JP5817164B2 - Joining method, joining jig - Google Patents
Joining method, joining jig Download PDFInfo
- Publication number
- JP5817164B2 JP5817164B2 JP2011064364A JP2011064364A JP5817164B2 JP 5817164 B2 JP5817164 B2 JP 5817164B2 JP 2011064364 A JP2011064364 A JP 2011064364A JP 2011064364 A JP2011064364 A JP 2011064364A JP 5817164 B2 JP5817164 B2 JP 5817164B2
- Authority
- JP
- Japan
- Prior art keywords
- joining
- pressurized
- pressed
- columnar members
- circuit board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacturing Of Printed Wiring (AREA)
Description
本発明は、熱膨張係数の異なる平板状の材料同士が接合された構造をもった構造体を同時に多数製造する接合方法、あるいはこれに用いられる接合治具に関する。また、この接合方法を用いて製造された回路基板に関する。 The present invention relates to a joining method for simultaneously manufacturing a large number of structures having a structure in which flat plate materials having different thermal expansion coefficients are joined together, or a joining jig used in the joining method. Moreover, it is related with the circuit board manufactured using this joining method.
近年、電動車両用インバータとして高電圧、大電流動作が可能なパワー半導体モジュール(例えばIGBTモジュール)が用いられている。こうした半導体モジュールにおいては、半導体チップが自己の発熱によって高温になるため、その放熱を効率よく行なうという機能が要求される。このため、この半導体モジュールにおいて、半導体チップを搭載する回路基板としては、機械的強度が高く、熱伝導率の高い絶縁性のセラミックス基板の一方の面に金属回路板が接合され、他方の面に放熱板が接合された構成が用いられる。金属回路板と放熱板は、導電性と熱伝導率が高い銅を主成分とする金属で構成される。 In recent years, power semiconductor modules (for example, IGBT modules) capable of high voltage and large current operation have been used as inverters for electric vehicles. In such a semiconductor module, since the semiconductor chip becomes high temperature due to its own heat generation, a function of efficiently radiating the heat is required. For this reason, in this semiconductor module, as a circuit board on which a semiconductor chip is mounted, a metal circuit board is bonded to one surface of an insulating ceramic substrate having high mechanical strength and high thermal conductivity, and the other surface is bonded to the other surface. A structure in which a heat sink is joined is used. A metal circuit board and a heat sink are comprised with the metal which has copper which has high electroconductivity and heat conductivity as a main component.
セラミックス基板を構成する材料としては、窒化珪素セラミックス等が広く使用される。金属回路板や放熱板は銅や銅合金で構成される。これらの間の接合には、例えばろう材が用いられる。金属回路板上には半導体チップ等が搭載され、金属回路板は、この半導体モジュールにおいてこの半導体チップが構成する回路における配線となる。このため、金属回路板は、この配線を構成するように適宜パターニングされる。一方、放熱板は放熱のために用いられるために、その面積が広いことが好ましく、パターニングされない平板状態とされる場合が多い。 As a material constituting the ceramic substrate, silicon nitride ceramics and the like are widely used. Metal circuit boards and heat sinks are made of copper or copper alloys. For example, a brazing material is used for bonding between them. A semiconductor chip or the like is mounted on the metal circuit board, and the metal circuit board serves as a wiring in a circuit formed by the semiconductor chip in the semiconductor module. Therefore, the metal circuit board is appropriately patterned so as to constitute this wiring. On the other hand, since the heat dissipation plate is used for heat dissipation, it is preferable that the area of the heat dissipation plate is wide, and it is often a flat state that is not patterned.
こうした構成の回路基板を製造する際には、パターニング前の平板状態である金属回路板とセラミックス基板と放熱板とが、積層されて接合される。この際には、まず、セラミックス基板の両面にろう材が印刷で形成された後に、金属回路板/セラミックス基板/放熱板の積層構造体が形成される。その後、高温下でろう材がこれらの間で融解してから冷却されることにより、接合がなされる。この際、これらの間の接合が一様に強固になされることが必要である。また、製造コストを低減するためには、この接合を同時に多数の積層構造体に対して施すことが望ましい。 When manufacturing a circuit board having such a configuration, a metal circuit board, a ceramic board, and a heat sink, which are in a flat state before patterning, are laminated and bonded. In this case, first, after a brazing material is formed on both surfaces of the ceramic substrate by printing, a laminated structure of a metal circuit board / ceramic substrate / heat sink is formed. Thereafter, the brazing material is melted between them at a high temperature and then cooled, thereby joining. At this time, it is necessary that the bonding between them be made uniform and strong. In order to reduce the manufacturing cost, it is desirable to apply this bonding to a large number of laminated structures at the same time.
このような接合を行う接合治具は、例えば特許文献1〜3に記載されている。これらの接合治具においては、上下方向に平行に配置された2枚の板状部材の間に、上記の構成でろう材を挟んで積層された構造(積層構造体)が、スペーサを挟んで複数積層されて被加圧体とされる。上側の板状部材の上側にはバネが接続され、2枚の板状部材の間のこの被加圧体に均一に圧力が印加される構造となっている。 A joining jig for performing such joining is described in Patent Documents 1 to 3, for example. In these joining jigs, a structure (laminated structure) in which a brazing material is sandwiched between two plate-like members arranged in parallel in the vertical direction is sandwiched between spacers. A plurality of layers are stacked to form a pressed body. A spring is connected to the upper side of the upper plate-like member so that a pressure is uniformly applied to the pressed body between the two plate-like members.
例えば銅で構成された金属回路板等と、窒化珪素質セラミックスで構成されたセラミックス基板とが用いられる場合には、これらを接合するろう材としては、銀を主成分としてこれにチタン等の活性金属が添加されたろう材が好ましく用いられる。この場合には、ろう材と銅や窒化珪素質セラミックスとの間で強固な反応層が形成されるため、強固な接合が得られる。この際の接合に要する温度は、例えば800℃程度の高温である。また、特にチタン等の活性金属は酸化しやすい物質であるため、この接合は真空(減圧)中で行われることが好ましい。このため、上記の接合治具に上記の被加圧体がセットされた後に、この接合治具は真空中で上記の温度まで加熱される。冷却後、この接合治具は大気中に取り出され、被加圧体が取り出される。これにより、複数の上記の積層構造体(金属回路板/セラミックス基板/放熱板)が、金属回路板、セラミックス基板、放熱板が接合されて一体化された状態で、スペーサを挟んで得られる。 For example, when a metal circuit board made of copper and a ceramic substrate made of silicon nitride ceramics are used, the brazing material for joining them is mainly composed of silver and an active material such as titanium. A brazing material to which a metal is added is preferably used. In this case, since a strong reaction layer is formed between the brazing material and copper or silicon nitride ceramics, a strong bond can be obtained. The temperature required for joining at this time is a high temperature of about 800 ° C., for example. In particular, since active metals such as titanium are easily oxidized, this joining is preferably performed in a vacuum (reduced pressure). For this reason, after said to-be-pressurized body is set to said joining jig, this joining jig is heated to said temperature in a vacuum. After cooling, the joining jig is taken out into the atmosphere, and the member to be pressed is taken out. As a result, a plurality of the laminated structures (metal circuit board / ceramic substrate / heat sink) are obtained with the spacers sandwiched between the metal circuit board, the ceramic substrate and the heat sink.
上記の工程においては、高温時にろう材からガスが発生することがあり、このガスが充分に除去されない場合には、接合後のろう材におけるボイドとなり、接合強度の低下等の原因となる。従って、上記の被加圧体の周囲には、このガスの抜け道が形成されることが必要である。このため、上記の接合治具における被加圧体の側面の周囲は平坦な壁ではなく、上下方向に平行に延びる複数の円筒形状の柱状部材で構成されている。すなわち、上記の被加圧体は、多数の柱状部材で囲まれて固定され、柱状部材の間からガスが抜けるため、ボイドの発生が抑制される。 In the above process, gas may be generated from the brazing material at a high temperature, and if this gas is not sufficiently removed, it becomes a void in the brazing material after bonding, which causes a decrease in bonding strength and the like. Therefore, it is necessary to form a gas escape path around the above-mentioned pressurized object. For this reason, the periphery of the side surface of the member to be pressed in the above-mentioned joining jig is not a flat wall, but is composed of a plurality of cylindrical columnar members extending in parallel in the vertical direction. That is, the above-mentioned pressurized body is surrounded and fixed by a large number of columnar members, and gas is released from between the columnar members, so that generation of voids is suppressed.
また、この接合治具は高温の真空中に置かれるため、これを構成する部品(2枚の板状部材、バネ、柱状部材等)は、いずれもセラミックスやカーボン等、高温でも変形や化学反応を生じにくい材料で構成される。この部品が組み合わされて固定されることにより、上記の接合治具が形成される。 In addition, since this joining jig is placed in a high-temperature vacuum, the components (two plate-like members, springs, columnar members, etc.) constituting it are all deformed or chemically reacted even at high temperatures, such as ceramics or carbon. It is made of a material that is difficult to produce. The joining jig is formed by combining and fixing these components.
ここで、金属回路板を構成する銅と、セラミックス基板を構成する窒化珪素質セラミックスとの間には熱膨張係数の差が存在する。このため、加圧された状態で高温とされた後に冷却された場合には、この熱膨張係数の差によって被加圧体(積層構造体)に反りが発生しやすい。実際には金属回路板の方が放熱板よりも厚くされる場合が多く、この場合には、金属回路板側に向かって反りが発生する。この反りによって金属回路板又は放熱板とセラミックス基板との間の間隔が広くなった箇所が発生する。この箇所においては、ろう材中にボイドが生成されるため、その接合強度が低下する。上記の接合治具においては、上下の2枚の板状部材によって2枚の被加圧体を広い面積にわたって一様に加圧することにより、こうした接合強度の不均一性を低減している。 Here, there is a difference in thermal expansion coefficient between copper constituting the metal circuit board and silicon nitride ceramics constituting the ceramic substrate. For this reason, when it is cooled after being heated to a high temperature in a pressurized state, warpage is likely to occur in the member to be pressed (laminated structure) due to the difference in thermal expansion coefficient. In practice, the metal circuit board is often thicker than the heat sink, and in this case, warpage occurs toward the metal circuit board side. Due to this warpage, a portion where the distance between the metal circuit board or the heat radiating plate and the ceramic substrate becomes wide is generated. At this location, voids are generated in the brazing material, and the bonding strength is reduced. In the above-mentioned joining jig, the non-uniformity of the joining strength is reduced by uniformly pressing the two objects to be pressed over a wide area by the upper and lower plate-like members.
接合後の積層構造体において、金属回路板はその後に所定のパターンにパターニングされる。また、低コスト化のために、1つの積層構造体を多数に分離切断することによって多数の回路基板を得る場合が多い。この場合には、これに応じた放熱板のパターニングや、この切断作業も行われる。 In the laminated structure after bonding, the metal circuit board is thereafter patterned into a predetermined pattern. In order to reduce the cost, a large number of circuit boards are often obtained by separating and cutting a single laminated structure into a large number. In this case, the patterning of the heat sink corresponding to this and this cutting work are also performed.
こうした接合治具を用いて、回路基板を低コストで製造することができる。また、回路基板以外においても、熱膨張係数の異なる材料同士をろう材を用いて高温の減圧中で接合することが必要となる構造においては、同様である。 Using such a joining jig, a circuit board can be manufactured at low cost. The same applies to a structure other than the circuit board, in which materials having different thermal expansion coefficients need to be bonded in a high-temperature reduced pressure using a brazing material.
しかしながら、上記の製造方法によって得られた接合後の積層構造体において、実際には、上記の被加圧体の特に周縁部に対応した箇所で接合強度の弱い箇所が発生した。この理由は、この周縁部においてこの積層構造体が柱状部材に突き当たるためである。 However, in the laminated structure after bonding obtained by the above manufacturing method, actually, a portion having a low bonding strength is generated at a portion corresponding to the peripheral portion of the pressed body. The reason is that the laminated structure hits the columnar member at the peripheral edge.
接合の高温時において、銅を主成分とする金属回路板や放熱板は、熱膨張し、かつ軟化する。このため、この状態でこれらの端部が柱状部材に突き当たり、その後で冷却された場合には、この周縁部近くでこれらは大きく変形をする。一方、窒化珪素セラミックスはこれらよりも熱膨張係数が小さく、かつ変形もほとんど生じない。従って、周縁部で金属回路板や放熱板が局所的に大きく変形をし、セラミックス基板との間の間隔が大きくなった箇所が局所的に発生する。この箇所における接合強度は、前記の通り低下する。このため、この箇所を含む回路基板は不良品となる、あるいは信頼性が低下する。すなわち、信頼性の高い回路基板を高い歩留まりあるいは低コストで製造することは困難であった。 At the time of high temperature bonding, the metal circuit board and the heat radiating board mainly composed of copper are thermally expanded and softened. For this reason, when these end portions hit the columnar member in this state and are cooled thereafter, they are largely deformed near the peripheral portion. On the other hand, silicon nitride ceramics has a smaller coefficient of thermal expansion than these, and hardly deforms. Therefore, the metal circuit board and the heat radiating plate are locally greatly deformed at the peripheral portion, and a portion where the distance from the ceramic substrate is increased is locally generated. The bonding strength at this location decreases as described above. For this reason, the circuit board including this portion becomes a defective product, or the reliability decreases. That is, it has been difficult to manufacture a highly reliable circuit board at a high yield or low cost.
このように、セラミックス基板と金属板とがろう材を介して接合された構成をもつ回路基板を製造する際の接合を高温で行う場合において、一様に高い接合強度をもった回路基板を低コストで得ることは困難であった。 In this way, when manufacturing a circuit board having a configuration in which a ceramic substrate and a metal plate are bonded via a brazing material at a high temperature, a circuit board having a uniformly high bonding strength is reduced. It was difficult to get at cost.
本発明は、斯かる問題点に鑑みてなされたものであり、上記の問題点を解決する発明を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide an invention that solves the above problems.
本発明は、上記課題を解決すべく、以下に掲げる構成とした。
本発明の接合方法は、いずれも矩形形状の平板状であり熱膨張係数の異なる第1の部材と第2の部材とを高温で接合する接合方法であって、前記第1の部材と前記第2の部材とを平板形状における面の法線方向である積層方向に沿って積層した積層構造体を平板状のスペーサを介して前記積層方向に沿って複数積層した略矩形体の被加圧体を形成する被加圧体準備工程と、前記被加圧体における前記積層方向と平行な3つの側面と略平行に、それぞれ複数の柱状部材が列状に配置され、当該複数の柱状部材に囲まれた内部に間隔をおいて前記被加圧体が収容できる構成を具備する接合治具において、3列のうちの互いに平行でない2列を構成する前記柱状部材と前記被加圧体がそれぞれ縦方向スペーサを介して接し、かつ他の1列を構成する前記柱状部材と前記被加圧体が接さない状態で、前記被加圧体を前記複数の柱状部材に囲まれた内部に設置する被加圧体設置工程と、前記被加圧体に対して前記積層方向に沿って圧力を印加し、かつ2つの前記縦方向スペーサを前記接合治具から抜き取る接合準備工程と、前記被加圧体が設置された前記接合治具を加熱した後に冷却することによって前記第1の部材と前記第2の部材とを接合する接合工程と、を具備することを特徴とする。
本発明の接合方法は、前記被加圧体準備工程において、前記第1の部材と前記第2の部材とは、ろう材を挟んで積層され、前記接合工程において、前記第1の部材と前記第2の部材とはろう材によって接合されることを特徴とする。
本発明の接合方法において、前記接合工程における加熱は減圧雰囲気中で行われることを特徴とする。
本発明の接合方法は、前記被加圧体準備工程において、前記スペーサとして、厚さの異なる2種類のスペーサが設けられ、積層方向において、前記2種類のスペーサが、交互に配されたことを特徴とする。
本発明の接合方法において、前記第1の部材はセラミックス基板であり、前記第2の部材は銅を主成分とする金属板であることを特徴とする。
本発明の接合方法において、前記セラミックス基板は前記金属板よりも平面視において大きく、前記接合準備工程において、前記縦方向スペーサが配されない側の前記被加圧体の積層方向に平行な側面側において、前記セラミックス基板は、前記金属板よりも突出する構成とされることを特徴とする。
本発明の接合治具は、いずれも矩形形状の平板状であり熱膨張係数の異なる第1の部材と第2の部材とを高温で接合するために用いられ、前記第1の部材と前記第2の部材とが平板形状における面の法線方向である積層方向に沿って積層された積層構造体が前記積層方向に沿って複数積層されて構成される略矩形体の被加圧体が、当該被加圧体における前記積層方向と平行な3つの側面と略平行に複数の柱状部材が3列にわたり配置され、当該複数の柱状部材に囲まれた内部に前記被加圧体が収容できる構成とされ、前記内部に前記被加圧体が収容された状態で前記被加圧体に対して前記積層方向に沿って圧力が印加される構成を具備する接合治具であって、前記3列のうちの互いに平行でない2列のそれぞれと、当該2列のそれぞれと対向する前記被加圧体の側面との間に設けられ、他の1列を構成する前記柱状部材と前記被加圧体とが接さない状態において前記2列のそれぞれを構成する前記柱状部材と前記被加圧体の両方と接し、前記圧力が印加された状態において前記2列のそれぞれを構成する前記柱状部材と前記被加圧体の間から引き抜くことができる構成とされた2つの縦方向スペーサを具備することを特徴とする。
In order to solve the above problems, the present invention has the following configurations.
The joining method of the present invention is a joining method in which a first member and a second member, each having a rectangular flat plate shape and having different thermal expansion coefficients, are joined at a high temperature, and the first member and the first member are joined together. A substantially rectangular body to be pressed in which a laminated structure in which two members are laminated along a laminating direction that is a normal direction of a surface in a flat plate shape is laminated in plural along the laminating direction via a flat spacer. A plurality of columnar members are arranged in a row substantially parallel to the three side surfaces of the member to be pressed parallel to the stacking direction, and are surrounded by the columnar members. in joining jig internal to at intervals comprises a configuration wherein the pressure body can accommodate, the columnar member and the object to be pressure body is vertical respectively constituting the two columns are not parallel to each other among the three rows In contact with a directional spacer and constitute another row A pressurized body installation step of installing the pressurized body inside the plurality of columnar members in a state where the columnar member and the pressurized body are not in contact with each other; Applying a pressure along the laminating direction and extracting the two vertical spacers from the joining jig, and heating and cooling the joining jig on which the pressurized body is installed. And a joining step for joining the first member and the second member.
In the bonding method of the present invention, in the pressed object preparation step, the first member and the second member are stacked with a brazing material interposed therebetween, and in the bonding step, the first member and the second member are stacked. The second member is joined by a brazing material.
In the bonding method of the present invention, the heating in the bonding step is performed in a reduced pressure atmosphere.
In the bonding method of the present invention, in the pressed object preparation step, two types of spacers having different thicknesses are provided as the spacers, and the two types of spacers are alternately arranged in the stacking direction. Features.
In the bonding method of the present invention, the first member is a ceramic substrate, and the second member is a metal plate mainly composed of copper.
In the bonding method of the present invention, the ceramic substrate is larger in plan view than the metal plate, and in the bonding preparation step, on the side surface parallel to the stacking direction of the pressed bodies on the side where the vertical spacer is not disposed. The ceramic substrate protrudes from the metal plate .
Each of the joining jigs of the present invention has a rectangular flat plate shape and is used to join the first member and the second member having different thermal expansion coefficients at a high temperature, and the first member and the first member A substantially rectangular body to be pressed is formed by laminating a plurality of laminated structures along the laminating direction in which the two members are laminated along the laminating direction, which is the normal direction of the surface in the flat plate shape , the plurality of columnar members in parallel the stacking direction and the three sides parallel substantially in the pressing body is arranged over three rows, the configuration in which the pressure body can be housed inside surrounded by the plurality of columnar members A joining jig having a configuration in which a pressure is applied along the stacking direction to the pressurized bodies in a state in which the pressurized bodies are accommodated in the interior. Each of two rows that are not parallel to each other and opposite each of the two rows The columnar members which are provided between the side surfaces of the pressurized bodies and which constitute the two rows in a state where the columnar members which constitute another row and the pressurized bodies are not in contact with each other. Two longitudinal directions configured to be able to be pulled out from between the columnar members constituting the two rows and the pressurized bodies in a state where both of the pressurized bodies are applied and the pressure is applied A spacer is provided.
本発明は以上のように構成されているので、セラミックス基板と金属板とがろう材を介して接合された構成をもつ回路基板を製造する際の接合を高温で行う場合において、一様に高い接合強度をもった回路基板を低コストで得ることができる。 Since the present invention is configured as described above, it is uniformly high when bonding is performed at a high temperature when manufacturing a circuit board having a configuration in which a ceramic substrate and a metal plate are bonded via a brazing material. A circuit board having bonding strength can be obtained at low cost.
以下、本発明について具体的な実施形態を示しながら説明する。ただし、本発明はこれらの実施形態に限定されるものではない。本発明の接合方法においては、熱膨張率の異なる複数種類の材質がろう材を用いて高温で接合される。以下に示す実施の形態においては、セラミックス基板の両面にそれぞれ金属板(金属回路板、放熱板)が接合される例について記載する。この接合を行なう際には、セラミックス基板の両面にろう材が印刷で形成された上で、金属回路板/セラミックス基板/放熱板が積層された積層構造体が形成される。その後、この積層構造体がスペーサを介して多数積層され、被加圧体となる。高温中においてこの被加圧体に対して上記の積層方向に圧力が印加される。これにより、ろう材が融解し、金属回路板とセラミックス基板間、セラミックス基板と放熱板間で反応層が形成される。冷却後にろう材が固化した状態で、セラミックス基板に金属回路板、放熱板が強固に接合された構造が得られる。 The present invention will be described below with reference to specific embodiments. However, the present invention is not limited to these embodiments. In the joining method of the present invention, a plurality of types of materials having different thermal expansion coefficients are joined at a high temperature using a brazing material. In the following embodiment, an example will be described in which metal plates (metal circuit plates and heat radiating plates) are bonded to both surfaces of a ceramic substrate. When this bonding is performed, a brazing material is formed on both sides of the ceramic substrate by printing, and a laminated structure in which a metal circuit board / ceramic substrate / heat sink is laminated is formed. Thereafter, a large number of the laminated structures are laminated via spacers to form a pressed body. A pressure is applied to the object to be pressed in the above-described stacking direction at a high temperature. Thereby, the brazing material is melted, and a reaction layer is formed between the metal circuit board and the ceramic substrate and between the ceramic substrate and the heat sink. A structure in which the metal circuit board and the heat sink are firmly bonded to the ceramic substrate in a state where the brazing material is solidified after cooling is obtained.
図1は、この接合方法において用いられる接合治具が使用される際の側面から見た構成(a)と、被加圧体の積層方向に垂直な断面(A−A方向)付近の構成を示す平面図(b)である。また、図2は、この被加圧体100の側面とこの接合治具との間の接触部分を特に詳細に示した断面図である。なお、図1、2に示された状態は、加熱後の高温下で接合がなされる前の常温における状態である。 FIG. 1 shows a configuration (a) viewed from a side surface when a bonding jig used in this bonding method is used, and a configuration in the vicinity of a cross section (A-A direction) perpendicular to the stacking direction of the objects to be pressed. It is a top view (b) shown. FIG. 2 is a cross-sectional view specifically showing a contact portion between the side surface of the pressed body 100 and the joining jig. The state shown in FIGS. 1 and 2 is a state at normal temperature before bonding is performed at a high temperature after heating.
図2に示されるように、積層構造体10は、セラミックス基板(第1の部材)11の上下にそれぞれ金属板(第2の部材:金属回路板12、放熱板13)が積層されて構成される。図示されていないが、金属回路板12とセラミックス基板11との間、放熱板13とセラミックス基板11との間には、これらの界面全体にわたってろう材が存在する。このろう材は、セラミックス基板11の両面において、金属回路板12と放熱板13と同じ形状で予め印刷によって形成されている。なお、セラミックス基板11、金属回路板12、放熱板13はいずれも矩形の平板状であり、図1(b)、図2に示されるように、通常は、セラミックス基板11は金属回路板12、放熱板13よりも平面視において大きくされる。この理由は、通常はセラミック基板11の端部にはマーキングが施され、接合後においてもこのマーキングを作業者が識別できるようにするためである。 As shown in FIG. 2, the laminated structure 10 is configured by laminating metal plates (second member: metal circuit plate 12, heat radiating plate 13) above and below a ceramic substrate (first member) 11. The Although not shown in the drawing, a brazing material exists over the entire interface between the metal circuit board 12 and the ceramic substrate 11 and between the heat sink 13 and the ceramic substrate 11. This brazing material is formed in advance on the both surfaces of the ceramic substrate 11 in the same shape as the metal circuit board 12 and the heat radiating plate 13 by printing. The ceramic substrate 11, the metal circuit board 12, and the heat dissipation plate 13 are all rectangular flat plates. As shown in FIGS. 1B and 2, the ceramic substrate 11 usually has the metal circuit board 12, It is made larger than the radiator plate 13 in plan view. This is because the end of the ceramic substrate 11 is usually marked so that the operator can identify the marking even after joining.
ここで、セラミックス基板11としては、例えば窒化珪素セラミックスが用いられる。窒化珪素セラミックスは、高い絶縁性、熱伝導率、機械的強度をもつ。その熱膨張係数は、3ppm/℃程度である。その厚さは0.32mm程度である。 Here, as the ceramic substrate 11, for example, silicon nitride ceramics is used. Silicon nitride ceramics have high insulation, thermal conductivity, and mechanical strength. Its thermal expansion coefficient is about 3 ppm / ° C. Its thickness is about 0.32 mm.
一方、金属板(金属回路板12、放熱板13)は例えば銅で構成される。銅の熱膨張係数は20ppm/℃程度と、セラミックス基板11よりも大きい。また、窒化珪素セラミックスとは異なり、銅は高温で軟化するという性質がある。金属回路板12、放熱板13の厚さは、例えば0.5mm程度であり、適宜設定される。ただし、通常は金属回路板12の方が厚くされる場合が多い。 On the other hand, the metal plates (the metal circuit board 12 and the heat sink 13) are made of, for example, copper. The thermal expansion coefficient of copper is about 20 ppm / ° C., which is larger than that of the ceramic substrate 11. Unlike silicon nitride ceramics, copper has the property of softening at high temperatures. The thickness of the metal circuit board 12 and the heat sink 13 is, for example, about 0.5 mm, and is set as appropriate. However, the metal circuit board 12 is usually thicker in many cases.
ろう材としては、銀を主成分とし、これに活性金属であるチタン等が添加されたものが特に好ましく用いられる。この場合には、高温で窒化珪素セラミックス等の表面で反応層が形成されやすく、冷却後に特に強固な接合が得られる。この場合の接合は、例えば800℃程度で行われる。 As the brazing material, a material mainly composed of silver and added with titanium or the like as an active metal is particularly preferably used. In this case, a reaction layer is easily formed on the surface of silicon nitride ceramics or the like at a high temperature, and particularly strong bonding is obtained after cooling. The bonding in this case is performed at about 800 ° C., for example.
この積層構造体10が、スペーサを挟んで多数積層されて、略矩形体の被加圧体100とされる(被加圧体準備工程)。ただし、スペーサには、厚さの異なる2種類のスペーサ(厚い第1のスペーサ21、薄い第2のスペーサ22)がある。これらのスペーサは機械的強度の高い高密度カーボンで構成され、第1のスペーサ21の厚さは例えば3mm程度、第2のスペーサ22の厚さは例えば1mm程度とされる。どちらのスペーサもセラミックス基板11等と同様の矩形平板状である。これらのスペーサが直接接するのは、金属回路板12又は放熱板13である。このため、これらのスペーサは、平面視において金属回路板12又は放熱板13よりも大きくされる。これらのスペーサは、隣接する積層構造体10が接合後に固着することを抑制するために設けられる。なお、この被加圧体が形成された直後においては、ろう材はまだ融解していないため、セラミックス基板11と金属回路板12、セラミックス基板12と放熱板13とは接合されていない。 A large number of the laminated structures 10 are laminated with a spacer interposed therebetween to form a pressurized object 100 having a substantially rectangular shape (pressurized object preparation step). However, there are two types of spacers (thick first spacer 21 and thin second spacer 22) having different thicknesses. These spacers are made of high-density carbon having high mechanical strength. The thickness of the first spacer 21 is, for example, about 3 mm, and the thickness of the second spacer 22 is, for example, about 1 mm. Both spacers have a rectangular flat plate shape similar to the ceramic substrate 11 or the like. These spacers are in direct contact with the metal circuit board 12 or the heat sink 13. For this reason, these spacers are made larger than the metal circuit board 12 or the heat sink 13 in plan view. These spacers are provided to prevent the adjacent laminated structure 10 from being fixed after bonding. Immediately after the pressed body is formed, the brazing material is not yet melted, and therefore the ceramic substrate 11 and the metal circuit board 12, and the ceramic substrate 12 and the heat radiating plate 13 are not joined.
図1(a)に示されるように、この接合治具においては、この構成の被加圧体100が、底板50と上部板51との間に挟持される構成とされる。上部板51の上側にはバネ52の下端が接続され、バネ52の上端は、底板50と柱状部材53を介して固定された天板54に固定される。面内方向において均一に圧力を印加するためには、バネ52を複数設けることが好ましい。この場合、上部板51における外側(周辺側)に接続することが好ましい。 As shown in FIG. 1A, in this joining jig, the pressed body 100 having this configuration is sandwiched between a bottom plate 50 and an upper plate 51. The upper end of the upper plate 51 is connected to the lower end of the spring 52, and the upper end of the spring 52 is fixed to the top plate 54 fixed via the bottom plate 50 and the columnar member 53. In order to apply pressure uniformly in the in-plane direction, it is preferable to provide a plurality of springs 52. In this case, it is preferable to connect to the outer side (peripheral side) of the upper plate 51.
柱状部材53は、図1(b)に示されるように、被加圧体100における積層方向に垂直な断面(矩形)の3辺を取り囲む形態で3本ずつ3列、列状に設けられる。柱状部材53は、その中心軸が鉛直方向(被加圧体100の積層方向)とされた円筒形状の部材である。この複数の柱状部材53で囲まれた領域の内部に被加圧体100が収容される構成とされる。この際、複数の柱状部材53に囲まれた領域の内部に、各列を構成する柱状部材53と間隔をおいて被加圧体100が収容できる構成とされる。すなわち、図1(b)において、柱状部材53で構成された領域に内接する矩形は、略矩形体の被加圧体100に対応する矩形(図1(b)の場合にはスペーサ21、22に対応する矩形)よりも大きくされる。 As shown in FIG. 1B, three columnar members 53 are provided in three rows and three rows in a form surrounding three sides of a cross section (rectangle) perpendicular to the stacking direction of the pressed body 100. The columnar member 53 is a cylindrical member whose central axis is the vertical direction (stacking direction of the pressurized object 100). The object to be pressurized 100 is accommodated inside the region surrounded by the plurality of columnar members 53. At this time, the pressurized object 100 is configured to be accommodated in the region surrounded by the plurality of columnar members 53 at intervals from the columnar members 53 constituting each row. That is, in FIG. 1B, the rectangle inscribed in the region formed by the columnar member 53 is a rectangle corresponding to the pressed body 100 having a substantially rectangular shape (in the case of FIG. 1B, the spacers 21 and 22). Larger than the rectangle corresponding to.
この接合治具は、被加圧体100がセットされた状態で加熱され高温とされるため、これを構成する材料は、高温で変形や化学反応を生じない機械的強度の高い材料で構成される。このため、底板50、上部板51、柱状部材53、天板54は、例えば安価な低密度カーボンで構成される。バネ52は、例えばセラミックスで構成される。 Since this joining jig is heated to a high temperature in a state where the member to be pressed 100 is set, the material constituting it is composed of a material having high mechanical strength that does not cause deformation or chemical reaction at high temperature. The For this reason, the bottom plate 50, the upper plate 51, the columnar member 53, and the top plate 54 are made of, for example, inexpensive low density carbon. The spring 52 is made of ceramics, for example.
ここで、図1(b)に示されるように、被加圧体100の上辺、左辺においては、被加圧体100におけるこれらの辺(側面)と接するように、板状の縦方向スペーサ31、32がそれぞれ設けられる。この構成により、上辺においては3本の柱状部材53と、被加圧体100とは縦方向スペーサ31を介して接することによって固定される。また、被加圧体100の下辺、右辺においては、縦方向スペーサが用いられず、被加圧体100の右辺は柱状部材53と接さない状態とされる。なお、下辺側には柱状部材53は存在しない。このため、図1(b)に示される下辺側から矢印に示す向きで被加圧体100をこのようにセットすることが容易に行われる。 Here, as shown in FIG. 1B, the plate-like longitudinal spacer 31 is in contact with these sides (side surfaces) of the pressed body 100 at the upper side and the left side of the pressed body 100. , 32 are provided. With this configuration, the three columnar members 53 and the pressurized object 100 are fixed by contacting with each other via the vertical spacer 31 on the upper side. Further, the vertical spacer is not used on the lower side and the right side of the pressed body 100, and the right side of the pressed body 100 is not in contact with the columnar member 53. Note that the columnar member 53 does not exist on the lower side. For this reason, it is easy to set the pressurized body 100 in this way in the direction indicated by the arrow from the lower side shown in FIG.
この構成により、図1(b)に示される被加圧体100の断面方向の構成において、上辺(上側面)、左辺(左側面)においては、セラミックス基板11、金属回路板12、放熱板13、スペーサ(第1のスペーサ21、第2のスペーサ22)の各辺が揃うように配置される(被加圧体設置工程)。セラミックス基板11、金属回路板12、放熱板13、スペーサの大きさは前記の通り異なるため、図1(b)に示される被加圧体100の下辺、右辺においては、これらの各辺の位置は揃わない。 With this configuration, in the configuration in the cross-sectional direction of the pressed body 100 shown in FIG. 1B, the ceramic substrate 11, the metal circuit plate 12, and the heat radiating plate 13 on the upper side (upper side surface) and the left side (left side surface). The spacers (the first spacer 21 and the second spacer 22) are arranged so that the respective sides are aligned (pressurized object installing step). Since the sizes of the ceramic substrate 11, the metal circuit board 12, the heat radiating plate 13, and the spacer are different as described above, the positions of these sides on the lower side and the right side of the pressed body 100 shown in FIG. Are not complete.
この状態で、例えばバネ52の圧縮量等を調整することによりバネ52の荷重を調整すれば、一様な圧力を被加圧体100の上下方向(積層方向)に印加することができる。これにより、積層された各々の積層構造体10にこの圧力を印加することができる。 In this state, if the load of the spring 52 is adjusted by adjusting the compression amount of the spring 52, for example, a uniform pressure can be applied in the vertical direction (stacking direction) of the pressed body 100. Thereby, this pressure can be applied to each laminated structure 10 laminated.
上記のように被加圧体100に圧力が印加された後で、縦方向スペーサ31、32は抜き取られる(接合準備工程)。すなわち、縦方向スペーサ31は、柱状部材53と干渉せずに図1(b)中の横方向に抜き取られ、縦方向スペーサ32も、同様に図1(b)中の縦方向に抜き取られる。これによって、図1(b)に示された被加圧体100のどの側面も柱状部材53と直接接さない状態とされる。被加圧体100の側面と、これに近接する柱状部材53との間の間隔は、加熱時の金属回路板12、放熱板13が熱膨張した場合においても、これらが柱状部材53に当接しない設定とされる。 After the pressure is applied to the pressurized object 100 as described above, the vertical spacers 31 and 32 are extracted (joining preparation step). That is, the vertical spacer 31 is extracted in the horizontal direction in FIG. 1B without interfering with the columnar member 53, and the vertical spacer 32 is similarly extracted in the vertical direction in FIG. 1B. As a result, any side surface of the pressed body 100 shown in FIG. 1B is not in direct contact with the columnar member 53. The distance between the side surface of the member to be pressed 100 and the columnar member 53 adjacent thereto is such that they contact the columnar member 53 even when the metal circuit board 12 and the heat radiating plate 13 are thermally expanded during heating. It is set to not.
この状態で、図1の構造全体(縦方向スペーサ31、32以外)が、ろう材の接合温度である800℃まで加熱される。この際、ろう材に含まれるチタンが酸化することを抑制するために、雰囲気を真空中(減圧雰囲気中)とすることがより好ましい。この場合において、上記の構成においては、積層構造体100の周囲に直接接するものがなく、かつ柱状部材53の間には間隔が設けられているため、このガスは離脱しやすい。すなわち、高温下におけるろう材からのガスの離脱が上記の構成においては特に容易に行われる。 In this state, the entire structure of FIG. 1 (other than the vertical spacers 31 and 32) is heated to 800 ° C., which is the bonding temperature of the brazing material. At this time, in order to suppress oxidation of titanium contained in the brazing material, it is more preferable that the atmosphere is in a vacuum (in a reduced pressure atmosphere). In this case, in the above-described configuration, there is nothing that is in direct contact with the periphery of the laminated structure 100, and there is a space between the columnar members 53. Therefore, this gas is easily released. In other words, the release of the gas from the brazing material at a high temperature is particularly easily performed in the above configuration.
その後、ろう材の反応が充分に進んだ後に、上記の構造を取り出し、冷却することによって、各積層構造体10(金属回路板12/セラミックス基板11/放熱板13)における接合がなされる(接合工程)。その後、被加圧体100を第1のスペーサ21、第2のスペーサ22のところで分断し、個々の積層構造体10を得ることができる。その後、各積層構造体10における金属回路板12を選択的にエッチングしてパターニングした上で、切断分離して小さな回路基板とすることができる。 Thereafter, after the reaction of the brazing material has sufficiently progressed, the above structure is taken out and cooled to join each laminated structure 10 (metal circuit board 12 / ceramics substrate 11 / heat sink 13) (joining) Process). Then, the to-be-pressurized body 100 is divided at the first spacer 21 and the second spacer 22 to obtain individual laminated structures 10. Thereafter, the metal circuit board 12 in each laminated structure 10 is selectively etched and patterned, and then cut and separated into a small circuit board.
上記の工程においては、特に高温時に、セラミックス基板11、金属回路板12、放熱板13は熱膨張する。この際、前記の通り、熱膨張が大きいのは特に金属回路板12、放熱板13である。更に、これらは接合中に到達する温度(250℃程度以上の温度)において、これらを構成する銅は軟化する。このため、この高温下においては、熱膨張した金属回路板12、放熱板13が、被加圧体100の周囲の構造物に当接することがある。この場合、金属回路板12、放熱板13は軟化しているために変形をし、この変形した形態のままろう材を介した接合が行われる。このため、被加圧体100の周縁部において、セラミックス基板11と金属回路板12、放熱板13との間の間隔が局所的に大きな箇所が形成される。こうした箇所においてはろう材中にボイドが形成されやすくなる。 In the above process, the ceramic substrate 11, the metal circuit board 12, and the heat sink 13 are thermally expanded particularly at high temperatures. Under the present circumstances, as above-mentioned, it is especially the metal circuit board 12 and the heat sink 13 that thermal expansion is large. Furthermore, the copper which comprises these at the temperature which reaches | attains during joining (temperature of about 250 degreeC or more) softens. For this reason, at this high temperature, the thermally expanded metal circuit board 12 and the heat radiating plate 13 may come into contact with the structure around the pressed body 100. In this case, the metal circuit board 12 and the heat radiating plate 13 are deformed because they are softened, and the joining is performed through the brazing material in the deformed form. For this reason, in the peripheral part of the to-be-pressed body 100, the location where the space | interval between the ceramic substrate 11, the metal circuit board 12, and the heat sink 13 is locally large is formed. In these places, voids are easily formed in the brazing material.
上記の構成においては、常温で被加圧体100をこの接合治具に装着する段階で縦方向スペーサ31、32が図1に示されるように使用され、加熱前においてこれらは抜き取られる。これにより、被加圧体100の側面とその周囲の構造物(柱状部材53)との間の間隔を大きくとることにより、上記の問題が発生することを抑制している。すなわち、周縁部におけるボイドの形成を抑制し、接合強度を一様に高くすることができる。 In the above-described configuration, the vertical spacers 31 and 32 are used as shown in FIG. 1 at the stage of mounting the member 100 to be pressed to the joining jig at room temperature, and these are extracted before heating. Thus, the occurrence of the above problem is suppressed by increasing the distance between the side surface of the pressed body 100 and the surrounding structure (the columnar member 53). That is, it is possible to suppress the formation of voids in the peripheral portion and to increase the bonding strength uniformly.
また、図1(b)の状態において、セラミックス基板11、金属回路板12、放熱板13の上辺、左辺は、それぞれ縦方向スペーサ31、32と当接し、揃った状態とされる。一方、下辺、右辺においては、セラミックス基板11は、金属回路板12、放熱板13よりも突出した構成とされる。常温においてこうした状態とされることは前記の通りであるが、常温において加圧後に縦方向スペーサ31、32を抜き取れば、この状態はその後でも維持されることは明らかである。従って、高温時において金属回路板12、放熱板13が柱状部材53と当接しない限りにおいて、この状態は、その後も維持される。このため、高温に曝された後で冷却された後においても、下辺、右辺において、セラミックス基板11が金属回路板12、放熱板13よりも突出した状態は維持される。このため、この突出した箇所におけるセラミックス基板11の表面にマーキング等を施せば、接合の前後において、これを作業者は容易に確認することができる。 Further, in the state of FIG. 1B, the upper side and the left side of the ceramic substrate 11, the metal circuit board 12, and the heat radiating plate 13 are in contact with the vertical spacers 31 and 32, respectively, so that they are aligned. On the other hand, in the lower side and the right side, the ceramic substrate 11 is configured to protrude from the metal circuit board 12 and the heat sink 13. As described above, this state is obtained at normal temperature. However, if the vertical spacers 31 and 32 are extracted after pressurization at normal temperature, it is clear that this state is maintained even after that. Therefore, as long as the metal circuit board 12 and the heat radiating plate 13 do not contact the columnar member 53 at a high temperature, this state is maintained thereafter. For this reason, even after being cooled after being exposed to a high temperature, the state in which the ceramic substrate 11 protrudes from the metal circuit board 12 and the heat sink 13 is maintained on the lower side and the right side. For this reason, if marking etc. are given to the surface of the ceramic substrate 11 in this protruding part, an operator can confirm this easily before and after joining.
この際、上記の接合治具においては、特許文献1〜3に記載された従来の接合治具と比べて、付加された構成要素は縦方向スペーサ31、32のみである。これによって上記の効果を奏する。すなわち、上記の接合治具を用いて、一様に高い接合強度をもった回路基板を低コストで得ることができる。これにより、信頼性の高い回路基板を高い歩留まりで低コストで容易に製造することができる。 At this time, in the above-described joining jig, compared to the conventional joining jigs described in Patent Documents 1 to 3, only the vertical spacers 31 and 32 are added. As a result, the above-described effects are exhibited. That is, a circuit board having a uniform high bonding strength can be obtained at low cost using the above-described bonding jig. As a result, a highly reliable circuit board can be easily manufactured at a high yield and at a low cost.
なお、上記の接合治具において、複数の柱状部材53は、図1(b)における被加圧体100の左側面、上側面、右側面に沿った3列に配されていた。被加圧体設置工程において、縦方向スペーサ31、32は、左側面に沿った列の柱状部材53と被加圧体100の左側面との間、上側面に沿った列の柱状部材53と被加圧体100の上側面との間に、各々が柱状部材53と被加圧体100と接するように設けられた。しかしながら、縦方向スペーサを右側面、上側面に設ける構成としても同様である。すなわち、柱状部材53が設けられた3列のうち、互いに平行でない2列に縦方向スペーサを設ける構成とすればよい。これにより、この2列を構成する柱状部材53と被加圧体100がそれぞれ縦方向スペーサを介して接し、かつ他の1列を構成する柱状部材53と被加圧体100が接さない状態を作り出すことができる。この際、複数の柱状部材53の配置構成を、被加圧体100に圧力を印加した後に縦方向スペーサを引き抜くことができるようにすることは容易である。 In the above-mentioned joining jig, the plurality of columnar members 53 are arranged in three rows along the left side, the upper side, and the right side of the pressed body 100 in FIG. In the pressed body installation step, the vertical spacers 31 and 32 are arranged between the columnar members 53 in the row along the left side and the left side of the pressed body 100, and the columnar members 53 in the row along the upper side. Each was provided so as to be in contact with the columnar member 53 and the pressed body 100 between the upper surface of the pressed body 100. However, the same applies to a configuration in which the vertical spacer is provided on the right side surface and the upper side surface. That is, the vertical spacers may be provided in two rows that are not parallel to each other among the three rows in which the columnar members 53 are provided. Thereby, the columnar members 53 constituting the two rows and the pressurized object 100 are in contact with each other through the vertical spacers, and the columnar members 53 constituting the other row and the pressurized object 100 are not in contact with each other. Can produce. At this time, it is easy to arrange the arrangement of the plurality of columnar members 53 so that the vertical spacers can be pulled out after applying pressure to the pressurized object 100.
また、被加圧体100中においては、積層構造体10の間にスペーサ(第1のスペーサ21、第2のスペーサ22)が配される。これらのスペーサは、前記の通り、隣接する積層構造体10間の固着を防止し、ろう材による接合後にこれらの分離を容易にするために用いられる。一方、セラミックス基板11と金属回路板12、放熱板13の熱膨張係数の違いによる接合後の積層構造体10(回路基板)の反りは、厚く剛性が高いスペーサを用いることによって低減されることは明らかである。 In the pressed body 100, spacers (first spacer 21 and second spacer 22) are disposed between the laminated structures 10. As described above, these spacers are used to prevent adhesion between adjacent laminated structures 10 and to facilitate separation after joining with a brazing material. On the other hand, the warpage of the laminated structure 10 (circuit board) after joining due to the difference in thermal expansion coefficients of the ceramic substrate 11, the metal circuit board 12, and the heat sink 13 can be reduced by using a thick and highly rigid spacer. it is obvious.
一方で、通常は接合治具の構成によって被加圧体100の最大高さは限定される。スペーサが厚い場合には、接合作業を同時に行うことのできる積層構造体10の数が少なくなる。すなわち、回路基板の製造コストを低減するという観点からは、スペーサは薄い方が好ましい。 On the other hand, the maximum height of the pressed body 100 is usually limited by the configuration of the joining jig. When the spacer is thick, the number of laminated structures 10 that can be joined simultaneously is reduced. That is, it is preferable that the spacer is thin from the viewpoint of reducing the manufacturing cost of the circuit board.
このため、図2に示されるように、厚い第1のスペーサ21、薄い第2のスペーサ22は、交互に配することが好ましい。この場合、どの積層構造体10の上下両側にも第1のスペーサ21、第2のスペーサ22が配された構成となるため、各々の積層構造体10に印加される圧力を均一化することができる。なお、図2における最上部の積層構造体10の上部には上部板51が、最下部の積層構造体10の下部には底板50が配されるため、第1のスペーサ21、第2のスペーサ22のいずれを配してもよい。あるいは、被加圧体10における最上部と最下部にはこれらのスペーサを配さない構成とすることもできる。 For this reason, as shown in FIG. 2, the thick first spacers 21 and the thin second spacers 22 are preferably arranged alternately. In this case, since the first spacer 21 and the second spacer 22 are arranged on both upper and lower sides of any stacked structure 10, the pressure applied to each stacked structure 10 can be made uniform. it can. 2, an upper plate 51 is disposed above the uppermost laminated structure 10, and a bottom plate 50 is disposed below the lowermost laminated structure 10. Therefore, the first spacer 21 and the second spacer are arranged. Any of 22 may be arranged. Or it can also be set as the structure which does not distribute these spacers in the uppermost part and the lowest part in the to-be-pressurized body 10. FIG.
なお、上記の例では、金属回路板と放熱板とをろう材でセラミックス基板に接合する場合について記載したが、高温・高圧でこれらを接合する場合であれば、上記の接合方法、接合治具が同様に有効であることは明らかである。このため、例えばろう材を用いないDBC(Direct Bonding Copper)等を用いる場合においても、上記の構成は有効である。また、例えば金属回路板のみを用い、放熱板を用いない構成であっても同様である。更に、上記の例では金属回路板(金属板)とセラミックス基板とを接合する場合について記載したが、熱膨張係数の異なる2種類の矩形形状の平板状の部材を高温で接合する場合において有効であることも明らかである。 In the above example, the case where the metal circuit board and the heat radiating plate are joined to the ceramic substrate with the brazing material has been described. Is clearly effective as well. For this reason, for example, the above-described configuration is effective even when a DBC (Direct Bonding Copper) that does not use brazing material is used. Further, for example, the same applies to a configuration using only a metal circuit board and no heat sink. Furthermore, in the above example, the case where the metal circuit board (metal plate) and the ceramic substrate are joined is described. However, it is effective when joining two kinds of rectangular flat plate members having different thermal expansion coefficients at a high temperature. It is also clear that there is.
(実施例)
実際に上記の2枚の縦方向スペーサを用いて接合を行った回路基板(実施例)と、縦方向スペーサを用いずに柱状部材に被加圧体を当接させて固定して接合を行った回路基板(比較例)における接合の状況を調べた。ここでは、0.32mm厚のセラミックス基板(窒化珪素セラミックス)に、0.5mm厚の金属回路板、0.5mm厚の放熱板を、Ag−Cu−Ti系ろう材で接合した。この際の接合は、ろう材溶融時の約800℃において0.01Pa程度の減圧雰囲気で行った。積層した積層構造体の数は25層とし、第1のスペーサは3mm厚、第2のスペーサは1mm厚とし、これらを交互に用いた。接合時に印加した圧力は約9kgfとした。実施例において用いられた2枚の縦方向スペーサの厚さは3mmとした。
(Example)
The circuit board (Example) that was actually bonded using the above-mentioned two vertical spacers, and the pressed member to be contacted and fixed to the columnar member without using the vertical spacer, and bonded The state of bonding in the circuit board (comparative example) was examined. Here, a 0.5 mm thick metal circuit board and a 0.5 mm thick heat sink were joined to a 0.32 mm thick ceramic substrate (silicon nitride ceramics) with an Ag—Cu—Ti brazing material. The joining at this time was performed in a reduced pressure atmosphere of about 0.01 Pa at about 800 ° C. when the brazing material was melted. The number of laminated structures laminated was 25, the first spacer was 3 mm thick, the second spacer was 1 mm thick, and these were used alternately. The pressure applied at the time of joining was about 9 kgf. The thickness of the two longitudinal spacers used in the examples was 3 mm.
図3は、比較例(a)、実施例(b)の回路基板における接合時の周縁部付近の接合の状況を超音波探傷装置で見た結果である。図中、左側は金属回路板側、右側は放熱板側を示す。なお、実施例と比較例ではパターンが異なっているが、このパターニングは接合後に行われているため、接合の状況にはこのパターニングの違いは無関係である。図3においては、金属回路板側の結果における上辺部、左辺部、放熱板側の結果における上辺部、右辺部が、接合時における周縁部に相当する。 FIG. 3 is a result of the ultrasonic flaw detection apparatus showing the bonding state in the vicinity of the peripheral edge during bonding on the circuit boards of Comparative Example (a) and Example (b). In the figure, the left side shows the metal circuit board side, and the right side shows the heat sink side. Although the patterns are different between the example and the comparative example, since this patterning is performed after bonding, the difference in patterning is irrelevant to the bonding state. In FIG. 3, the upper side and the left side in the result on the metal circuit board side, and the upper side and the right side in the result on the heat sink side correspond to the peripheral edge at the time of joining.
比較例(a)においては、周縁部に白く見える領域が存在する。この領域は、ろう材中のボイドが存在するために接合強度が低くなっている領域である。前記の通り、この領域は、金属回路板や放熱板が熱膨張して柱状部材に当接したために生じた。 In the comparative example (a), there is an area that appears white at the peripheral edge. This region is a region where the bonding strength is low due to the presence of voids in the brazing material. As described above, this region is generated because the metal circuit board or the heat radiating plate thermally expands and comes into contact with the columnar member.
これに対して、実施例(b)においては、周縁部に白く見える領域は存在せず、一様な接合強度が得られている。 On the other hand, in Example (b), the area | region which looks white at the peripheral part does not exist, and uniform joining strength is acquired.
10 積層構造体
11 セラミックス基板(第1の部材)
12 金属回路板(金属板;第2の部材)
13 放熱板(金属板:第2の部材)
21 第1のスペーサ(スペーサ)
22 第2のスペーサ(スペーサ)
31、32 縦方向スペーサ
50 底板
51 上部板
52 バネ
53 柱状部材
54 天板
100 被加圧体
10 Laminated structure 11 Ceramic substrate (first member)
12 Metal circuit board (metal plate; second member)
13 Heat sink (metal plate: second member)
21 First spacer (spacer)
22 Second spacer (spacer)
31, 32 Vertical spacer 50 Bottom plate 51 Top plate 52 Spring 53 Columnar member 54 Top plate 100 Pressurized object
Claims (7)
前記第1の部材と前記第2の部材とを平板形状における面の法線方向である積層方向に沿って積層した積層構造体を平板状のスペーサを介して前記積層方向に沿って複数積層した略矩形体の被加圧体を形成する被加圧体準備工程と、
前記被加圧体における前記積層方向と平行な3つの側面と略平行に、それぞれ複数の柱状部材が列状に配置され、当該複数の柱状部材に囲まれた内部に間隔をおいて前記被加圧体が収容できる構成を具備する接合治具において、3列のうちの互いに平行でない2列を構成する前記柱状部材と前記被加圧体がそれぞれ縦方向スペーサを介して接し、かつ他の1列を構成する前記柱状部材と前記被加圧体が接さない状態で、前記被加圧体を前記複数の柱状部材に囲まれた内部に設置する被加圧体設置工程と、
前記被加圧体に対して前記積層方向に沿って圧力を印加し、かつ2つの前記縦方向スペーサを前記接合治具から抜き取る接合準備工程と、
前記被加圧体が設置された前記接合治具を加熱した後に冷却することによって前記第1の部材と前記第2の部材とを接合する接合工程と、
を具備することを特徴とする接合方法。 Both of them are rectangular flat plates and are joining methods for joining the first member and the second member having different thermal expansion coefficients at a high temperature,
A stacked structure in which the first member and the second member are stacked along the stacking direction, which is the normal direction of the surface in the flat plate shape, is stacked in multiple layers along the stacking direction via a flat spacer. A pressurized body preparation step of forming a pressurized body of a substantially rectangular body;
A plurality of columnar members are arranged in a row substantially parallel to three side surfaces parallel to the stacking direction of the pressed body, and the object to be pressed is spaced from the inside surrounded by the columnar members. In the joining jig having a configuration capable of accommodating the pressure body, the columnar members constituting the two rows out of the three rows that are not parallel to each other and the pressed body are in contact with each other via a vertical spacer, and the other 1 A pressurized body installation step of installing the pressurized body in an interior surrounded by the plurality of columnar members in a state where the pressurized body and the columnar member constituting the row are not in contact with each other;
A preparatory step of applying pressure along the stacking direction to the object to be pressurized and extracting the two vertical spacers from the joining jig;
A joining step of joining the first member and the second member by cooling after heating the joining jig on which the pressurized body is installed;
The joining method characterized by comprising.
前記接合工程において、前記第1の部材と前記第2の部材とはろう材によって接合されることを特徴とする請求項1に記載の接合方法。 In the pressed object preparation step, the first member and the second member are laminated with a brazing material interposed therebetween,
The joining method according to claim 1, wherein in the joining step, the first member and the second member are joined by a brazing material.
前記スペーサとして、厚さの異なる2種類のスペーサが設けられ、
積層方向において、前記2種類のスペーサが、交互に配されたことを特徴とする請求項1から請求項3までのいずれか1項に記載の接合方法。 In the pressurized object preparation step,
As the spacer, two types of spacers having different thicknesses are provided,
The joining method according to any one of claims 1 to 3, wherein the two types of spacers are alternately arranged in the stacking direction.
前記接合準備工程において、
前記縦方向スペーサが配されない側の前記被加圧体の積層方向に平行な側面側において、前記セラミックス基板は、前記金属板よりも突出する構成とされることを特徴とする請求項5に記載の接合方法。 The ceramic substrate is larger in plan view than the metal plate,
In the joining preparation step,
6. The ceramic substrate is configured to protrude from the metal plate on a side surface parallel to the stacking direction of the pressed body on the side where the vertical spacer is not disposed. Joining method.
前記3列のうちの互いに平行でない2列のそれぞれと、当該2列のそれぞれと対向する前記被加圧体の側面との間に設けられ、他の1列を構成する前記柱状部材と前記被加圧体とが接さない状態において前記2列のそれぞれを構成する前記柱状部材と前記被加圧体の両方と接し、前記圧力が印加された状態において前記2列のそれぞれを構成する前記柱状部材と前記被加圧体の間から引き抜くことができる構成とされた2つの縦方向スペーサを具備することを特徴とする接合治具。 Each is a rectangular flat plate and is used to join the first member and the second member having different thermal expansion coefficients at a high temperature, and the first member and the second member are in a flat plate shape. the pressure body formed by stacking a plurality in configured substantially rectangular body normal direction in which stacked along a stacking direction a stacked structure along the stacking direction of the plane, the stack in the target pressure body A plurality of columnar members are arranged in three rows substantially parallel to three side surfaces parallel to the direction, and the pressurized body can be accommodated in the interior surrounded by the plurality of columnar members, A joining jig comprising a configuration in which pressure is applied along the stacking direction with respect to the pressurized body in a state in which the pressurized body is accommodated,
The columnar members that are provided between each of the two rows out of the three rows that are not parallel to each other and the side surface of the pressed body that faces each of the two rows, and the column member that forms the other row The columnar members that are in contact with both of the columnar members that constitute each of the two rows in a state where they are not in contact with the pressure bodies and the pressed bodies, and that each of the two rows are configured in a state where the pressure is applied. A joining jig comprising two longitudinal spacers configured to be able to be pulled out from between a member and the pressed body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011064364A JP5817164B2 (en) | 2011-03-23 | 2011-03-23 | Joining method, joining jig |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011064364A JP5817164B2 (en) | 2011-03-23 | 2011-03-23 | Joining method, joining jig |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012200730A JP2012200730A (en) | 2012-10-22 |
JP5817164B2 true JP5817164B2 (en) | 2015-11-18 |
Family
ID=47182247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011064364A Active JP5817164B2 (en) | 2011-03-23 | 2011-03-23 | Joining method, joining jig |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5817164B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5828391B2 (en) * | 2011-09-29 | 2015-12-02 | 日立金属株式会社 | Joining jig and joining jig unit using the same |
KR102034167B1 (en) * | 2018-12-05 | 2019-10-18 | 한화시스템 주식회사 | Bonding jig, sapphire manufacturing apparatus and method using the same |
JP2020145335A (en) * | 2019-03-07 | 2020-09-10 | 株式会社Fjコンポジット | Manufacturing method of circuit substrate |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175674A (en) * | 1988-12-28 | 1990-07-06 | Nippon Carbide Ind Co Inc | Joined body of ceramics and metallic body and method for joining thereof |
ATE431321T1 (en) * | 2003-11-12 | 2009-05-15 | Ibiden Co Ltd | METHOD FOR PRODUCING THE CERAMIC STRUCTURE |
JP2008024561A (en) * | 2006-07-24 | 2008-02-07 | Toshiba Corp | Ceramic-metal joined component and its producing method |
WO2008140095A1 (en) * | 2007-05-16 | 2008-11-20 | Ngk Insulators, Ltd. | Method for producing bonded body of honeycomb segments |
WO2009108759A1 (en) * | 2008-02-26 | 2009-09-03 | Floodcooling Technologies, Llc | Brazed aluminum laminate mold tooling |
JP5129189B2 (en) * | 2009-03-31 | 2013-01-23 | Dowaメタルテック株式会社 | Metal-ceramic bonding substrate and manufacturing method thereof |
JP2010238900A (en) * | 2009-03-31 | 2010-10-21 | Mitsubishi Materials Corp | Circuit board connecting tool, and method of manufacturing circuit board |
JP5251677B2 (en) * | 2009-03-31 | 2013-07-31 | 三菱マテリアル株式会社 | Circuit board bonding jig and circuit board manufacturing method |
JP5165629B2 (en) * | 2009-04-03 | 2013-03-21 | Dowaメタルテック株式会社 | Metal-ceramic bonding substrate and brazing material used therefor |
-
2011
- 2011-03-23 JP JP2011064364A patent/JP5817164B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012200730A (en) | 2012-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3166140B1 (en) | Substrate unit for power modules, and power module | |
JP5759902B2 (en) | Laminate and method for producing the same | |
JP5116615B2 (en) | Positioning jig unit and soldering method | |
CN111819682A (en) | Method for producing joined body for insulating circuit board, and joined body for insulating circuit board | |
JP5817164B2 (en) | Joining method, joining jig | |
JP6183166B2 (en) | Power module substrate with heat sink and manufacturing method thereof | |
JP5413485B2 (en) | Circuit board manufacturing method and circuit board | |
CN108389839A (en) | Graphite radiating plate | |
JP2008109054A (en) | Thermoelectric conversion module and method for manufacturing the same | |
JP5987634B2 (en) | Power semiconductor module | |
KR20110061210A (en) | Metallic laminate and manufacturing method of core substrate thereof using the same | |
JP2013143434A (en) | Semiconductor device, semiconductor chip therefor and manufacturing method of the same | |
JP2005116843A (en) | Metallic plate circuit and ceramic circuit board | |
TWI770346B (en) | Method for manufacturing power module substrate and ceramic-copper joint | |
JP7147610B2 (en) | Insulated circuit board and its manufacturing method | |
JP7415486B2 (en) | Insulated circuit board with heat sink and method for manufacturing the same | |
JP4786302B2 (en) | Power module base manufacturing method | |
JP7119689B2 (en) | Manufacturing method of insulated circuit board with heat sink and insulated circuit board with heat sink | |
JP4124150B2 (en) | Thermoelectric module manufacturing method | |
JP5887907B2 (en) | Power module substrate manufacturing method and manufacturing apparatus | |
JP7521451B2 (en) | Manufacturing method of insulating circuit board and insulating circuit board | |
JP7205214B2 (en) | Insulated circuit board with heat sink | |
JP2017120888A (en) | Insulation substrate | |
JP7230602B2 (en) | Insulated circuit board and its manufacturing method | |
JP5505494B2 (en) | Circuit board manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150914 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5817164 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |