。 根據(3)的發明,當袋式過濾器出口的酸性氣體濃 度,斜率為正時(酸性氣體濃度上升時),與斜率為負時(酸 ^氣體>農度下降時)減,使酸性氣體濃度的控制目標值 交^、’因此可使酸性氣體濃度上升時的鹼劑添加量多於酸 '1^體|度下降時。另外,相反地可使酸性氣體濃度下降 =鹼劑添加量少於酸性氣體濃度上升時。由此,可提前 利用反饋運算的驗劑的添加輸出,而可進-步減輕由 。十測延遲所產生的影響。 (4) 根據(1)至(3)中任一項所述的酸性氣體的 201242657 42128pif 處理方法’其特徵在於:通過反饋運算來算出所述添加量 ,出,的步驟更包括如下步驟:在根據所述測定信號而進 订運算的添加量輪出值的下限值(例如,後述的表2、表3、 表5的L〇[控制輪出下限])與上限值(例如,後述的表2、 表3表5的LH[控制輸出上限])之間,對應於所述酸性 體/辰度(例如’後述的表2、表3、表5的BF出口 HC1 /辰度)而n又疋1個以上所述添加量輸出值的新的上限值(例 如,後述的表2、表3、表5的遞[輸出限制、L 出限制2])。 曲通常的反饋運算中的輸出上限僅為1個,若酸性氣體 /辰度變成控制目標值以上,則不論入口的酸性氣體濃度的 大小,鹼劑均可添加至上限值為止,從而引起過度添加。 相對於此,根據(4)的發明,在添加量輸出值的下 限值與上限值之間,施加對應於當前的酸性氣體濃度的控 制輸出的限制,由此可對應於酸性氣體濃度的大小而添加 適當的鹼劑’並可削減添加量。 (5)根據(1)至(4)中任一項所述的酸性氣體的 處理方法,其特徵在於:所述驗劑是平均粒徑為5 μηι〜30 μηι的碳酸氫納細粉。 本發明中所使用的鹼劑優選與酸性氣體的反應特別 快且平均粒徑調整成5 μιη〜3〇 μηι的碳酸氫鈉細粉。由於 碳酸氫鈉細粉的反應快,因此控制應答性良好,可有效地 發揮本發明的性能。但是,本發明是取決於控制方法的發 明,即便是消石灰,也可以應用。對於消石灰而言,與酸 11 201242657 42128pif 性氣體的反應性高且比表面積例如為30 m2/g以上的高比 表面積的消石灰更可發揮本發明的性能。 门 (6)根據(5)所述的酸性氣體的處理方法,其特 徵在於:並用與所述碳酸氫納細粉*同的其他驗劑。… 發揮本發明的效果的驗劑並無特別限制。作為碳酸氮 納=粉以外的驗劑,可例示:碳_、碳酸氫鉀、碳酸卸、 ,半碳酸納、天_打、氫氧化納、氫氧化鉀、氧化鎮、 。另外,當驗劑為粉體時,優選與酸性氣體的 反應性向且粒徑未滿3〇 μηι,特別是5 μιη〜2〇叫的細粉。 :以應用事先碰了粒徑的鹼劑,也可以在;見場設置粉碎 設備’曰-面在現場粉碎粒徑粗的鹼劑一面進行添加。另外, 即,是將各機劑轉于水巾而成的⑽或水溶液,也可 以實施。 ^ (7)根據(6)所述的酸性氣體的處理方法,其特 徵在於所述其他驗劑是選自由消石灰、氫氧化鈉、氮氧 化,、氧傾、碳g_、倍半碳酸鈉、天然蘇打、及粗碳 酉文虱納所組成的組群中的至少1種驗劑。 並用與本發明的實施控制的驗劑不同的廉價的驗劑 也成為在經濟上有效的手段。作為通常所使用的廉價的驗 劑’可例示:消石灰、氫氧化鈉、氫氧化鎂、氧化鎮、碳 酸鈉、倍半碳酸鈉、天然蘇打、粗碳酸氫鈉。 (發明的效果) 通過本發明,在可穩定地測定酸性氣體的測定環境, 即根據集塵步驟後的酸性氣體濃度測定信號來控制驗劑的 12 201242657 42128pif 添加量的反饋形式中,可改善目前的反饋控制所具有的由 測定機器的計測延遲所引起的酸性氣體的處理不良、並可 削減鹼劑的過度添加、且可通過有效率地添加鹼劑來進行 穩定的酸性氣體的處理。 【實施方式】 以下列舉實施形態來更具體地說明本發明,但本發明 並不限定於此。 圖1是表示向作為焚燒設備中的排氣的HC1中添加碳 酸氫鈉細粉的酸性氣體處理系統1的構成的方塊圖。 酸性氣體處理系統1包括控制裝置11、碳酸氫鈉細粉 添加裝置12、袋式過濾器13、HC1濃度測定機器(低速) 14及HC1濃度測定機器(高速)15。控制裝置u根據從 HC1濃度測定機器(低速)14及HC1濃度測定機器(高速) 15傳送來的HC1濃度測定信號,通過反饋控制(PID控制 方式或分步方式)來算出碳酸氫鈉細粉的添加量輸出值。 碳酸氫鈉細粉添加裝置12根據控制裝置11所算出的碳酸 氫鈉細粉的添加量輸出值,向排氣中的HC1中添加碳酸氫 鈉細粉。 袋式過濾器13將排氣中的HC1與碳酸氫鈉細粉的反 應後的粉塵去除。HC1濃度測定機器(低速)14及HC1 濃度測定機器(高速)15測定蓄積在袋式過濾器13上的 碳酸氫鈉細粉(通過與排氣中的HC1的反應而殘存的碳酸 氫鈉細粉蓄積在袋式過濾器13上)與排氣反應後的HC1 進行反應後的HC1濃度(後述的袋式過濾器出口 HC1濃 13 201242657 42128pif 度),並將HC1濃度測定信號傳送至控制裝置u。 酸性氣體處理系統1重複此種循環來進行反饋控制, 由此控制裝置11進行使碳酸氫鋼細粉添加量的控制輸出 值變成適當的值的控制。 再者,HC1濃度測定機器(低速)14例如為離子電極 式的HC1濃度測定裝置,HC1濃度測定機|| (高速)15例 如為雷射方式的HC1濃度測定裝置。另外,關於HC1濃度 的計測延遲時間,HC1濃度測定機器(低速)14比Ηα 濃度測定機器(高速)15長。 另外,如圖1所示,優選以測定蓄積在袋式過濾器13 上的碳酸氫鈉細粉與排氣反應後的HC1進行反應後的HC1 濃度(後述的袋式過濾器出口 HC1濃度)的方式,設置 HC1濃度測定機器(低速)14及HC1濃度測定機器(高速) 15。其原因在於:通過與排氣中的HC1的反應而殘存的碳 酸氫鈉細粉蓄積在袋式過濾器13上,該蓄積的碳酸氫鈉細 粉與排氣反應後的HC1進行反應,因此可更準確地測定 HC1濃度。 進而’對控制裝置11所進行的控制加以詳細說明。 控制裝置11根據分別從HC1濃度測定機器(低速) 14及HC1濃度測定機器(高速)15傳送來的HC1濃度測 定信號,算出碳酸氫鈉細粉添加量的各個添加量輸出值的 上限值。在此情況下,也可以對所算出的各個上限值的兩 者或一者進行輸出限制(例如,50%的輸出限制)。 由此,與使根據分別從HC1濃度測定機器(低速)14 201242657 42128pif 及HC1濃度測定機器(高速)15傳送來的HC1濃度測定 信號所算出的多個添加量輸出值的兩者以上限值(100〇/〇) 工作相比,通過僅對例如根據計測延遲時間長的HC1濃度 測定機器(低速)14的測定信號所算出的添加量輸出值施 加限制(例如50%的輸出限制),可謀求酸性氣體的處理 的穩定化,並進一步防止鹼劑的過度添加。 進而,通過對根據計測延遲時間長的HC1濃度測定機 器(低速)14、及計測延遲時間短的HC1濃度測定機器(高 速)15的測疋#號所算出的兩個添加量輸出值施加限制 (例如50%的輸出限制)’也可以謀求酸性氣體的處理的 穩定化,並進一步防止驗劑的過度添加。 進而,控制裝置11設定HC1濃度的斜率(濃度的時 間變化率)為正的範圍與負的範圍這2個範圍。而且,在 所述2個範圍的每個範圍内設定H c丨濃度的控制目標值。 此處,HC1》辰度的控制目標值的設定也能夠以如下方 式進行設定:針對HC1濃度的斜率為正的範圍所設定的控 ,目標值小於針對負的範圍的控制目標值。通過如此‘ 定’可使HC1濃度上升時的碳酸氫納細粉添加量多於肥 遭度下降時。另外,相反地可使HC1濃度下降時的碳酸氮 ^粉添^少於HC1濃度上升時。由此,可提前實制 用反饋運算的碳酸油細粉的添加輸出,而可進 由計測延遲所產生的影響。 工 定可於/C1濃度的斜率而變更控制目標值的設 疋可以對船漠度測定機器(低速)Μ及HC1遭度測定 15 201242657 42128pif 機器(高速)15兩者進行,也可以僅對任一者進行。 進而,控制裝置11也可以進行利用分步方式的反饋 控制。此處,分步方式是階段性地設定對應於HC1濃度的 控制輸出的控制方式。具體而言,除在PID控制方式中所 β又疋的控制輸出值的上限值以外,對應於HC1濃度而設定 控制輸出值的新的上限值。 此處,通常的PID控制中的輸出上限僅為丨個,若酸 性氣體濃度變雜制目標仙上,财論·氣體濃度的 大小’驗綱可添加至上限值為止,從而引起過度添加。 因此’通過制分步控制方式,在添加量輸出值的下限值 與上限值之間,添加對應於#前的Ηα濃度的新的控制輸 出^限值,由此可對應於HC1濃度的大小而添加適當的碳 酸氫鈉細粉,從而可抑制添加量的過度添加。 =,對應於HC1濃度設定新的控制輸出上限值是 HC1浪度越南’將新的控制輸出上限值也設定得越高。但 為了抑制驗劑的過度添加’優選設為比在PID控制方 式中所設定的控制輸出值的上限值(例如,後述的表2、 表3的LH[控制輸出上限])小的值。 2新的控制輸^上限值的設定例,優選如後述的表 加旦#,H的對?於即出口Ηα濃度的控制輸出添 。又 /度越南,將新的控制輸出上限值也設定得 計測 201242657 42128pif 濃度測定的主流是計測延遲時間長達5分鐘〜1()分鐘的離 子電極法。再者’離子電極部的應答為3分鐘左右,但若 包含由氣體採樣所引起的延遲,則為5分鐘〜7分鐘Γ進 而’當如X業廢棄物魏爐般存在m至採樣氣體中的 可能性時’由於會職化氫的献值造成極大的影響,因 此設置去除漠的除漠II。該除漠器通過時間為3分鐘左 右,汁測延遲時間變成8分鐘〜1〇分鐘左右。 另外,由利用雷射的單一吸收線吸收分光法所得的 化氫的計測延遲時間為數秒(1秒、〜2秒)而非常短。本發 明可通過使用計測延遲_不_兩個測定機器實施反^ 控制來實施,但對目前的測定機器而言,最合適的是將這 些測定裝置加以組合。另外,硫氧化物濃度測定的主流是 紅,線吸收法,其延遲時間為3分鐘〜5分鐘左右。與氣 化氫同樣地’硫氧化物敍測定也可崎過料測延^時 間不同的測定機器加以組合來實施。 再者,本發明將改善酸性氣體濃度的計測延遲作為主 要目的,因此使輯測延遲大的離子電極法的氯化氮 測定敦置來測定料㈣、II後段的雜缝,在進行反 控制的設備中尤其發揮效果。 f外,在工業廢棄物焚燒爐或民間工廠的燃燒設備 中三高濃度地產生氯化氫與硫氧化物的情況多0此時,氣 化氫與硫氧化物兩者成為處理對象,例如將根據設置在袋 式過遽ϋ後段的hci濃度測定裝置的HC1 m在所述控 制方式中求出的控制輪出、與根據魏化物濃度而在所述 17 201242657 42128pif ,制方式中求出的控制輸出相加,由此可穩定地處理氣化 氣及硫氧化物這兩種酸性氣體。 進而’酸性氣體的排出濃度管理有利用各酸性氣體濃 度(氣化氫濃度、硫氧化物濃度)的1小時平均值進行管 理的设備。在控制過程中通常設定控制目標值(sv)來進 行控制’但控制目標值始終是目標,往往存在如下的情況, 即進行控制的結果是濃度超過目標值。尤其,由於削減添 加量與酸性氣體的穩定處理是相反的想法,因此越要求削 減添加量,1小時平均值超過管理值的風險越增強。在此 情況下,當達到1小時平均管理值以上或接近其的濃度 時,通過大量的添加(規定某一固定的添加量),可實現 削減添加量與酸性氣體的穩定處理能夠並存且安心度高的 控制。 本實施形態中所使用的碳酸氫鈉細粉優選與酸性氣 體的反應特別快且平均粒徑調整成5 gm〜3〇 pm的碳酸氫 鈉細粉。其原因在於:由於碳酸氫鈉細粉的反應快,因此 控制應答性良好,可有效地發揮本實施形態的性能。但是, 本貫施升> 態疋取決於控制方法的實施形態,即便是消石 灰,也可以應用。對於消石灰而言,與酸性氣體的反應性 高且比表面積例如為30 m2/g以上的高比表面積的消石灰 更可發揮本實施形態的性能。 在本貫施形態中,使用碳酸氫納細粉作為驗劑,但發 揮本實施形態的效果的鹼劑並無特別限制。作為碳酸氫鈉 細粉以外的驗劑,可例示:碳酸鈉、碳酸氫钟、破酸鉀、 201242657 42128pif 倍半碳酸納、天贿打、氫氧仙、氫氧化钾、氧化鎮、 氫氧化。另夕卜,當驗劑為粉體時,優選與酸性氣體的 反應性高且粒縣滿30 μιη,特別是5 μιη〜2〇,的細粉。 可以應用事先5周整了粒徑的驗劑,也可以在現場設置粉碎 設備,一面在現場粉碎粒徑粗的鹼劑一面進行添加。另外, 即便是將各種驗劑溶解于水中而成的㈣或水溶液,也可 以實施。 併用與本實施形態的實施控制的碳酸氫鈉細粉不同 的廉價的_也成為在轉±有效的手段。作為通常所使 用的廉價的驗劑,可例示:消石灰、氫氧化鈉、氫氧化 氧化鎂。 、 [實例] 對模擬反應系統進行說明。 [模擬反應系統]:排氣與袋式過遽器上的複合反應 在模擬反㈣統中,碳酸氫納細粉與氣化氫(H&) ^反應包括以下兩種反應:在排氣中瞬間產生的反應、及 蓄積在袋式過濾、H上的未反應的碳酸氫鈉細粉與阳的反 圖2)。另外,袋式過滤器中的捕獲物的滯留時 間通㊉為2小時左右。因此’在該模擬中設為如下的形態: 袋式過濾器上的碳酸氫鈉細粉在規定時間(設定 時)内消失。 π、、、、j ζ小 參照圖2 ’對模擬反應系統的基本構成進行說明。 J先’在焚燒設備巾的加藥控制巾,根據設置 過濾、器出口的離子電極式的HC1濃度測定機器(低速)<、 19 201242657 42128pif 曲二如雷射方式等的HC1濃度測定機器(高速)的Ηα =(處理後)信號,通過piD等的控制式的運算來決定 ^添加量(碳酸氫鈉細粉添加量(Ag))(下述式(1 )), =將所決定的添加量的碳酸氫納細粉(酸性氣體處理劑) ,至排氣(人nHC1濃度(Hi) ) t。添加至煙道中的 喊氫納細粉與排氣中的HC1等酸性氣體進行反應,而將 排氣中的HC1去除。201242657 42128pif VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a harmful waste generated in a municipal waste waste incinerator, an industrial waste incinerator, a power generation Xielu, a carbonization furnace, a folk ^^, etc. A method of treating an acid gas such as vaporized hydrogen or sulfur oxide. The present invention relates to a method for efficiently controlling the amount of an alkali agent to be treated for an acid gas. [Prior Art] The exhaust gas containing harmful hydrogenated gas or sulfur oxides is treated by an analytic solution such as slaked lime or sodium bicarbonate, and then dust is removed by a bag filter (ton Filter BF) 4 dust collector. Then it is discharged from the chimney. On the other hand, the fly ash collected by the dust collector contains harmful heavy metals such as pb and Cd, and these harmful heavy metals are stabilized and then subjected to landfill treatment. The test for treating the acid gas is processed into 5 μm to 3 ,, and the hydrogen carbonate _ 纽 高于 高于 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖 肖Landfill throughput, = a means of reducing environmental impact. In addition, as a method of treating heavy metals, it is usually a method of using a chelate compound such as diethyldithioaminophosphonate to dissolve the metal, and the effect of the metal fixation is high in the short-term, and the problem is not as follows: In the final treatment field, the acid pH caused by acid rain and the oxidative self-decomposition of the chelate compound lead to the re-dissolution of heavy metals such as lead: on the other hand, the heavy metal fixation using phosphoric acid compounds such as phosphoric acid = ° to inorganic minerals The form of hydroxyapatite is so long, so the long-term stability in the final field is stable, and in the case of Wei Lai, it is the treatment method of price = 4 4 42 42 ζ ζ ζ ρ ρ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ. Further, the method of treating the fly ash treated with the fine stone acid chloride fine powder by a heavy metal fixing agent such as phosphoric acid is an effective means for providing a sufficient environmental load reducing effect. In addition, the addition of an alkali agent such as slaked lime or sodium hydrogencarbonate for controlling an acid gas such as vaporized hydrogen or sulfur oxide can not only reduce the cost of acid gas treatment, but also reduce the unreacted component of the alkali agent. The effect of the amount of landfill treatment. The amount of the alkali agent to be treated by an acid gas such as hydrogen chloride or sulfur oxide is usually based on the HC1 concentration measured by the ion-electrode hydrogen chloride measuring device provided in the subsequent stage of the bag filter, and the proportional-integral derivative (Proportion) Integral Differemia piD) The control device comes to the knife for feedback control. However, in the case of Wei's equipment, it is usually not the device of the acid gas concentration of the population, and in the state where the population is not clear, the parameters of the PID control are set and the control output is adjusted. : :: The PDD control unit has five setting items of ρ + D, the added amount (output lower limit, and the output) upper limit, and sets each item to control the output value'. Therefore, it is necessary to study the time required for the appropriate addition control. Therefore, in general, most devices perform a large increase in the amount of addition when the control relay = the control target value (SV) is exceeded. However, the control output of the normal pm control device can only set the upper limit of 4, for example, when The control target value (SV) of the HC1 difference is set to the upper limit, and the single sense of the control output is added to the limit at a concentration of 40 ppm or more, and the handle is excessively added. 201242657 42128plf In addition, the anti-tactile effect is affected by the measurement delay of the acid gas-fixed shirt. The Η(1) agricultural material of the bag-type hybrid MD is measured by the Xiang ion electrode method (for example, HL_36 manufactured by Kyoto Electronics Industry Co., Ltd.), and the sulfur oxide concentration is measured by the wide-line absorption method (Example (6) manufactured by Shimadzu Corporation). However, if the sampling time of the sample exhaust gas and the response time of the measuring instrument are included, there will be an extremely large measuring delay of 5 minutes to 1 minute. In order to solve this problem, various control methods have been studied. In Patent Document 1, it is proposed to introduce ':= in the normal PID control formula, and the gas is considered. In addition, in Patent Document 2 and the special offer 3, it is proposed that the feedforward control and the feedback control are combined and fed control according to the acid gas concentration of the inlet. The control method 'the feedback control is based on the control of the alkaline agent ^ after the inert gas thick wire replenishment _ the amount of control is the control method is expected to suppress the feedback control of the excessive addition of two gas stabilization treatment [Previous technical literature] [Patent Document] !===, open 2, 2.113327, __]a_=mi65752, pp., No. 2006.75758, 201242657, 42128pif However, In Patent Document 1, although the sudden state of the entrance can be dealt with in a certain degree of difficulty, the measurement delay of the measurement device is not taken into consideration, and it is impossible to cope with the delay of the addition of the test by the measurement delay. In addition, in the case of the measurement of the acid gas, the measurement environment of the flue before the dust collection is higher in acidity, higher in body concentration, and higher in temperature, and it is necessary to seek measurement. In addition to the large amount of coal dust in the exhaust gas before dust removal, dust removal measures are required, and p is required for maintenance such as replacement of the dust filter. In addition, the measurement signal of the acid gas concentration is checked. Since the amount of the agent added has a direct influence, the measurement caused by the failure of these measuring machines becomes a serious problem in stably managing the acid gas concentration of the crucible. Disclosure of the Invention It is an object of the present invention to provide an acidic treatment method for controlling the amount of the reagent I ί according to the acid gas concentration measurement signal of the dust collection step in a measurement environment capable of stably measuring acidity. In the feedback form, the treatment of the acid gas caused by the t-delay of the current feedback control is reduced. (m) The excessive water addition test i1) - the treatment method of the impurity gas, which adds the test agent to the acid gas: gas And according to the acid gas concentration measuring machine, feedback control is performed on the test_addition amount, and the acid gas=measurement machine 11 is the time of the acid gas concentration of the collected powder test: the 3 method is characterized by the following steps : measuring the concentration of the same acid gas by measuring (four) acid gas concentration measuring devices (for example, HC1 concentration measuring machine (low speed) 14 and HC1 concentration measuring device (high speed) 15 described in 201242657 42128pif); The addition amount output value of the test solution is calculated by a feedback calculation based on the measurement signals of the plurality of acid gas concentration measurement devices. The acid gas concentration at the outlet of the previous bag filter is measured by, for example, a single measuring device using an ion electrode method with a delay time of 5 minutes to 10 minutes, and the test is controlled by feedback based on the measurement signal. The amount added. This method can cause excessive addition of the test due to the measurement delay of the measuring machine. According to the invention of (1), the measurement device having a long measurement delay time and the measurement device having a short measurement delay time, that is, the measurement signals of the plurality of measurement devices having different measurement delay times of the acid gas concentration are subjected to feedback calculation. Calculate the output value of the addition amount of the alkaline agent. As a result, it is possible to combine a measuring device having a long measurement delay time and a measuring device having a short measurement delay time, instead of a single measurement device having a long measurement delay time, thereby reducing the measurement device for the acid gas concentration in the feedback control. The excessive addition of the test caused by the delay is measured. Further, according to the invention of (1), since the plurality of acid gas concentration measuring devices having different measurement delay times are provided, it is possible to appropriately measure the bag filter outlet by measuring the measuring device having a long delay time but high measurement reliability. The acid gas concentration can be improved compared with the feedback control by a measurement machine having a short measurement delay time but low measurement reliability. Thereby, an alkali agent can be appropriately added, and the treatment efficiency of the acid gas can be further improved. 8 201242657 42128pif Further, by combining a measuring device having a long measurement delay time and a measuring device having a short measurement delay time, when the acid gas is increased, the timing of adding the alkali agent is formed faster than the previous control, and the acid gas measuring device can be improved. The processing of the acid gas caused by the measurement delay is poor. (2) The method for treating an acid gas according to (1), wherein calculating the addition amount output value by a feedback calculation includes the following steps: calculating a plurality of addition amount outputs respectively calculated based on the plurality of measurement signals The upper limit value of the value (for example, a value of a plurality of added amount output values to be described later)' and at least one of the plurality of upper limit values that have been nasally discharged are different from the upper limit value The added value output value of a small value (for example, a value to which an output limit of 5〇% described later is applied). According to the invention of (2), the addition amount output value which is smaller than the upper limit value is calculated for at least one of the upper limit values of the plurality of calculated addition amount output values. Therefore, compared with the upper limit output (100%) calculated by the failure of the measuring device having a long measurement delay time and the measurement delay time, the pass is only calculated by, for example, measuring the delay. The measurement of the amount of addition of the measurement machine H of the long time is calculated by the amount of the output of the amount of money (for example, an output limit of 5 G%), and the treatment of the acid gas can be stabilized, and the excessive addition of the alkali agent can be further prevented. Further, the measurement device that has a long delay time with a long detection time and the measurement signal of the measurement device that has a short delay time are two application limits (for example, 5Q% output limitation), and the gas is also available. The processing method of the acid gas according to (1) or (2), characterized in that the addition amount is calculated by a feedback calculation. The step of outputting the value further includes the step of setting a range of slopes of at least two acid gas concentrations (for example, a 6-second average of a slope of a closest HC1 degree to be described later is a positive range and a negative range, etc.); The control target value of the acid gas concentration is set in each of the at least two slopes (for example, 180 ppm, 220 ppm, etc. in Example 8 to be described later); and at least the respective ranges of the measurement signal and the slope In the internal control target value, the additive output value of the test solution is calculated; and in the step of setting the control target value, the range of the slope of the acid gas concentration is large (for example, described later) When the average of 6 seconds of the slope of the HC1 concentration is positive (when the acid gas concentration is increased), the control target value set is smaller than the range of the slope of the acid gas concentration (for example, the closest HC1 concentration to be described later). According to the invention of (3), when the acid gas concentration at the outlet of the bag filter is positive, the slope is positive (acid gas) When the concentration is increased, when the slope is negative (when the acid gas is reduced), the target value of the acid gas concentration is adjusted, so that the amount of the alkali agent added when the acid gas concentration is increased is more than When the degree of acid '1 body is lowered, the acid gas concentration is decreased in the opposite direction. When the amount of the alkali agent added is less than the acid gas concentration, the addition and output of the test solution by the feedback calculation can be used in advance. (4) The 201242657 42128pif processing method of the acid gas according to any one of (1) to (3) is characterized by: feedback The step of calculating the addition amount and the calculation further includes the step of: lowering the lower limit value of the added amount rounding value calculated based on the measurement signal (for example, Table 2, Table 3, and Table 5 to be described later) The L〇 [control rotation lower limit] and the upper limit (for example, Table 2 below, Table 2, Table 5, LH [Control Output Upper Limit]) correspond to the acidity/increase (for example, 'described later' The BF outlet HC1 / Chen degree of Table 2, Table 3, and Table 5, and n has a new upper limit value of one or more of the added amount output values (for example, Table 2, Table 3, and Table 5 described later) [Output limit, L out limit 2]) The upper limit of the output in the normal feedback calculation is only one. If the acid gas/length is above the control target value, the alkali agent is applied regardless of the acid gas concentration at the inlet. Can be added to the upper limit, causing excessive addition. On the other hand, according to the invention of (4), a limit corresponding to the control output of the current acid gas concentration is applied between the lower limit value and the upper limit value of the added amount output value, thereby being compatible with the acid gas concentration. Add an appropriate alkali agent to the size' and reduce the amount added. (5) The method for treating an acid gas according to any one of (1) to (4), wherein the test agent is a sodium hydrogencarbonate fine powder having an average particle diameter of 5 μηη to 30 μηι. The alkali agent used in the present invention is preferably a sodium hydrogencarbonate fine powder in which the reaction with an acid gas is particularly fast and the average particle diameter is adjusted to 5 μm to 3 μm. Since the reaction of the sodium hydrogencarbonate fine powder is fast, the control response is good, and the performance of the present invention can be effectively exerted. However, the present invention is an invention which depends on the control method and can be applied even with slaked lime. For the slaked lime, the slaked lime having a high reactivity with the acid 11 201242657 42128pif gas and having a specific surface area of, for example, 30 m 2 /g or more, can exhibit the performance of the present invention. (6) The method for treating an acid gas according to (5), characterized in that another test agent similar to the sodium hydrogencarbonate fine powder* is used in combination. The test which exerts the effects of the present invention is not particularly limited. Examples of the test other than sodium carbonate/powder include carbon_, potassium hydrogencarbonate, carbonic acid unloading, sodium hemicarbonate, sodium strontium, sodium hydroxide, potassium hydroxide, and oxidized town. Further, when the test agent is a powder, it is preferably a fine powder which is reactive with an acid gas and has a particle diameter of less than 3 μm, particularly 5 μm to 2 Å. : It is also possible to apply an alkali agent that has been hit with a particle size in advance; it is also possible to add a slurry agent with a coarse particle size on site. Further, it is also possible to carry out (10) or an aqueous solution obtained by transferring each agent to a water towel. (7) The method for treating an acid gas according to (6), characterized in that the other test agent is selected from the group consisting of slaked lime, sodium hydroxide, nitrogen oxidation, oxygen tilt, carbon g_, sodium sesquicarbonate, natural At least one test substance in a group consisting of soda and crude carbon. It is also an economically effective means to use an inexpensive test which is different from the test which is controlled by the practice of the present invention. As an inexpensive test which is generally used, slaked lime, sodium hydroxide, magnesium hydroxide, oxidized town, sodium carbonate, sodium sesquicarbonate, natural soda, and crude sodium hydrogencarbonate can be exemplified. (Effects of the Invention) According to the present invention, in the measurement environment in which the acid gas can be stably measured, that is, the feedback form of the 12 201242657 42128pif added amount of the test is controlled based on the acid gas concentration measurement signal after the dust collection step, the present invention can be improved. In the feedback control, the processing of the acid gas caused by the measurement delay of the measuring device is poor, and the excessive addition of the alkaline agent can be reduced, and the stable acid gas can be treated by efficiently adding the alkaline agent. [Embodiment] Hereinafter, the present invention will be described more specifically by way of embodiments, but the invention is not limited thereto. Fig. 1 is a block diagram showing the configuration of an acid gas treatment system 1 in which fine sodium hydrogencarbonate fine powder is added to HC1 as an exhaust gas in an incineration facility. The acid gas treatment system 1 includes a control device 11, a sodium bicarbonate fine powder adding device 12, a bag filter 13, an HC1 concentration measuring device (low speed) 14, and an HC1 concentration measuring device (high speed) 15. The control device u calculates the HC1 concentration measurement signal transmitted from the HC1 concentration measuring device (low speed) 14 and the HC1 concentration measuring device (high speed) 15, and calculates the sodium bicarbonate fine powder by feedback control (PID control method or stepwise method). Add volume output value. The sodium hydrogencarbonate fine powder adding device 12 adds a sodium hydrogencarbonate fine powder to the HC1 in the exhaust gas based on the output value of the added amount of the sodium hydrogencarbonate fine powder calculated by the control device 11. The bag filter 13 removes the dust after the reaction of the HC1 and the sodium hydrogencarbonate fine powder in the exhaust gas. The HC1 concentration measuring device (low speed) 14 and the HC1 concentration measuring device (high speed) 15 measure the sodium bicarbonate fine powder accumulated on the bag filter 13 (the sodium hydrogencarbonate fine powder remaining by the reaction with the HC1 in the exhaust gas) The HC1 concentration (the bag filter outlet HC1 concentration 13 201242657 42128 pif degrees described later) after the reaction with the HC1 reacted with the exhaust gas is stored in the bag filter 13 and the HC1 concentration measurement signal is transmitted to the control device u. The acid gas treatment system 1 repeats such a cycle to perform feedback control, whereby the control device 11 performs control for changing the control output value of the amount of addition of the bicarbonate steel fine powder to an appropriate value. Further, the HC1 concentration measuring device (low speed) 14 is, for example, an ion electrode type HC1 concentration measuring device, and the HC1 concentration measuring device || (high speed) 15 is, for example, a laser type HC1 concentration measuring device. Further, regarding the measurement delay time of the HC1 concentration, the HC1 concentration measuring device (low speed) 14 is longer than the Ηα concentration measuring device (high speed) 15. In addition, as shown in FIG. 1, it is preferable to measure the HC1 concentration (concentration of the bag filter outlet HC1 to be described later) after the reaction of the sodium hydrogencarbonate fine powder accumulated on the bag filter 13 with the exhaust gas after the reaction with the exhaust gas. In the method, an HC1 concentration measuring device (low speed) 14 and an HC1 concentration measuring device (high speed) 15 are provided. This is because the sodium bicarbonate fine powder remaining in the reaction with the HC1 in the exhaust gas is accumulated in the bag filter 13, and the accumulated sodium hydrogencarbonate fine powder reacts with the HC1 after the exhaust gas reaction. The HC1 concentration was determined more accurately. Further, the control performed by the control device 11 will be described in detail. The control device 11 calculates the upper limit value of each additive amount output value of the sodium bicarbonate fine powder addition amount based on the HC1 concentration measurement signal transmitted from the HC1 concentration measuring device (low speed) 14 and the HC1 concentration measuring device (high speed) 15. In this case, it is also possible to perform output limitation (e.g., 50% output limitation) on either or both of the calculated upper limit values. In this way, both the upper limit and the upper limit of the plurality of added amount output values calculated based on the HC1 concentration measurement signals transmitted from the HC1 concentration measuring device (low speed) 14 201242657 42128pif and the HC1 concentration measuring device (high speed) 15 ( 100 〇 / 〇 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 HC HC The treatment of the acid gas is stabilized and the excessive addition of the alkali agent is further prevented. Further, the two added amount output values calculated by the HC1 concentration measuring device (low speed) 14 having a long measurement delay time and the measured 延迟# of the HC1 concentration measuring device (high speed) 15 having a short measurement delay time are imposed ( For example, a 50% output limit) can also stabilize the treatment of acid gas and further prevent excessive addition of the test. Further, the control device 11 sets the slope of the HC1 concentration (the rate of change in the concentration) to be in the range of the positive range and the negative range. Further, a control target value of the H c 丨 concentration is set in each of the two ranges. Here, the setting of the control target value of the HC1" degree can also be set in such a manner that the control value set for the range in which the slope of the HC1 concentration is positive is smaller than the control target value for the negative range. When the HC1 concentration is increased by this, the amount of the sodium bicarbonate added is higher than when the fertilizer is lowered. On the contrary, when the concentration of HC1 is lowered, the amount of carbonic acid nitrogen powder is less than when the concentration of HC1 is increased. Thereby, the addition output of the carbonated fine powder using the feedback calculation can be realized in advance, and the influence of the measurement delay can be advanced. The setting of the control target value that can be changed to the slope of the /C1 concentration can be performed on both the ship inferiority measuring device (low speed) and the HC1 measurement 15 201242657 42128pif machine (high speed) 15 or only One is carried out. Further, the control device 11 can perform feedback control using a stepwise method. Here, the step-by-step method is a control method of setting the control output corresponding to the HC1 concentration step by step. Specifically, in addition to the upper limit value of the control output value of β and 在 in the PID control method, a new upper limit value of the control output value is set in accordance with the HC1 concentration. Here, the upper limit of the output in the normal PID control is only one. If the acid gas concentration becomes a miscellaneous target, the size of the financial and gas concentration can be added to the upper limit value, causing excessive addition. Therefore, by the step-by-step control method, a new control output limit value corresponding to the Ηα concentration before # is added between the lower limit value and the upper limit value of the added amount output value, thereby being able to correspond to the HC1 concentration. An appropriate sodium hydrogencarbonate fine powder is added in size to suppress excessive addition of the added amount. =, the new control output upper limit value corresponding to the HC1 concentration setting is HC1 wave degree Vietnam', and the new control output upper limit value is also set higher. However, it is preferable to set a value smaller than the upper limit value of the control output value set in the PID control method (for example, LH [control output upper limit] of Table 2 and Table 3 to be described later). (2) The setting example of the new control input upper limit value is preferably the pair of H, H, and H, as described later. The control output of the outlet Ηα concentration is added. In addition, Vietnam has set the new control output upper limit value. 201242657 42128pif The mainstream of concentration measurement is the ion electrode method with a delay time of 5 minutes to 1 minute. Furthermore, the response of the 'ion electrode portion is about 3 minutes, but if it includes the delay caused by the gas sampling, it is 5 minutes to 7 minutes, and then 'when there is m in the sample gas as in the X industry waste furnace When it is possible, 'there is a great influence on the contribution of the hydrogen. The passer-by has a pass time of about 3 minutes, and the juice test delay time becomes about 8 minutes to about 1 minute. Further, the measurement delay time of the hydrogen obtained by the single absorption line absorption spectrometry using a laser is very short (1 second, ~ 2 seconds) and is extremely short. The present invention can be implemented by performing the inverse control using the measurement delay_not two measuring machines, but it is most suitable for the current measuring machine to combine these measuring devices. In addition, the mainstream of sulfur oxide concentration measurement is red, line absorption method, and the delay time is about 3 minutes to 5 minutes. In the same manner as the hydrogenation of hydrogen gas, the measurement of the sulfur oxides can be carried out in combination with a measuring device having a different measurement time. Furthermore, the present invention has a main purpose of improving the measurement delay of the acid gas concentration. Therefore, the measurement of the nitrogen chloride by the ion electrode method with a large delay in the measurement is performed to measure the miscellaneous slits of the materials (4) and II, and the anti-control is performed. Especially effective in the device. In addition, in the industrial waste incinerator or the combustion equipment of the private factory, the hydrogen chloride and the sulfur oxide are generated at a high concentration. In this case, both the vaporized hydrogen and the sulfur oxide are treated, for example, according to the setting. The control output obtained by the HC1 m of the hci concentration measuring device in the bag-type after-passing stage in the control method and the control output obtained in the above-mentioned 17 201242657 42128pif system according to the concentration of the derivative By adding, it is possible to stably treat the two acid gases of gasification gas and sulfur oxide. Further, the apparatus for controlling the discharge concentration of the acid gas is managed by using the one-hour average value of each acid gas concentration (vaporized hydrogen concentration and sulfur oxide concentration). In the control process, the control target value (sv) is usually set to control 'but the control target value is always the target, and there are often cases where the result of the control is that the concentration exceeds the target value. In particular, since the reduction of the amount of addition is contrary to the stabilization process of the acid gas, the more the amount of addition is required, the greater the risk that the one-hour average value exceeds the management value. In this case, when the concentration is equal to or higher than the average management value of 1 hour, a large amount of addition (predetermination of a certain fixed addition amount) can achieve a stable reduction in the amount of addition and acid gas stabilization and peace of mind. High control. The sodium hydrogencarbonate fine powder used in the present embodiment is preferably a sodium hydrogencarbonate fine powder having a particularly fast reaction with an acid gas and having an average particle diameter adjusted to 5 gm to 3 pm. This is because the reaction of the sodium hydrogencarbonate fine powder is fast, so that the control response is good, and the performance of the embodiment can be effectively exhibited. However, the state of the present application depends on the embodiment of the control method, and it can be applied even in the case of stone dust. In the slaked lime, the slaked lime having a high specific surface area and a specific surface area of, for example, 30 m 2 /g or more, which exhibits high reactivity with an acid gas, can exhibit the performance of the present embodiment. In the present embodiment, the sodium bicarbonate powder is used as the test, but the alkali agent which exerts the effects of the embodiment is not particularly limited. Examples of the test other than the sodium hydrogencarbonate fine powder include sodium carbonate, hydrogen carbonate clock, potassium bromate, 201242657, 42128 pif sodium sesquicarbonate, celestial brittle, hydroxyxanthene, potassium hydroxide, oxidized town, and hydrogen hydroxide. Further, when the test agent is a powder, it is preferably a fine powder having a high reactivity with an acid gas and having a grain size of 30 μm, particularly 5 μm to 2 Å. It is possible to apply an assay having a particle size of 5 weeks in advance, or to provide a pulverizing device on site, and to pulverize the alkali agent having a coarse particle diameter on the spot. Further, it can be carried out even in the case of (4) or an aqueous solution obtained by dissolving various test substances in water. The use of a cheaper _ different from the sodium hydrogencarbonate fine powder controlled by the embodiment of the present embodiment is also effective means. As an inexpensive test which is usually used, slaked lime, sodium hydroxide or magnesium hydroxide can be exemplified. [Example] The simulation reaction system will be described. [Simulated Reaction System]: The composite reaction on the exhaust gas and the bag filter. In the simulated inverse (four) system, the reaction between the sodium bicarbonate and the hydrogenated hydrogen (H&) ^ reaction includes the following two reactions: in the exhaust gas. The reaction that occurs instantaneously, and the unreacted sodium bicarbonate fine powder accumulated in the bag filter, H, and the reverse of the positive image 2). In addition, the retention time of the trap in the bag filter is about two hours. Therefore, in the simulation, the following form is adopted: The sodium hydrogencarbonate fine powder on the bag filter disappears within a predetermined time (set time). π, 、, j ζ Small The basic configuration of the simulated reaction system will be described with reference to Fig. 2'. J first 'the dosing control towel for the incineration equipment towel, the HC1 concentration measuring device (such as the laser type HC1 concentration measuring device (low speed) according to the filter and the outlet of the device), 19 201242657 42128pif Ηα = (after processing) of the high-speed signal, and the amount of addition (the amount of sodium bicarbonate fine powder (Ag)) (the following formula (1)) is determined by a control calculation such as piD, and = will be determined. The amount of sodium bicarbonate (acid gas treatment agent) is added to the exhaust gas (human nHC1 concentration (Hi)) t. The shark hydrogen fine powder added to the flue reacts with an acid gas such as HC1 in the exhaust gas, and the HC1 in the exhaust gas is removed.
Ag= ( AglxKl+l〇〇+Ag2xK2+l〇〇) +l〇 ( 1 )Ag= ( AglxKl+l〇〇+Ag2xK2+l〇〇) +l〇 ( 1 )
Ag :碳酸氫鈉細粉添加量[kg/h]Ag : Addition amount of sodium bicarbonate fine powder [kg/h]
Agl :根據HC1濃度測定機器(低速)的輸出所規定 的添加量[kg/h]Agl : The amount of addition [kg/h] specified by the output of the HC1 concentration measuring machine (low speed)
Ag2 :根據HC1濃度測定機器(高速)的輸出所規定 的添加量[kg/h] LO :添加量下限[kg/h] K1 : HC1測定機器1 (低速)用的調整係數[%] K2 : HC1測定機器2 (高速)用的調整係數[〇/〇] 另外’利用碳酸氫鈉細粉的入口 HC1濃度的HC1去除 率是根據本公司的碳酸氫鈉細粉的應用知識,通過以下兩 種關係來估鼻.排氣反應的碳酸氫鈉細粉添加當量(jg) 與排氣反應的HC1去除率(ag)的關係(圖3)、及袋式 過濾器上反應的碳酸氫鈉細粉添加當量(js)與袋式過濾 器上反應的HC1去除率(as)的關係(圖4)。另外,將 201242657 42128pit HCl與碳酸氫鈉細粉的反應設為瞬間。首先,排氣中的反 應後的HC1濃度(Hg)是通過排氣反應的碳酸氫鈉細粉添 加當量(Jg)與排氣反應的HC1去除率(ag)來導出(下 述式(2))。再者’排氣反應的碳酸氫鈉細粉添加當量(jg) 是通過下述式(3)來算出。Ag2 : Addition amount according to the output of the HC1 concentration measuring device (high speed) [kg/h] LO : Lower limit of addition amount [kg/h] K1 : Adjustment factor for measuring machine 1 (low speed) of HC1 [%] K2 : The adjustment factor for the HC1 measuring device 2 (high speed) [〇/〇] In addition, the HC1 removal rate of the inlet HC1 concentration of the sodium bicarbonate fine powder is based on the application knowledge of the company's sodium bicarbonate fine powder. Relationship between the sodium bicarbonate fine powder addition equivalent (jg) of the exhaust reaction and the HC1 removal rate (ag) of the exhaust reaction (Fig. 3), and the sodium bicarbonate fine powder reacted on the bag filter The relationship between the equivalent (js) and the HC1 removal rate (as) on the bag filter was added (Fig. 4). In addition, the reaction of 201242657 42128pit HCl with sodium bicarbonate fine powder was set to an instant. First, the HC1 concentration (Hg) after the reaction in the exhaust gas is derived by adding the equivalent amount (Jg) of the sodium hydrogencarbonate fine powder in the exhaust gas reaction to the HC1 removal rate (ag) of the exhaust gas reaction (the following formula (2) ). In addition, the sodium hydrogencarbonate fine powder addition equivalent (jg) of the exhaust gas reaction is calculated by the following formula (3).
Hg=Hix (l-ag-100) (2)Hg=Hix (l-ag-100) (2)
Hi :入口 HC1 濃度(ppm)Hi : inlet HC1 concentration (ppm)
Hg :排氣反應後的HC1濃度(ppm) ag :排氣反應的HC1去除率(%) [根據排氣反應的碳酸氳鈉細粉添加當量與HC1去除 率的關係(圖3)來設定]Hg: HC1 concentration (ppm) after exhaust gas reaction ag : HC1 removal rate (%) of exhaust gas reaction [Set according to the relationship between the sodium carbonate fine powder addition equivalent of the exhaust gas reaction and the HC1 removal rate (Fig. 3)]
Jg=Ag+{Hi+0.614+1000+MlxM2xF+1000} (3)Jg=Ag+{Hi+0.614+1000+MlxM2xF+1000} (3)
Jg :排氣反應的碳酸氫納細粉添加當量 Ag :碳酸氫鈉細粉添加量(kg/h)Jg : Addition equivalent of sodium bicarbonate for exhaust reaction Ag : Addition amount of sodium bicarbonate fine powder (kg/h)
Hi :入口 HC1 濃度(ppm)Hi : inlet HC1 concentration (ppm)
Ml : HC1分子量[設定為36.5] M2 :碳酸氫鈉分子量[設定為84] F :排氣量(Nm3/h)[設定為 55,000 Nm3/h] 另外’通過排氣反應而殘存的碳酸氫鈉細粉時常蓄積 在袋式過濾器上。蓄積在BF上的碳酸氫鈉細粉與排氣反 21 201242657 42128pif 應後的HC1進行反應,而決定袋式過遽器出口的HC1濃度 (Ho)。此時,蓄積在BF上的破酸氫鈉細粉量(As)是 從排氣反應中所蓄積的碳酸氫鈉細粉減去在BF上與HC1 進行反應的碳酸氫鈉細粉量。另外’根據通過該蓄積在袋 式過遽器上的碳酸氮納細粉量(As)與排氣反應後的HC1 濃度(Hg)所估算的袋式過濾器上的碳酸氫鈉細粉添加當 量(Js)(下述式(5)),決定袋式過濾器上的HC1去除 率(as),並決定袋式過濾器出口的HC1濃度(Ho)(下 述式(4))。Ml : molecular weight of HC1 [set to 36.5] M2 : molecular weight of sodium hydrogencarbonate [set to 84] F : discharge amount (Nm3/h) [set to 55,000 Nm3/h] In addition, 'sodium bicarbonate remaining by exhaust reaction Fine powder often accumulates on the bag filter. The sodium bicarbonate fine powder accumulated on the BF reacts with the HC1 after the exhaust gas to determine the HC1 concentration (Ho) at the outlet of the bag type filter. At this time, the amount of fine sodium hydrogenateate (As) accumulated on the BF is the amount of fine sodium hydrogencarbonate which is reacted with HCl on the BF by subtracting the fine sodium hydrogencarbonate powder accumulated in the exhaust gas reaction. In addition, 'the equivalent amount of sodium bicarbonate fine powder on the bag filter is estimated based on the amount of sodium carbonate fines (As) accumulated on the bag filter and the HC1 concentration (Hg) after the reaction with the exhaust gas. (Js) (Expression (5) below) determines the HC1 removal rate (as) on the bag filter, and determines the HC1 concentration (Ho) at the bag filter outlet (the following formula (4)).
Ho=Hgx ( l-as+100) (4)Ho=Hgx ( l-as+100) (4)
Hg :排氣反應後的HC1濃度(ppm)Hg : HC1 concentration after exhaust reaction (ppm)
Ho :袋式過濾器出口的HC1濃度(ppm) as :袋式過濾器上反應的HC1去除率(〇/〇) [根據袋式過遽器上的碳酸氫鈉細粉添加當量與HC1 去除率的關係(圖4)來設定]Ho : HC1 concentration at the outlet of the bag filter (ppm) as : HC1 removal rate on the bag filter (〇/〇) [According to the addition of equivalent amount of sodium bicarbonate fine powder and HC1 removal rate on the bag filter Relationship (Figure 4) to set]
Js=As+{Hg+0.614+1000+MlxM2xF+l〇〇〇} (5)Js=As+{Hg+0.614+1000+MlxM2xF+l〇〇〇} (5)
Js · K式過滤、杰上的碳酸氣納細粉添加當量 As :袋式過濾器上的碳酸氫鈉細粉量(kg/h)Js · K-type filtration, carbon dioxide nano-fine powder addition equivalent on As on As: Amount of sodium bicarbonate fine powder on bag filter (kg/h)
Hg :排氣反應後的HC1濃度(ppm)Hg : HC1 concentration after exhaust reaction (ppm)
Ml : HC1分子量[設定為36.5] 22 201242657 42128pit M2 :碳酸氫鈉分子量[設定為84] F :排氣量(Nm3/h)[設定為 55,000 Nm3/h]Ml : HC1 molecular weight [set to 36.5] 22 201242657 42128pit M2 : molecular weight of sodium bicarbonate [set to 84] F : displacement (Nm3/h) [set to 55,000 Nm3/h]
As=Zn-Tsx3600 (6)As=Zn-Tsx3600 (6)
Zn:袋式過濾器上的碳酸氫鈉細粉蓄積量(kg)Zn: The amount of sodium bicarbonate fine powder accumulated on the bag filter (kg)
Ts :單位模擬時間(=數據採樣時間)(sec ) [設定為0·5 sec] Ζη=Ζη·χ ( l-2.3-T4xTs) (7)Ts : unit simulation time (= data sampling time) (sec ) [set to 0·5 sec] Ζη=Ζη·χ ( l-2.3-T4xTs) (7)
Zn,:未反應碳酸氫鈉細粉量(kg) T4:蓄積在袋式過濾器上的碳酸氫鈉細粉消失90%的 時間常數(sec ) [設定為 7,200 sec]Zn,: Unreacted sodium bicarbonate fine powder (kg) T4: Time constant (sec) of 90% disappearance of sodium bicarbonate fine powder accumulated on the bag filter [Set to 7,200 sec]
Ts:單位模擬時間(=數據採樣時間)(sec) [設定為0.5 sec]Ts: unit simulation time (= data sampling time) (sec) [set to 0.5 sec]
Zn.= (Ag^360〇xTs-Rg) + (Zn.rRs) (8)Zn.= (Ag^360〇xTs-Rg) + (Zn.rRs) (8)
Ag :碳酸氫鈉細粉添加量(kg/h)Ag : sodium bicarbonate fine powder addition amount (kg / h)
Ts:單位模擬時間(=數據採樣時間)(sec) [設定為0.5 sec]Ts: unit simulation time (= data sampling time) (sec) [set to 0.5 sec]
Rg :排氣反應的碳酸氫納反應量(kg/h) 23 201242657 42128pifRg : sodium bicarbonate reaction amount of exhaust reaction (kg/h) 23 201242657 42128pif
Znl : Ts (Sec)前的袋式過濾器上的碳酸氫鈉細粉蓄 積量(kg)Amount of sodium bicarbonate fine powder (kg) on a bag filter before Znl : Ts (Sec)
Rs:袋式過丨慮器上反應的破酸氫納反應量(kg/h)Rs: The amount of acid-lowering reaction (kg/h) of the reaction on the bag type filter
Rg= ( Hi+〇.614+1000+MlxM2xF+1000 ) +360〇xTsxag—1〇0 (9)Rg= ( Hi+〇.614+1000+MlxM2xF+1000 ) +360〇xTsxag—1〇0 (9)
Hi :入口 HC1 濃度(ppm)Hi : inlet HC1 concentration (ppm)
Ml : HC1分子量[設定為36.5] M2 :碳酸氫鈉分子量[設定為84] F :排氣量(Nm3/h)[設定為 55,000Nm3/h] ag :排氣反應中的HC1去除率(%)Ml : molecular weight of HC1 [set to 36.5] M2 : molecular weight of sodium hydrogencarbonate [set to 84] F : displacement (Nm3/h) [set to 55,000 Nm 3 /h] ag : removal rate of HC1 in exhaust reaction (% )
Rs= ( Hg-0.614-1000-M1 χΜ2 χ F-1000 ) +360〇xTsxas+100 ( 10)Rs= ( Hg-0.614-1000-M1 χΜ2 χ F-1000 ) +360〇xTsxas+100 ( 10)
Hg :排氣反應後的HC1濃度(ppm)Hg : HC1 concentration after exhaust reaction (ppm)
Ml : HC1分子量[設定為36.5] M2 :碳酸氫鈉分子量[設定為84] F :排氣量(Nm3/h)[設定為 55,000Nm3/h] as :袋式過濾器上反應的HC1去除率(〇/〇) 該反應後的袋式過濾器出口的HC1濃度是利用離子 電極式的HC1濃度測定機器(低速)14及HC1濃度測定 機器(尚速)15來測定。然而,離子電極式的HC1濃度測 24 201242657 42128pif 疋機,(低速)14存在由設備所引起的延遲時間(U)、 由排氣採樣所引起的計測延遲時間(ΤΒα)、及由離子電 極式的測定所引起的計測延遲時間(Tb 而產生反饋特有的控制延遲。 、因此,將該模擬的HC1濃度測定機器(低速)14的 延遲時間(T1)設為由設備所引起的延遲時間(Ta)、與 HC1遭度測定機器(低速)M的計測延遲時間⑽)的合 計(下述式(11))。再者,設定從煙道對Ηα處理後的 排氣進行採樣的計測延遲時間(Tba)與離子電極式邮 濃度測定機器(TbP)的計測延遲時間(應答時間),並 將兩者的和設為HC1濃度測定機器(低速)14的計測延遲 (Tb)(下述式(12))。由於通常所使用的離子電 極式的90%應答時間(計測延遲)會受到Ηα氣體朝吸收 液擴政的影響,因此將Tbp設為(下述式(η ))。在上 模擬中,計親麟的離子電極式轉實體設備= ,而設為Ta=30秒、Tba=390秒(採樣延遲21〇秒+卜 器通過延遲180秒)、Tbp=18〇秒的合計6〇〇秒(1〇八=、’ Ta=0.5分鐘、Tb=9.5分鐘)。 刀查里: 另外,將該模擬的HC1濃度測定機器(高速) 延遲時間(T2)設為由設備所引起的延遲時間(5的 HC1濃度測定機器(高速)15的計測延遲時間(、與 汁(下述式(15))。再者’根據離子電極式來 ^ 延遲時間㈣Ηα濃度測定鋪(高速)15的計^= 間(Tc),並確認變化。 、幾時 25 201242657 42128pif 另外,通過5亥反饋所求出的碳酸氫鈉細粉添加量是根 據由HC1濃度測疋機器(低速)μ所求出的添加輸出 (Agl)、及由HC1濃度測定機器(高速)15所求出的添 加輸出(Ag2)而求出(所述式(〇 )。 [HC1濃度測定機器(低速應答、模擬離子電極式)] Tl=Ta+Tb (11) τι: HCb農度測定機n (低速)的模擬反應 遲時間(sec) m Ta.设備的延遲時間(sec)[設定為30 sec] Tb. HC1濃度測定機II (低速)的計測延遲時間(咖)Ml : HC1 molecular weight [set to 36.5] M2 : sodium bicarbonate molecular weight [set to 84] F : exhaust gas amount (Nm3/h) [set to 55,000 Nm3/h] as : HC1 removal rate on the bag filter (〇/〇) The HC1 concentration at the outlet of the bag filter after the reaction was measured by an ion-electrode type HC1 concentration measuring device (low speed) 14 and an HC1 concentration measuring device (still speed) 15. However, the ion-electrode type HC1 concentration measurement 24 201242657 42128pif downtime, (low speed) 14 has a delay time (U) caused by the device, a measurement delay time (ΤΒα) caused by exhaust sampling, and an ion electrode type The measurement delay time (Tb due to the measurement) generates a control delay unique to the feedback. Therefore, the delay time (T1) of the simulated HC1 concentration measuring device (low speed) 14 is set as the delay time caused by the device (Ta The total of the measurement delay time (10) of the HC1 measurement device (low speed) M (the following formula (11)). Furthermore, the measurement delay time (Tba) for sampling the exhaust gas after the flue treatment of the Ηα and the measurement delay time (response time) of the ion electrode type urethane concentration measuring device (TbP) are set, and the sum of the two is set. The measurement delay (Tb) of the machine (low speed) 14 is measured for the HC1 concentration (the following formula (12)). Since the 90% response time (measurement delay) of the ion-electrode type generally used is affected by the expansion of the Ηα gas toward the absorption liquid, Tbp is set to (the following formula (η)). In the above simulation, the ion-electrode type physical device of the test is = and is set to Ta = 30 seconds, Tba = 390 seconds (sampling delay 21 〇 seconds + device delay by 180 seconds), Tbp = 18 〇 seconds Total 6 〇〇 seconds (1 〇 8 =, ' Ta = 0.5 minutes, Tb = 9.5 minutes). Kawasaki: In addition, the simulated HC1 concentration measuring device (high speed) delay time (T2) is set as the delay time caused by the device (the HC1 concentration measuring device (high speed) 15 of 5 measures the delay time (and juice) (Following the following formula (15)). In addition, according to the ion electrode type, the delay time (4) Ηα concentration is measured (the high speed) 15 is calculated as the ratio (Tc), and the change is confirmed. When is the time 25 201242657 42128pif In addition, 5 The amount of sodium bicarbonate fine powder added by the feedback is based on the addition output (Agl) obtained by the HC1 concentration measuring device (low speed) μ, and the addition obtained by the HC1 concentration measuring device (high speed) 15 The output (Ag2) is obtained (the above formula (〇). [HC1 concentration measuring device (low speed response, analog ion electrode type)] Tl = Ta + Tb (11) τι: HCb agricultural measuring machine n (low speed) Simulated reaction delay time (sec) m Ta. Delay time (sec) of the device [set to 30 sec] Tb. Measurement delay time of HC1 concentration analyzer II (low speed) (coffee)
Tb=Tba+Tbp (12) 機器(低速)的排氣採樣時間(we) 機器(低速)的%%應答時間Tb=Tba+Tbp (12) Exhaust sampling time of machine (low speed) (we) %% response time of machine (low speed)
Tbp=2.3xx (13) Υη=Υη-1+ (Χη-Υη·!) +τχΤ3 (14) 26 201242657 42128pif τ :時間常數(sec) TS.單位模擬時間(=數據採樣時間)(sec) [設定為0_5 sec]Tbp=2.3xx (13) Υη=Υη-1+ (Χη-Υη·!) +τχΤ3 (14) 26 201242657 42128pif τ : time constant (sec) TS. unit simulation time (=data sampling time) (sec) [ Set to 0_5 sec]
Xn:當f的測定裝置輸人HC1濃度(ppm)Xn: When the measuring device of f inputs HC1 concentration (ppm)
Yn . 前的測定裝置輸出 HC1 濃度(ppm)Yn . Front measuring device output HC1 concentration (ppm)
Yn-i · H CTS (sec)前)的測定裝置輸出HC1濃度 (ppm) [HC1濃度測定機器(高速應答)] (15) T2=Ta+Tc T2:HC1濃度測定機器(高速)的模擬反 延 遲時間(sec)Yn-i · H CTS (sec) before measuring device output HC1 concentration (ppm) [HC1 concentration measuring device (high-speed response)] (15) T2 = Ta + Tc T2: Simulation of HC1 concentration measuring device (high speed) Delay time (sec)
Ta .· °又備的延遲時間(sec)[設定為30 sec] TC、: HC1濃度測定機器(高速)的計測延遲時間(sec) 片測L遲時間短的測定機器僅對所述L進行設定變 實:中=3:動的入口 -濃度,根據 旳添加變動、iiCl產生狀況(圖6)及 果(圖7),設定排氣反應和BF上反 ^應效率。將該研究結果示於圖6及圖7。在 I HC1去除效率為_,BF i反應的去 體機器與模擬的行為-致(圖6、圖: / L下進仃以下的模擬。再者,在該模擬中, 27 201242657 42128pif 為了使取決於控制方法的控制應答性變得明確,使用變動 比較大的時間帶的入口 HC1濃度(Hi)來實施。 以下表示在該模擬反應系統中對各種控制方法進行 研究的結果。 再者,以下的實例1〜實例12中所使用的碳酸氫鈉細 粉的平均粒徑為5 μιη〜30 μιη。另外,實例1〜實例12中 所使用的HC1濃度測定機器14利用離子電極法。 [比較例1] 使用圖8所示的入口 HC1濃度,在所述模擬中根據僅 利用HC1濃度測定機器(低速)14 (測定機器的計測延遲 時間合計為9.5分鐘)所計測的HC1濃度,將PID控制方 式“Ρ (比例增益)=100%、1=0.1秒、D=0_1秒、添加量 輸出下限為200 kg/h、添加量輸出上限為480 kg/h”中的 出口 HC1濃度的控制目標值(SV)設定為200 ppm並進行 反饋控制。 將碳酸氫納細粉添加量與利用碳酸氫鈉細粉進行處 理後的袋式過濾器出口 HC1濃度(平均、1小時平均最大、 瞬間最大、1小時平均最少、瞬間最少)示於表1。另外, 將該控制時的碳酸氫鈉細粉添加量與袋式過濾器出口 HC1 濃度的變化示於圖9。 根據比較例1,經常用作酸性氣體的排出管理值的i 小時平均值的HC1的最大值為234 ppm,瞬間最大為416 ppm。 [比較例2] 28 201242657 42128pif 在所述模擬中,根據僅利用Ηα漢度測定機器(高速) 15 (測定顧的計測延遲時間為2秒)所計泰肥濃度 進行反饋控制’除此以外,以與比較例丨相同 控制。 將碳酸氫鈉細㈣加量與_碳酸氫鈉細粉進行處 理後的袋式過—出口 HC1濃度示於表卜另外將該控 制時的碳酸氫納細粉添加量與袋式過渡器出口肥濃度的 變化示於圖10。 當如比較例2般,僅利用計測延遲少的高速應答的 肥濃度測定機器(高速)15進行反饋控制時,預測驗劑 的添加量變化與出口 HC1濃度的變化是瞬間產生的變化。 ,是,因鹼劑添加變動而產生振盪,i小時平均值的Ηα 最大值為227 ppm、瞬間最大為425 ppm。 [實例1〜實例5] 在所述模擬中,將以下兩種添加輸出相加來進行反饋 控制:根據利用HC1濃度測定機器(低速)14 (測定機哭 的計測延遲時間合計為9.5分鐘)所計測的體濃度,: PID控制方式“P (比例增益)=1〇〇%、1=〇丨秒、d=〇工 秒、添加量輸出下限為200 kg/h、添加量輸出上限為48〇 kg/h”中將出口的HC1濃度的控制目標值(sv)設定為2〇〇 ppm並進行了反饋控制的添加輸出;以及根據利用Ηα濃 度測定機器(高速)15所計測的HC1濃度,以同一設定將 出口的控制目標值(SV)設為200 ppm並進行了反饋控 的添加輸出。 29 201242657 42128pif 再者,HC1濃度測定機器(高速)15的 延遲時間在卻中為2秒,在實例2中為t分2 = ^ !為3分鐘,在實例4中為5分鐘,在實例5中為7 將碳酸油細粉添加量與碳酸氫納細粉進 理後的袋式過滤器出D Ηα濃度示於表卜另外將該控 制時的碳酸氫納細粉添加量與袋式過濾器出 = 變化示於圖11〜圖15。 /農度的 根據實例1〜實例5,對根據計測延遲時間不同的至 少兩個酸性氣體败機器的測定信麟估算的添加 行運算’並麟_添加量進行運算,由此 體的穩定處理。 乱 實例1是將測定機器的計測延遲時間為95分鐘的 HC1計與測定機器的計測延遲時間為2秒(瞬間)的HQ 計加以組合來進行反饋控制的結果,但與比較例丨及比較 例2不同’可對應於出口的HCU農度的目標值添加適當^ 鹼劑。另外,該條件下的出口 HC1濃度的丨小時平均值為 193 ppm,瞬間最大為272 ppm而為適當的加藥控制的差舎 果,可知是出口 HC1濃度的變動少且容易管理的控制方法7 另外,即便測定機器的計測延遲時間為7分鐘(實例 5) ’與比較例1及比較例2相比也得到改善,只要計測延 遲時間不同即可。但是,作為加藥管理,計測延遲時間越 短,對於酸性氣體的穩定處理越有效,優選7分鐘以下, 更優選3分鐘以下。 201242657 42128pif [實例6] 在所述模擬中,對根據利用HC1濃度測定機器 14 (測定機器的計測延遲時間為95分鐘)所計測= 浪度進行了反饋控綱添加輸丨施加5G% 根據利用HC"農度測定機器(高速)15 (測心Ta .· ° Delay time (sec) [set to 30 sec] TC, : Measurement delay time (sec) of the HC1 concentration measuring device (high speed) The measuring device with the short L time is only for the L Set the actual: Medium = 3: The inlet-concentration of the movement, according to the 旳 addition change, the iiCl generation condition (Fig. 6) and the fruit (Fig. 7), set the exhaust reaction and the BF upper response efficiency. The results of this study are shown in Figures 6 and 7. In the I HC1 removal efficiency is _, BF i reaction of the de-body machine with the simulated behavior - (Figure 6, Figure: / L under the 仃 simulation below. Again, in the simulation, 27 201242657 42128pif in order to make The control responsiveness of the control method is clarified, and the inlet HC1 concentration (Hi) of the time zone having a relatively large variation is used. The results of examining various control methods in the simulated reaction system are shown below. The average particle diameter of the sodium hydrogencarbonate fine powder used in Examples 1 to 12 was 5 μm to 30 μm. Further, the HC1 concentration measuring apparatus 14 used in Examples 1 to 12 was subjected to the ion electrode method. [Comparative Example 1 Using the inlet HC1 concentration shown in Fig. 8, in the simulation, the PID control method is based on the HC1 concentration measured by only the HC1 concentration measuring device (low speed) 14 (the total measurement delay time of the measuring device is 9.5 minutes).控制 (Proportional gain) = 100%, 1 = 0.1 second, D = 0_1 seconds, the lower limit of the added amount is 200 kg / h, and the upper limit of the output is 480 kg / h. The control target value of the outlet HC1 concentration (SV) ) set to 200 ppm And carry out feedback control. The concentration of sodium bicarbonate added and the concentration of HC1 at the outlet of the bag filter treated with sodium bicarbonate fine powder (average, 1 hour average maximum, instantaneous maximum, 1 hour average minimum, minimum moment) The change in the amount of sodium bicarbonate fine powder added during the control and the change in the concentration of the bag filter outlet HC1 is shown in Fig. 9. According to Comparative Example 1, it is often used as the discharge management value of the acid gas. The maximum value of HC1 in the hourly average is 234 ppm, and the maximum is 416 ppm in an instant. [Comparative Example 2] 28 201242657 42128pif In the simulation, the measuring device is measured based on only Ηα 汉度 (high speed) 15 The time is 2 seconds) The feedback is controlled by the concentration of the fertilized fertilizer. In addition, it is controlled in the same manner as in the comparative example. The bag-type over-export of the sodium bicarbonate fine (four) amount and the _ sodium bicarbonate fine powder is treated. The HC1 concentration is shown in Table 1. The change in the amount of the sodium bicarbonate added to the control and the change in the outlet concentration of the bag transition is shown in Fig. 10. As in Comparative Example 2, only the high speed with less measurement delay is used. When the fat concentration measuring machine (high speed) 15 of the answer is subjected to feedback control, the change in the amount of the test agent and the change in the concentration of the outlet HC1 are instantaneous changes. That is, the oscillation occurs due to the change of the alkali agent, and the i hour average value The maximum value of Ηα is 227 ppm, and the maximum value is 425 ppm. [Example 1 to Example 5] In the simulation, the following two kinds of added outputs are added for feedback control: according to the measurement machine using HC1 concentration (low speed) 14 (The total measurement delay time of the measurement machine crying is 9.5 minutes) The measured body concentration: PID control mode "P (proportional gain) = 1〇〇%, 1 = leap second, d = completion seconds, added amount output The lower limit is 200 kg/h, and the upper limit of the added amount is 48 〇kg/h". The control target value (sv) of the HC1 concentration at the outlet is set to 2 〇〇 ppm and the feedback output is added; and The HC1 concentration measured by the concentration measuring device (high speed) 15 was set to 200 ppm with the control target value (SV) of the outlet set to the same setting, and feedback output was added. 29 201242657 42128pif Furthermore, the delay time of the HC1 concentration measuring machine (high speed) 15 is 2 seconds in the middle, and in the example 2 is t = 2 = ^ ! is 3 minutes, in the example 4 is 5 minutes, in the example 5 In the middle of the bag, the addition amount of the carbonated oil fine powder and the sodium bicarbonate fine powder is measured. The concentration of D Ηα is shown in the table. In addition, the amount of sodium bicarbonate added to the control is combined with the bag filter. The output = change is shown in Fig. 11 to Fig. 15. /Agronomy According to the example 1 to the example 5, the calculation of the addition row operation of the measurement of the two acid gas failure machines based on the measurement delay time is performed, and the stabilization process is performed. The disorder example 1 is a result of performing feedback control by combining an HC1 meter having a measurement delay time of the measuring device of 95 minutes and an HQ meter having a measurement delay time of 2 seconds (instantaneous) of the measuring device, but comparing with the comparative example and the comparative example. 2 different 'alkali agents can be added to the target value of the HCU agricultural degree corresponding to the exit. In addition, the average value of the hourly hour of the outlet HC1 concentration under this condition is 193 ppm, and the maximum instantaneous value is 272 ppm, which is an appropriate result of the dosing control. It is known that the change in the concentration of the outlet HC1 is small and the control method 7 is easy to manage. Further, even if the measurement delay time of the measurement device was 7 minutes (Example 5), it was improved as compared with Comparative Example 1 and Comparative Example 2, and the measurement delay time was different. However, as the dosing management, the shorter the measurement delay time, the more effective the stabilization treatment of the acid gas is, and it is preferably 7 minutes or shorter, more preferably 3 minutes or shorter. 201242657 42128pif [Example 6] In the simulation, 5G% was applied to the feedback control according to the measurement using the HC1 concentration measuring device 14 (measurement delay time of the measuring device was 95 minutes) = wave width, according to the use of HC" ; agricultural measurement machine (high speed) 15 (heart measurement)
為2秒)所計測的HC1濃度進行了反鑌控制的十^ 加輸出不施加限制(刚%),將所述兩種添 進行反饋控制。 山彳目加;R 將碳酸氫鈉細粉添加量與利用碳酸氫鈉細粉 理後的袋式過濾器出π HC1濃度示於表卜另外,將$ 制時的碳酸氫鈉細粉添加量與袋式韻器出口 = 變化示於圖16。 ^ [實例7] 在所述模擬中,對根據利用HC1濃度測定機器(低 Η (測定機器的計測延遲時間為95分鐘)所計測的肥 漢度進行了反饋控制的添加輸出施加5〇%的輸出限制 根據利用HC1濃度測錢器(高速)15 (測錢器的 延遲時間為2秒)所計測的HC1濃度進行了反饋控制的添 加輸出施加5G%的輸出限制,將所述兩種添加輸出相加來 進行反饋控制。 將碳酸氫鈉細粉添加量與利用碳酸氫鈉細粉進行處 理後的袋式過遽器出π HC1 ;農度示於表卜表i是表示模 擬研究結果的各比較例及實例的鹼劑添加量等的表。另 外,將該控制時的碳酸氫鈉細粉添加量與袋式過濾器出口 31 201242657 42128pif HC1濃度的變化示於圖π。 此處,針對如實例6及實例7般,對根據計測延遲時 間不同的至少兩個酸性氣體測定機器的測定信號所估算的 添加輸出的上限施加至少丨個以上的限制時的酸性氣體處 理結果進行說明。 >實例6,是對根據HC1濃度測定機器(低速)14的測 定信號所估算的添加輸出施加5〇〇/0的限制的例子。另外, 貫例7疋對HC1濃度測定機器(低速)14及HC1濃度測 定機器(南速)15的兩種添加輸出施加5〇%的限制的例 子。可知在任一例中,HC1的處理水平均與實例丨大致相 同,並且添加量為271 kg/h〜300 kg/h,與實例丨(311 kg/h) 相比可削減鹼劑的添加量。 [實例8] 在所述模擬中,將以下兩種添加輸出相加來進行反饋 控制:當根據利用HC1濃度測定機器(低速)14 (測定機 器的汁測延遲時間為9.5分鐘)所計測的UC1濃度進行反 饋控制時,在最接近的HC1濃度的斜率的6秒平均為正的 情況下,將控制目標值(SV)設為180ppm(SV-20ppm), 在最接近的HC1濃度的斜率的6秒平均為負的情況下,將 控制目標值(SV)設為220 ppm ( SV+20 ppm)而進行了 控制的添加輸出;以及當根據利用HC1濃度測定機器(高 速)15 (測定機器的計測延遲時間為2秒)所計測的hci 濃度進行反饋控制時,將控制目標值(sv)設為2〇〇ρριη 而進行了控制的添加輸出。 32 201242657 42i^»pir 將碳酸氫鈉細粉添加量與利用碳酸氫鈉細粉進行處 理後的袋式過濾器出口 HC1濃度示於表丨。另外,將該控 制時的碳酸氫鈉細粉添加量與袋式過濾器出口Ηα濃度的 變化示於圖18。 [實例9] 在所述模擬中,對以下兩種添加輸出施加5〇0/〇的輸出 限制後使兩者相加來進行反饋控制:當根據利用HC1濃度 測疋機器(低速)14 (測定機器的計測延遲時間為9.5分 鐘)所計測的HC1濃度進行反饋控制時,在最接近的HC1 濃度的斜率的6秒平均為正的情況下,將控制目標值(sv) 設為180 ppm (SV-20 ppm),在最接近的Ηα濃度的斜 率的6秒平均為負的情況下,將控制目標值(sv)設為 220 ppm (SV+20 ppm)而進行了控制的添加輸出;以及當 根據利用HC1濃度測定機器(高速)15 (測定機器的計測 延遲時間為2秒)所計測的HC1濃度進行反饋控制時,將 控制目標值(SV)設為200 ppm而進行了控制的添加輸出。 將碳酸氫鈉細粉添加量與利用碳酸氫鈉細粉進行處 理後的袋式過滤益出口 HC1濃度示於表1。另外,將該控 制時的碳酸氫納細粉添加量與袋式過濾器出口 濃度的 變化示於圖19。 此處,對如實例8及實例9般,當根據計測延遲時間 不同的至少兩個酸性氣體測定機器的測定信號進行估算 時’在隶接近的HC1濃度的斜率為正的情況下,降低控制 目標值,在最接近的HC1濃度的斜率為負的情況下,提高 33 201242657 42128pif 控制目標值,並提前實施利用反饋的添加輸出時的暖性氣 體處理結果進行說明。 實例8是將根據HC1濃度測定機器(低速)14的測 定信號進行估算時變更所述控制目標值(SV),並進行運 算所得的添加輸出,與根據HC1濃度測定機器(高速)15 的測定信號而維持200 ppm的控制目標值進行運算所得的 添加輸出相加’並進行了反饋控制的例子。另外,實例9 是對實例8中的根據HC1濃度測定機器(低速)14與11(:1 濃度測定機器(高速)15的測定信號進行運算所得的兩種 添加輸出施加50%的限制,並將兩者相加的反饋控制。 在實例8中’可知添加量與實例1大致相同,尤其瞬 間最大HC1從272 ppm下降至248卯m,通過該控制方法 而強化了對應波峰。另外,在實例9中,可知與實例i相 比,瞬間最大為255 ppm且對應波峰得到強化,並且添加 量從實例8的315 kg/h削減至279 kg/h,可實施平衡良好 的控制。 以下,對實例10〜實例12進行說明。在實例10〜實 例12中,利用分步控制方式代替PID控制方式進行控制。 此處,對分步控制方式的概要進行說明。分步方式與 PID控制方式不同,將其設為對應於出口的HCi滚度而階 段性地規定輸出的控制方式。表2是實例1〇中的分^控制 方式的控制設定的表。若利用實例10 (表2)進行說明, 則當HCn農度為SV控制目標值[控制輸出起始濃度(輸出 下限以上)]〜SM1之間時,在L〇與咖之間階段性地 34 201242657 42128pif = 如下的形式:若HC1濃度為SM1〜SM2 ,間貝J輸出利用LM2所設定的 ,以上,則輸_ (控制輸出上限出)。= 制輸出‘決St率的控制運算中所用的HC1濃度與控 一 ' 〆二、、表格的修正是利用SVA1與SVA2來進 二二率為正時從運算中所使用的Ηα濃度減去 田 斜率為負時使運算中所使用的Ηα濃 SVA2相加。由此,佶於λ门 陳又八 使輸入同一 HC1濃度時進行運算的控 =α下的形tHa斜率的值大時(酸性氣體漠 又i曰加的傾向)的控制輸出值大於肥斜率的值 制輸出值。 再者碳酉夂氫納細粉添加量(Ag)是通過所述式⑴ 來求出。 [實例10] 在所述模擬中,將以下兩種添加輸出相加來進行反饋 控制.當根據利用HC1濃度測定機器(低速)14 (測定機 器的計測延遲時間為9.5分鐘)所計測的HC1濃度進行反 饋控制時’在分步方式的控制中將控制目標值(在該方式 中,將驗劑的控制輸出被添加至輸出下限以上的濃度規定 為SV)設定為200 ppm而進行了控制的添加輸出;以及 當根據利用HC1濃度測定機器(高速)15 (測定機器的計 測延遲時間為2秒)所計測的HC1濃度進行反饋控制時, 同樣地在分步方式的控制中將控制目標值設定為2〇〇 ppm 35 201242657 42128pif 而進行了控制的添加輸出(參照表1及表2)。 將碳酸氫鈉細粉添加量與利用碳酸氫鈉細粉進行處 理後的袋式過濾器出口 HC1濃度示於表1。另外,將該控 制時的碳酸氫鈉細粉添加量與袋式過濾器出口 HC1濃度的 變化示於圖20。 [實例11] 在所述模擬中’將以下兩種添加輸出相加來進行反饋 控制:當根據利用HC1濃度測定機器(低速)丨4 (測定機 杰的計測延遲時間為9.5分鐘)所計測的HC1濃度進行反 饋控制時,在分步方式的控制中最接近的HC1濃度的斜率 的6秒平均為正的情況下,將控制目標值(sv)設為18〇 ppm (SV-20 ppm),在最接近的HC1濃度的斜率的6秒 平均為負的情況下,將控制目標值(Sv)設為22〇 ppm (SV+20 ppm)而進行了控制的添加輸出;以及當根據利 用HC1濃度測定機器(高速)15 (測定機器的計測延遲時 間為2秒)所計測的HC1濃度進行反饋控制時,同樣地在 分步方式的控制中將控制目標值設定為2〇〇ppm而進行了 控制的添加輸出(參照表1及表3 (表3是實例11及實例 12中的分步控制方式的控制設定的表。 將碳酸氫鈉細粉添加量與利用碳酸氫鈉細粉進行處 理後的袋式過濾器出口 HC1濃度示於表〗。另外,將該控 制時的碳酸氫鈉細粉添加量與袋式過濾器出口 HC1濃度的 變化示於圖21。 a [實例12] 36 201242657 42128pif 在所述模擬中,對以下兩種添加輸出施加5〇%的輸出 限制後使兩者相加來進行反饋控制:當根據利用HC1濃度 測疋機益(低速)14 (測定機器的計測延遲時間為9 5分 1里)所叶測的HC1濃度進行反饋控制時,在分步方式的控 制中最接近的HC1濃度的斜率的6秒平均為正的情況下, 將控制目標值(SV)設為180 ppm (sv-20 ppm),在最 接近的HC1濃度的斜率的6秒平均為負的情況下,將控制 目才承值(SV) δ又為220 ppm ( SV+20 ppm)而進行了控制 的添加輸出;以及當根據利用HC1濃度測定機器(高速) 15 (測定機器的計測延遲時間為2秒)所計測的Ηα濃度 進行反饋控制時,同樣地在分步方式的控制中將控制目標 值設定為200 ppm而進行了控制的添加輸出(參照表工及 表3 )。 將碳酸氫鈉細粉添加量與利用碳酸氫鈉細粉進行處 理後的袋式過濾器出口 HC1濃度示於表1。另外,將該控 制時的碳酸氫鈉細粉添加量與袋式過濾器出口 HC1濃度的 變化示於圖22。 37 201242657 42128pif[表1] BF出口 HCl濃度 瞬問 最小 G CO oo LT> CO 3 S S CO CO 艮 Q. (O Lf> 5 oo u·) un LT) s 卜 CM LA CO in σ> in CO »Λ Ξ (Ο LT> ο 瞬間 最大 E g kn CSI ΤΓ CsJ r«- CM 〇> QO CM o m CO (Ο a〇 η σ> o eg to eg o CNJ oo 艺 in in CNJ CNi CM CO ΙΛ CSJ 1小時 平均 最大 Ά 〇. CsJ r— esj CM CO σ> σ> S (O s (Ο s σ> CSJ CM o Cs| S Ο s CM (0 s 寸 oo 平均 E s s Ln oo CO CO CO r- OO Γ— g un CO 添加爱 1 kg/h P— 异 P*> σ> CM n O ΙΛ rg CO 〇> eg CO Γ— o K LA ?; 〇> 甘 a P- 〇> CSJ CSJ K 鸾忘锯碱C 祝〜名逛泛g 1 〇 〇 o o ο o 〇 s 〇 s O o s HC1的斜 率SO時 的控制 目標值 (ppm) 1 o s 〇 CM o OJ o CM ο s o CM o CM o s 〇 CM o CM o CM o o CNJ IIC1的飪 率>0時 的控制 目標值 (ppm) J o s o o s 〇 eg ο o eg o CNJ o s 〇 CSJ o s o s 〇 o 測定機 器的計 測延遲 時問 1 忿 οι 总 CM 1分鈸 3分錢 5分錢 7分鐘 忿 N 釔 CN 忿 CM 忿 C*J 忿 OJ 总 eg 忿 CNJ 控制 形式 1 Q 0. Q 0. Θ 0. a a. Q CL Q a. Q 0. Q CL Q CL Q 0. Li步 分步 电N 令 測定機器1(低速) 1 測定機 器1的 添加輸 出係數 (K1) (X) o I O o o Ο o s s o s O o s 求佳'瓦㈣A E — VII安雄S o s 1 o s o s o CM Ο CM o s o CM o CM s CM s rst o s s CM s CSI HC1的斜 率>0時 的控制 目標值 (ppm) o s 1 o s o s 〇 Ο s o s 〇 o s 1 1 o s 1 1 測定機 器的計 測延遲 時間 9.紛鏟 1 | 9.紛餚 I 9.吩錢| 9.5分鐘 9.5分鐘 9.5分銪 9.5分鈸 9.5分鐘 9.5分鐘 9.5分鍺 9.5分鐘| 9.5分銪 9.5分銪 控制 形式 a £ 1 Q K. Q K. g a a Q a a K. Q CL ο Q K. 分步 ^分步 t 比較例1 比較例2 |實例l 實例2 實例3 實例4 實例5 實例6 實例7 實例8 I實例9 | j實例ίο 1 實例11 實例12 38 201242657 42128pif[表2] w«s-**· 5 « € if 拉射M出蝽加5 (kt/h> Ac (*«|:〇的情况)[参考i i i o s g i o s s o «*> g o CO 〇 g i g s s O CVJ 8 04 —. ·»〇> 乏 S” g i I § S s o s g o ο a o o s o s s s s 2 ο I g S 1 1 I a O i i MS Sfi* =KS s g g a <0 a s s g « r·» - w i 1 i § 畐 g ο Λ J W 〇 i 岂 s 1 1 i o e | | e — *<1* pi§ s s s κ e>j s s s δ g « CSi - - - ! 1 = § s 1 a g s o o I a o | 寒 s 5 以5 g R s S § K a δ g Ξ i 1 I g Ξ = i 6 i i 1 E S 5 | i « X y m I y *硌 w 一 ι^Ι •a s II si s i | § g s s s % €·» a o ro 8 g s g s s s g K i *tw ξ « ? § i i g s o s s = Ο a o s g s s s 民 a s ο * w f « 8 g g • s s 1 1 hn 4芸 s 岂 s K g s g CO r~ ΙΛ ! § s s s 莒 8 Λ *« G S g s 1 1 s s | i i lU up s g s s 3 § CS4 § s i g s § W O § s o o o o O | i 旧 d ^ e « « ? s g δ s § 1 i i ο | g 1 1 I s % s § a S! y- S «i «? Si m 項 s s e s e X 霣 C •i •5 X 7 « a «< «3 H •U a n |SVA1 [HC1 上的任ASV:SV-SVAI J |SVB1 fHClT»·♦的修正 SV:SV*SVBI 】 i ·« s ? a i a Έ £ a a s T a V a 3 5 r& M S X « 5 tn n | « «? M s S 5 i s «1 *5 s; ¥ B 3 I £ «Κ «$ 3 1 s _ « as a ^ Η a e w a s «ί « s ϋ ε 摹 e a e Q c e 3.¾ H i*lsv η AdwzBS9 ovat 5 lie οζχίΛΜ-'-ίΛ'Λ-χοζϋτκ3) = zsvo A la^Ad^Ase" 39 201242657 42128pif [表3] -^^)2855(?n*) I s*w5The two-time output of the measured HC1 concentration for 2 seconds) is not limited (just %), and the two kinds of additions are feedback-controlled. The addition of sodium bicarbonate fine powder to the π HC1 concentration of the bag filter after the fine powder of sodium bicarbonate is shown in the table, and the amount of sodium bicarbonate fine powder added during the period of time is added. The change with the bag type rhyme exit = is shown in Fig. 16. ^ [Example 7] In the simulation, 5 % of the added output was feedback-controlled based on the fatness measured by the HC1 concentration measuring machine (lower (the measurement delay time of the measuring machine was 95 minutes)) The output limit is applied with an output limit of 5G% based on the added output of the HC1 concentration measured by the HC1 concentration measuring device (high speed) 15 (the delay time of the measuring unit is 2 seconds), and the two types of output are added. Adding feedback control. The amount of sodium bicarbonate fine powder added to the bag type pulverizer treated with sodium bicarbonate fine powder is π HC1; the agricultural degree is shown in Table i, which is the result of the simulation study. A table of the amount of the alkali agent added in the comparative example and the example, etc. The change of the amount of the sodium bicarbonate fine powder added during the control and the change of the bag filter outlet 31 201242657 42128pif HC1 concentration is shown in Fig. π. In the case of Example 6 and Example 7, the acid gas treatment is performed when at least one of the upper limits of the additive output estimated by the measurement signals of at least two acid gas measuring devices having different measurement delay times is applied. The example 6 is an example of applying a limit of 5 〇〇/0 to the added output estimated from the measurement signal of the HC1 concentration measuring device (low speed) 14. In addition, the example 7疋 is for the HC1 concentration measuring machine. (low speed) 14 and the HC1 concentration measuring device (south speed) 15 are applied to the two types of addition and output by a limit of 5 %. It can be seen that in either case, the treatment level of HC1 is substantially the same as that of the example, and the addition amount is 271 kg. /h~300 kg/h, the amount of alkali agent added can be reduced compared with the example 丨 (311 kg/h) [Example 8] In the simulation, the following two added outputs are added for feedback control: When feedback control is performed based on the UC1 concentration measured by the HC1 concentration measuring device (low speed) 14 (the juice measuring delay time of the measuring device is 9.5 minutes), if the average of the slope of the closest HC1 concentration is positive for 6 seconds. Set the control target value (SV) to 180 ppm (SV-20ppm), and set the control target value (SV) to 220 ppm (SV+20) when the 6-second average of the slope of the closest HC1 concentration is negative. Added output that is controlled by ppm; and When the feedback control is performed by the hci concentration measured by the HC1 concentration measuring device (high speed) 15 (the measuring delay time of the measuring device is 2 seconds), the control target value (sv) is set to 2〇〇ρριη and the control is added. Output: 32 201242657 42i^»pir The amount of sodium bicarbonate fine powder added and the concentration of HC1 at the outlet of the bag filter treated with sodium bicarbonate fine powder are shown in Table 1. In addition, the sodium bicarbonate at the time of this control is fine. The change in the amount of powder added and the concentration of the bag filter outlet Ηα is shown in Fig. 18. [Example 9] In the simulation, an output limit of 5 〇 0 / 〇 was applied to the following two kinds of addition outputs, and then the two were added to perform feedback control: when measuring the machine according to the concentration of HC1 (low speed) 14 (measurement) When the measurement delay time of the machine is 9.5 minutes), when the measured HC1 concentration is feedback-controlled, the control target value (sv) is set to 180 ppm (SV) when the average of the slope of the closest HC1 concentration is positive for 6 seconds. -20 ppm), when the average of the slope of the closest Ηα concentration is negative for 6 seconds, the control target value (sv) is set to 220 ppm (SV+20 ppm) and the added output is controlled; When feedback control is performed by the HC1 concentration measured by the HC1 concentration measuring device (high speed) 15 (the measurement delay time of the measuring device is 2 seconds), the control target value (SV) is set to 200 ppm and the controlled output is added. The amount of sodium bicarbonate fine powder added and the bag filtration benefit outlet after treatment with sodium bicarbonate fine powder are shown in Table 1. Further, the change in the amount of the sodium bicarbonate added at the time of the control and the outlet concentration of the bag filter is shown in Fig. 19 . Here, as in the case of Example 8 and Example 9, when estimating based on the measurement signals of at least two acid gas measuring devices having different measurement delay times, 'when the slope of the closely-occupied HC1 concentration is positive, the control target is lowered. In the case where the slope of the closest HC1 concentration is negative, the control target value of 33 201242657 42128pif is increased, and the result of the warm gas treatment when the added output of the feedback is performed in advance is explained. In the case of estimating the measurement signal of the HC1 concentration measuring device (low speed) 14, the control target value (SV) is changed and the calculated output is added, and the measurement signal of the HC1 concentration measuring device (high speed) 15 is measured. An example in which the control target value of 200 ppm is maintained and the added output obtained by the operation is added 'and feedback control is performed. Further, Example 9 imposes a 50% limit on the two kinds of addition outputs obtained by calculating the measurement signals of the HC1 concentration measuring apparatus (low speed) 14 and 11 (: 1 concentration measuring machine (high speed) 15 in Example 8 and The feedback control of the two is added. In Example 8, 'the amount of addition is almost the same as that of Example 1, especially the instantaneous maximum HC1 is decreased from 272 ppm to 248 卯m, and the corresponding peak is enhanced by the control method. In addition, in Example 9 Among them, it can be seen that compared with the example i, the instantaneous maximum is 255 ppm and the corresponding peak is strengthened, and the addition amount is reduced from 315 kg/h of Example 8 to 279 kg/h, and a well-balanced control can be implemented. Example 12 will be described. In the example 10 to the example 12, the step control method is used instead of the PID control method for control. Here, the outline of the step control method will be described. The step method is different from the PID control method. The control method for specifying the output in accordance with the HCi rolling degree of the outlet is set. Table 2 is a table of the control setting of the control method in the example 1. The description is made using the example 10 (Table 2). Then, when the HCn farming degree is between the SV control target value [control output initial concentration (above output lower limit)]~SM1, between L〇 and coffee, 34 201242657 42128pif = the following form: If the HC1 concentration is SM1 to SM2, the output of the J is set by the LM2, and the above is the output _ (the upper limit of the control output). = The HC1 concentration and the control used in the control calculation of the output of the St-rate are as follows. The correction is to use SVA1 and SVA2 to enter the 22nd positive rate and subtract the Ηα-concentration SVA2 used in the calculation from the Ηα concentration used in the calculation minus the field slope. In addition, when the value of the shape tHa slope under the control = α when the input of the same HC1 concentration is input is large (the tendency of the acid gas is increased), the control output value is larger than the output value of the fertilizer slope. The amount of hydrazine nanopowder added (Ag) is determined by the above formula (1). [Example 10] In the simulation, the following two addition outputs are added for feedback control. When measured according to the concentration of HC1 Machine (low speed) 14 (measurement machine measurement delay time is 9. 5 minutes) When the measured HC1 concentration is subjected to feedback control, the control target value is set in the stepwise mode control (in this mode, the concentration at which the control output of the test is added to the lower limit of the output is defined as SV) is set to Addition output controlled at 200 ppm; and feedback control based on the HC1 concentration measured by the HC1 concentration measuring device (high speed) 15 (measurement delay time of the measuring device is 2 seconds), similarly in a stepwise manner In the control, the control target value is set to 2〇〇ppm 35 201242657 42128pif and the added output is controlled (refer to Table 1 and Table 2). The amount of sodium bicarbonate fine powder added and the bag filter outlet HC1 concentration after treatment with sodium bicarbonate fine powder are shown in Table 1. Further, the change in the amount of sodium bicarbonate fine powder added during the control and the concentration of the bag filter outlet HC1 are shown in Fig. 20. [Example 11] In the simulation, the following two kinds of addition outputs were added to perform feedback control: when measured according to the measurement device using the HC1 concentration (low speed) 丨 4 (measurement delay time of the measuring machine is 9.5 minutes) When the HC1 concentration is feedback-controlled, the 6-second average of the slope of the closest HC1 concentration in the step-by-step control is positive, and the control target value (sv) is set to 18〇ppm (SV-20 ppm). When the average of 6 seconds of the slope of the closest HC1 concentration is negative, the control target value (Sv) is set to 22 〇ppm (SV+20 ppm) and the added output is controlled; and when the concentration is based on the use of HC1 When the HC1 concentration measured by the measuring device (high-speed) 15 (measuring delay time of the measuring device is 2 seconds) is feedback-controlled, the control target value is set to 2 〇〇 ppm in the same manner in the step-by-step control. Addition output (refer to Table 1 and Table 3 (Table 3 is a table of control settings of the step-by-step control method in Example 11 and Example 12. The amount of sodium bicarbonate fine powder added and treated with sodium bicarbonate fine powder Bag filter outlet HC1 thick The change in the amount of sodium bicarbonate fine powder added during the control and the change in the concentration of the bag filter outlet HC1 is shown in Fig. 21. a [Example 12] 36 201242657 42128pif In the simulation, the following The two added outputs are applied with an output limit of 5〇%, and then the two are added together for feedback control: when using the HC1 concentration to measure the machine benefit (low speed) 14 (measurement machine measurement delay time is 9.5 minutes 1 mile) When the HC1 concentration of the leaf is feedback-controlled, the control target value (SV) is set to 180 ppm (sv-20 ppm) when the 6-second average of the slope of the closest HC1 concentration in the stepwise control is positive. ), in the case where the average of the slope of the closest HC1 concentration is negative for 6 seconds, the control output is controlled by the control value (SV) δ being 220 ppm (SV+20 ppm); When the feedback control is performed based on the Ηα concentration measured by the HC1 concentration measuring device (high speed) 15 (the measurement delay time of the measuring device is 2 seconds), the control target value is set to 200 ppm in the same manner in the stepwise control. Added output of control (reference Table 3) The concentration of the sodium bicarbonate fine powder and the concentration of the bag filter outlet HC1 after treatment with sodium bicarbonate fine powder are shown in Table 1. In addition, the sodium bicarbonate fine powder at the time of the control was added. The change in the concentration of HC1 at the outlet of the bag filter is shown in Figure 22. 37 201242657 42128pif [Table 1] BF outlet HCl concentration Instant minimum G CO oo LT> CO 3 SS CO CO 艮Q. (O Lf> 5 oo u ·) un LT) s CM LA CO in σ> in CO »Λ Ξ (Ο LT> ο instantaneous maximum E g kn CSI ΤΓ CsJ r«- CM 〇> QO CM om CO (Ο a〇η σ> o Eg to eg o CNJ oo art in in CNJ CNi CM CO ΙΛ CSJ 1 hour average maximum Ά C. CsJ r— esj CM CO σ> σ> S (O s (Ο s σ> CSJ CM o Cs| S Ο s CM (0 s oo aver average E ss Ln oo CO CO CO r- OO Γ - g un CO add love 1 kg / h P - different P * > σ > CM n O ΙΛ rg CO 〇 > eg CO Γ - o K LA ?; 〇> Gan a P- 〇> CSJ CSJ K 鸾 锯 碱 C 祝 名 名 名 名 g g g g O O O O O O O 1 1 1 1 1 1 1 1 1 1 1 1 1 Ppm) 1 os CM o OJ o CM ο so CM o CM os 〇CM o CM o CM oo CNJ IIC1 cooking rate > 0 control target value (ppm) J osoos 〇eg ο o eg o CNJ os 〇CSJ osos 〇o The measurement delay of the machine is 1 忿οι total CM 1 minute 钹 3 cents 5 cents 7 minutes 忿N 钇CN 忿CM 忿C*J 忿OJ total eg 忿CNJ control form 1 Q 0. Q 0. Θ 0. Q a. Q CL Q a. Q 0. Q CL Q CL Q 0. Li step step by step N to measure machine 1 (low speed) 1 Determine the added output factor of machine 1 (K1) (X) o IO oo Ο ossos O os 佳佳's (four) A E — VII Anxiong S os 1 ososo CM CM CM oso CM o CM s CM s rst oss CM s CSI HC1 slope > 0 control target value (ppm) os 1 osos 〇Ο sos 〇 os 1 1 os 1 1 measuring the delay time of the machine 9. shovel 1 | 9. dishes I 9. order money | 9.5 minutes 9.5 minutes 9.5 minutes 铕 9.5 minutes 9.5 minutes 9.5 minutes 9.5 minutes 9.5 minutes | Distribution 9.5 minutes control form a £ 1 Q K. Q K. gaa Q aa K. Q CL ο Q K. Steps step by step t Comparison example 1 Comparison example 2 | Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 I Example 9 | j instance ίο 1 Example 11 Example 12 38 201242657 42128pif [Table 2] w«s-**· 5 « € if pull M out + 5 (kt/h> Ac (*«|: 〇 )) [Reference iiiosgiosso «*> go CO 〇gigss O CVJ 8 04 —. ·»〇> S S gi I § S sosgo ο aoosossss 2 ο I g S 1 1 I a O ii MS Sfi* =KS sgga <0 assg « r·» - wi 1 i § 畐g ο Λ JW 〇i 岂s 1 1 ioe | | e — *<1* pi§ sss κ e>jsss δ g « CSi - - - ! 1 = § s 1 agsoo I ao | cold s 5 with 5 g R s S § K a δ g Ξ i 1 I g Ξ = i 6 ii 1 ES 5 | i « X ym I y *硌w 一ι^Ι •as II si si | § gsss % €·» ao ro 8 gsgsssg K i *tw ξ « ? § iigsoss = Ο aosgsss people as ο * wf « 8 gg • ss 1 1 hn 4芸s 岂s K gsg CO r~ ΙΛ ! § sss 莒8 Λ *« GS gs 1 1 ss | ii lU up sgss 3 § CS4 § sigs § WO § soooo O | i old d ^ e « « sg δ s § 1 ii ο | g 1 1 I s % s § a S! y- S «i «? Si m item ssese X 霣C •i •5 X 7 « a «<« 3 H •U an |SVA1 [Amendment of any ASV:SV-SVAI J |SVB1 fHClT»·♦ on HC1 SV:SV*SVBI] i ·« s ? aia Έ £ aas T a V a 3 5 r& MSX « 5 tn n | « «? M s S 5 is «1 *5 s; ¥ B 3 I £ «Κ «$ 3 1 s _ « as a ^ Η aewas « ί « s ϋ ε 摹eae Q ce 3. 3⁄4 H i*lsv η AdwzBS9 ovat 5 lie οζχίΛΜ-'-ίΛ'Λ-χοζϋτκ3) = zsvo A la^Ad^Ase" 39 201242657 42128pif [Table 3] -^^)2855(? n*) I s*w5
Wes-M*·. Il5*· 妄ΐ 明 一》 Η 爷 s 1 1 〇 5 | 1 〇 o | i O c» s s 1 O «•9 1 1 s s s 〇 1 § o rg 〇 «Ί | a* 3 Ws s § o o 芑 s o s s a s a 〇 o g s O s s O o o 〇 〇 * ci i s § S ' ' § i o I i 5SS ur< sir s o 5 a 3 § Ξ - - s 1 s 3 s s 1 Jw f « 运 〇 § S 1 § S o 1 i s*U« s«a s s (SI « a S a s a « - § 目 g § s s w s § 〇 o 8 δ o o i g a Isi a S s o s 5 自 a 3 召 § ce rg r>» CM r>j «Μ - »M s i s § 3 § s I _| 1 I | S s s § A| (Af2«0约情这){参考] s s o o § i g s s o r» n o o «•Ϊ 〇 a i 〇 CM s s 〇 S O «Si e ·» s * W ^ a 3 « ?S5 s g o o o s s O § o 〇 g % o s s o o o o o « e i § s O - s s o s s 5?|* y «a o s CM $ >e eg - o ΓΜ r·» iO s rj s s te tn jn o Λ Sg 1 o og o ' • o 1 e 1 s °S2 i^l Sil* o e § § § s § § % 1 5; = z = s; s 1 = = s & § e s s s s I o 1 i ^ £ *i D w t! «*j Ϊ a«i s 岂 3 s K 3 5 o 2 - - - - § § § s 1 I 1 I | 1 % i «ζ s -c a K IS s « e « 0 1 !$ S i « 3 吾 n « « £ — a 5 6 尋 a «< 由 s V 4 i i i 1 ΐ •a· « h i | ti K •u a s « 3 Ϊ k 7 fi H S 1 S i H a Ϊ M « s e 3 t» Λ n € 5 δ «ί *s tf K £ •H s & 9( s « *? tf K S β « a Λ ί « s 1 « « ft < ST a w 3 « 3 ϋ 卜 Ή fl «1 ί 9 •η fi ¥ « « S «9 V β 3. ovm" zsvvi n£5ase 5· η 1-3Θ οϊιΑ'ιδ-'-ίΑ'ω^οζ-ΜονιΓΟ " s-5 a 40 201242657 42128pif 實例10〜實例12是利用分步方式進行反饋控制的實 例°分步方式是對添加輸出的上限值設定多個輸出限制, 防止添加損失的方案。 以分步控制方式為基礎進行控制的結果,與比較例J 及比較例2 ( 1小時平均為227 ppm〜234 ppm,瞬間最大 為416 ppm〜425 ppm)相比,實例1〇〜實例12的i小時 平均值為206 ppm〜218 ppm,瞬間最大為253 ppm〜274 ppm而表現出穩定的酸性氣體處理性能。另外,可知與以 PID為基礎進行控制的實例1、實例8、及實例9 (1小時 平均為193 PPm〜205 ppm,瞬間最大為248 ppm〜272 ppm)相比,若1小時平均為2〇6ppm〜218卯瓜,瞬間最 大為253 ppm〜274 ppm ’則酸性氣體的管理性能略差,但 添加量相對於279 kg/h〜315 kg/h而削減為272 kg/h〜297 kg/h。 本發明在PID方式、分步方式中均可實施,但認為根 據上述,果當尋求酸性氣體的穩定處理時,pID方式有 效,當尋求添加量削減效果時,分步方式有效。 f下,當對作為實體機器研究結果的比較例3、實例 13〜實例16進行朗時,對比㈣3、實例丨3〜實例^ 中所使用的,性氣體處理系統2的構成進行說明。 圖23是表示向作為焚燒設備中的排氣的HC1中添加 碳酸氫納^粉的酸性氣體處理系統2的構成的方塊圖。 、酉义隹氣體處理系統2包括控制裝置21、破酸氫鈉細粉 添加裝置22、碳酸氫鈉細粉添加裝置%、袋式過滤器^、 201242657 42128pif HC1濃度収機n (離子電極方式)24及HC1濃度測定機 益(雷射方式)25。控制裝置21根據從HC1濃度測定機 器(離子電極方式)24及HC1濃度測定機器(雷射方式) 25傳送來的HC1濃度測定信號,通過反饋控制(pID控制 方式或分步方式)來算出碳酸氫鈉細粉的添加量輸出值。 碳酸氫鈉細粉添加裝置22根據控制裝置21所算出的碳酸 氫鈉細粉的添加量輸出值,向排氣中的HC1中添加碳酸氫 鈉細粉。另外,碳酸氫鈉細粉添加裝置26不論控制裝置 21所算出的碳酸氫鈉細粉的添加量輸出值,均將固定量的 碳酸氫鈉細粉添加至排氣中的HC1。 心式過/慮器23將排乳中的HC1與碳酸氫納細粉的反 應後的粉塵去除。HC1濃度測定機器(離子電極方式)24 及HC1濃度測疋機器(雷射方式)25測定蓄積在袋式過遽 器23上的碳酸氫納細粉(通過與排氣中的的反應而 殘存的碳酸氫鈉細粉蓄積在袋式過渡器23上)與排氣反應 後的HC1進行反應後的HC1濃度(後述的袋式過渡器出口 HC1濃度)’並將HC1濃度測定信號傳送至控制裝置21。 酸性氣體處理系統2重複此種循環來進行反饋控制, 由此控制裝置21進行使碳酸氫鈉細粉添加量的控制輸出 值變成適當的值的控制。 再者,關於HC1濃度的計測延遲時間,HC1濃度測定 機器(離子電極方式)24比HC1濃度測定機器(雷射方式) 25長。 另外,如圖23所示’優選以測定蓄積在袋式過遽器 42 201242657 42128pif 23上的碳酸氫鈉細粉與排氣反應後的HC1進行反應後的 HC1濃度(袋式過濾器出口 HC1濃度)的方式,設置HC1 濃度測定機器(離子電極方式)24及HC1濃度測定機器(雷 射方式)25。其原因在於:通過與排氣中的HC1的反應而 殘存的碳酸氫鈉細粉蓄積在袋式過濾器23上,該蓄積的碳 酸氫鈉細粉與排氣反應後的HC1進行反應,因此可更準確 地測定HC1濃度。 [比較例3] 在工業廢棄物焚燒爐中,將雷射形式的HC1濃度測定 機器(京都電子工業製造的KLA4)設置在減溫塔出口與 袋式過濾器之間,測定入口 HC1濃度。另外’根據由袋式 過濾器出口的離子電極方式的HC1濃度測定機器(京都電 子工業製造的HL-36N)所測定的信號,利用管理排出基 準值的氧換算值來實施反饋控制。再者,雖然將取決於出 口的S〇2濃度信號的反饋添加輸出(sv為180 ppm)與取 決於HC1濃度的添加輸出相加來實施,但在該設備中,未 產生S02。 另外,對酸性氣體進行處理的鹼劑是根據所述反饋控 制而添加8 μηι的碳酸氫鈉細粉[栗田工業製造的 Highpurser Β-200]。鹼劑的添加裝置因最大添加量的問題 而有效地利用2台,1台設為18〇 kg/h的定量添加,1台 根據所述出口 HC1濃度信號而以“下限為20 kg/h、上限為 300 kg/h、PID控制設定p (比例增益)=100%、1=0」秒、 D=0.1秒”進行反饋控制。 43 201242657 將袋式過遽器入口 HC1濃度、袋式過渡器出口 HCl 濃度、以及碳酸氫鈉細粉的添加量(添加裝置合計2台) 示於表4。表4是表系貫體機器研究結果的各比較例及實 例的鹼劑添加量等的表。另外,將實施該控制時的碳酸氫 鈉細粉添加量、及袋式過濾器入口出口的HC1濃度的變化 示於圖24。 如上所示,碳酸氫納細粉的添加粗略地進行,且是出 口的HC1濃度大幅度變化的浪費多的控制。 [實例13] 在同一設備中,利用由袋式過濾器出口的離子電極方 式的HC1濃度測定機器(京都電子工業製造的HL_36n) 所測定的HC1濃度信號(氧換算值)、及由袋式過遽器出 口的雷射方式的HC1濃度測定機器(京都電子工業製造的 KLA-1)所測定的HC1濃度信號(氧換算值)來實施反饋 控制。再者,同樣地將取決於出口的s〇2濃度信號的反饋 添加輸出(SV為180 ppm)與取決於Ηα濃度的添加輸出 相加來實施,但在該設備中,未產生s〇2。 另外,添加裝置同樣地將丨台設為18〇kg/h的定量添 加,1台根據所述出口 HC1濃度信號而設為 ((t m 〇f)Wes-M*·. Il5*· 妄ΐ 明一》 Η s s 1 1 〇5 | 1 〇o | i O c» ss 1 O «•9 1 1 sss 〇1 § o rg 〇«Ί | a* 3 Ws s § oo 芑sossasa 〇ogs O ss O oo 〇〇* ci is § S ' ' § io I i 5SS ur< sir so 5 a 3 § Ξ - - s 1 s 3 ss 1 Jw f « 〇 § S 1 § S o 1 is*U« s«ass (SI « a S asa « - § 目 § ssws § 〇o 8 δ ooiga Isi a S sos 5 from a 3 call § ce rg r>» CM r> j «Μ - »M sis § 3 § s I _| 1 I | S ss § A| (Af2 «0 情情) {Reference] ssoo § igssor» noo «•Ϊ 〇ai 〇CM ss 〇SO «Si e ·» s * W ^ a 3 « ?S5 sgoooss O § o 〇g % ossooooo « ei § s O - ssoss 5?|* y «aos CM $ >e eg - o ΓΜ r·» iO s rj ss Te tn jn o Λ Sg 1 o og o ' • o 1 e 1 s °S2 i^l Sil* oe § § § s § § % 1 5; = z = s; s 1 = = s & § essss I o 1 i ^ £ *i D wt! «*j a«is 岂3 s K 3 5 o 2 - - - - § § § 1 I 1 I | 1 % i «ζ s -ca K IS s « e « 0 1 !$ S i « 3 wu n « « £ — a 5 6 Find a «< by s V 4 iii 1 ΐ •a· « hi | ti K •uas « 3 Ϊ k 7 fi HS 1 S i H a Ϊ M « se 3 t» Λ n € 5 δ «ί *s tf K £ •H s & 9( s « *? tf KS β « a Λ ί « s 1 « « ft < ST aw 3 « 3 ϋ Ή Ή fl «1 ί 9 •η fi ¥ « « « « « « « « « « « « « « « « 实例 ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω Example of feedback control using the step-by-step method The step-by-step method is to set a plurality of output limits for the upper limit of the added output to prevent the loss from being added. The results of the control based on the step-by-step control method were compared with those of Comparative Example J and Comparative Example 2 (average 227 ppm to 234 ppm for 1 hour, maximum 416 ppm to 425 ppm for instantaneous), and Examples 1 to 12 The i-hour average is 206 ppm to 218 ppm, and the instantaneous maximum is 253 ppm to 274 ppm, which shows stable acid gas treatment performance. In addition, it can be seen that compared with Example 1, Example 8, and Example 9 which are controlled on a PID basis (an average of 193 PPm to 205 ppm for one hour and a maximum of 248 ppm to 272 ppm for an instant), the average value is 2 1 for one hour. 6ppm~218 卯 melon, the maximum instantaneous 253 ppm~274 ppm 'The management performance of acid gas is slightly worse, but the amount added is reduced to 272 kg/h~297 kg/h relative to 279 kg/h~315 kg/h. . The present invention can be implemented in both the PID method and the step-by-step method. However, it is considered that the pID method is effective when the acid gas is stably treated, and the stepwise method is effective when the additive amount reduction effect is sought. In the case of f, Comparative Example 3, Example 13 to Example 16 which are the results of the physical machine research, the configuration of the gas processing system 2 used in Comparative (4) 3, Example 丨 3 to Example ^ will be described. Fig. 23 is a block diagram showing the configuration of an acid gas treatment system 2 in which sodium bicarbonate is added to HC1 as an exhaust gas in an incineration facility.酉 隹 gas treatment system 2 includes control device 21, sodium hydride fine powder adding device 22, sodium bicarbonate fine powder adding device%, bag filter ^, 201242657 42128pif HC1 concentration receiving machine n (ion electrode mode) 24 and HC1 concentration determination machine benefits (laser mode) 25. The control device 21 calculates the hydrogencarbonate by feedback control (pID control method or stepwise method) based on the HC1 concentration measurement signal transmitted from the HC1 concentration measuring device (ion electrode method) 24 and the HC1 concentration measuring device (laser method) 25. The output value of the added amount of sodium fine powder. The sodium bicarbonate fine powder adding device 22 adds a sodium hydrogencarbonate fine powder to the HC1 in the exhaust gas based on the output value of the sodium bicarbonate fine powder calculated by the control device 21. Further, the sodium hydrogencarbonate fine powder adding device 26 adds a fixed amount of sodium hydrogencarbonate fine powder to the HC1 in the exhaust gas regardless of the output value of the added amount of the sodium hydrogencarbonate fine powder calculated by the control device 21. The heart type filter 23 removes the dust after the reaction of the HC1 and the sodium bicarbonate fine powder in the milk. The HC1 concentration measuring device (ion electrode method) 24 and the HC1 concentration measuring device (laser method) 25 measure the sodium bicarbonate fine powder accumulated on the bag type filter 23 (remaining by reaction with the exhaust gas) The sodium bicarbonate fine powder is accumulated in the bag-type transition device 23) The HC1 concentration (the bag-type transition device outlet HC1 concentration to be described later) after the reaction with the exhaust gas after the exhaust gas is reacted, and the HC1 concentration measurement signal is transmitted to the control device 21. . The acid gas treatment system 2 repeats such a cycle to perform feedback control, whereby the control device 21 performs control for changing the control output value of the amount of sodium bicarbonate fine powder added to an appropriate value. Further, regarding the measurement delay time of the HC1 concentration, the HC1 concentration measuring device (ion electrode method) 24 is longer than the HC1 concentration measuring device (laser mode) 25. In addition, as shown in FIG. 23, it is preferable to measure the HC1 concentration after the reaction of the sodium hydrogencarbonate fine powder accumulated on the bag filter 42 201242657 42128pif 23 with the exhaust gas (the bag filter outlet HC1 concentration). The HC1 concentration measuring device (ion electrode method) 24 and the HC1 concentration measuring device (laser mode) 25 are provided. This is because the sodium bicarbonate fine powder remaining in the reaction with the HCl in the exhaust gas is accumulated in the bag filter 23, and the accumulated sodium hydrogencarbonate fine powder reacts with the HC1 after the exhaust gas reaction, so that it can be The HC1 concentration was determined more accurately. [Comparative Example 3] In an industrial waste incinerator, a laser-type HC1 concentration measuring device (KLA4 manufactured by Kyoto Electronics Industry Co., Ltd.) was placed between the outlet of the desuperheating tower and the bag filter, and the concentration of the inlet HC1 was measured. In addition, the feedback control is performed using the oxygen-converted value of the management discharge reference value based on the signal measured by the ion-electrode-type HC1 concentration measuring device (HL-36N manufactured by Kyoto Electronics Co., Ltd.) which is an outlet of the bag filter. Further, although the feedback addition output (sv is 180 ppm) depending on the S〇2 concentration signal of the outlet is performed in addition to the added output depending on the HC1 concentration, in the apparatus, S02 is not generated. Further, the alkaline agent for treating the acid gas was added with 8 μηη of sodium hydrogencarbonate fine powder [Highpurser®-200 manufactured by Kurita Industries Co., Ltd.] according to the feedback control. The apparatus for adding an alkaline agent is effectively used in two units due to the problem of the maximum amount of addition, and one unit is quantitatively added at 18 〇kg/h, and one unit has a lower limit of 20 kg/h according to the outlet HC1 concentration signal. Up to 300 kg/h, PID control setting p (proportional gain) = 100%, 1 = 0" seconds, D = 0.1 seconds" for feedback control. 43 201242657 Bag type filter inlet HC1 concentration, bag transition The HCl concentration at the outlet and the addition amount of the sodium hydrogencarbonate fine powder (two in total of the addition devices) are shown in Table 4. Table 4 is a table showing the amount of the alkali agent added and the like in each comparative example and the example of the results of the research on the system. In addition, the change of the amount of the sodium bicarbonate fine powder to be added and the change of the HC1 concentration at the inlet of the bag filter is shown in Fig. 24. As described above, the addition of the sodium bicarbonate fine powder is roughly performed, and In the same equipment, the HC1 concentration measuring device (HL_36n manufactured by Kyoto Electronics Industry Co., Ltd.) using the ion electrode method of the bag filter outlet is used for the HC1 concentration measurement. Concentration signal (oxygen conversion value), and The HC1 concentration signal (oxygen conversion value) measured by the laser-type HC1 concentration measuring device (KLA-1 manufactured by Kyoto Electronics Industry Co., Ltd.) at the outlet of the filter is subjected to feedback control. Further, it depends on the outlet. The feedback addition output of the s〇2 concentration signal (SV is 180 ppm) is added in addition to the added output depending on the Ηα concentration, but in this device, s〇2 is not generated. For the quantitative addition of 18 〇kg/h, one set is based on the outlet HC1 concentration signal ((tm 〇f)
時平均值的設備管理濃度215 並且進而獨立於該控制,當 理濃度215 ppm為213 ppm 44 201242657 42128pif 以上時,實施了添加300 kg/h的反饋控制。 將袋式過濾器入口 HC1濃度、袋式過滤器出口 HC1 濃度、以及碳酸氫鈉細粉的添加量(添加裝置合計2台) 示於表4。另外’將實施該控制時的碳酸氫鈉細粉添加量、 及袋式過濾器入口出口的HC1濃度的變化示於圖25。 [實例14] 與實例13同樣地’利用由袋式過濾器出口的離子電 極方式的HC1濃度測定機器所測定的JJC1濃度信號(氧換 算值)、及由袋式過濾器出口的雷射方式的HC1濃度測定 機器(京都電子工業製造的KLA-1)所測定的HC1濃度信 號(氧換算值)來實施反饋控制。再者,同樣地將取決於 出口的S〇2濃度信號的反饋添加輸出(sv為180ppm)與 取決於HC1濃度的添加輸出相加來實施,但在該設備中, 未產生S02。 另外,將實施了控制的添加裝置的控制設為“下限為 20 kg/h、上限為300 kg/h、PID控制設定P (比例增益) =100%、1=0.1秒、D=〇.l秒”,對根據兩個測定機器的測 定信號進行運算所得的兩個添加輸出施加3 3 %的限制並使 兩者相加,並且獨立於該控制,當i小時平均值為213卯m 以上時實施了添加300 kg/h的反饋控制。 將袋式過濾器入口 HC1濃度 '袋式過濾器出口 HC1 濃度、以及碳酸氫鈉細粉的添加量(添加裝置合計2台) 示於表4。另外,將實施該控制時的碳酸氫鈉細粉添加量、 及袋式過濾器入口出口的HC1濃度的變化示於圖26。 45 201242657 42128pif 實例13及實例14與比較例3相比,出口的HC1濃度 的變動均變少’實施了添加損失少的控制。另外,鹼劑的 添加量的必需量根據入口 HC1濃度而不同,通常以表示平 均入口 HC1濃度的添加量的當量來進行評價。可知該添加 當量與比較例相比得到削減,且進行了有效率的添加。 以下,對實例15及實例16進行說明。在實例15及 實例16中’利用分步控制方式代替pID控制方式進行控 制。再者’分步控制方式的概要與實例1〇中所說明的概要 相同。 [實例15] 在同一 §史備中,利用由袋式過遽器出口的離子電極方 式的HC1濃度測定機器(京都電子工業製造的hl_36N) 所測定的HC1濃度信號(氧換算值)、及由袋式過濾器出 口的雷射方式的HC1濃度測定機器(京都電子工業製造的 KLA_1)所測定的HC1濃度信號(氧換算值)來實施反饋 控制。再者,同樣地將取決於出口的s〇2濃度信號的反饋 添加輸土(SV為180 ppm)與取決於HC1濃度的添加輸出 相加來實施,但在該設備中,未產生S〇2。 另外,添加裝置同樣地將1台設為18〇kg/h的定量添 力一將上台设為分步方式,對根據兩個測定器的測定信號 進行運算所得的兩個添加輸出施加5〇%的限制並使兩者相 力:且獨立於該控制,當1小時平均值為213 ppm以上時 了2 了添加300 kg/h的反饋控制(參照表4及表5 (表5 疋貫例I5及實例16中的分步控制方式的控制設定的表))。 46 201242657 42128pif 將袋式過濾器入口 HC1濃度、袋式過濾器出口 HC1 濃度、以及破酸氫鈉細粉的添加量(添加裝置合計2台) 示於表4。另外,將實施該控制時的碳酸氫鈉細粉添加量、 及袋式過濾器入口出口的HC1濃度的變化示於圖27。 實例15是利用分步方式的實例。與比較例3相比, 出口的HC1濃度的變動變少,實施了添加損失少的控制。 該添加當量與比較例相比得到削減,且進行了有效率的添 加。 [實例16] 在同一設備中,利用由袋式過濾器出口的離子電極方 式的HC1濃度測定機器(京都電子工業製造的HL-36N) 所測定的HC1濃度k號(氧換算值)、及由袋式過濾器出 口的雷射方式的HC1濃度測定機器(京都電子工業製造的 KLA-1)所測疋的HC1濃度信號(氧換算值)來實施反饋 控制。再者,同樣地將取決於出口的s〇2濃度信號的反饋 添加輸出(SV為180Ppm)與取決於Ηα濃度的添加輸出 相加來實施,但在該設備中,未產生s〇2。 另外,將1台添加裝置設為定量添加17〇kg/h的比表 面積為30 m2/g以上的高反應消石灰(奥多摩工業(股份) 製造的TamakalkECO),Μ丨自設為分步枝,對根據 兩個測定㈣測定信舰行運算所得的兩懈加輸出施加 50%的限制並使兩者相加,且獨立於該控制,*丨小時平 :為2i3 ppm以上時實施了添加3〇〇 —田的反饋控制 (參照表4及表5 )。 47 201242657 42128pif 將袋式過濾器入口 HC1濃度、袋式過濾器出口 HC1 濃度、以及碳酸氫鈉細粉的添加量示於表4。另外,將實 施該控制時的碳酸氫鈉細粉添加量、及袋式過濾器入口出 口的HC1濃度的變化示於圖28。 實例16是將在工業上比較廉價的消石灰與碳酸氫鈉 細粉一併有效地利用的實例。在該方法中,也可以穩定地 獲得酸性氣體的穩定處理效果。由於有效地利用廉價的消 石灰而削減酸性氣體處理費用,因此是在工業上有效的方 法0 48 201242657 42128pif[表4] 相對於 入口 ΗΠ 濃度的添 加當查 [實測值] νς 1 1 1 1 1 CO 瑞酸 氣纳 細粉 1 0.97 0. 83 ο σ> ο 0.25 1 # CM CM CO s CSJ Si (Ο BF出口[離子電極法] ! 平均 [α換 算值] 1 〇 〇 ο ο ο 1IC1濃度 [〇2換算值] I V> S g to 1小時 平均 最小 I 00 CO eo ir> <〇 r- § A S -Κ 1 i S Cvj CM csi s CSI 1小時 平均 最大 I s ίο 尝 CO g 平均 I 邑 3 CO s CO BF入口 [雷射] 平均 [0:換 算值] I O ο 〇 ο o 平均 [實測值] 1 r- S CO K 运 平均 丨〇2換算 值] 1 1 1 〇 i g 添加裝置2[反饋控制] 出口 HC1測定機器 (雷射) 杈石嫜銥丧 — 3 1 to s s g ^Vl丨诠均m培 (ppm) 1 1 1 § 1 HC1 斜率 >0 時的 控制 目標 值 (ppm) 1 ο CSI 1 1 § 控制 形式 1 ο ζ o Q. 淑 φ Φ 〇 Λ' •Ή Was抟鉬成 一 落鸾:5名*53福S 0 o ΐο n eo g s S嵴〇定苕雔 Η^νιι岔均tm琏 (ppm) 1 1 1 a C«J s CM IIC1 斜毕 >0 時的 控制 目標 值 (ppm) g 04 1 1 s g 控制 形式 。 ο ο. o Q. 分步 分步 添加取罝1 定量 添加 (kg/h) 号 § g o 鹼剤 碳醆氫 鈉細粉 碳酸氩 納細粉 碳睃氫 納细粉 «i您 消石灰 比枚例3 實例13 贫例14 f例15 實例16 49 201242657 42128pif[表5] V « η « W Μ i ? £ 硌 w ~ Μ « « ! 5 * 3 8 s s s Β ?; S = = s s s 5 s s s s * s s s ss! 5« a s s § s = s = = 5 s s s s s s s s s s s s ° * V *ci δ § « ' 8 s i s 8 〇ΰ^ 酵 s § δ B δ » 3 § *° g I i § g § Λ * W Si ^ ΰ 8 S s 1 1 e s i s 1 ^«2 III! *Ra s s δ δ s δ a - s I § § 3 s V 0 δ e s o o o g s g i ?S1 14 & £ s 岂 s δ 3 a 邑 *** - in 昏 i g 爸 § 1 1 1 g 1 g I | | | I * Ψ J η £ W ϊ i ? 1 ί !i si s s s s 三 ή s = = s ~ Si s 5 K s 5 5 s s s s s S;I vJi § g s § = = 3 s s s s s s s 5 s s S s = ° Is ο ο s • o s i s s 沾s *-<*5 P?i δ s s s S s s s s s K 5 δ ~ s s 3 § β" u ϊ« S ο CM § ' ' o s § s I ^«s pH **a § 岂 1 s 1 s g δ g = 5; s 3; = •s, s 1 S = s - s V te s g s Ά & s s § s 8 «£5 b ^ a B «1 ϋΓ a «{£ s Ά δ 3 s s δ s S δ S s 1 1 I S I | 1 | | | α « κ a β C « « 41 S S β β ο a» « «I « c •u s μ « s ϋ « s 羣 | * 9 4r A s g | * s t e h s τ « 3 a K s B> « s a Ϊ i 费 •η is 3 Λ •M « fl S X) 5 9t 4 ί< « n « 3 s •f « sc ΰ 41 8 n J « e < s £ « s ή 7 41 s ϊ c 1Λ Ο « 5 m σ ♦/ 5 « S a « s «I •5 9 tf •a a V c a M • £9 Si s*gs'-a> + gs-5 xl8+s>s = Ζ>νττ5 η -lagl£lv,A$l0(la Λ\α- 873 J-a δ ο* ·0>3 " J*velsn Ad^ns®0γ3 = 2*ΫΪ*ν * 3>ΜΜΚΘ 50 201242657 42128pif 【圖式簡單說明】 圖1是表示向作為焚燒設備中的排氣的HC1中添加碳 酸氫鈉細粉的酸性氣體處理系統1的構成的方塊圖。 圖2是模擬反應系統的基本構成圖。 圖3是表示排氣反應中的碳酸氫鈉細粉添加當量與 HC1去除率的關係的圖表。 圖4是表示袋式過濾器上反應中的竣酸氫鈉細粉添加 當量與HC1去除率的關係的圖表。 圖5是表示入口 HC1濃度的變化的圖表。 圖6是表示實體機器研究結果的碳酸氫鈉細粉添加量 及出口 HC1濃度的變化的圖表。 圖7是表示模擬研究結果的碳酸氫納細粉添加量及出 口 HC1濃度的變化的圖表。 圖8是表示入口 HC1濃度的變化的圖表。 圖9是表示比較例1中的碳酸氩納細粉添加量及出口 HC1濃度的變化的圖表。 圖10是表示比較例2中的碳酸氫納細粉添加量及出 口 HC1濃度的變化的圖表。 圖11是表示實例1中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖12是表示實例2中的碳酸氫納細粉添加量及出口 HC1濃度的變化的圖表。 圖13是表示實例3中的破酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 51 201242657 42128pif 圖14是表示實例4中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖15是表示實例5中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖16是表示實例6中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖17是表示實例7中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖18是表示實例8中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖19是表示實例9中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖20是表示實例10中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖21是表示實例11中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖22是表示實例12中的碳酸氫鈉細粉添加量及出口 HC1濃度的變化的圖表。 圖23是表示向作為焚燒設備中的排氣的HC1中添加 碳酸氫鈉細粉的酸性氣體處理系統2的構成的方塊圖。 圖24是表示比較例3中的碳酸氫鈉細粉添加量、入 口 HC1濃度及出口 HC1濃度的變化的圖表。 圖25是表示實例13中的碳酸氫鈉細粉添加量、入口 HC1濃度及出口 HC1濃度的變化的圖表。 52 201242657 42128pif 圖26是表示實例14中的碳酸氫鈉細粉添加量、入口 HC1濃度及出口 HC1濃度的變化的圖表。 圖27是表示實例15中的碳酸氫鈉細粉添加量、入口 HC1濃度及出口 HC1濃度的變化的圖表。 圖28是表示實例16中的碳酸氫鈉細粉添加量、入口 HC1濃度及出口 HC1濃度的變化的圖表。 【主要元件符號說明】 I、 2 :酸性氣體處理系統 II、 21 :控制裝置 12、 22、26 :碳酸氫鈉細粉添加裝置 13、 23 :袋式過濾器 14:HC1濃度測定機器(低速) 15 : HC1濃度測定機器(高速) 24 :HC1濃度測定機器(離子電極方式) 25 :HC1濃度測定機器(雷射方式) 53The time-averaged device manages the concentration 215 and is thus independent of this control. When the concentration 215 ppm is 213 ppm 44 201242657 42128pif or more, a feedback control of 300 kg/h is implemented. The bag filter inlet HC1 concentration, bag filter outlet HC1 concentration, and sodium bicarbonate fine powder addition amount (two in total) are shown in Table 4. Further, the change in the amount of the sodium bicarbonate fine powder added when the control was carried out and the change in the HC1 concentration at the inlet port of the bag filter are shown in Fig. 25 . [Example 14] In the same manner as in Example 13, the JJC1 concentration signal (oxygen-converted value) measured by the ion-electrode-type HC1 concentration measuring device exiting the bag filter, and the laser type by the bag filter outlet The HC1 concentration signal (oxygen conversion value) measured by the HC1 concentration measuring device (KLA-1 manufactured by Kyoto Electronics Industry Co., Ltd.) was subjected to feedback control. Further, similarly, the feedback addition output (sv is 180 ppm) depending on the S〇2 concentration signal of the outlet is performed in addition to the addition output depending on the HC1 concentration, but in this apparatus, S02 is not generated. In addition, the control of the added device that has been controlled is set to "lower limit of 20 kg/h, upper limit of 300 kg/h, PID control setting P (proportional gain) = 100%, 1 = 0.1 second, D = 〇.l "seconds", imposes a 3 3 % limit on the two added outputs calculated from the measurement signals of the two measuring machines and adds the two, and is independent of the control, when the average value of the hour is 213 卯 m or more A feedback control of 300 kg/h was added. The bag filter inlet HC1 concentration 'bag filter outlet HC1 concentration and sodium bicarbonate fine powder addition amount (two in total) are shown in Table 4. In addition, the change of the amount of sodium bicarbonate fine powder added at the time of performing this control, and the HC1 density of the bag filter inlet and outlet are shown in FIG. 45 201242657 42128pif In Example 13 and Example 14, the fluctuation in the HC1 concentration at the outlet was smaller than in Comparative Example 3, and the control of the addition loss was small. Further, the necessary amount of the amount of the alkali agent to be added varies depending on the concentration of the inlet HC1, and is usually evaluated in terms of the equivalent amount of the added amount of the average inlet HC1 concentration. It was found that the added equivalent was reduced as compared with the comparative example, and the addition was carried out efficiently. Hereinafter, Example 15 and Example 16 will be described. In Example 15 and Example 16, 'the step control method was used instead of the pID control mode for control. Further, the outline of the step-by-step control method is the same as the summary described in the example 1. [Example 15] In the same stipulation, the HC1 concentration signal (oxygen conversion value) measured by the ion electrode type HC1 concentration measuring device (HL_36N manufactured by Kyoto Electronics Industry Co., Ltd.) outletd by the bag filter was used, and the bag was used. The HC1 concentration signal (oxygen conversion value) measured by the laser type HC1 concentration measuring device (KLA_1 manufactured by Kyoto Electronics Industry Co., Ltd.) at the outlet of the filter is subjected to feedback control. Furthermore, the feedback addition of the s〇2 concentration signal depending on the outlet (the SV is 180 ppm) is similarly added to the addition output depending on the HC1 concentration, but in the device, S〇2 is not generated. . In addition, in the same manner, the adding device is set to a predetermined amount of 18 〇kg/h, and the upper stage is set to a stepwise manner, and 5% of the two added outputs calculated by the measurement signals of the two measuring devices are applied. Limits and force the two: and independent of the control, when the 1-hour average is 213 ppm or more, 2 adds 300 kg/h of feedback control (refer to Table 4 and Table 5 (Table 5) And the table of the control setting of the step-by-step control method in Example 16)). 46 201242657 42128pif The bag filter inlet HC1 concentration, the bag filter outlet HC1 concentration, and the amount of sodium hydrogencarbonate fine powder added (two in total) are shown in Table 4. In addition, the change of the amount of sodium bicarbonate fine powder added at the time of performing this control and the HC1 density of the bag filter inlet and outlet are shown in FIG. Example 15 is an example of utilizing a stepwise approach. Compared with Comparative Example 3, the fluctuation of the HC1 concentration at the outlet was small, and the control of the addition loss was small. This addition equivalent was reduced as compared with the comparative example, and an efficient addition was made. [Example 16] In the same equipment, the HC1 concentration k (oxygen conversion value) measured by the ion electrode type HC1 concentration measuring device (HL-36N manufactured by Kyoto Electronics Industry Co., Ltd.) outletd by the bag filter, and The feedback control is performed by the HC1 concentration signal (oxygen conversion value) measured by the laser type HC1 concentration measuring device (KLA-1 manufactured by Kyoto Electronics Industry Co., Ltd.) at the outlet of the bag filter. Further, the feedback addition output (SP is 180 Ppm) depending on the s〇2 concentration signal of the outlet is similarly performed by adding the added output depending on the Ηα concentration, but in the apparatus, s 〇 2 is not generated. In addition, a high-efficiency slaked lime (Tamakalk ECO manufactured by Odomo Industries Co., Ltd.) with a specific surface area of 17 〇kg/h and a specific surface area of 30 2kg/h is added in a single addition device, and it is set as a branch, According to the two measurements (4), the two-strength output obtained by the calculation of the letter ship operation is subjected to a 50% limit and the two are added, and independent of the control, *丨 hour level: when 2i3 ppm or more is added, 3〇〇 is added. - Field feedback control (refer to Table 4 and Table 5). 47 201242657 42128pif The bag filter inlet HC1 concentration, bag filter outlet HC1 concentration, and sodium bicarbonate fine powder addition amount are shown in Table 4. Further, the change in the amount of sodium bicarbonate fine powder added during the control and the change in the HC1 concentration at the inlet of the bag filter are shown in Fig. 28. Example 16 is an example in which the industrially inexpensive slaked lime and the sodium hydrogencarbonate fine powder are effectively utilized together. In this method, the stabilizing treatment effect of the acid gas can also be stably obtained. It is an industrially effective method to effectively reduce the acid gas treatment cost by using inexpensive slaked lime. 0 48 201242657 42128pif [Table 4] Addition to the inlet ΗΠ concentration is checked [measured value] νς 1 1 1 1 1 CO Resin acid nanofine powder 1 0.97 0. 83 ο σ> ο 0.25 1 # CM CM CO s CSJ Si (Ο BF outlet [ion electrode method] ! Average [α conversion value] 1 〇〇ο ο ο 1IC1 concentration [〇 2 converted value] I V> S g to 1 hour average minimum I 00 CO eo ir><〇r- § AS -Κ 1 i S Cvj CM csi s CSI 1 hour average maximum I s ίο taste CO g average I 邑3 CO s CO BF inlet [laser] average [0: converted value] IO ο 〇ο o average [measured value] 1 r- S CO K average value 丨〇 2 converted value] 1 1 1 〇ig Add device 2 [ Feedback Control] Export HC1 measuring machine (laser) Meteorite — — — 3 1 to ssg ^Vl 丨 均 m m (ppm) 1 1 1 § 1 HC1 slope > 0 control target value (ppm) 1 ο CSI 1 1 § Control form 1 ο ζ o Q. φ φ Φ 〇Λ ' • Ή Was 抟 molybdenum into one 鸾: 5 * 53 福 S 0 o ΐ n eo gs S嵴〇定苕雔Η^νιι岔均tm琏(ppm) 1 1 1 a C«J s CM IIC1 Control target value (ppm) when slanting > 0 g 04 1 1 sg Control form. ο ο. o Q. Step by step and add 罝1 Quantitative addition (kg/h) No. § go Alkali 剤Carbonium Hydroxide Fine powder Argonium carbonate fine powder Carbon Hydrazine Nanopowder «i 消 消 比 比 枚3 Example 13 Lean 14 f Example 15 Example 16 49 201242657 42128pif [Table 5] V « η « W Μ i ? £ 硌w ~ Μ « « ! 5 * 3 8 sss Β ?; S = = sss 5 ssss * sss Ss! 5« ass § s = s = = 5 ssssssssssss ° * V *ci δ § « ' 8 sis 8 〇ΰ ^ leaven § δ B δ » 3 § *° g I i § g § Λ * W Si ^ ΰ 8 S s 1 1 esis 1 ^«2 III! *Ra ss δ δ s δ a - s I § § 3 s V 0 δ esooogsgi ?S1 14 & £ s 岂s δ 3 a 邑*** - in昏 ig 爸爸 1 1 1 g 1 g I | | | I * Ψ J η £ W ϊ i ? 1 ί ! i si ssss three ή = = s ~ Si s 5 K s 5 5 sssss S;I vJi § gs § == 3 sssssss 5 ss S s = ° Is ο ο s • osiss s *-<*5 P?i δ sss S sssss K 5 δ ~ ss 3 § β" u ϊ« S ο CM § ' ' os § s I ^«s pH **a § 1 s 1 sg δ g = 5; s 3; = • s, s 1 S = s - s V te sgs Ά & ss § s 8 «£5 b ^ a B «1 ϋΓ a «{£ s Ά δ 3 ss δ s S δ S s 1 1 ISI | 1 | | | α « κ a β C « « 41 SS β β ο a» « «I « c •us μ « s ϋ « s group | * 9 4r A sg | * stehs τ « 3 a K s B> « sa Ϊ i fee•η is 3 Λ •M « fl SX) 5 9t 4 ί< « n « 3 s •f « sc ΰ 41 8 n J « e < s £ « s ή 7 41 s ϊ c 1Λ Ο « 5 m σ ♦/ 5 « S a « s «I •5 9 tf • aa V ca M • £9 Si s*gs'-a> + gs-5 xl8+s>s = Ζ>νττ5 η -lagl£lv,A$l0(la Λ\α- 873 Ja δ ο* 0>3 " J*velsn Ad^ns®0γ3 = 2*ΫΪ*ν * 3>ΜΜΚΘ 50 201242657 42128pif [Simplified Schematic] Figure 1 shows the incineration A block diagram of the configuration of the acid gas treatment system 1 in which the sodium hydrogencarbonate fine powder is added to the HC1 of the exhaust gas in the apparatus. 2 is a basic configuration diagram of a simulated reaction system. Fig. 3 is a graph showing the relationship between the addition amount of sodium hydrogencarbonate fine powder in the exhaust gas reaction and the HC1 removal rate. Fig. 4 is a graph showing the relationship between the equivalent amount of sodium hydrogen hydride fine powder and the HC1 removal rate in the reaction on the bag filter. Fig. 5 is a graph showing changes in the concentration of the inlet HC1. Fig. 6 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in the results of the physical machine study. Fig. 7 is a graph showing changes in the amount of sodium bicarbonate added and the concentration of outlet HC1 in the results of the simulation study. Fig. 8 is a graph showing changes in the concentration of the inlet HC1. Fig. 9 is a graph showing changes in the amount of argon carbonate fine powder added and the concentration of outlet HC1 in Comparative Example 1. Fig. 10 is a graph showing changes in the amount of sodium bicarbonate added and the concentration of outlet HC1 in Comparative Example 2. Fig. 11 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 1. Fig. 12 is a graph showing changes in the amount of sodium bicarbonate added and the concentration of outlet HC1 in Example 2. Fig. 13 is a graph showing changes in the amount of sodium hydrogencarbonate fine powder added and the concentration of outlet HC1 in Example 3. 51 201242657 42128pif Fig. 14 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 4. Fig. 15 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 5. Fig. 16 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 6. Fig. 17 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 7. Fig. 18 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 8. Fig. 19 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 9. Fig. 20 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 10. Fig. 21 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 11. Fig. 22 is a graph showing changes in the amount of sodium bicarbonate fine powder added and the concentration of outlet HC1 in Example 12. Fig. 23 is a block diagram showing the configuration of an acid gas treatment system 2 in which sodium bicarbonate fine powder is added to HC1 which is exhaust gas in an incineration facility. Fig. 24 is a graph showing changes in the amount of sodium bicarbonate fine powder added, the inlet HC1 concentration, and the outlet HC1 concentration in Comparative Example 3. Fig. 25 is a graph showing changes in the amount of sodium bicarbonate fine powder added, the concentration of inlet HC1, and the concentration of outlet HC1 in Example 13. 52 201242657 42128pif Fig. 26 is a graph showing changes in the amount of sodium bicarbonate fine powder added, the concentration of inlet HC1, and the concentration of outlet HC1 in Example 14. Fig. 27 is a graph showing changes in the amount of sodium bicarbonate fine powder added, the concentration of inlet HC1, and the concentration of outlet HC1 in Example 15. Fig. 28 is a graph showing changes in the amount of sodium bicarbonate fine powder added, the concentration of inlet HC1, and the concentration of outlet HC1 in Example 16. [Description of main component symbols] I, 2: Acid gas treatment system II, 21: Control device 12, 22, 26: Sodium bicarbonate fine powder adding device 13, 23: Bag filter 14: HC1 concentration measuring machine (low speed) 15 : HC1 concentration measuring machine (high speed) 24 : HC1 concentration measuring machine (ion electrode method) 25 : HC1 concentration measuring machine (laser type) 53
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011100194A JP5834469B2 (en) | 2011-04-27 | 2011-04-27 | Acid gas treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201242657A true TW201242657A (en) | 2012-11-01 |
TWI465283B TWI465283B (en) | 2014-12-21 |
Family
ID=47050621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101114771A TWI465283B (en) | 2011-04-27 | 2012-04-25 | Treatment method for acidic gas |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5834469B2 (en) |
KR (1) | KR101397428B1 (en) |
CN (1) | CN102755831B (en) |
TW (1) | TWI465283B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122906B (en) * | 2014-07-07 | 2016-08-31 | 光大环保技术研究院(深圳)有限公司 | The control method of the lime white straying quatity in fume treatment reaction tower |
CN105289242B (en) * | 2015-09-25 | 2019-03-08 | 重庆长风化学工业有限公司 | Sustained release neutralization method for hydrogen chloride gas |
CN106512549B (en) * | 2016-11-22 | 2018-12-04 | 董建芬 | A kind of smoke filtration foamed material and its preparation method and application |
JP6439207B1 (en) * | 2018-06-29 | 2018-12-19 | 三菱重工環境・化学エンジニアリング株式会社 | Exhaust gas mercury removal system |
JP6760409B2 (en) * | 2019-01-15 | 2020-09-23 | 栗田工業株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
KR20240003494A (en) | 2022-07-01 | 2024-01-09 | (주)청해소재 | Neutralizing Agent Composition For Acid Gas |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61257222A (en) * | 1985-05-10 | 1986-11-14 | Ishikawajima Harima Heavy Ind Co Ltd | Controller for amount of ammonia to be fed in denitration apparatus |
JPH07328389A (en) * | 1994-06-03 | 1995-12-19 | Babcock Hitachi Kk | Ammonia injection amount control method and apparatus of denitration apparatus |
JP3568614B2 (en) * | 1995-03-03 | 2004-09-22 | バブコック日立株式会社 | Method and apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating coal combustion exhaust gas |
JP3626238B2 (en) * | 1995-03-31 | 2005-03-02 | アルストム | Method for dry or substantially dry purification of flue gas from waste incineration |
JP3272565B2 (en) * | 1995-04-21 | 2002-04-08 | 三菱重工業株式会社 | Flue gas treatment equipment |
JP4667577B2 (en) * | 2000-10-11 | 2011-04-13 | 三井造船株式会社 | Exhaust gas treatment desalting agent supply amount control method, supply amount control device, and waste treatment system |
JP4821102B2 (en) * | 2004-09-10 | 2011-11-24 | Jfeエンジニアリング株式会社 | Desalination control device and desalination control method |
JP2007237019A (en) * | 2006-03-06 | 2007-09-20 | Mitsui Eng & Shipbuild Co Ltd | Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus |
JP5045226B2 (en) * | 2006-08-18 | 2012-10-10 | 旭硝子株式会社 | Acid component removing agent and method for producing the same |
JP5302618B2 (en) * | 2008-10-16 | 2013-10-02 | 三菱重工業株式会社 | Nitrogen oxide treatment equipment |
JP5338421B2 (en) * | 2009-03-24 | 2013-11-13 | 栗田工業株式会社 | Combustion exhaust gas treatment method and apparatus |
JP5598245B2 (en) | 2010-10-15 | 2014-10-01 | 栗田工業株式会社 | Acid gas treatment method |
-
2011
- 2011-04-27 JP JP2011100194A patent/JP5834469B2/en active Active
-
2012
- 2012-04-18 KR KR1020120040292A patent/KR101397428B1/en active IP Right Grant
- 2012-04-24 CN CN201210122441.XA patent/CN102755831B/en active Active
- 2012-04-25 TW TW101114771A patent/TWI465283B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN102755831B (en) | 2016-09-28 |
CN102755831A (en) | 2012-10-31 |
JP5834469B2 (en) | 2015-12-24 |
JP2012228680A (en) | 2012-11-22 |
KR20120121836A (en) | 2012-11-06 |
TWI465283B (en) | 2014-12-21 |
KR101397428B1 (en) | 2014-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201242657A (en) | Treatment method for acidic gas | |
TW201223623A (en) | Method for treating acidic gas | |
TWI565514B (en) | Method for treating acidic gas | |
CN104024459B (en) | The heat-resisting austenite stainless steel of anti-oxidant skin separability excellence and stainless steel tube | |
Lee et al. | Struvite precipitation under changing ionic conditions in synthetic wastewater: Experiment and modeling | |
Koutsopoulos et al. | Hydroxyapatite crystallization in the presence of serine, tyrosine and hydroxyproline amino acids with polar side groups | |
EP2892850B1 (en) | Methods and compositions to prevent caking of sodium chloride and prevent transition metal stains | |
CN106834731A (en) | A kind of remelting slag system and smelting process for the low aluminium profiles steel grade of electroslag remelting titanium high | |
CN104876268A (en) | Preparation method of high-density ammonium polyvanadate | |
Diao et al. | Effect of fluorine on the minerals phase and citric acid solubility of CaO–SiO2–FetO–P2O5–CaF2 system | |
CN103014378B (en) | Vanadium liquid purification method | |
CN109371244A (en) | A method of be enriched with and open a way from zinc hydrometallurgy leachate using zinc powder purification slag impurity | |
Basson et al. | The effect of sulphate ions and temperature on the leaching of pyrite. III. Bioleaching | |
Yang et al. | Prediction and application of sica and sicafe alloy solutions by co-existence theory model | |
JP5884166B2 (en) | Method for separating phosphorus | |
JP2009102722A (en) | Method for obtaining precious metal from strongly acidic wastewater containing precious metal and metal other than precious metal | |
CN101709377A (en) | Purifying and impurity-removing method of leaching solution containing vanadium | |
TW200804605A (en) | Method in connection with steel production | |
JP2021094522A (en) | Water treatment method | |
JP2005262044A (en) | Dephosphorization method from water and dephosphorization agent | |
JP6572534B2 (en) | Peracetic acid-containing wastewater treatment device and treatment method | |
JP7359059B2 (en) | Method for producing cadmium hydroxide | |
JPWO2012165382A1 (en) | Method for extracting phosphorus from incineration ash | |
CN101864579A (en) | Method for purifying electrolysis primary liquid to remove cobalt in process of purification, electrolysis and smelting of zinc | |
JP2010221103A (en) | Fluorine-containing wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |